1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #endif 92 #include <netinet/ip_var.h> 93 #include <netinet/tcp_var.h> 94 #ifdef TCPHPTS 95 #include <netinet/tcp_hpts.h> 96 #endif 97 #include <netinet/udp.h> 98 #include <netinet/udp_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #endif 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 214 #ifdef RATELIMIT 215 counter_u64_t rate_limit_active; 216 counter_u64_t rate_limit_alloc_fail; 217 counter_u64_t rate_limit_set_ok; 218 219 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD, 0, 220 "IP Rate Limiting"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 222 &rate_limit_active, "Active rate limited connections"); 223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 224 &rate_limit_alloc_fail, "Rate limited connection failures"); 225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 226 &rate_limit_set_ok, "Rate limited setting succeeded"); 227 #endif /* RATELIMIT */ 228 229 #endif /* INET */ 230 231 /* 232 * in_pcb.c: manage the Protocol Control Blocks. 233 * 234 * NOTE: It is assumed that most of these functions will be called with 235 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 236 * functions often modify hash chains or addresses in pcbs. 237 */ 238 239 static struct inpcblbgroup * 240 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 241 uint16_t port, const union in_dependaddr *addr, int size) 242 { 243 struct inpcblbgroup *grp; 244 size_t bytes; 245 246 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 247 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 248 if (!grp) 249 return (NULL); 250 grp->il_vflag = vflag; 251 grp->il_lport = port; 252 grp->il_dependladdr = *addr; 253 grp->il_inpsiz = size; 254 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 255 return (grp); 256 } 257 258 static void 259 in_pcblbgroup_free_deferred(epoch_context_t ctx) 260 { 261 struct inpcblbgroup *grp; 262 263 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 264 free(grp, M_PCB); 265 } 266 267 static void 268 in_pcblbgroup_free(struct inpcblbgroup *grp) 269 { 270 271 CK_LIST_REMOVE(grp, il_list); 272 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 273 } 274 275 static struct inpcblbgroup * 276 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 277 struct inpcblbgroup *old_grp, int size) 278 { 279 struct inpcblbgroup *grp; 280 int i; 281 282 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 283 old_grp->il_lport, &old_grp->il_dependladdr, size); 284 if (grp == NULL) 285 return (NULL); 286 287 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 288 ("invalid new local group size %d and old local group count %d", 289 grp->il_inpsiz, old_grp->il_inpcnt)); 290 291 for (i = 0; i < old_grp->il_inpcnt; ++i) 292 grp->il_inp[i] = old_grp->il_inp[i]; 293 grp->il_inpcnt = old_grp->il_inpcnt; 294 in_pcblbgroup_free(old_grp); 295 return (grp); 296 } 297 298 /* 299 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 300 * and shrink group if possible. 301 */ 302 static void 303 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 304 int i) 305 { 306 struct inpcblbgroup *grp, *new_grp; 307 308 grp = *grpp; 309 for (; i + 1 < grp->il_inpcnt; ++i) 310 grp->il_inp[i] = grp->il_inp[i + 1]; 311 grp->il_inpcnt--; 312 313 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 314 grp->il_inpcnt <= grp->il_inpsiz / 4) { 315 /* Shrink this group. */ 316 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 317 if (new_grp != NULL) 318 *grpp = new_grp; 319 } 320 } 321 322 /* 323 * Add PCB to load balance group for SO_REUSEPORT_LB option. 324 */ 325 static int 326 in_pcbinslbgrouphash(struct inpcb *inp) 327 { 328 const static struct timeval interval = { 60, 0 }; 329 static struct timeval lastprint; 330 struct inpcbinfo *pcbinfo; 331 struct inpcblbgrouphead *hdr; 332 struct inpcblbgroup *grp; 333 uint32_t idx; 334 335 pcbinfo = inp->inp_pcbinfo; 336 337 INP_WLOCK_ASSERT(inp); 338 INP_HASH_WLOCK_ASSERT(pcbinfo); 339 340 /* 341 * Don't allow jailed socket to join local group. 342 */ 343 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 344 return (0); 345 346 #ifdef INET6 347 /* 348 * Don't allow IPv4 mapped INET6 wild socket. 349 */ 350 if ((inp->inp_vflag & INP_IPV4) && 351 inp->inp_laddr.s_addr == INADDR_ANY && 352 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 353 return (0); 354 } 355 #endif 356 357 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 358 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 359 CK_LIST_FOREACH(grp, hdr, il_list) { 360 if (grp->il_vflag == inp->inp_vflag && 361 grp->il_lport == inp->inp_lport && 362 memcmp(&grp->il_dependladdr, 363 &inp->inp_inc.inc_ie.ie_dependladdr, 364 sizeof(grp->il_dependladdr)) == 0) 365 break; 366 } 367 if (grp == NULL) { 368 /* Create new load balance group. */ 369 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 370 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 371 INPCBLBGROUP_SIZMIN); 372 if (grp == NULL) 373 return (ENOBUFS); 374 } else if (grp->il_inpcnt == grp->il_inpsiz) { 375 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 376 if (ratecheck(&lastprint, &interval)) 377 printf("lb group port %d, limit reached\n", 378 ntohs(grp->il_lport)); 379 return (0); 380 } 381 382 /* Expand this local group. */ 383 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 384 if (grp == NULL) 385 return (ENOBUFS); 386 } 387 388 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 389 ("invalid local group size %d and count %d", grp->il_inpsiz, 390 grp->il_inpcnt)); 391 392 grp->il_inp[grp->il_inpcnt] = inp; 393 grp->il_inpcnt++; 394 return (0); 395 } 396 397 /* 398 * Remove PCB from load balance group. 399 */ 400 static void 401 in_pcbremlbgrouphash(struct inpcb *inp) 402 { 403 struct inpcbinfo *pcbinfo; 404 struct inpcblbgrouphead *hdr; 405 struct inpcblbgroup *grp; 406 int i; 407 408 pcbinfo = inp->inp_pcbinfo; 409 410 INP_WLOCK_ASSERT(inp); 411 INP_HASH_WLOCK_ASSERT(pcbinfo); 412 413 hdr = &pcbinfo->ipi_lbgrouphashbase[ 414 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 415 CK_LIST_FOREACH(grp, hdr, il_list) { 416 for (i = 0; i < grp->il_inpcnt; ++i) { 417 if (grp->il_inp[i] != inp) 418 continue; 419 420 if (grp->il_inpcnt == 1) { 421 /* We are the last, free this local group. */ 422 in_pcblbgroup_free(grp); 423 } else { 424 /* Pull up inpcbs, shrink group if possible. */ 425 in_pcblbgroup_reorder(hdr, &grp, i); 426 } 427 return; 428 } 429 } 430 } 431 432 /* 433 * Different protocols initialize their inpcbs differently - giving 434 * different name to the lock. But they all are disposed the same. 435 */ 436 static void 437 inpcb_fini(void *mem, int size) 438 { 439 struct inpcb *inp = mem; 440 441 INP_LOCK_DESTROY(inp); 442 } 443 444 /* 445 * Initialize an inpcbinfo -- we should be able to reduce the number of 446 * arguments in time. 447 */ 448 void 449 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 450 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 451 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 452 { 453 454 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 455 456 INP_INFO_LOCK_INIT(pcbinfo, name); 457 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 458 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 459 #ifdef VIMAGE 460 pcbinfo->ipi_vnet = curvnet; 461 #endif 462 pcbinfo->ipi_listhead = listhead; 463 CK_LIST_INIT(pcbinfo->ipi_listhead); 464 pcbinfo->ipi_count = 0; 465 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 466 &pcbinfo->ipi_hashmask); 467 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 468 &pcbinfo->ipi_porthashmask); 469 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 470 &pcbinfo->ipi_lbgrouphashmask); 471 #ifdef PCBGROUP 472 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 473 #endif 474 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 475 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 476 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 477 uma_zone_set_warning(pcbinfo->ipi_zone, 478 "kern.ipc.maxsockets limit reached"); 479 } 480 481 /* 482 * Destroy an inpcbinfo. 483 */ 484 void 485 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 486 { 487 488 KASSERT(pcbinfo->ipi_count == 0, 489 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 490 491 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 492 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 493 pcbinfo->ipi_porthashmask); 494 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 495 pcbinfo->ipi_lbgrouphashmask); 496 #ifdef PCBGROUP 497 in_pcbgroup_destroy(pcbinfo); 498 #endif 499 uma_zdestroy(pcbinfo->ipi_zone); 500 INP_LIST_LOCK_DESTROY(pcbinfo); 501 INP_HASH_LOCK_DESTROY(pcbinfo); 502 INP_INFO_LOCK_DESTROY(pcbinfo); 503 } 504 505 /* 506 * Allocate a PCB and associate it with the socket. 507 * On success return with the PCB locked. 