xref: /freebsd/sys/netinet/in_pcb.c (revision 33644623554bb0fc57ed3c7d874193a498679b22)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ipsec.h"
39 #include "opt_inet6.h"
40 #include "opt_mac.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/sysctl.h>
55 #include <sys/vimage.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #endif
60 
61 #include <vm/uma.h>
62 
63 #include <net/if.h>
64 #include <net/if_types.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/tcp_var.h>
72 #include <netinet/udp.h>
73 #include <netinet/udp_var.h>
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #include <netinet6/ip6_var.h>
77 #endif /* INET6 */
78 
79 
80 #ifdef IPSEC
81 #include <netipsec/ipsec.h>
82 #include <netipsec/key.h>
83 #endif /* IPSEC */
84 
85 #include <security/mac/mac_framework.h>
86 
87 #ifdef VIMAGE_GLOBALS
88 /*
89  * These configure the range of local port addresses assigned to
90  * "unspecified" outgoing connections/packets/whatever.
91  */
92 int	ipport_lowfirstauto;
93 int	ipport_lowlastauto;
94 int	ipport_firstauto;
95 int	ipport_lastauto;
96 int	ipport_hifirstauto;
97 int	ipport_hilastauto;
98 
99 /*
100  * Reserved ports accessible only to root. There are significant
101  * security considerations that must be accounted for when changing these,
102  * but the security benefits can be great. Please be careful.
103  */
104 int	ipport_reservedhigh;
105 int	ipport_reservedlow;
106 
107 /* Variables dealing with random ephemeral port allocation. */
108 int	ipport_randomized;
109 int	ipport_randomcps;
110 int	ipport_randomtime;
111 int	ipport_stoprandom;
112 int	ipport_tcpallocs;
113 int	ipport_tcplastcount;
114 #endif
115 
116 #define RANGECHK(var, min, max) \
117 	if ((var) < (min)) { (var) = (min); } \
118 	else if ((var) > (max)) { (var) = (max); }
119 
120 static int
121 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
122 {
123 	INIT_VNET_INET(curvnet);
124 	int error;
125 
126 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
127 	if (error == 0) {
128 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
129 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
130 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
131 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
132 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
133 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
134 	}
135 	return (error);
136 }
137 
138 #undef RANGECHK
139 
140 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
141 
142 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
143 	lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
144 	&sysctl_net_ipport_check, "I", "");
145 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
146 	lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
147 	&sysctl_net_ipport_check, "I", "");
148 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
149 	first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
150 	&sysctl_net_ipport_check, "I", "");
151 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
152 	last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
153 	&sysctl_net_ipport_check, "I", "");
154 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
155 	hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
156 	&sysctl_net_ipport_check, "I", "");
157 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
158 	hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
159 	&sysctl_net_ipport_check, "I", "");
160 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
161 	reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
162 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
163 	CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
164 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
165 	CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
166 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
167 	CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
168 	"allocations before switching to a sequental one");
169 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
170 	CTLFLAG_RW, ipport_randomtime, 0,
171 	"Minimum time to keep sequental port "
172 	"allocation before switching to a random one");
173 
174 /*
175  * in_pcb.c: manage the Protocol Control Blocks.
176  *
177  * NOTE: It is assumed that most of these functions will be called with
178  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
179  * functions often modify hash chains or addresses in pcbs.
180  */
181 
182 /*
183  * Allocate a PCB and associate it with the socket.
184  * On success return with the PCB locked.
185  */
186 int
187 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
188 {
189 #ifdef INET6
190 	INIT_VNET_INET6(curvnet);
191 #endif
192 	struct inpcb *inp;
193 	int error;
194 
195 	INP_INFO_WLOCK_ASSERT(pcbinfo);
196 	error = 0;
197 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
198 	if (inp == NULL)
199 		return (ENOBUFS);
200 	bzero(inp, inp_zero_size);
201 	inp->inp_pcbinfo = pcbinfo;
202 	inp->inp_socket = so;
203 	inp->inp_cred = crhold(so->so_cred);
204 	inp->inp_inc.inc_fibnum = so->so_fibnum;
205 #ifdef MAC
206 	error = mac_inpcb_init(inp, M_NOWAIT);
207 	if (error != 0)
208 		goto out;
209 	SOCK_LOCK(so);
210 	mac_inpcb_create(so, inp);
211 	SOCK_UNLOCK(so);
212 #endif
213 
214 #ifdef IPSEC
215 	error = ipsec_init_policy(so, &inp->inp_sp);
216 	if (error != 0) {
217 #ifdef MAC
218 		mac_inpcb_destroy(inp);
219 #endif
220 		goto out;
221 	}
222 #endif /*IPSEC*/
223 #ifdef INET6
224 	if (INP_SOCKAF(so) == AF_INET6) {
225 		inp->inp_vflag |= INP_IPV6PROTO;
226 		if (V_ip6_v6only)
227 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
228 	}
229 #endif
230 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
231 	pcbinfo->ipi_count++;
232 	so->so_pcb = (caddr_t)inp;
233 #ifdef INET6
234 	if (V_ip6_auto_flowlabel)
235 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
236 #endif
237 	INP_WLOCK(inp);
238 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
239 
240 #if defined(IPSEC) || defined(MAC)
241 out:
242 	if (error != 0) {
243 		crfree(inp->inp_cred);
244 		uma_zfree(pcbinfo->ipi_zone, inp);
245 	}
246 #endif
247 	return (error);
248 }
249 
250 int
251 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
252 {
253 	int anonport, error;
254 
255 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
256 	INP_WLOCK_ASSERT(inp);
257 
258 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
259 		return (EINVAL);
260 	anonport = inp->inp_lport == 0 && (nam == NULL ||
261 	    ((struct sockaddr_in *)nam)->sin_port == 0);
262 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
263 	    &inp->inp_lport, cred);
264 	if (error)
265 		return (error);
266 	if (in_pcbinshash(inp) != 0) {
267 		inp->inp_laddr.s_addr = INADDR_ANY;
268 		inp->inp_lport = 0;
269 		return (EAGAIN);
270 	}
271 	if (anonport)
272 		inp->inp_flags |= INP_ANONPORT;
273 	return (0);
274 }
275 
276 /*
277  * Set up a bind operation on a PCB, performing port allocation
278  * as required, but do not actually modify the PCB. Callers can
279  * either complete the bind by setting inp_laddr/inp_lport and
280  * calling in_pcbinshash(), or they can just use the resulting
281  * port and address to authorise the sending of a once-off packet.
282  *
283  * On error, the values of *laddrp and *lportp are not changed.
284  */
285 int
286 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
287     u_short *lportp, struct ucred *cred)
288 {
289 	INIT_VNET_INET(inp->inp_vnet);
290 	struct socket *so = inp->inp_socket;
291 	unsigned short *lastport;
292 	struct sockaddr_in *sin;
293 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
294 	struct in_addr laddr;
295 	u_short lport = 0;
296 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
297 	int error;
298 	int dorandom;
299 
300 	/*
301 	 * Because no actual state changes occur here, a global write lock on
302 	 * the pcbinfo isn't required.