508 */ 509 int 510 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 511 { 512 struct inpcb *inp; 513 int error; 514 515 #ifdef INVARIANTS 516 if (pcbinfo == &V_tcbinfo) { 517 NET_EPOCH_ASSERT(); 518 } else { 519 INP_INFO_WLOCK_ASSERT(pcbinfo); 520 } 521 #endif 522 523 error = 0; 524 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 525 if (inp == NULL) 526 return (ENOBUFS); 527 bzero(&inp->inp_start_zero, inp_zero_size); 528 #ifdef NUMA 529 inp->inp_numa_domain = M_NODOM; 530 #endif 531 inp->inp_pcbinfo = pcbinfo; 532 inp->inp_socket = so; 533 inp->inp_cred = crhold(so->so_cred); 534 inp->inp_inc.inc_fibnum = so->so_fibnum; 535 #ifdef MAC 536 error = mac_inpcb_init(inp, M_NOWAIT); 537 if (error != 0) 538 goto out; 539 mac_inpcb_create(so, inp); 540 #endif 541 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 542 error = ipsec_init_pcbpolicy(inp); 543 if (error != 0) { 544 #ifdef MAC 545 mac_inpcb_destroy(inp); 546 #endif 547 goto out; 548 } 549 #endif /*IPSEC*/ 550 #ifdef INET6 551 if (INP_SOCKAF(so) == AF_INET6) { 552 inp->inp_vflag |= INP_IPV6PROTO; 553 if (V_ip6_v6only) 554 inp->inp_flags |= IN6P_IPV6_V6ONLY; 555 } 556 #endif 557 INP_WLOCK(inp); 558 INP_LIST_WLOCK(pcbinfo); 559 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 560 pcbinfo->ipi_count++; 561 so->so_pcb = (caddr_t)inp; 562 #ifdef INET6 563 if (V_ip6_auto_flowlabel) 564 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 565 #endif 566 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 567 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 568 569 /* 570 * Routes in inpcb's can cache L2 as well; they are guaranteed 571 * to be cleaned up. 572 */ 573 inp->inp_route.ro_flags = RT_LLE_CACHE; 574 INP_LIST_WUNLOCK(pcbinfo); 575 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 576 out: 577 if (error != 0) { 578 crfree(inp->inp_cred); 579 uma_zfree(pcbinfo->ipi_zone, inp); 580 } 581 #endif 582 return (error); 583 } 584 585 #ifdef INET 586 int 587 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 588 { 589 int anonport, error; 590 591 INP_WLOCK_ASSERT(inp); 592 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 593 594 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 595 return (EINVAL); 596 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 597 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 598 &inp->inp_lport, cred); 599 if (error) 600 return (error); 601 if (in_pcbinshash(inp) != 0) { 602 inp->inp_laddr.s_addr = INADDR_ANY; 603 inp->inp_lport = 0; 604 return (EAGAIN); 605 } 606 if (anonport) 607 inp->inp_flags |= INP_ANONPORT; 608 return (0); 609 } 610 #endif 611 612 /* 613 * Select a local port (number) to use. 614 */ 615 #if defined(INET) || defined(INET6) 616 int 617 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 618 struct ucred *cred, int lookupflags) 619 { 620 struct inpcbinfo *pcbinfo; 621 struct inpcb *tmpinp; 622 unsigned short *lastport; 623 int count, dorandom, error; 624 u_short aux, first, last, lport; 625 #ifdef INET 626 struct in_addr laddr; 627 #endif 628 629 pcbinfo = inp->inp_pcbinfo; 630 631 /* 632 * Because no actual state changes occur here, a global write lock on 633 * the pcbinfo isn't required. 634 */ 635 INP_LOCK_ASSERT(inp); 636 INP_HASH_LOCK_ASSERT(pcbinfo); 637 638 if (inp->inp_flags & INP_HIGHPORT) { 639 first = V_ipport_hifirstauto; /* sysctl */ 640 last = V_ipport_hilastauto; 641 lastport = &pcbinfo->ipi_lasthi; 642 } else if (inp->inp_flags & INP_LOWPORT) { 643 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 644 if (error) 645 return (error); 646 first = V_ipport_lowfirstauto; /* 1023 */ 647 last = V_ipport_lowlastauto; /* 600 */ 648 lastport = &pcbinfo->ipi_lastlow; 649 } else { 650 first = V_ipport_firstauto; /* sysctl */ 651 last = V_ipport_lastauto; 652 lastport = &pcbinfo->ipi_lastport; 653 } 654 /* 655 * For UDP(-Lite), use random port allocation as long as the user 656 * allows it. For TCP (and as of yet unknown) connections, 657 * use random port allocation only if the user allows it AND 658 * ipport_tick() allows it. 659 */ 660 if (V_ipport_randomized && 661 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 662 pcbinfo == &V_ulitecbinfo)) 663 dorandom = 1; 664 else 665 dorandom = 0; 666 /* 667 * It makes no sense to do random port allocation if 668 * we have the only port available. 669 */ 670 if (first == last) 671 dorandom = 0; 672 /* Make sure to not include UDP(-Lite) packets in the count. */ 673 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 674 V_ipport_tcpallocs++; 675 /* 676 * Instead of having two loops further down counting up or down 677 * make sure that first is always <= last and go with only one 678 * code path implementing all logic. 679 */ 680 if (first > last) { 681 aux = first; 682 first = last; 683 last = aux; 684 } 685 686 #ifdef INET 687 /* Make the compiler happy. */ 688 laddr.s_addr = 0; 689 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 690 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 691 __func__, inp)); 692 laddr = *laddrp; 693 } 694 #endif 695 tmpinp = NULL; /* Make compiler happy. */ 696 lport = *lportp; 697 698 if (dorandom) 699 *lastport = first + (arc4random() % (last - first)); 700 701 count = last - first; 702 703 do { 704 if (count-- < 0) /* completely used? */ 705 return (EADDRNOTAVAIL); 706 ++*lastport; 707 if (*lastport < first || *lastport > last) 708 *lastport = first; 709 lport = htons(*lastport); 710 711 #ifdef INET6 712 if ((inp->inp_vflag & INP_IPV6) != 0) 713 tmpinp = in6_pcblookup_local(pcbinfo, 714 &inp->in6p_laddr, lport, lookupflags, cred); 715 #endif 716 #if defined(INET) && defined(INET6) 717 else 718 #endif 719 #ifdef INET 720 tmpinp = in_pcblookup_local(pcbinfo, laddr, 721 lport, lookupflags, cred); 722 #endif 723 } while (tmpinp != NULL); 724 725 #ifdef INET 726 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 727 laddrp->s_addr = laddr.s_addr; 728 #endif 729 *lportp = lport; 730 731 return (0); 732 } 733 734 /* 735 * Return cached socket options. 736 */ 737 int 738 inp_so_options(const struct inpcb *inp) 739 { 740 int so_options; 741 742 so_options = 0; 743 744 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 745 so_options |= SO_REUSEPORT_LB; 746 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 747 so_options |= SO_REUSEPORT; 748 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 749 so_options |= SO_REUSEADDR; 750 return (so_options); 751 } 752 #endif /* INET || INET6 */ 753 754 /* 755 * Check if a new BINDMULTI socket is allowed to be created. 756 * 757 * ni points to the new inp. 758 * oi points to the exisitng inp. 759 * 760 * This checks whether the existing inp also has BINDMULTI and 761 * whether the credentials match. 762 */ 763 int 764 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 765 { 766 /* Check permissions match */ 767 if ((ni->inp_flags2 & INP_BINDMULTI) && 768 (ni->inp_cred->cr_uid != 769 oi->inp_cred->cr_uid)) 770 return (0); 771 772 /* Check the existing inp has BINDMULTI set */ 773 if ((ni->inp_flags2 & INP_BINDMULTI) && 774 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 775 return (0); 776 777 /* 778 * We're okay - either INP_BINDMULTI isn't set on ni, or 779 * it is and it matches the checks. 780 */ 781 return (1); 782 } 783 784 #ifdef INET 785 /* 786 * Set up a bind operation on a PCB, performing port allocation 787 * as required, but do not actually modify the PCB. Callers can 788 * either complete the bind by setting inp_laddr/inp_lport and 789 * calling in_pcbinshash(), or they can just use the resulting 790 * port and address to authorise the sending of a once-off packet. 791 * 792 * On error, the values of *laddrp and *lportp are not changed. 793 */ 794 int 795 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 796 u_short *lportp, struct ucred *cred) 797 { 798 struct socket *so = inp->inp_socket; 799 struct sockaddr_in *sin; 800 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 801 struct in_addr laddr; 802 u_short lport = 0; 803 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 804 int error; 805 806 /* 807 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 808 * so that we don't have to add to the (already messy) code below. 809 */ 810 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 811 812 /* 813 * No state changes, so read locks are sufficient here. 814 */ 815 INP_LOCK_ASSERT(inp); 816 INP_HASH_LOCK_ASSERT(pcbinfo); 817 818 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 819 return (EADDRNOTAVAIL); 820 laddr.s_addr = *laddrp; 821 if (nam != NULL && laddr.s_addr != INADDR_ANY) 822 return (EINVAL); 823 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 824 lookupflags = INPLOOKUP_WILDCARD; 825 if (nam == NULL) { 826 if ((error = prison_local_ip4(cred, &laddr)) != 0) 827 return (error); 828 } else { 829 sin = (struct sockaddr_in *)nam; 830 if (nam->sa_len != sizeof (*sin)) 831 return (EINVAL); 832 #ifdef notdef 833 /* 834 * We should check the family, but old programs 835 * incorrectly fail to initialize it. 836 */ 837 if (sin->sin_family != AF_INET) 838 return (EAFNOSUPPORT); 839 #endif 840 error = prison_local_ip4(cred, &sin->sin_addr); 841 if (error) 842 return (error); 843 if (sin->sin_port != *lportp) { 844 /* Don't allow the port to change. */ 845 if (*lportp != 0) 846 return (EINVAL); 847 lport = sin->sin_port; 848 } 849 /* NB: lport is left as 0 if the port isn't being changed. */ 850 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 851 /* 852 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 853 * allow complete duplication of binding if 854 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 855 * and a multicast address is bound on both 856 * new and duplicated sockets. 