303 	 */
304 	INP_INFO_LOCK_ASSERT(pcbinfo);
305 	INP_LOCK_ASSERT(inp);
306 
307 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
308 		return (EADDRNOTAVAIL);
309 	laddr.s_addr = *laddrp;
310 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
311 		return (EINVAL);
312 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
313 		wild = INPLOOKUP_WILDCARD;
314 	if (nam) {
315 		sin = (struct sockaddr_in *)nam;
316 		if (nam->sa_len != sizeof (*sin))
317 			return (EINVAL);
318 #ifdef notdef
319 		/*
320 		 * We should check the family, but old programs
321 		 * incorrectly fail to initialize it.
322 		 */
323 		if (sin->sin_family != AF_INET)
324 			return (EAFNOSUPPORT);
325 #endif
326 		if (prison_local_ip4(cred, &sin->sin_addr))
327 			return (EINVAL);
328 		if (sin->sin_port != *lportp) {
329 			/* Don't allow the port to change. */
330 			if (*lportp != 0)
331 				return (EINVAL);
332 			lport = sin->sin_port;
333 		}
334 		/* NB: lport is left as 0 if the port isn't being changed. */
335 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
336 			/*
337 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
338 			 * allow complete duplication of binding if
339 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
340 			 * and a multicast address is bound on both
341 			 * new and duplicated sockets.
342 			 */
343 			if (so->so_options & SO_REUSEADDR)
344 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
345 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
346 			sin->sin_port = 0;		/* yech... */
347 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
348 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
349 				return (EADDRNOTAVAIL);
350 		}
351 		laddr = sin->sin_addr;
352 		if (lport) {
353 			struct inpcb *t;
354 			struct tcptw *tw;
355 
356 			/* GROSS */
357 			if (ntohs(lport) <= V_ipport_reservedhigh &&
358 			    ntohs(lport) >= V_ipport_reservedlow &&
359 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
360 			    0))
361 				return (EACCES);
362 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
363 			    priv_check_cred(inp->inp_cred,
364 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
365 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
366 				    lport, INPLOOKUP_WILDCARD, cred);
367 	/*
368 	 * XXX
369 	 * This entire block sorely needs a rewrite.
370 	 */
371 				if (t &&
372 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
373 				    (so->so_type != SOCK_STREAM ||
374 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
375 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
376 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
377 				     (t->inp_socket->so_options &
378 					 SO_REUSEPORT) == 0) &&
379 				    (inp->inp_cred->cr_uid !=
380 				     t->inp_cred->cr_uid))
381 					return (EADDRINUSE);
382 			}
383 			if (prison_local_ip4(cred, &sin->sin_addr))
384 				return (EADDRNOTAVAIL);
385 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
386 			    lport, wild, cred);
387 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
388 				/*
389 				 * XXXRW: If an incpb has had its timewait
390 				 * state recycled, we treat the address as
391 				 * being in use (for now).  This is better
392 				 * than a panic, but not desirable.
393 				 */
394 				tw = intotw(inp);
395 				if (tw == NULL ||
396 				    (reuseport & tw->tw_so_options) == 0)
397 					return (EADDRINUSE);
398 			} else if (t &&
399 			    (reuseport & t->inp_socket->so_options) == 0) {
400 #ifdef INET6
401 				if (ntohl(sin->sin_addr.s_addr) !=
402 				    INADDR_ANY ||
403 				    ntohl(t->inp_laddr.s_addr) !=
404 				    INADDR_ANY ||
405 				    INP_SOCKAF(so) ==
406 				    INP_SOCKAF(t->inp_socket))
407 #endif
408 				return (EADDRINUSE);
409 			}
410 		}
411 	}
412 	if (*lportp != 0)
413 		lport = *lportp;
414 	if (lport == 0) {
415 		u_short first, last, aux;
416 		int count;
417 
418 		if (prison_local_ip4(cred, &laddr))
419 			return (EINVAL);
420 
421 		if (inp->inp_flags & INP_HIGHPORT) {
422 			first = V_ipport_hifirstauto;	/* sysctl */
423 			last  = V_ipport_hilastauto;
424 			lastport = &pcbinfo->ipi_lasthi;
425 		} else if (inp->inp_flags & INP_LOWPORT) {
426 			error = priv_check_cred(cred,
427 			    PRIV_NETINET_RESERVEDPORT, 0);
428 			if (error)
429 				return error;
430 			first = V_ipport_lowfirstauto;	/* 1023 */
431 			last  = V_ipport_lowlastauto;	/* 600 */
432 			lastport = &pcbinfo->ipi_lastlow;
433 		} else {
434 			first = V_ipport_firstauto;	/* sysctl */
435 			last  = V_ipport_lastauto;
436 			lastport = &pcbinfo->ipi_lastport;
437 		}
438 		/*
439 		 * For UDP, use random port allocation as long as the user
440 		 * allows it.  For TCP (and as of yet unknown) connections,
441 		 * use random port allocation only if the user allows it AND
442 		 * ipport_tick() allows it.
443 		 */
444 		if (V_ipport_randomized &&
445 			(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
446 			dorandom = 1;
447 		else
448 			dorandom = 0;
449 		/*
450 		 * It makes no sense to do random port allocation if
451 		 * we have the only port available.
452 		 */
453 		if (first == last)
454 			dorandom = 0;
455 		/* Make sure to not include UDP packets in the count. */
456 		if (pcbinfo != &V_udbinfo)
457 			V_ipport_tcpallocs++;
458 		/*
459 		 * Instead of having two loops further down counting up or down
460 		 * make sure that first is always <= last and go with only one
461 		 * code path implementing all logic.
462 		 */
463 		if (first > last) {
464 			aux = first;
465 			first = last;
466 			last = aux;
467 		}
468 
469 		if (dorandom)
470 			*lastport = first +
471 				    (arc4random() % (last - first));
472 
473 		count = last - first;
474 
475 		do {
476 			if (count-- < 0)	/* completely used? */
477 				return (EADDRNOTAVAIL);
478 			++*lastport;
479 			if (*lastport < first || *lastport > last)
480 				*lastport = first;
481 			lport = htons(*lastport);
482 		} while (in_pcblookup_local(pcbinfo, laddr,
483 		    lport, wild, cred));
484 	}
485 	if (prison_local_ip4(cred, &laddr))
486 		return (EINVAL);
487 	*laddrp = laddr.s_addr;
488 	*lportp = lport;
489 	return (0);
490 }
491 
492 /*
493  * Connect from a socket to a specified address.
494  * Both address and port must be specified in argument sin.
495  * If don't have a local address for this socket yet,
496  * then pick one.