857 */ 858 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 859 reuseport = SO_REUSEADDR|SO_REUSEPORT; 860 /* 861 * XXX: How to deal with SO_REUSEPORT_LB here? 862 * Treat same as SO_REUSEPORT for now. 863 */ 864 if ((so->so_options & 865 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 866 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 867 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 868 sin->sin_port = 0; /* yech... */ 869 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 870 /* 871 * Is the address a local IP address? 872 * If INP_BINDANY is set, then the socket may be bound 873 * to any endpoint address, local or not. 874 */ 875 if ((inp->inp_flags & INP_BINDANY) == 0 && 876 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 877 return (EADDRNOTAVAIL); 878 } 879 laddr = sin->sin_addr; 880 if (lport) { 881 struct inpcb *t; 882 struct tcptw *tw; 883 884 /* GROSS */ 885 if (ntohs(lport) <= V_ipport_reservedhigh && 886 ntohs(lport) >= V_ipport_reservedlow && 887 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 888 return (EACCES); 889 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 890 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 891 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 892 lport, INPLOOKUP_WILDCARD, cred); 893 /* 894 * XXX 895 * This entire block sorely needs a rewrite. 896 */ 897 if (t && 898 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 899 ((t->inp_flags & INP_TIMEWAIT) == 0) && 900 (so->so_type != SOCK_STREAM || 901 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 902 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 903 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 904 (t->inp_flags2 & INP_REUSEPORT) || 905 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 906 (inp->inp_cred->cr_uid != 907 t->inp_cred->cr_uid)) 908 return (EADDRINUSE); 909 910 /* 911 * If the socket is a BINDMULTI socket, then 912 * the credentials need to match and the 913 * original socket also has to have been bound 914 * with BINDMULTI. 915 */ 916 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 917 return (EADDRINUSE); 918 } 919 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 920 lport, lookupflags, cred); 921 if (t && (t->inp_flags & INP_TIMEWAIT)) { 922 /* 923 * XXXRW: If an incpb has had its timewait 924 * state recycled, we treat the address as 925 * being in use (for now). This is better 926 * than a panic, but not desirable. 927 */ 928 tw = intotw(t); 929 if (tw == NULL || 930 ((reuseport & tw->tw_so_options) == 0 && 931 (reuseport_lb & 932 tw->tw_so_options) == 0)) { 933 return (EADDRINUSE); 934 } 935 } else if (t && 936 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 937 (reuseport & inp_so_options(t)) == 0 && 938 (reuseport_lb & inp_so_options(t)) == 0) { 939 #ifdef INET6 940 if (ntohl(sin->sin_addr.s_addr) != 941 INADDR_ANY || 942 ntohl(t->inp_laddr.s_addr) != 943 INADDR_ANY || 944 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 945 (t->inp_vflag & INP_IPV6PROTO) == 0) 946 #endif 947 return (EADDRINUSE); 948 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 949 return (EADDRINUSE); 950 } 951 } 952 } 953 if (*lportp != 0) 954 lport = *lportp; 955 if (lport == 0) { 956 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 957 if (error != 0) 958 return (error); 959 960 } 961 *laddrp = laddr.s_addr; 962 *lportp = lport; 963 return (0); 964 } 965 966 /* 967 * Connect from a socket to a specified address. 968 * Both address and port must be specified in argument sin. 969 * If don't have a local address for this socket yet, 970 * then pick one. 971 */ 972 int 973 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 974 struct ucred *cred, struct mbuf *m, bool rehash) 975 { 976 u_short lport, fport; 977 in_addr_t laddr, faddr; 978 int anonport, error; 979 980 INP_WLOCK_ASSERT(inp); 981 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 982 983 lport = inp->inp_lport; 984 laddr = inp->inp_laddr.s_addr; 985 anonport = (lport == 0); 986 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 987 NULL, cred); 988 if (error) 989 return (error); 990 991 /* Do the initial binding of the local address if required. */ 992 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 993 KASSERT(rehash == true, 994 ("Rehashing required for unbound inps")); 995 inp->inp_lport = lport; 996 inp->inp_laddr.s_addr = laddr; 997 if (in_pcbinshash(inp) != 0) { 998 inp->inp_laddr.s_addr = INADDR_ANY; 999 inp->inp_lport = 0; 1000 return (EAGAIN); 1001 } 1002 } 1003 1004 /* Commit the remaining changes. */ 1005 inp->inp_lport = lport; 1006 inp->inp_laddr.s_addr = laddr; 1007 inp->inp_faddr.s_addr = faddr; 1008 inp->inp_fport = fport; 1009 if (rehash) { 1010 in_pcbrehash_mbuf(inp, m); 1011 } else { 1012 in_pcbinshash_mbuf(inp, m); 1013 } 1014 1015 if (anonport) 1016 inp->inp_flags |= INP_ANONPORT; 1017 return (0); 1018 } 1019 1020 int 1021 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1022 { 1023 1024 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1025 } 1026 1027 /* 1028 * Do proper source address selection on an unbound socket in case 1029 * of connect. Take jails into account as well. 1030 */ 1031 int 1032 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1033 struct ucred *cred) 1034 { 1035 struct ifaddr *ifa; 1036 struct sockaddr *sa; 1037 struct sockaddr_in *sin; 1038 struct route sro; 1039 struct epoch_tracker et; 1040 int error; 1041 1042 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1043 /* 1044 * Bypass source address selection and use the primary jail IP 1045 * if requested. 1046 */ 1047 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1048 return (0); 1049 1050 error = 0; 1051 bzero(&sro, sizeof(sro)); 1052 1053 sin = (struct sockaddr_in *)&sro.ro_dst; 1054 sin->sin_family = AF_INET; 1055 sin->sin_len = sizeof(struct sockaddr_in); 1056 sin->sin_addr.s_addr = faddr->s_addr; 1057 1058 /* 1059 * If route is known our src addr is taken from the i/f, 1060 * else punt. 1061 * 1062 * Find out route to destination. 1063 */ 1064 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1065 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1066 1067 /* 1068 * If we found a route, use the address corresponding to 1069 * the outgoing interface. 1070 * 1071 * Otherwise assume faddr is reachable on a directly connected 1072 * network and try to find a corresponding interface to take 1073 * the source address from. 1074 */ 1075 NET_EPOCH_ENTER(et); 1076 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1077 struct in_ifaddr *ia; 1078 struct ifnet *ifp; 1079 1080 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1081 inp->inp_socket->so_fibnum)); 1082 if (ia == NULL) { 1083 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1084 inp->inp_socket->so_fibnum)); 1085 1086 } 1087 if (ia == NULL) { 1088 error = ENETUNREACH; 1089 goto done; 1090 } 1091 1092 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1093 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1094 goto done; 1095 } 1096 1097 ifp = ia->ia_ifp; 1098 ia = NULL; 1099 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1100 1101 sa = ifa->ifa_addr; 1102 if (sa->sa_family != AF_INET) 1103 continue; 1104 sin = (struct sockaddr_in *)sa; 1105 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1106 ia = (struct in_ifaddr *)ifa; 1107 break; 1108 } 1109 } 1110 if (ia != NULL) { 1111 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1112 goto done; 1113 } 1114 1115 /* 3. As a last resort return the 'default' jail address. */ 1116 error = prison_get_ip4(cred, laddr); 1117 goto done; 1118 } 1119 1120 /* 1121 * If the outgoing interface on the route found is not 1122 * a loopback interface, use the address from that interface. 1123 * In case of jails do those three steps: 1124 * 1. check if the interface address belongs to the jail. If so use it. 1125 * 2. check if we have any address on the outgoing interface 1126 * belonging to this jail. If so use it. 1127 * 3. as a last resort return the 'default' jail address. 1128 */ 1129 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1130 struct in_ifaddr *ia; 1131 struct ifnet *ifp; 1132 1133 /* If not jailed, use the default returned. */ 1134 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1135 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1136 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1137 goto done; 1138 } 1139 1140 /* Jailed. */ 1141 /* 1. Check if the iface address belongs to the jail. */ 1142 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1143 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1144 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1145 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1146 goto done; 1147 } 1148 1149 /* 1150 * 2. Check if we have any address on the outgoing interface 1151 * belonging to this jail. 1152 */ 1153 ia = NULL; 1154 ifp = sro.ro_rt->rt_ifp; 1155 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1156 sa = ifa->ifa_addr; 1157 if (sa->sa_family != AF_INET) 1158 continue; 1159 sin = (struct sockaddr_in *)sa; 1160 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1161 ia = (struct in_ifaddr *)ifa; 1162 break; 1163 } 1164 } 1165 if (ia != NULL) { 1166 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1167 goto done; 1168 } 1169 1170 /* 3. As a last resort return the 'default' jail address. */ 1171 error = prison_get_ip4(cred, laddr); 1172 goto done; 1173 } 1174 1175 /* 1176 * The outgoing interface is marked with 'loopback net', so a route 1177 * to ourselves is here. 1178 * Try to find the interface of the destination address and then 1179 * take the address from there. That interface is not necessarily 1180 * a loopback interface. 