497  */
498 int
499 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
500 {
501 	u_short lport, fport;
502 	in_addr_t laddr, faddr;
503 	int anonport, error;
504 
505 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
506 	INP_WLOCK_ASSERT(inp);
507 
508 	lport = inp->inp_lport;
509 	laddr = inp->inp_laddr.s_addr;
510 	anonport = (lport == 0);
511 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
512 	    NULL, cred);
513 	if (error)
514 		return (error);
515 
516 	/* Do the initial binding of the local address if required. */
517 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
518 		inp->inp_lport = lport;
519 		inp->inp_laddr.s_addr = laddr;
520 		if (in_pcbinshash(inp) != 0) {
521 			inp->inp_laddr.s_addr = INADDR_ANY;
522 			inp->inp_lport = 0;
523 			return (EAGAIN);
524 		}
525 	}
526 
527 	/* Commit the remaining changes. */
528 	inp->inp_lport = lport;
529 	inp->inp_laddr.s_addr = laddr;
530 	inp->inp_faddr.s_addr = faddr;
531 	inp->inp_fport = fport;
532 	in_pcbrehash(inp);
533 
534 	if (anonport)
535 		inp->inp_flags |= INP_ANONPORT;
536 	return (0);
537 }
538 
539 /*
540  * Do proper source address selection on an unbound socket in case
541  * of connect. Take jails into account as well.
542  */
543 static int
544 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
545     struct ucred *cred)
546 {
547 	struct in_ifaddr *ia;
548 	struct ifaddr *ifa;
549 	struct sockaddr *sa;
550 	struct sockaddr_in *sin;
551 	struct route sro;
552 	int error;
553 
554 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
555 
556 	error = 0;
557 	ia = NULL;
558 	bzero(&sro, sizeof(sro));
559 
560 	sin = (struct sockaddr_in *)&sro.ro_dst;
561 	sin->sin_family = AF_INET;
562 	sin->sin_len = sizeof(struct sockaddr_in);
563 	sin->sin_addr.s_addr = faddr->s_addr;
564 
565 	/*
566 	 * If route is known our src addr is taken from the i/f,
567 	 * else punt.
568 	 *
569 	 * Find out route to destination.
570 	 */
571 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
572 		in_rtalloc_ign(&sro, RTF_CLONING, inp->inp_inc.inc_fibnum);
573 
574 	/*
575 	 * If we found a route, use the address corresponding to
576 	 * the outgoing interface.
577 	 *
578 	 * Otherwise assume faddr is reachable on a directly connected
579 	 * network and try to find a corresponding interface to take
580 	 * the source address from.
581 	 */
582 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
583 		struct ifnet *ifp;
584 
585 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
586 		if (ia == NULL)
587 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
588 		if (ia == NULL) {
589 			error = ENETUNREACH;
590 			goto done;
591 		}
592 
593 		if (cred == NULL || !jailed(cred)) {
594 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
595 			goto done;
596 		}
597 
598 		ifp = ia->ia_ifp;
599 		ia = NULL;
600 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
601 
602 			sa = ifa->ifa_addr;
603 			if (sa->sa_family != AF_INET)
604 				continue;
605 			sin = (struct sockaddr_in *)sa;
606 			if (prison_check_ip4(cred, &sin->sin_addr)) {
607 				ia = (struct in_ifaddr *)ifa;
608 				break;
609 			}
610 		}
611 		if (ia != NULL) {
612 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
613 			goto done;
614 		}
615 
616 		/* 3. As a last resort return the 'default' jail address. */
617 		if (prison_getip4(cred, laddr) != 0)
618 			error = EADDRNOTAVAIL;
619 		goto done;
620 	}
621 
622 	/*
623 	 * If the outgoing interface on the route found is not
624 	 * a loopback interface, use the address from that interface.
625 	 * In case of jails do those three steps:
626 	 * 1. check if the interface address belongs to the jail. If so use it.
627 	 * 2. check if we have any address on the outgoing interface
628 	 *    belonging to this jail. If so use it.
629 	 * 3. as a last resort return the 'default' jail address.
630 	 */
631 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
632 
633 		/* If not jailed, use the default returned. */
634 		if (cred == NULL || !jailed(cred)) {
635 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
636 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
637 			goto done;
638 		}
639 
640 		/* Jailed. */
641 		/* 1. Check if the iface address belongs to the jail. */
642 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
643 		if (prison_check_ip4(cred, &sin->sin_addr)) {
644 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
645 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
646 			goto done;
647 		}
648 
649 		/*
650 		 * 2. Check if we have any address on the outgoing interface
651 		 *    belonging to this jail.
652 		 */
653 		TAILQ_FOREACH(ifa, &sro.ro_rt->rt_ifp->if_addrhead, ifa_link) {
654 
655 			sa = ifa->ifa_addr;
656 			if (sa->sa_family != AF_INET)
657 				continue;
658 			sin = (struct sockaddr_in *)sa;
659 			if (prison_check_ip4(cred, &sin->sin_addr)) {
660 				ia = (struct in_ifaddr *)ifa;
661 				break;
662 			}
663 		}
664 		if (ia != NULL) {
665 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
666 			goto done;
667 		}
668 
669 		/* 3. As a last resort return the 'default' jail address. */
670 		if (prison_getip4(cred, laddr) != 0)
671 			error = EADDRNOTAVAIL;
672 		goto done;
673 	}
674 
675 	/*
676 	 * The outgoing interface is marked with 'loopback net', so a route
677 	 * to ourselves is here.
678 	 * Try to find the interface of the destination address and then
679 	 * take the address from there. That interface is not necessarily
680 	 * a loopback interface.
681 	 * In case of jails, check that it is an address of the jail
682 	 * and if we cannot find, fall back to the 'default' jail address.
683 	 */
684 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
685 		struct sockaddr_in sain;
686 
687 		bzero(&sain, sizeof(struct sockaddr_in));
688 		sain.sin_family = AF_INET;
689 		sain.sin_len = sizeof(struct sockaddr_in);
690 		sain.sin_addr.s_addr = faddr->s_addr;
691 
692 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
693 		if (ia == NULL)
694 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
695 
696 		if (cred == NULL || !jailed(cred)) {
697 			if (ia == NULL) {
698 				error = ENETUNREACH;
699 				goto done;
700 			}
701 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
702 			goto done;
703 		}
704 
705 		/* Jailed. */
706 		if (ia != NULL) {
707 			struct ifnet *ifp;
708 
709 			ifp = ia->ia_ifp;
710 			ia = NULL;
711 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
712 
713 				sa = ifa->ifa_addr;
714 				if (sa->sa_family != AF_INET)
715 					continue;
716 				sin = (struct sockaddr_in *)sa;
717 				if (prison_check_ip4(cred, &sin->sin_addr)) {
718 					ia = (struct in_ifaddr *)ifa;
719 					break;
720 				}
721 			}
722 			if (ia != NULL) {
723 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
724 				goto done;
725 			}
726 		}
727 
728 		/* 3. As a last resort return the 'default' jail address. */
729 		if (prison_getip4(cred, laddr) != 0)
730 			error = EADDRNOTAVAIL;
731 		goto done;
732 	}
733 
734 done:
735 	if (sro.ro_rt != NULL)
736 		RTFREE(sro.ro_rt);
737 	return (error);
738 }
739 
740 /*
741  * Set up for a connect from a socket to the specified address.