1181 * In case of jails, check that it is an address of the jail 1182 * and if we cannot find, fall back to the 'default' jail address. 1183 */ 1184 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1185 struct sockaddr_in sain; 1186 struct in_ifaddr *ia; 1187 1188 bzero(&sain, sizeof(struct sockaddr_in)); 1189 sain.sin_family = AF_INET; 1190 sain.sin_len = sizeof(struct sockaddr_in); 1191 sain.sin_addr.s_addr = faddr->s_addr; 1192 1193 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1194 inp->inp_socket->so_fibnum)); 1195 if (ia == NULL) 1196 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1197 inp->inp_socket->so_fibnum)); 1198 if (ia == NULL) 1199 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1200 1201 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1202 if (ia == NULL) { 1203 error = ENETUNREACH; 1204 goto done; 1205 } 1206 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1207 goto done; 1208 } 1209 1210 /* Jailed. */ 1211 if (ia != NULL) { 1212 struct ifnet *ifp; 1213 1214 ifp = ia->ia_ifp; 1215 ia = NULL; 1216 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1217 sa = ifa->ifa_addr; 1218 if (sa->sa_family != AF_INET) 1219 continue; 1220 sin = (struct sockaddr_in *)sa; 1221 if (prison_check_ip4(cred, 1222 &sin->sin_addr) == 0) { 1223 ia = (struct in_ifaddr *)ifa; 1224 break; 1225 } 1226 } 1227 if (ia != NULL) { 1228 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1229 goto done; 1230 } 1231 } 1232 1233 /* 3. As a last resort return the 'default' jail address. */ 1234 error = prison_get_ip4(cred, laddr); 1235 goto done; 1236 } 1237 1238 done: 1239 NET_EPOCH_EXIT(et); 1240 if (sro.ro_rt != NULL) 1241 RTFREE(sro.ro_rt); 1242 return (error); 1243 } 1244 1245 /* 1246 * Set up for a connect from a socket to the specified address. 1247 * On entry, *laddrp and *lportp should contain the current local 1248 * address and port for the PCB; these are updated to the values 1249 * that should be placed in inp_laddr and inp_lport to complete 1250 * the connect. 1251 * 1252 * On success, *faddrp and *fportp will be set to the remote address 1253 * and port. These are not updated in the error case. 1254 * 1255 * If the operation fails because the connection already exists, 1256 * *oinpp will be set to the PCB of that connection so that the 1257 * caller can decide to override it. In all other cases, *oinpp 1258 * is set to NULL. 1259 */ 1260 int 1261 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1262 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1263 struct inpcb **oinpp, struct ucred *cred) 1264 { 1265 struct rm_priotracker in_ifa_tracker; 1266 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1267 struct in_ifaddr *ia; 1268 struct inpcb *oinp; 1269 struct in_addr laddr, faddr; 1270 u_short lport, fport; 1271 int error; 1272 1273 /* 1274 * Because a global state change doesn't actually occur here, a read 1275 * lock is sufficient. 1276 */ 1277 INP_LOCK_ASSERT(inp); 1278 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1279 1280 if (oinpp != NULL) 1281 *oinpp = NULL; 1282 if (nam->sa_len != sizeof (*sin)) 1283 return (EINVAL); 1284 if (sin->sin_family != AF_INET) 1285 return (EAFNOSUPPORT); 1286 if (sin->sin_port == 0) 1287 return (EADDRNOTAVAIL); 1288 laddr.s_addr = *laddrp; 1289 lport = *lportp; 1290 faddr = sin->sin_addr; 1291 fport = sin->sin_port; 1292 1293 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1294 /* 1295 * If the destination address is INADDR_ANY, 1296 * use the primary local address. 1297 * If the supplied address is INADDR_BROADCAST, 1298 * and the primary interface supports broadcast, 1299 * choose the broadcast address for that interface. 1300 */ 1301 if (faddr.s_addr == INADDR_ANY) { 1302 IN_IFADDR_RLOCK(&in_ifa_tracker); 1303 faddr = 1304 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1305 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1306 if (cred != NULL && 1307 (error = prison_get_ip4(cred, &faddr)) != 0) 1308 return (error); 1309 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1310 IN_IFADDR_RLOCK(&in_ifa_tracker); 1311 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1312 IFF_BROADCAST) 1313 faddr = satosin(&CK_STAILQ_FIRST( 1314 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1315 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1316 } 1317 } 1318 if (laddr.s_addr == INADDR_ANY) { 1319 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1320 /* 1321 * If the destination address is multicast and an outgoing 1322 * interface has been set as a multicast option, prefer the 1323 * address of that interface as our source address. 1324 */ 1325 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1326 inp->inp_moptions != NULL) { 1327 struct ip_moptions *imo; 1328 struct ifnet *ifp; 1329 1330 imo = inp->inp_moptions; 1331 if (imo->imo_multicast_ifp != NULL) { 1332 ifp = imo->imo_multicast_ifp; 1333 IN_IFADDR_RLOCK(&in_ifa_tracker); 1334 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1335 if ((ia->ia_ifp == ifp) && 1336 (cred == NULL || 1337 prison_check_ip4(cred, 1338 &ia->ia_addr.sin_addr) == 0)) 1339 break; 1340 } 1341 if (ia == NULL) 1342 error = EADDRNOTAVAIL; 1343 else { 1344 laddr = ia->ia_addr.sin_addr; 1345 error = 0; 1346 } 1347 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1348 } 1349 } 1350 if (error) 1351 return (error); 1352 } 1353 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1354 laddr, lport, 0, NULL); 1355 if (oinp != NULL) { 1356 if (oinpp != NULL) 1357 *oinpp = oinp; 1358 return (EADDRINUSE); 1359 } 1360 if (lport == 0) { 1361 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1362 cred); 1363 if (error) 1364 return (error); 1365 } 1366 *laddrp = laddr.s_addr; 1367 *lportp = lport; 1368 *faddrp = faddr.s_addr; 1369 *fportp = fport; 1370 return (0); 1371 } 1372 1373 void 1374 in_pcbdisconnect(struct inpcb *inp) 1375 { 1376 1377 INP_WLOCK_ASSERT(inp); 1378 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1379 1380 inp->inp_faddr.s_addr = INADDR_ANY; 1381 inp->inp_fport = 0; 1382 in_pcbrehash(inp); 1383 } 1384 #endif /* INET */ 1385 1386 /* 1387 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1388 * For most protocols, this will be invoked immediately prior to calling 1389 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1390 * socket, in which case in_pcbfree() is deferred. 1391 */ 1392 void 1393 in_pcbdetach(struct inpcb *inp) 1394 { 1395 1396 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1397 1398 #ifdef RATELIMIT 1399 if (inp->inp_snd_tag != NULL) 1400 in_pcbdetach_txrtlmt(inp); 1401 #endif 1402 inp->inp_socket->so_pcb = NULL; 1403 inp->inp_socket = NULL; 1404 } 1405 1406 /* 1407 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1408 * stability of an inpcb pointer despite the inpcb lock being released. This 1409 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1410 * but where the inpcb lock may already held, or when acquiring a reference 1411 * via a pcbgroup. 1412 * 1413 * in_pcbref() should be used only to provide brief memory stability, and 1414 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1415 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1416 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1417 * lock and rele are the *only* safe operations that may be performed on the 1418 * inpcb. 1419 * 1420 * While the inpcb will not be freed, releasing the inpcb lock means that the 1421 * connection's state may change, so the caller should be careful to 1422 * revalidate any cached state on reacquiring the lock. Drop the reference 1423 * using in_pcbrele(). 1424 */ 1425 void 1426 in_pcbref(struct inpcb *inp) 1427 { 1428 1429 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1430 1431 refcount_acquire(&inp->inp_refcount); 1432 } 1433 1434 /* 1435 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1436 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1437 * return a flag indicating whether or not the inpcb remains valid. If it is 1438 * valid, we return with the inpcb lock held. 1439 * 1440 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1441 * reference on an inpcb. Historically more work was done here (actually, in 1442 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1443 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1444 * about memory stability (and continued use of the write lock). 1445 */ 1446 int 1447 in_pcbrele_rlocked(struct inpcb *inp) 1448 { 1449 struct inpcbinfo *pcbinfo; 1450 1451 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1452 1453 INP_RLOCK_ASSERT(inp); 1454 1455 if (refcount_release(&inp->inp_refcount) == 0) { 1456 /* 1457 * If the inpcb has been freed, let the caller know, even if 1458 * this isn't the last reference. 