742  * On entry, *laddrp and *lportp should contain the current local
743  * address and port for the PCB; these are updated to the values
744  * that should be placed in inp_laddr and inp_lport to complete
745  * the connect.
746  *
747  * On success, *faddrp and *fportp will be set to the remote address
748  * and port. These are not updated in the error case.
749  *
750  * If the operation fails because the connection already exists,
751  * *oinpp will be set to the PCB of that connection so that the
752  * caller can decide to override it. In all other cases, *oinpp
753  * is set to NULL.
754  */
755 int
756 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
757     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
758     struct inpcb **oinpp, struct ucred *cred)
759 {
760 	INIT_VNET_INET(inp->inp_vnet);
761 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
762 	struct in_ifaddr *ia;
763 	struct inpcb *oinp;
764 	struct in_addr laddr, faddr, jailia;
765 	u_short lport, fport;
766 	int error;
767 
768 	/*
769 	 * Because a global state change doesn't actually occur here, a read
770 	 * lock is sufficient.
771 	 */
772 	INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
773 	INP_LOCK_ASSERT(inp);
774 
775 	if (oinpp != NULL)
776 		*oinpp = NULL;
777 	if (nam->sa_len != sizeof (*sin))
778 		return (EINVAL);
779 	if (sin->sin_family != AF_INET)
780 		return (EAFNOSUPPORT);
781 	if (sin->sin_port == 0)
782 		return (EADDRNOTAVAIL);
783 	laddr.s_addr = *laddrp;
784 	lport = *lportp;
785 	faddr = sin->sin_addr;
786 	fport = sin->sin_port;
787 
788 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
789 		/*
790 		 * If the destination address is INADDR_ANY,
791 		 * use the primary local address.
792 		 * If the supplied address is INADDR_BROADCAST,
793 		 * and the primary interface supports broadcast,
794 		 * choose the broadcast address for that interface.
795 		 */
796 		if (faddr.s_addr == INADDR_ANY) {
797 			if (cred != NULL && jailed(cred)) {
798 				if (prison_getip4(cred, &jailia) != 0)
799 					return (EADDRNOTAVAIL);
800 				faddr.s_addr = jailia.s_addr;
801 			} else {
802 				faddr =
803 				    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->
804 				    sin_addr;
805 			}
806 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
807 		    (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
808 		    IFF_BROADCAST))
809 			faddr = satosin(&TAILQ_FIRST(
810 			    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
811 	}
812 	if (laddr.s_addr == INADDR_ANY) {
813 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
814 		if (error)
815 			return (error);
816 
817 		/*
818 		 * If the destination address is multicast and an outgoing
819 		 * interface has been set as a multicast option, use the
820 		 * address of that interface as our source address.
821 		 */
822 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
823 		    inp->inp_moptions != NULL) {
824 			struct ip_moptions *imo;
825 			struct ifnet *ifp;
826 
827 			imo = inp->inp_moptions;
828 			if (imo->imo_multicast_ifp != NULL) {
829 				ifp = imo->imo_multicast_ifp;
830 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
831 					if (ia->ia_ifp == ifp)
832 						break;
833 				if (ia == NULL)
834 					return (EADDRNOTAVAIL);
835 				laddr = ia->ia_addr.sin_addr;
836 			}
837 		}
838 	}
839 
840 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
841 	    0, NULL);
842 	if (oinp != NULL) {
843 		if (oinpp != NULL)
844 			*oinpp = oinp;
845 		return (EADDRINUSE);
846 	}
847 	if (lport == 0) {
848 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
849 		    cred);
850 		if (error)
851 			return (error);
852 	}
853 	*laddrp = laddr.s_addr;
854 	*lportp = lport;
855 	*faddrp = faddr.s_addr;
856 	*fportp = fport;
857 	return (0);
858 }
859 
860 void
861 in_pcbdisconnect(struct inpcb *inp)
862 {
863 
864 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
865 	INP_WLOCK_ASSERT(inp);
866 
867 	inp->inp_faddr.s_addr = INADDR_ANY;
868 	inp->inp_fport = 0;
869 	in_pcbrehash(inp);
870 }
871 
872 /*
873  * Historically, in_pcbdetach() included the functionality now found in
874  * in_pcbfree() and in_pcbdrop().  They are now broken out to reflect the
875  * more complex life cycle of TCP.
876  *
877  * in_pcbdetach() is responsibe for disconnecting the socket from an inpcb.
878  * For most protocols, this will be invoked immediately prior to calling
879  * in_pcbfree().  However, for TCP the inpcb may significantly outlive the
880  * socket, in which case in_pcbfree() may be deferred.
881  */
882 void
883 in_pcbdetach(struct inpcb *inp)
884 {
885 
886 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
887 
888 	inp->inp_socket->so_pcb = NULL;
889 	inp->inp_socket = NULL;
890 }
891 
892 /*
893  * in_pcbfree() is responsible for freeing an already-detached inpcb, as well
894  * as removing it from any global inpcb lists it might be on.
895  */
896 void
897 in_pcbfree(struct inpcb *inp)
898 {
899 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
900 
901 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
902 
903 	INP_INFO_WLOCK_ASSERT(ipi);
904 	INP_WLOCK_ASSERT(inp);
905 
906 #ifdef IPSEC
907 	if (inp->inp_sp != NULL)
908 		ipsec_delete_pcbpolicy(inp);
909 #endif /* IPSEC */
910 	inp->inp_gencnt = ++ipi->ipi_gencnt;
911 	in_pcbremlists(inp);
912 #ifdef INET6
913 	if (inp->inp_vflag & INP_IPV6PROTO) {
914 		ip6_freepcbopts(inp->in6p_outputopts);
915 		ip6_freemoptions(inp->in6p_moptions);
916 	}
917 #endif
918 	if (inp->inp_options)
919 		(void)m_free(inp->inp_options);
920 	if (inp->inp_moptions != NULL)
921 		inp_freemoptions(inp->inp_moptions);
922 	inp->inp_vflag = 0;
923 	crfree(inp->inp_cred);
924 
925 #ifdef MAC
926 	mac_inpcb_destroy(inp);
927 #endif
928 	INP_WUNLOCK(inp);
929 	uma_zfree(ipi->ipi_zone, inp);
930 }
931 
932 /*
933  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
934  * port reservation, and preventing it from being returned by inpcb lookups.
935  *
936  * It is used by TCP to mark an inpcb as unused and avoid future packet
937  * delivery or event notification when a socket remains open but TCP has
938  * closed.  This might occur as a result of a shutdown()-initiated TCP close
939  * or a RST on the wire, and allows the port binding to be reused while still
940  * maintaining the invariant that so_pcb always points to a valid inpcb until
941  * in_pcbdetach().