1459 */ 1460 if (inp->inp_flags2 & INP_FREED) { 1461 INP_RUNLOCK(inp); 1462 return (1); 1463 } 1464 return (0); 1465 } 1466 1467 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1468 #ifdef TCPHPTS 1469 if (inp->inp_in_hpts || inp->inp_in_input) { 1470 struct tcp_hpts_entry *hpts; 1471 /* 1472 * We should not be on the hpts at 1473 * this point in any form. we must 1474 * get the lock to be sure. 1475 */ 1476 hpts = tcp_hpts_lock(inp); 1477 if (inp->inp_in_hpts) 1478 panic("Hpts:%p inp:%p at free still on hpts", 1479 hpts, inp); 1480 mtx_unlock(&hpts->p_mtx); 1481 hpts = tcp_input_lock(inp); 1482 if (inp->inp_in_input) 1483 panic("Hpts:%p inp:%p at free still on input hpts", 1484 hpts, inp); 1485 mtx_unlock(&hpts->p_mtx); 1486 } 1487 #endif 1488 INP_RUNLOCK(inp); 1489 pcbinfo = inp->inp_pcbinfo; 1490 uma_zfree(pcbinfo->ipi_zone, inp); 1491 return (1); 1492 } 1493 1494 int 1495 in_pcbrele_wlocked(struct inpcb *inp) 1496 { 1497 struct inpcbinfo *pcbinfo; 1498 1499 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1500 1501 INP_WLOCK_ASSERT(inp); 1502 1503 if (refcount_release(&inp->inp_refcount) == 0) { 1504 /* 1505 * If the inpcb has been freed, let the caller know, even if 1506 * this isn't the last reference. 1507 */ 1508 if (inp->inp_flags2 & INP_FREED) { 1509 INP_WUNLOCK(inp); 1510 return (1); 1511 } 1512 return (0); 1513 } 1514 1515 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1516 #ifdef TCPHPTS 1517 if (inp->inp_in_hpts || inp->inp_in_input) { 1518 struct tcp_hpts_entry *hpts; 1519 /* 1520 * We should not be on the hpts at 1521 * this point in any form. we must 1522 * get the lock to be sure. 1523 */ 1524 hpts = tcp_hpts_lock(inp); 1525 if (inp->inp_in_hpts) 1526 panic("Hpts:%p inp:%p at free still on hpts", 1527 hpts, inp); 1528 mtx_unlock(&hpts->p_mtx); 1529 hpts = tcp_input_lock(inp); 1530 if (inp->inp_in_input) 1531 panic("Hpts:%p inp:%p at free still on input hpts", 1532 hpts, inp); 1533 mtx_unlock(&hpts->p_mtx); 1534 } 1535 #endif 1536 INP_WUNLOCK(inp); 1537 pcbinfo = inp->inp_pcbinfo; 1538 uma_zfree(pcbinfo->ipi_zone, inp); 1539 return (1); 1540 } 1541 1542 /* 1543 * Temporary wrapper. 1544 */ 1545 int 1546 in_pcbrele(struct inpcb *inp) 1547 { 1548 1549 return (in_pcbrele_wlocked(inp)); 1550 } 1551 1552 void 1553 in_pcblist_rele_rlocked(epoch_context_t ctx) 1554 { 1555 struct in_pcblist *il; 1556 struct inpcb *inp; 1557 struct inpcbinfo *pcbinfo; 1558 int i, n; 1559 1560 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1561 pcbinfo = il->il_pcbinfo; 1562 n = il->il_count; 1563 INP_INFO_WLOCK(pcbinfo); 1564 for (i = 0; i < n; i++) { 1565 inp = il->il_inp_list[i]; 1566 INP_RLOCK(inp); 1567 if (!in_pcbrele_rlocked(inp)) 1568 INP_RUNLOCK(inp); 1569 } 1570 INP_INFO_WUNLOCK(pcbinfo); 1571 free(il, M_TEMP); 1572 } 1573 1574 static void 1575 inpcbport_free(epoch_context_t ctx) 1576 { 1577 struct inpcbport *phd; 1578 1579 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1580 free(phd, M_PCB); 1581 } 1582 1583 static void 1584 in_pcbfree_deferred(epoch_context_t ctx) 1585 { 1586 struct inpcb *inp; 1587 int released __unused; 1588 1589 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1590 1591 INP_WLOCK(inp); 1592 CURVNET_SET(inp->inp_vnet); 1593 #ifdef INET 1594 struct ip_moptions *imo = inp->inp_moptions; 1595 inp->inp_moptions = NULL; 1596 #endif 1597 /* XXXRW: Do as much as possible here. */ 1598 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1599 if (inp->inp_sp != NULL) 1600 ipsec_delete_pcbpolicy(inp); 1601 #endif 1602 #ifdef INET6 1603 struct ip6_moptions *im6o = NULL; 1604 if (inp->inp_vflag & INP_IPV6PROTO) { 1605 ip6_freepcbopts(inp->in6p_outputopts); 1606 im6o = inp->in6p_moptions; 1607 inp->in6p_moptions = NULL; 1608 } 1609 #endif 1610 if (inp->inp_options) 1611 (void)m_free(inp->inp_options); 1612 inp->inp_vflag = 0; 1613 crfree(inp->inp_cred); 1614 #ifdef MAC 1615 mac_inpcb_destroy(inp); 1616 #endif 1617 released = in_pcbrele_wlocked(inp); 1618 MPASS(released); 1619 #ifdef INET6 1620 ip6_freemoptions(im6o); 1621 #endif 1622 #ifdef INET 1623 inp_freemoptions(imo); 1624 #endif 1625 CURVNET_RESTORE(); 1626 } 1627 1628 /* 1629 * Unconditionally schedule an inpcb to be freed by decrementing its 1630 * reference count, which should occur only after the inpcb has been detached 1631 * from its socket. If another thread holds a temporary reference (acquired 1632 * using in_pcbref()) then the free is deferred until that reference is 1633 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1634 * work, including removal from global lists, is done in this context, where 1635 * the pcbinfo lock is held. 1636 */ 1637 void 1638 in_pcbfree(struct inpcb *inp) 1639 { 1640 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1641 1642 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1643 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1644 ("%s: called twice for pcb %p", __func__, inp)); 1645 if (inp->inp_flags2 & INP_FREED) { 1646 INP_WUNLOCK(inp); 1647 return; 1648 } 1649 1650 #ifdef INVARIANTS 1651 if (pcbinfo == &V_tcbinfo) { 1652 INP_INFO_LOCK_ASSERT(pcbinfo); 1653 } else { 1654 INP_INFO_WLOCK_ASSERT(pcbinfo); 1655 } 1656 #endif 1657 INP_WLOCK_ASSERT(inp); 1658 INP_LIST_WLOCK(pcbinfo); 1659 in_pcbremlists(inp); 1660 INP_LIST_WUNLOCK(pcbinfo); 1661 RO_INVALIDATE_CACHE(&inp->inp_route); 1662 /* mark as destruction in progress */ 1663 inp->inp_flags2 |= INP_FREED; 1664 INP_WUNLOCK(inp); 1665 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1666 } 1667 1668 /* 1669 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1670 * port reservation, and preventing it from being returned by inpcb lookups. 1671 * 1672 * It is used by TCP to mark an inpcb as unused and avoid future packet 1673 * delivery or event notification when a socket remains open but TCP has 1674 * closed. This might occur as a result of a shutdown()-initiated TCP close 1675 * or a RST on the wire, and allows the port binding to be reused while still 1676 * maintaining the invariant that so_pcb always points to a valid inpcb until 1677 * in_pcbdetach(). 1678 * 1679 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1680 * in_pcbnotifyall() and in_pcbpurgeif0()? 1681 */ 1682 void 1683 in_pcbdrop(struct inpcb *inp) 1684 { 1685 1686 INP_WLOCK_ASSERT(inp); 1687 #ifdef INVARIANTS 1688 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1689 MPASS(inp->inp_refcount > 1); 1690 #endif 1691 1692 /* 1693 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1694 * the hash lock...? 1695 */ 1696 inp->inp_flags |= INP_DROPPED; 1697 if (inp->inp_flags & INP_INHASHLIST) { 1698 struct inpcbport *phd = inp->inp_phd; 1699 1700 INP_HASH_WLOCK(inp->inp_pcbinfo); 1701 in_pcbremlbgrouphash(inp); 1702 CK_LIST_REMOVE(inp, inp_hash); 1703 CK_LIST_REMOVE(inp, inp_portlist); 1704 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1705 CK_LIST_REMOVE(phd, phd_hash); 1706 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1707 } 1708 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1709 inp->inp_flags &= ~INP_INHASHLIST; 1710 #ifdef PCBGROUP 1711 in_pcbgroup_remove(inp); 1712 #endif 1713 } 1714 } 1715 1716 #ifdef INET 1717 /* 1718 * Common routines to return the socket addresses associated with inpcbs. 1719 */ 1720 struct sockaddr * 1721 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1722 { 1723 struct sockaddr_in *sin; 1724 1725 sin = malloc(sizeof *sin, M_SONAME, 1726 M_WAITOK | M_ZERO); 1727 sin->sin_family = AF_INET; 1728 sin->sin_len = sizeof(*sin); 1729 sin->sin_addr = *addr_p; 1730 sin->sin_port = port; 1731 1732 return (struct sockaddr *)sin; 1733 } 1734 1735 int 1736 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1737 { 1738 struct inpcb *inp; 1739 struct in_addr addr; 1740 in_port_t port; 1741 1742 inp = sotoinpcb(so); 1743 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1744 1745 INP_RLOCK(inp); 1746 port = inp->inp_lport; 1747 addr = inp->inp_laddr; 1748 INP_RUNLOCK(inp); 1749 1750 *nam = in_sockaddr(port, &addr); 1751 return 0; 1752 } 1753 1754 int 1755 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1756 { 1757 struct inpcb *inp; 1758 struct in_addr addr; 1759 in_port_t port; 1760 1761 inp = sotoinpcb(so); 1762 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1763 1764 INP_RLOCK(inp); 1765 port = inp->inp_fport; 1766 addr = inp->inp_faddr; 1767 INP_RUNLOCK(inp); 1768 1769 *nam = in_sockaddr(port, &addr); 1770 return 0; 1771 } 1772 1773 void 1774 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1775 struct inpcb *(*notify)(struct inpcb *, int)) 1776 { 1777 struct inpcb *inp, *inp_temp; 1778 1779 INP_INFO_WLOCK(pcbinfo); 1780 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1781 INP_WLOCK(inp); 1782 #ifdef INET6 1783 if ((inp->inp_vflag & INP_IPV4) == 0) { 1784 INP_WUNLOCK(inp); 1785 continue; 1786 } 1787 #endif 1788 if (inp->inp_faddr.s_addr != faddr.s_addr || 1789 inp->inp_socket == NULL) { 1790 INP_WUNLOCK(inp); 1791 continue; 1792 } 1793 if ((*notify)(inp, errno)) 1794 INP_WUNLOCK(inp); 1795 } 1796 INP_INFO_WUNLOCK(pcbinfo); 1797 } 1798 1799 void 1800 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1801 { 1802 struct inpcb *inp; 1803 struct in_multi *inm; 1804 struct in_mfilter *imf; 1805 struct ip_moptions *imo; 1806 1807 INP_INFO_WLOCK(pcbinfo); 1808 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1809 INP_WLOCK(inp); 1810 imo = inp->inp_moptions; 1811 if ((inp->inp_vflag & INP_IPV4) && 1812 imo != NULL) { 1813 /* 1814 * Unselect the outgoing interface if it is being 1815 * detached. 1816 */ 1817 if (imo->imo_multicast_ifp == ifp) 1818 imo->imo_multicast_ifp = NULL; 1819 1820 /* 1821 * Drop multicast group membership if we joined 1822 * through the interface being detached. 1823 * 1824 * XXX This can all be deferred to an epoch_call 1825 */ 1826 restart: 1827 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1828 if ((inm = imf->imf_inm) == NULL) 1829 continue; 1830 if (inm->inm_ifp != ifp) 1831 continue; 1832 ip_mfilter_remove(&imo->imo_head, imf); 1833 IN_MULTI_LOCK_ASSERT(); 1834 in_leavegroup_locked(inm, NULL); 1835 ip_mfilter_free(imf); 1836 goto restart; 1837 } 1838 } 1839 INP_WUNLOCK(inp); 1840 } 1841 INP_INFO_WUNLOCK(pcbinfo); 1842 } 1843 1844 /* 1845 * Lookup a PCB based on the local address and port. Caller must hold the 1846 * hash lock. No inpcb locks or references are acquired. 1847 */ 1848 #define INP_LOOKUP_MAPPED_PCB_COST 3 1849 struct inpcb * 1850 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1851 u_short lport, int lookupflags, struct ucred *cred) 1852 { 1853 struct inpcb *inp; 1854 #ifdef INET6 1855 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1856 #else 1857 int matchwild = 3; 1858 #endif 1859 int wildcard; 1860 1861 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1862 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1863 1864 INP_HASH_LOCK_ASSERT(pcbinfo); 1865 1866 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1867 struct inpcbhead *head; 1868 /* 1869 * Look for an unconnected (wildcard foreign addr) PCB that 1870 * matches the local address and port we're looking for. 1871 */ 1872 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1873 0, pcbinfo->ipi_hashmask)]; 1874 CK_LIST_FOREACH(inp, head, inp_hash) { 1875 #ifdef INET6 1876 /* XXX inp locking */ 1877 if ((inp->inp_vflag & INP_IPV4) == 0) 1878 continue; 1879 #endif 1880 if (inp->inp_faddr.s_addr == INADDR_ANY && 1881 inp->inp_laddr.s_addr == laddr.s_addr && 1882 inp->inp_lport == lport) { 1883 /* 1884 * Found? 1885 */ 1886 if (cred == NULL || 1887 prison_equal_ip4(cred->cr_prison, 1888 inp->inp_cred->cr_prison)) 1889 return (inp); 1890 } 1891 } 1892 /* 1893 * Not found. 1894 */ 1895 return (NULL); 1896 } else { 1897 struct inpcbporthead *porthash; 1898 struct inpcbport *phd; 1899 struct inpcb *match = NULL; 1900 /* 1901 * Best fit PCB lookup. 1902 * 1903 * First see if this local port is in use by looking on the 1904 * port hash list. 1905 */ 1906 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1907 pcbinfo->ipi_porthashmask)]; 1908 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1909 if (phd->phd_port == lport) 1910 break; 1911 } 1912 if (phd != NULL) { 1913 /* 1914 * Port is in use by one or more PCBs. Look for best 1915 * fit. 1916 */ 1917 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1918 wildcard = 0; 1919 if (cred != NULL && 1920 !prison_equal_ip4(inp->inp_cred->cr_prison, 1921 cred->cr_prison)) 1922 continue; 1923 #ifdef INET6 1924 /* XXX inp locking */ 1925 if ((inp->inp_vflag & INP_IPV4) == 0) 1926 continue; 1927 /* 1928 * We never select the PCB that has 1929 * INP_IPV6 flag and is bound to :: if 1930 * we have another PCB which is bound 1931 * to 0.0.0.0. If a PCB has the 1932 * INP_IPV6 flag, then we set its cost 1933 * higher than IPv4 only PCBs. 1934 * 1935 * Note that the case only happens 1936 * when a socket is bound to ::, under 1937 * the condition that the use of the 1938 * mapped address is allowed. 1939 */ 1940 if ((inp->inp_vflag & INP_IPV6) != 0) 1941 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1942 #endif 1943 if (inp->inp_faddr.s_addr != INADDR_ANY) 1944 wildcard++; 1945 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1946 if (laddr.s_addr == INADDR_ANY) 1947 wildcard++; 1948 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1949 continue; 1950 } else { 1951 if (laddr.s_addr != INADDR_ANY) 1952 wildcard++; 1953 } 1954 if (wildcard < matchwild) { 1955 match = inp; 1956 matchwild = wildcard; 1957 if (matchwild == 0) 1958 break; 1959 } 1960 } 1961 } 1962 return (match); 1963 } 1964 } 1965 #undef INP_LOOKUP_MAPPED_PCB_COST 1966 1967 static struct inpcb * 1968 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1969 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1970 uint16_t fport, int lookupflags) 1971 { 1972 struct inpcb *local_wild; 1973 const struct inpcblbgrouphead *hdr; 1974 struct inpcblbgroup *grp; 1975 uint32_t idx; 1976 1977 INP_HASH_LOCK_ASSERT(pcbinfo); 1978 1979 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1980 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1981 1982 /* 1983 * Order of socket selection: 1984 * 1. non-wild. 1985 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1986 * 1987 * NOTE: 1988 * - Load balanced group does not contain jailed sockets 1989 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1990 */ 1991 local_wild = NULL; 1992 CK_LIST_FOREACH(grp, hdr, il_list) { 1993 #ifdef INET6 1994 if (!(grp->il_vflag & INP_IPV4)) 1995 continue; 1996 #endif 1997 if (grp->il_lport != lport) 1998 continue; 1999 2000 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2001 grp->il_inpcnt; 2002 if (grp->il_laddr.s_addr == laddr->s_addr) 2003 return (grp->il_inp[idx]); 2004 if (grp->il_laddr.s_addr == INADDR_ANY && 2005 (lookupflags & INPLOOKUP_WILDCARD) != 0) 2006 local_wild = grp->il_inp[idx]; 2007 } 2008 return (local_wild); 2009 } 2010 2011 #ifdef PCBGROUP 2012 /* 2013 * Lookup PCB in hash list, using pcbgroup tables. 2014 */ 2015 static struct inpcb * 2016 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2017 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2018 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2019 { 2020 struct inpcbhead *head; 2021 struct inpcb *inp, *tmpinp; 2022 u_short fport = fport_arg, lport = lport_arg; 2023 bool locked; 2024 2025 /* 2026 * First look for an exact match. 2027 */ 2028 tmpinp = NULL; 2029 INP_GROUP_LOCK(pcbgroup); 2030 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2031 pcbgroup->ipg_hashmask)]; 2032 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2033 #ifdef INET6 2034 /* XXX inp locking */ 2035 if ((inp->inp_vflag & INP_IPV4) == 0) 2036 continue; 2037 #endif 2038 if (inp->inp_faddr.s_addr == faddr.s_addr && 2039 inp->inp_laddr.s_addr == laddr.s_addr && 2040 inp->inp_fport == fport && 2041 inp->inp_lport == lport) { 2042 /* 2043 * XXX We should be able to directly return 2044 * the inp here, without any checks. 2045 * Well unless both bound with SO_REUSEPORT? 2046 */ 2047 if (prison_flag(inp->inp_cred, PR_IP4)) 2048 goto found; 2049 if (tmpinp == NULL) 2050 tmpinp = inp; 2051 } 2052 } 2053 if (tmpinp != NULL) { 2054 inp = tmpinp; 2055 goto found; 2056 } 2057 2058 #ifdef RSS 2059 /* 2060 * For incoming connections, we may wish to do a wildcard 2061 * match for an RSS-local socket. 2062 */ 2063 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2064 struct inpcb *local_wild = NULL, *local_exact = NULL; 2065 #ifdef INET6 2066 struct inpcb *local_wild_mapped = NULL; 2067 #endif 2068 struct inpcb *jail_wild = NULL; 2069 struct inpcbhead *head; 2070 int injail; 2071 2072 /* 2073 * Order of socket selection - we always prefer jails. 2074 * 1. jailed, non-wild. 2075 * 2. jailed, wild. 2076 * 3. non-jailed, non-wild. 2077 * 4. non-jailed, wild. 2078 */ 2079 2080 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2081 lport, 0, pcbgroup->ipg_hashmask)]; 2082 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2083 #ifdef INET6 2084 /* XXX inp locking */ 2085 if ((inp->inp_vflag & INP_IPV4) == 0) 2086 continue; 2087 #endif 2088 if (inp->inp_faddr.s_addr != INADDR_ANY || 2089 inp->inp_lport != lport) 2090 continue; 2091 2092 injail = prison_flag(inp->inp_cred, PR_IP4); 2093 if (injail) { 2094 if (prison_check_ip4(inp->inp_cred, 2095 &laddr) != 0) 2096 continue; 2097 } else { 2098 if (local_exact != NULL) 2099 continue; 2100 } 2101 2102 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2103 if (injail) 2104 goto found; 2105 else 2106 local_exact = inp; 2107 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2108 #ifdef INET6 2109 /* XXX inp locking, NULL check */ 2110 if (inp->inp_vflag & INP_IPV6PROTO) 2111 local_wild_mapped = inp; 2112 else 2113 #endif 2114 if (injail) 2115 jail_wild = inp; 2116 else 2117 local_wild = inp; 2118 } 2119 } /* LIST_FOREACH */ 2120 2121 inp = jail_wild; 2122 if (inp == NULL) 2123 inp = local_exact; 2124 if (inp == NULL) 2125 inp = local_wild; 2126 #ifdef INET6 2127 if (inp == NULL) 2128 inp = local_wild_mapped; 2129 #endif 2130 if (inp != NULL) 2131 goto found; 2132 } 2133 #endif 2134 2135 /* 2136 * Then look for a wildcard match, if requested. 2137 */ 2138 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2139 struct inpcb *local_wild = NULL, *local_exact = NULL; 2140 #ifdef INET6 2141 struct inpcb *local_wild_mapped = NULL; 2142 #endif 2143 struct inpcb *jail_wild = NULL; 2144 struct inpcbhead *head; 2145 int injail; 2146 2147 /* 2148 * Order of socket selection - we always prefer jails. 