942  *
943  * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
944  * lists, but can lead to confusing netstat output, as open sockets with
945  * closed TCP connections will no longer appear to have their bound port
946  * number.  An explicit flag would be better, as it would allow us to leave
947  * the port number intact after the connection is dropped.
948  *
949  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
950  * in_pcbnotifyall() and in_pcbpurgeif0()?
951  */
952 void
953 in_pcbdrop(struct inpcb *inp)
954 {
955 
956 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
957 	INP_WLOCK_ASSERT(inp);
958 
959 	inp->inp_vflag |= INP_DROPPED;
960 	if (inp->inp_lport) {
961 		struct inpcbport *phd = inp->inp_phd;
962 
963 		LIST_REMOVE(inp, inp_hash);
964 		LIST_REMOVE(inp, inp_portlist);
965 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
966 			LIST_REMOVE(phd, phd_hash);
967 			free(phd, M_PCB);
968 		}
969 		inp->inp_lport = 0;
970 	}
971 }
972 
973 /*
974  * Common routines to return the socket addresses associated with inpcbs.
975  */
976 struct sockaddr *
977 in_sockaddr(in_port_t port, struct in_addr *addr_p)
978 {
979 	struct sockaddr_in *sin;
980 
981 	sin = malloc(sizeof *sin, M_SONAME,
982 		M_WAITOK | M_ZERO);
983 	sin->sin_family = AF_INET;
984 	sin->sin_len = sizeof(*sin);
985 	sin->sin_addr = *addr_p;
986 	sin->sin_port = port;
987 
988 	return (struct sockaddr *)sin;
989 }
990 
991 int
992 in_getsockaddr(struct socket *so, struct sockaddr **nam)
993 {
994 	struct inpcb *inp;
995 	struct in_addr addr;
996 	in_port_t port;
997 
998 	inp = sotoinpcb(so);
999 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1000 
1001 	INP_RLOCK(inp);
1002 	port = inp->inp_lport;
1003 	addr = inp->inp_laddr;
1004 	INP_RUNLOCK(inp);
1005 
1006 	*nam = in_sockaddr(port, &addr);
1007 	return 0;
1008 }
1009 
1010 int
1011 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1012 {
1013 	struct inpcb *inp;
1014 	struct in_addr addr;
1015 	in_port_t port;
1016 
1017 	inp = sotoinpcb(so);
1018 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1019 
1020 	INP_RLOCK(inp);
1021 	port = inp->inp_fport;
1022 	addr = inp->inp_faddr;
1023 	INP_RUNLOCK(inp);
1024 
1025 	*nam = in_sockaddr(port, &addr);
1026 	return 0;
1027 }
1028 
1029 void
1030 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1031     struct inpcb *(*notify)(struct inpcb *, int))
1032 {
1033 	struct inpcb *inp, *inp_temp;
1034 
1035 	INP_INFO_WLOCK(pcbinfo);
1036 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1037 		INP_WLOCK(inp);
1038 #ifdef INET6
1039 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1040 			INP_WUNLOCK(inp);
1041 			continue;
1042 		}
1043 #endif
1044 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1045 		    inp->inp_socket == NULL) {
1046 			INP_WUNLOCK(inp);
1047 			continue;
1048 		}
1049 		if ((*notify)(inp, errno))
1050 			INP_WUNLOCK(inp);
1051 	}
1052 	INP_INFO_WUNLOCK(pcbinfo);
1053 }
1054 
1055 void
1056 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1057 {
1058 	struct inpcb *inp;
1059 	struct ip_moptions *imo;
1060 	int i, gap;
1061 
1062 	INP_INFO_RLOCK(pcbinfo);
1063 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1064 		INP_WLOCK(inp);
1065 		imo = inp->inp_moptions;
1066 		if ((inp->inp_vflag & INP_IPV4) &&
1067 		    imo != NULL) {
1068 			/*
1069 			 * Unselect the outgoing interface if it is being
1070 			 * detached.
1071 			 */
1072 			if (imo->imo_multicast_ifp == ifp)
1073 				imo->imo_multicast_ifp = NULL;
1074 
1075 			/*
1076 			 * Drop multicast group membership if we joined
1077 			 * through the interface being detached.
1078 			 */
1079 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1080 			    i++) {
1081 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1082 					in_delmulti(imo->imo_membership[i]);
1083 					gap++;
1084 				} else if (gap != 0)
1085 					imo->imo_membership[i - gap] =
1086 					    imo->imo_membership[i];
1087 			}
1088 			imo->imo_num_memberships -= gap;
1089 		}
1090 		INP_WUNLOCK(inp);
1091 	}
1092 	INP_INFO_RUNLOCK(pcbinfo);
1093 }
1094 
1095 /*
1096  * Lookup a PCB based on the local address and port.
1097  */
1098 #define INP_LOOKUP_MAPPED_PCB_COST	3
1099 struct inpcb *
1100 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1101     u_short lport, int wild_okay, struct ucred *cred)
1102 {
1103 	struct inpcb *inp;
1104 #ifdef INET6
1105 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1106 #else
1107 	int matchwild = 3;
1108 #endif
1109 	int wildcard;
1110 
1111 	INP_INFO_LOCK_ASSERT(pcbinfo);
1112 
1113 	if (!wild_okay) {
1114 		struct inpcbhead *head;
1115 		/*
1116 		 * Look for an unconnected (wildcard foreign addr) PCB that
1117 		 * matches the local address and port we're looking for.
1118 		 */
1119 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1120 		    0, pcbinfo->ipi_hashmask)];
1121 		LIST_FOREACH(inp, head, inp_hash) {
1122 #ifdef INET6
1123 			/* XXX inp locking */
1124 			if ((inp->inp_vflag & INP_IPV4) == 0)
1125 				continue;
1126 #endif
1127 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1128 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1129 			    inp->inp_lport == lport) {
1130 				/*
1131 				 * Found?
1132 				 */
1133 				if (cred == NULL ||
1134 				    inp->inp_cred->cr_prison == cred->cr_prison)
1135 					return (inp);
1136 			}
1137 		}
1138 		/*
1139 		 * Not found.
1140 		 */
1141 		return (NULL);
1142 	} else {
1143 		struct inpcbporthead *porthash;
1144 		struct inpcbport *phd;
1145 		struct inpcb *match = NULL;
1146 		/*
1147 		 * Best fit PCB lookup.
1148 		 *
1149 		 * First see if this local port is in use by looking on the
1150 		 * port hash list.
1151 		 */
1152 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1153 		    pcbinfo->ipi_porthashmask)];
1154 		LIST_FOREACH(phd, porthash, phd_hash) {
1155 			if (phd->phd_port == lport)
1156 				break;
1157 		}
1158 		if (phd != NULL) {
1159 			/*
1160 			 * Port is in use by one or more PCBs. Look for best
1161 			 * fit.