2149 * 1. jailed, non-wild. 2150 * 2. jailed, wild. 2151 * 3. non-jailed, non-wild. 2152 * 4. non-jailed, wild. 2153 */ 2154 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2155 0, pcbinfo->ipi_wildmask)]; 2156 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2157 #ifdef INET6 2158 /* XXX inp locking */ 2159 if ((inp->inp_vflag & INP_IPV4) == 0) 2160 continue; 2161 #endif 2162 if (inp->inp_faddr.s_addr != INADDR_ANY || 2163 inp->inp_lport != lport) 2164 continue; 2165 2166 injail = prison_flag(inp->inp_cred, PR_IP4); 2167 if (injail) { 2168 if (prison_check_ip4(inp->inp_cred, 2169 &laddr) != 0) 2170 continue; 2171 } else { 2172 if (local_exact != NULL) 2173 continue; 2174 } 2175 2176 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2177 if (injail) 2178 goto found; 2179 else 2180 local_exact = inp; 2181 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2182 #ifdef INET6 2183 /* XXX inp locking, NULL check */ 2184 if (inp->inp_vflag & INP_IPV6PROTO) 2185 local_wild_mapped = inp; 2186 else 2187 #endif 2188 if (injail) 2189 jail_wild = inp; 2190 else 2191 local_wild = inp; 2192 } 2193 } /* LIST_FOREACH */ 2194 inp = jail_wild; 2195 if (inp == NULL) 2196 inp = local_exact; 2197 if (inp == NULL) 2198 inp = local_wild; 2199 #ifdef INET6 2200 if (inp == NULL) 2201 inp = local_wild_mapped; 2202 #endif 2203 if (inp != NULL) 2204 goto found; 2205 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2206 INP_GROUP_UNLOCK(pcbgroup); 2207 return (NULL); 2208 2209 found: 2210 if (lookupflags & INPLOOKUP_WLOCKPCB) 2211 locked = INP_TRY_WLOCK(inp); 2212 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2213 locked = INP_TRY_RLOCK(inp); 2214 else 2215 panic("%s: locking bug", __func__); 2216 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2217 if (lookupflags & INPLOOKUP_WLOCKPCB) 2218 INP_WUNLOCK(inp); 2219 else 2220 INP_RUNLOCK(inp); 2221 return (NULL); 2222 } else if (!locked) 2223 in_pcbref(inp); 2224 INP_GROUP_UNLOCK(pcbgroup); 2225 if (!locked) { 2226 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2227 INP_WLOCK(inp); 2228 if (in_pcbrele_wlocked(inp)) 2229 return (NULL); 2230 } else { 2231 INP_RLOCK(inp); 2232 if (in_pcbrele_rlocked(inp)) 2233 return (NULL); 2234 } 2235 } 2236 #ifdef INVARIANTS 2237 if (lookupflags & INPLOOKUP_WLOCKPCB) 2238 INP_WLOCK_ASSERT(inp); 2239 else 2240 INP_RLOCK_ASSERT(inp); 2241 #endif 2242 return (inp); 2243 } 2244 #endif /* PCBGROUP */ 2245 2246 /* 2247 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2248 * that the caller has locked the hash list, and will not perform any further 2249 * locking or reference operations on either the hash list or the connection. 2250 */ 2251 static struct inpcb * 2252 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2253 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2254 struct ifnet *ifp) 2255 { 2256 struct inpcbhead *head; 2257 struct inpcb *inp, *tmpinp; 2258 u_short fport = fport_arg, lport = lport_arg; 2259 2260 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2261 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2262 INP_HASH_LOCK_ASSERT(pcbinfo); 2263 2264 /* 2265 * First look for an exact match. 2266 */ 2267 tmpinp = NULL; 2268 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2269 pcbinfo->ipi_hashmask)]; 2270 CK_LIST_FOREACH(inp, head, inp_hash) { 2271 #ifdef INET6 2272 /* XXX inp locking */ 2273 if ((inp->inp_vflag & INP_IPV4) == 0) 2274 continue; 2275 #endif 2276 if (inp->inp_faddr.s_addr == faddr.s_addr && 2277 inp->inp_laddr.s_addr == laddr.s_addr && 2278 inp->inp_fport == fport && 2279 inp->inp_lport == lport) { 2280 /* 2281 * XXX We should be able to directly return 2282 * the inp here, without any checks. 2283 * Well unless both bound with SO_REUSEPORT? 2284 */ 2285 if (prison_flag(inp->inp_cred, PR_IP4)) 2286 return (inp); 2287 if (tmpinp == NULL) 2288 tmpinp = inp; 2289 } 2290 } 2291 if (tmpinp != NULL) 2292 return (tmpinp); 2293 2294 /* 2295 * Then look in lb group (for wildcard match). 2296 */ 2297 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2298 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2299 fport, lookupflags); 2300 if (inp != NULL) 2301 return (inp); 2302 } 2303 2304 /* 2305 * Then look for a wildcard match, if requested. 2306 */ 2307 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2308 struct inpcb *local_wild = NULL, *local_exact = NULL; 2309 #ifdef INET6 2310 struct inpcb *local_wild_mapped = NULL; 2311 #endif 2312 struct inpcb *jail_wild = NULL; 2313 int injail; 2314 2315 /* 2316 * Order of socket selection - we always prefer jails. 2317 * 1. jailed, non-wild. 2318 * 2. jailed, wild. 2319 * 3. non-jailed, non-wild. 2320 * 4. non-jailed, wild. 2321 */ 2322 2323 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2324 0, pcbinfo->ipi_hashmask)]; 2325 CK_LIST_FOREACH(inp, head, inp_hash) { 2326 #ifdef INET6 2327 /* XXX inp locking */ 2328 if ((inp->inp_vflag & INP_IPV4) == 0) 2329 continue; 2330 #endif 2331 if (inp->inp_faddr.s_addr != INADDR_ANY || 2332 inp->inp_lport != lport) 2333 continue; 2334 2335 injail = prison_flag(inp->inp_cred, PR_IP4); 2336 if (injail) { 2337 if (prison_check_ip4(inp->inp_cred, 2338 &laddr) != 0) 2339 continue; 2340 } else { 2341 if (local_exact != NULL) 2342 continue; 2343 } 2344 2345 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2346 if (injail) 2347 return (inp); 2348 else 2349 local_exact = inp; 2350 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2351 #ifdef INET6 2352 /* XXX inp locking, NULL check */ 2353 if (inp->inp_vflag & INP_IPV6PROTO) 2354 local_wild_mapped = inp; 2355 else 2356 #endif 2357 if (injail) 2358 jail_wild = inp; 2359 else 2360 local_wild = inp; 2361 } 2362 } /* LIST_FOREACH */ 2363 if (jail_wild != NULL) 2364 return (jail_wild); 2365 if (local_exact != NULL) 2366 return (local_exact); 2367 if (local_wild != NULL) 2368 return (local_wild); 2369 #ifdef INET6 2370 if (local_wild_mapped != NULL) 2371 return (local_wild_mapped); 2372 #endif 2373 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2374 2375 return (NULL); 2376 } 2377 2378 /* 2379 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2380 * hash list lock, and will return the inpcb locked (i.e., requires 2381 * INPLOOKUP_LOCKPCB). 2382 */ 2383 static struct inpcb * 2384 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2385 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2386 struct ifnet *ifp) 2387 { 2388 struct inpcb *inp; 2389 2390 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2391 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2392 if (inp != NULL) { 2393 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2394 INP_WLOCK(inp); 2395 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2396 INP_WUNLOCK(inp); 2397 inp = NULL; 2398 } 2399 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2400 INP_RLOCK(inp); 2401 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2402 INP_RUNLOCK(inp); 2403 inp = NULL; 2404 } 2405 } else 2406 panic("%s: locking bug", __func__); 2407 #ifdef INVARIANTS 2408 if (inp != NULL) { 2409 if (lookupflags & INPLOOKUP_WLOCKPCB) 2410 INP_WLOCK_ASSERT(inp); 2411 else 2412 INP_RLOCK_ASSERT(inp); 2413 } 2414 #endif 2415 } 2416 2417 return (inp); 2418 } 2419 2420 /* 2421 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2422 * from which a pre-calculated hash value may be extracted. 2423 * 2424 * Possibly more of this logic should be in in_pcbgroup.c. 2425 */ 2426 struct inpcb * 2427 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2428 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2429 { 2430 #if defined(PCBGROUP) && !defined(RSS) 2431 struct inpcbgroup *pcbgroup; 2432 #endif 2433 2434 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2435 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2436 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2437 ("%s: LOCKPCB not set", __func__)); 2438 2439 /* 2440 * When not using RSS, use connection groups in preference to the 2441 * reservation table when looking up 4-tuples. When using RSS, just 2442 * use the reservation table, due to the cost of the Toeplitz hash 2443 * in software. 2444 * 2445 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2446 * we could be doing RSS with a non-Toeplitz hash that is affordable 2447 * in software. 2448 */ 2449 #if defined(PCBGROUP) && !defined(RSS) 2450 if (in_pcbgroup_enabled(pcbinfo)) { 2451 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2452 fport); 2453 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2454 laddr, lport, lookupflags, ifp)); 2455 } 2456 #endif 2457 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2458 lookupflags, ifp)); 2459 } 2460 2461 struct inpcb * 2462 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2463 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2464 struct ifnet *ifp, struct mbuf *m) 2465 { 2466 #ifdef PCBGROUP 2467 struct inpcbgroup *pcbgroup; 2468 #endif 2469 2470 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2471 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2472 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2473 ("%s: LOCKPCB not set", __func__)); 2474 2475 #ifdef PCBGROUP 2476 /* 2477 * If we can use a hardware-generated hash to look up the connection 2478 * group, use that connection group to find the inpcb. Otherwise 2479 * fall back on a software hash -- or the reservation table if we're 2480 * using RSS. 2481 * 2482 * XXXRW: As above, that policy belongs in the pcbgroup code. 2483 */ 2484 if (in_pcbgroup_enabled(pcbinfo) && 2485 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2486 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2487 m->m_pkthdr.flowid); 2488 if (pcbgroup != NULL) 2489 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2490 fport, laddr, lport, lookupflags, ifp)); 2491 #ifndef RSS 2492 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2493 fport); 2494 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2495 laddr, lport, lookupflags, ifp)); 2496 #endif 2497 } 2498 #endif 2499 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2500 lookupflags, ifp)); 2501 } 2502 #endif /* INET */ 2503 2504 /* 2505 * Insert PCB onto various hash lists. 