1162 			 */
1163 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1164 				wildcard = 0;
1165 				if (cred != NULL &&
1166 				    inp->inp_cred->cr_prison != cred->cr_prison)
1167 					continue;
1168 #ifdef INET6
1169 				/* XXX inp locking */
1170 				if ((inp->inp_vflag & INP_IPV4) == 0)
1171 					continue;
1172 				/*
1173 				 * We never select the PCB that has
1174 				 * INP_IPV6 flag and is bound to :: if
1175 				 * we have another PCB which is bound
1176 				 * to 0.0.0.0.  If a PCB has the
1177 				 * INP_IPV6 flag, then we set its cost
1178 				 * higher than IPv4 only PCBs.
1179 				 *
1180 				 * Note that the case only happens
1181 				 * when a socket is bound to ::, under
1182 				 * the condition that the use of the
1183 				 * mapped address is allowed.
1184 				 */
1185 				if ((inp->inp_vflag & INP_IPV6) != 0)
1186 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1187 #endif
1188 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1189 					wildcard++;
1190 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1191 					if (laddr.s_addr == INADDR_ANY)
1192 						wildcard++;
1193 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1194 						continue;
1195 				} else {
1196 					if (laddr.s_addr != INADDR_ANY)
1197 						wildcard++;
1198 				}
1199 				if (wildcard < matchwild) {
1200 					match = inp;
1201 					matchwild = wildcard;
1202 					if (matchwild == 0)
1203 						break;
1204 				}
1205 			}
1206 		}
1207 		return (match);
1208 	}
1209 }
1210 #undef INP_LOOKUP_MAPPED_PCB_COST
1211 
1212 /*
1213  * Lookup PCB in hash list.
1214  */
1215 struct inpcb *
1216 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1217     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1218     struct ifnet *ifp)
1219 {
1220 	struct inpcbhead *head;
1221 	struct inpcb *inp, *tmpinp;
1222 	u_short fport = fport_arg, lport = lport_arg;
1223 
1224 	INP_INFO_LOCK_ASSERT(pcbinfo);
1225 
1226 	/*
1227 	 * First look for an exact match.
1228 	 */
1229 	tmpinp = NULL;
1230 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1231 	    pcbinfo->ipi_hashmask)];
1232 	LIST_FOREACH(inp, head, inp_hash) {
1233 #ifdef INET6
1234 		/* XXX inp locking */
1235 		if ((inp->inp_vflag & INP_IPV4) == 0)
1236 			continue;
1237 #endif
1238 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1239 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1240 		    inp->inp_fport == fport &&
1241 		    inp->inp_lport == lport) {
1242 			/*
1243 			 * XXX We should be able to directly return
1244 			 * the inp here, without any checks.
1245 			 * Well unless both bound with SO_REUSEPORT?
1246 			 */
1247 			if (jailed(inp->inp_cred))
1248 				return (inp);
1249 			if (tmpinp == NULL)
1250 				tmpinp = inp;
1251 		}
1252 	}
1253 	if (tmpinp != NULL)
1254 		return (tmpinp);
1255 
1256 	/*
1257 	 * Then look for a wildcard match, if requested.
1258 	 */
1259 	if (wildcard == INPLOOKUP_WILDCARD) {
1260 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1261 #ifdef INET6
1262 		struct inpcb *local_wild_mapped = NULL;
1263 #endif
1264 		struct inpcb *jail_wild = NULL;
1265 		int injail;
1266 
1267 		/*
1268 		 * Order of socket selection - we always prefer jails.
1269 		 *      1. jailed, non-wild.
1270 		 *      2. jailed, wild.
1271 		 *      3. non-jailed, non-wild.
1272 		 *      4. non-jailed, wild.
1273 		 */
1274 
1275 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1276 		    0, pcbinfo->ipi_hashmask)];
1277 		LIST_FOREACH(inp, head, inp_hash) {
1278 #ifdef INET6
1279 			/* XXX inp locking */
1280 			if ((inp->inp_vflag & INP_IPV4) == 0)
1281 				continue;
1282 #endif
1283 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1284 			    inp->inp_lport != lport)
1285 				continue;
1286 
1287 			/* XXX inp locking */
1288 			if (ifp && ifp->if_type == IFT_FAITH &&
1289 			    (inp->inp_flags & INP_FAITH) == 0)
1290 				continue;
1291 
1292 			injail = jailed(inp->inp_cred);
1293 			if (injail) {
1294 				if (!prison_check_ip4(inp->inp_cred, &laddr))
1295 					continue;
1296 			} else {
1297 				if (local_exact != NULL)
1298 					continue;
1299 			}
1300 
1301 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1302 				if (injail)
1303 					return (inp);
1304 				else
1305 					local_exact = inp;
1306 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1307 #ifdef INET6
1308 				/* XXX inp locking, NULL check */
1309 				if (inp->inp_vflag & INP_IPV6PROTO)
1310 					local_wild_mapped = inp;
1311 				else
1312 #endif /* INET6 */
1313 					if (injail)
1314 						jail_wild = inp;
1315 					else
1316 						local_wild = inp;
1317 			}
1318 		} /* LIST_FOREACH */
1319 		if (jail_wild != NULL)
1320 			return (jail_wild);
1321 		if (local_exact != NULL)
1322 			return (local_exact);
1323 		if (local_wild != NULL)
1324 			return (local_wild);
1325 #ifdef INET6
1326 		if (local_wild_mapped != NULL)
1327 			return (local_wild_mapped);
1328 #endif /* defined(INET6) */
1329 	} /* if (wildcard == INPLOOKUP_WILDCARD) */
1330 
1331 	return (NULL);
1332 }
1333 
1334 /*
1335  * Insert PCB onto various hash lists.
1336  */
1337 int
1338 in_pcbinshash(struct inpcb *inp)
1339 {
1340 	struct inpcbhead *pcbhash;
1341 	struct inpcbporthead *pcbporthash;
1342 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1343 	struct inpcbport *phd;
1344 	u_int32_t hashkey_faddr;
1345 
1346 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1347 	INP_WLOCK_ASSERT(inp);
1348 
1349 #ifdef INET6
1350 	if (inp->inp_vflag & INP_IPV6)
1351 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1352 	else
1353 #endif /* INET6 */
1354 	hashkey_faddr = inp->inp_faddr.s_addr;
1355 
1356 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1357 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1358 
1359 	pcbporthash = &pcbinfo->ipi_porthashbase[
1360 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1361 
1362 	/*
1363 	 * Go through port list and look for a head for this lport.
1364 	 */
1365 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1366 		if (phd->phd_port == inp->inp_lport)
1367 			break;
1368 	}
1369 	/*
1370 	 * If none exists, malloc one and tack it on.
1371 	 */
1372 	if (phd == NULL) {
1373 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1374 		if (phd == NULL) {
1375 			return (ENOBUFS); /* XXX */
1376 		}
1377 		phd->phd_port = inp->inp_lport;
1378 		LIST_INIT(&phd->phd_pcblist);
1379 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1380 	}
1381 	inp->inp_phd = phd;
1382 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1383 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1384 	return (0);
1385 }
1386 
1387 /*
1388  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1389  * changed. NOTE: This does not handle the case of the lport changing (the
1390  * hashed port list would have to be updated as well), so the lport must
1391  * not change after in_pcbinshash() has been called.
1392  */
1393 void
1394 in_pcbrehash(struct inpcb *inp)
1395 {
1396 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1397 	struct inpcbhead *head;
1398 	u_int32_t hashkey_faddr;
1399 
1400 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1401 	INP_WLOCK_ASSERT(inp);
1402 
1403 #ifdef INET6
1404 	if (inp->inp_vflag & INP_IPV6)
1405 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1406 	else
1407 #endif /* INET6 */
1408 	hashkey_faddr = inp->inp_faddr.s_addr;
1409 
1410 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1411 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1412 
1413 	LIST_REMOVE(inp, inp_hash);
1414 	LIST_INSERT_HEAD(head, inp, inp_hash);
1415 }
1416 
1417 /*
1418  * Remove PCB from various lists.
1419  */
1420 void
1421 in_pcbremlists(struct inpcb *inp)
1422 {
1423 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1424 
1425 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1426 	INP_WLOCK_ASSERT(inp);
1427 
1428 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1429 	if (inp->inp_lport) {
1430 		struct inpcbport *phd = inp->inp_phd;
1431 
1432 		LIST_REMOVE(inp, inp_hash);
1433 		LIST_REMOVE(inp, inp_portlist);
1434 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1435 			LIST_REMOVE(phd, phd_hash);
1436 			free(phd, M_PCB);
1437 		}
1438 	}
1439 	LIST_REMOVE(inp, inp_list);
1440 	pcbinfo->ipi_count--;
1441 }
1442 
1443 /*
1444  * A set label operation has occurred at the socket layer, propagate the
1445  * label change into the in_pcb for the socket.
1446  */
1447 void
1448 in_pcbsosetlabel(struct socket *so)
1449 {
1450 #ifdef MAC
1451 	struct inpcb *inp;
1452 
1453 	inp = sotoinpcb(so);
1454 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1455 
1456 	INP_WLOCK(inp);
1457 	SOCK_LOCK(so);
1458 	mac_inpcb_sosetlabel(so, inp);
1459 	SOCK_UNLOCK(so);
1460 	INP_WUNLOCK(inp);
1461 #endif
1462 }
1463 
1464 /*
1465  * ipport_tick runs once per second, determining if random port allocation
1466  * should be continued.  If more than ipport_randomcps ports have been
1467  * allocated in the last second, then we return to sequential port
1468  * allocation. We return to random allocation only once we drop below
1469  * ipport_randomcps for at least ipport_randomtime seconds.
1470  */
1471 void
1472 ipport_tick(void *xtp)
1473 {
1474 	VNET_ITERATOR_DECL(vnet_iter);
1475 
1476 	VNET_LIST_RLOCK();
1477 	VNET_FOREACH(vnet_iter) {
1478 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
1479 		INIT_VNET_INET(vnet_iter);
1480 		if (V_ipport_tcpallocs <=
1481 		    V_ipport_tcplastcount + V_ipport_randomcps) {
1482 			if (V_ipport_stoprandom > 0)
1483 				V_ipport_stoprandom--;
1484 		} else
1485 			V_ipport_stoprandom = V_ipport_randomtime;
1486 		V_ipport_tcplastcount = V_ipport_tcpallocs;
1487 		CURVNET_RESTORE();
1488 	}
1489 	VNET_LIST_RUNLOCK();
1490 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1491 }
1492 
1493 void
1494 inp_wlock(struct inpcb *inp)
1495 {
1496 
1497 	INP_WLOCK(inp);
1498 }
1499 
1500 void
1501 inp_wunlock(struct inpcb *inp)
1502 {
1503 
1504 	INP_WUNLOCK(inp);
1505 }
1506 
1507 void
1508 inp_rlock(struct inpcb *inp)
1509 {
1510 
1511 	INP_RLOCK(inp);
1512 }
1513 
1514 void
1515 inp_runlock(struct inpcb *inp)
1516 {
1517 
1518 	INP_RUNLOCK(inp);
1519 }
1520 
1521 #ifdef INVARIANTS
1522 void
1523 inp_lock_assert(struct inpcb *inp)
1524 {
1525 
1526 	INP_WLOCK_ASSERT(inp);
1527 }
1528 
1529 void
1530 inp_unlock_assert(struct inpcb *inp)
1531 {
1532 
1533 	INP_UNLOCK_ASSERT(inp);
1534 }
1535 #endif
1536 
1537 void
1538 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
1539 {
1540 	INIT_VNET_INET(curvnet);
1541 	struct inpcb *inp;
1542 
1543 	INP_INFO_RLOCK(&V_tcbinfo);
1544 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
1545 		INP_WLOCK(inp);
1546 		func(inp, arg);
1547 		INP_WUNLOCK(inp);
1548 	}
1549 	INP_INFO_RUNLOCK(&V_tcbinfo);
1550 }
1551 
1552 struct socket *
1553 inp_inpcbtosocket(struct inpcb *inp)
1554 {
1555 
1556 	INP_WLOCK_ASSERT(inp);
1557 	return (inp->inp_socket);
1558 }
1559 
1560 struct tcpcb *
1561 inp_inpcbtotcpcb(struct inpcb *inp)
1562 {
1563 
1564 	INP_WLOCK_ASSERT(inp);
1565 	return ((struct tcpcb *)inp->inp_ppcb);
1566 }
1567 
1568 int
1569 inp_ip_tos_get(const struct inpcb *inp)
1570 {
1571 
1572 	return (inp->inp_ip_tos);
1573 }
1574 
1575 void
1576 inp_ip_tos_set(struct inpcb *inp, int val)
1577 {
1578 
1579 	inp->inp_ip_tos = val;
1580 }
1581 
1582 void
1583 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
1584     uint32_t *faddr, uint16_t *fp)
1585 {
1586 
1587 	INP_LOCK_ASSERT(inp);
1588 	*laddr = inp->inp_laddr.s_addr;
1589 	*faddr = inp->inp_faddr.s_addr;
1590 	*lp = inp->inp_lport;
1591 	*fp = inp->inp_fport;
1592 }
1593 
1594 struct inpcb *
1595 so_sotoinpcb(struct socket *so)
1596 {
1597 
1598 	return (sotoinpcb(so));
1599 }
1600 
1601 struct tcpcb *
1602 so_sototcpcb(struct socket *so)
1603 {
1604 
1605 	return (sototcpcb(so));
1606 }
1607 
1608 #ifdef DDB
1609 static void
1610 db_print_indent(int indent)
1611 {
1612 	int i;
1613 
1614 	for (i = 0; i < indent; i++)
1615 		db_printf(" ");
1616 }
1617 
1618 static void
1619 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
1620 {
1621 	char faddr_str[48], laddr_str[48];
1622 
1623 	db_print_indent(indent);
1624 	db_printf("%s at %p\n", name, inc);
1625 
1626 	indent += 2;
1627 
1628 #ifdef INET6
1629 	if (inc->inc_flags == 1) {
1630 		/* IPv6. */
1631 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
1632 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
1633 	} else {
1634 #endif
1635 		/* IPv4. */
1636 		inet_ntoa_r(inc->inc_laddr, laddr_str);
1637 		inet_ntoa_r(inc->inc_faddr, faddr_str);
1638 #ifdef INET6
1639 	}
1640 #endif
1641 	db_print_indent(indent);
1642 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
1643 	    ntohs(inc->inc_lport));
1644 	db_print_indent(indent);
1645 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
1646 	    ntohs(inc->inc_fport));
1647 }
1648 
1649 static void
1650 db_print_inpflags(int inp_flags)
1651 {
1652 	int comma;
1653 
1654 	comma = 0;
1655 	if (inp_flags & INP_RECVOPTS) {
1656 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
1657 		comma = 1;
1658 	}
1659 	if (inp_flags & INP_RECVRETOPTS) {
1660 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
1661 		comma = 1;
1662 	}
1663 	if (inp_flags & INP_RECVDSTADDR) {
1664 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
1665 		comma = 1;
1666 	}
1667 	if (inp_flags & INP_HDRINCL) {
1668 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
1669 		comma = 1;
1670 	}
1671 	if (inp_flags & INP_HIGHPORT) {
1672 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
1673 		comma = 1;
1674 	}
1675 	if (inp_flags & INP_LOWPORT) {
1676 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
1677 		comma = 1;
1678 	}
1679 	if (inp_flags & INP_ANONPORT) {
1680 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
1681 		comma = 1;
1682 	}
1683 	if (inp_flags & INP_RECVIF) {
1684 		db_printf("%sINP_RECVIF", comma ? ", " : "");
1685 		comma = 1;
1686 	}
1687 	if (inp_flags & INP_MTUDISC) {
1688 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
1689 		comma = 1;
1690 	}
1691 	if (inp_flags & INP_FAITH) {
1692 		db_printf("%sINP_FAITH", comma ? ", " : "");
1693 		comma = 1;
1694 	}
1695 	if (inp_flags & INP_RECVTTL) {
1696 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
1697 		comma = 1;
1698 	}
1699 	if (inp_flags & INP_DONTFRAG) {
1700 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
1701 		comma = 1;
1702 	}
1703 	if (inp_flags & IN6P_IPV6_V6ONLY) {
1704 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
1705 		comma = 1;
1706 	}
1707 	if (inp_flags & IN6P_PKTINFO) {
1708 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
1709 		comma = 1;
1710 	}
1711 	if (inp_flags & IN6P_HOPLIMIT) {
1712 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
1713 		comma = 1;
1714 	}
1715 	if (inp_flags & IN6P_HOPOPTS) {
1716 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
1717 		comma = 1;
1718 	}
1719 	if (inp_flags & IN6P_DSTOPTS) {
1720 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
1721 		comma = 1;
1722 	}
1723 	if (inp_flags & IN6P_RTHDR) {
1724 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
1725 		comma = 1;
1726 	}
1727 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
1728 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
1729 		comma = 1;
1730 	}
1731 	if (inp_flags & IN6P_TCLASS) {
1732 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
1733 		comma = 1;
1734 	}
1735 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
1736 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
1737 		comma = 1;
1738 	}
1739 	if (inp_flags & IN6P_RFC2292) {
1740 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
1741 		comma = 1;
1742 	}
1743 	if (inp_flags & IN6P_MTU) {
1744 		db_printf("IN6P_MTU%s", comma ? ", " : "");
1745 		comma = 1;
1746 	}
1747 }
1748 
1749 static void
1750 db_print_inpvflag(u_char inp_vflag)
1751 {
1752 	int comma;
1753 
1754 	comma = 0;
1755 	if (inp_vflag & INP_IPV4) {
1756 		db_printf("%sINP_IPV4", comma ? ", " : "");
1757 		comma  = 1;
1758 	}
1759 	if (inp_vflag & INP_IPV6) {
1760 		db_printf("%sINP_IPV6", comma ? ", " : "");
1761 		comma  = 1;
1762 	}
1763 	if (inp_vflag & INP_IPV6PROTO) {
1764 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
1765 		comma  = 1;
1766 	}
1767 	if (inp_vflag & INP_TIMEWAIT) {
1768 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
1769 		comma  = 1;
1770 	}
1771 	if (inp_vflag & INP_ONESBCAST) {
1772 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
1773 		comma  = 1;
1774 	}
1775 	if (inp_vflag & INP_DROPPED) {
1776 		db_printf("%sINP_DROPPED", comma ? ", " : "");
1777 		comma  = 1;
1778 	}
1779 	if (inp_vflag & INP_SOCKREF) {
1780 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
1781 		comma  = 1;
1782 	}
1783 }
1784 
1785 void
1786 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
1787 {
1788 
1789 	db_print_indent(indent);
1790 	db_printf("%s at %p\n", name, inp);
1791 
1792 	indent += 2;
1793 
1794 	db_print_indent(indent);
1795 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
1796 
1797 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
1798 
1799 	db_print_indent(indent);
1800 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
1801 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
1802 
1803 	db_print_indent(indent);
1804 	db_printf("inp_label: %p   inp_flags: 0x%x (",
1805 	   inp->inp_label, inp->inp_flags);
1806 	db_print_inpflags(inp->inp_flags);
1807 	db_printf(")\n");
1808 
1809 	db_print_indent(indent);
1810 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
1811 	    inp->inp_vflag);
1812 	db_print_inpvflag(inp->inp_vflag);
1813 	db_printf(")\n");
1814 
1815 	db_print_indent(indent);
1816 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
1817 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
1818 
1819 	db_print_indent(indent);
1820 #ifdef INET6
1821 	if (inp->inp_vflag & INP_IPV6) {
1822 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
1823 		    "in6p_moptions: %p\n", inp->in6p_options,
1824 		    inp->in6p_outputopts, inp->in6p_moptions);
1825 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
1826 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
1827 		    inp->in6p_hops);
1828 	} else
1829 #endif
1830 	{
1831 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
1832 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
1833 		    inp->inp_options, inp->inp_moptions);
1834 	}
1835 
1836 	db_print_indent(indent);
1837 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
1838 	    (uintmax_t)inp->inp_gencnt);
1839 }
1840 
1841 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
1842 {
1843 	struct inpcb *inp;
1844 
1845 	if (!have_addr) {
1846 		db_printf("usage: show inpcb <addr>\n");
1847 		return;
1848 	}
1849 	inp = (struct inpcb *)addr;
1850 
1851 	db_print_inpcb(inp, "inpcb", 0);
1852 }
1853 #endif
1854