2506 */ 2507 static int 2508 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2509 { 2510 struct inpcbhead *pcbhash; 2511 struct inpcbporthead *pcbporthash; 2512 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2513 struct inpcbport *phd; 2514 u_int32_t hashkey_faddr; 2515 int so_options; 2516 2517 INP_WLOCK_ASSERT(inp); 2518 INP_HASH_WLOCK_ASSERT(pcbinfo); 2519 2520 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2521 ("in_pcbinshash: INP_INHASHLIST")); 2522 2523 #ifdef INET6 2524 if (inp->inp_vflag & INP_IPV6) 2525 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2526 else 2527 #endif 2528 hashkey_faddr = inp->inp_faddr.s_addr; 2529 2530 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2531 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2532 2533 pcbporthash = &pcbinfo->ipi_porthashbase[ 2534 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2535 2536 /* 2537 * Add entry to load balance group. 2538 * Only do this if SO_REUSEPORT_LB is set. 2539 */ 2540 so_options = inp_so_options(inp); 2541 if (so_options & SO_REUSEPORT_LB) { 2542 int ret = in_pcbinslbgrouphash(inp); 2543 if (ret) { 2544 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2545 return (ret); 2546 } 2547 } 2548 2549 /* 2550 * Go through port list and look for a head for this lport. 2551 */ 2552 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2553 if (phd->phd_port == inp->inp_lport) 2554 break; 2555 } 2556 /* 2557 * If none exists, malloc one and tack it on. 2558 */ 2559 if (phd == NULL) { 2560 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2561 if (phd == NULL) { 2562 return (ENOBUFS); /* XXX */ 2563 } 2564 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2565 phd->phd_port = inp->inp_lport; 2566 CK_LIST_INIT(&phd->phd_pcblist); 2567 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2568 } 2569 inp->inp_phd = phd; 2570 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2571 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2572 inp->inp_flags |= INP_INHASHLIST; 2573 #ifdef PCBGROUP 2574 if (m != NULL) { 2575 in_pcbgroup_update_mbuf(inp, m); 2576 } else { 2577 in_pcbgroup_update(inp); 2578 } 2579 #endif 2580 return (0); 2581 } 2582 2583 int 2584 in_pcbinshash(struct inpcb *inp) 2585 { 2586 2587 return (in_pcbinshash_internal(inp, NULL)); 2588 } 2589 2590 int 2591 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2592 { 2593 2594 return (in_pcbinshash_internal(inp, m)); 2595 } 2596 2597 /* 2598 * Move PCB to the proper hash bucket when { faddr, fport } have been 2599 * changed. NOTE: This does not handle the case of the lport changing (the 2600 * hashed port list would have to be updated as well), so the lport must 2601 * not change after in_pcbinshash() has been called. 2602 */ 2603 void 2604 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2605 { 2606 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2607 struct inpcbhead *head; 2608 u_int32_t hashkey_faddr; 2609 2610 INP_WLOCK_ASSERT(inp); 2611 INP_HASH_WLOCK_ASSERT(pcbinfo); 2612 2613 KASSERT(inp->inp_flags & INP_INHASHLIST, 2614 ("in_pcbrehash: !INP_INHASHLIST")); 2615 2616 #ifdef INET6 2617 if (inp->inp_vflag & INP_IPV6) 2618 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2619 else 2620 #endif 2621 hashkey_faddr = inp->inp_faddr.s_addr; 2622 2623 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2624 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2625 2626 CK_LIST_REMOVE(inp, inp_hash); 2627 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2628 2629 #ifdef PCBGROUP 2630 if (m != NULL) 2631 in_pcbgroup_update_mbuf(inp, m); 2632 else 2633 in_pcbgroup_update(inp); 2634 #endif 2635 } 2636 2637 void 2638 in_pcbrehash(struct inpcb *inp) 2639 { 2640 2641 in_pcbrehash_mbuf(inp, NULL); 2642 } 2643 2644 /* 2645 * Remove PCB from various lists. 2646 */ 2647 static void 2648 in_pcbremlists(struct inpcb *inp) 2649 { 2650 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2651 2652 #ifdef INVARIANTS 2653 if (pcbinfo == &V_tcbinfo) { 2654 NET_EPOCH_ASSERT(); 2655 } else { 2656 INP_INFO_WLOCK_ASSERT(pcbinfo); 2657 } 2658 #endif 2659 2660 INP_WLOCK_ASSERT(inp); 2661 INP_LIST_WLOCK_ASSERT(pcbinfo); 2662 2663 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2664 if (inp->inp_flags & INP_INHASHLIST) { 2665 struct inpcbport *phd = inp->inp_phd; 2666 2667 INP_HASH_WLOCK(pcbinfo); 2668 2669 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2670 in_pcbremlbgrouphash(inp); 2671 2672 CK_LIST_REMOVE(inp, inp_hash); 2673 CK_LIST_REMOVE(inp, inp_portlist); 2674 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2675 CK_LIST_REMOVE(phd, phd_hash); 2676 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2677 } 2678 INP_HASH_WUNLOCK(pcbinfo); 2679 inp->inp_flags &= ~INP_INHASHLIST; 2680 } 2681 CK_LIST_REMOVE(inp, inp_list); 2682 pcbinfo->ipi_count--; 2683 #ifdef PCBGROUP 2684 in_pcbgroup_remove(inp); 2685 #endif 2686 } 2687 2688 /* 2689 * Check for alternatives when higher level complains 2690 * about service problems. For now, invalidate cached 2691 * routing information. If the route was created dynamically 2692 * (by a redirect), time to try a default gateway again. 2693 */ 2694 void 2695 in_losing(struct inpcb *inp) 2696 { 2697 2698 RO_INVALIDATE_CACHE(&inp->inp_route); 2699 return; 2700 } 2701 2702 /* 2703 * A set label operation has occurred at the socket layer, propagate the 2704 * label change into the in_pcb for the socket. 2705 */ 2706 void 2707 in_pcbsosetlabel(struct socket *so) 2708 { 2709 #ifdef MAC 2710 struct inpcb *inp; 2711 2712 inp = sotoinpcb(so); 2713 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2714 2715 INP_WLOCK(inp); 2716 SOCK_LOCK(so); 2717 mac_inpcb_sosetlabel(so, inp); 2718 SOCK_UNLOCK(so); 2719 INP_WUNLOCK(inp); 2720 #endif 2721 } 2722 2723 /* 2724 * ipport_tick runs once per second, determining if random port allocation 2725 * should be continued. If more than ipport_randomcps ports have been 2726 * allocated in the last second, then we return to sequential port 2727 * allocation. We return to random allocation only once we drop below 2728 * ipport_randomcps for at least ipport_randomtime seconds. 2729 */ 2730 static void 2731 ipport_tick(void *xtp) 2732 { 2733 VNET_ITERATOR_DECL(vnet_iter); 2734 2735 VNET_LIST_RLOCK_NOSLEEP(); 2736 VNET_FOREACH(vnet_iter) { 2737 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2738 if (V_ipport_tcpallocs <= 2739 V_ipport_tcplastcount + V_ipport_randomcps) { 2740 if (V_ipport_stoprandom > 0) 2741 V_ipport_stoprandom--; 2742 } else 2743 V_ipport_stoprandom = V_ipport_randomtime; 2744 V_ipport_tcplastcount = V_ipport_tcpallocs; 2745 CURVNET_RESTORE(); 2746 } 2747 VNET_LIST_RUNLOCK_NOSLEEP(); 2748 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2749 } 2750 2751 static void 2752 ip_fini(void *xtp) 2753 { 2754 2755 callout_stop(&ipport_tick_callout); 2756 } 2757 2758 /* 2759 * The ipport_callout should start running at about the time we attach the 2760 * inet or inet6 domains. 2761 */ 2762 static void 2763 ipport_tick_init(const void *unused __unused) 2764 { 2765 2766 /* Start ipport_tick. */ 2767 callout_init(&ipport_tick_callout, 1); 2768 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2769 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2770 SHUTDOWN_PRI_DEFAULT); 2771 } 2772 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2773 ipport_tick_init, NULL); 2774 2775 void 2776 inp_wlock(struct inpcb *inp) 2777 { 2778 2779 INP_WLOCK(inp); 2780 } 2781 2782 void 2783 inp_wunlock(struct inpcb *inp) 2784 { 2785 2786 INP_WUNLOCK(inp); 2787 } 2788 2789 void 2790 inp_rlock(struct inpcb *inp) 2791 { 2792 2793 INP_RLOCK(inp); 2794 } 2795 2796 void 2797 inp_runlock(struct inpcb *inp) 2798 { 2799 2800 INP_RUNLOCK(inp); 2801 } 2802 2803 #ifdef INVARIANT_SUPPORT 2804 void 2805 inp_lock_assert(struct inpcb *inp) 2806 { 2807 2808 INP_WLOCK_ASSERT(inp); 2809 } 2810 2811 void 2812 inp_unlock_assert(struct inpcb *inp) 2813 { 2814 2815 INP_UNLOCK_ASSERT(inp); 2816 } 2817 #endif 2818 2819 void 2820 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2821 { 2822 struct inpcb *inp; 2823 2824 INP_INFO_WLOCK(&V_tcbinfo); 2825 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2826 INP_WLOCK(inp); 2827 func(inp, arg); 2828 INP_WUNLOCK(inp); 2829 } 2830 INP_INFO_WUNLOCK(&V_tcbinfo); 2831 } 2832 2833 struct socket * 2834 inp_inpcbtosocket(struct inpcb *inp) 2835 { 2836 2837 INP_WLOCK_ASSERT(inp); 2838 return (inp->inp_socket); 2839 } 2840 2841 struct tcpcb * 2842 inp_inpcbtotcpcb(struct inpcb *inp) 2843 { 2844 2845 INP_WLOCK_ASSERT(inp); 2846 return ((struct tcpcb *)inp->inp_ppcb); 2847 } 2848 2849 int 2850 inp_ip_tos_get(const struct inpcb *inp) 2851 { 2852 2853 return (inp->inp_ip_tos); 2854 } 2855 2856 void 2857 inp_ip_tos_set(struct inpcb *inp, int val) 2858 { 2859 2860 inp->inp_ip_tos = val; 2861 } 2862 2863 void 2864 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2865 uint32_t *faddr, uint16_t *fp) 2866 { 2867 2868 INP_LOCK_ASSERT(inp); 2869 *laddr = inp->inp_laddr.s_addr; 2870 *faddr = inp->inp_faddr.s_addr; 2871 *lp = inp->inp_lport; 2872 *fp = inp->inp_fport; 2873 } 2874 2875 struct inpcb * 2876 so_sotoinpcb(struct socket *so) 2877 { 2878 2879 return (sotoinpcb(so)); 2880 } 2881 2882 struct tcpcb * 2883 so_sototcpcb(struct socket *so) 2884 { 2885 2886 return (sototcpcb(so)); 2887 } 2888 2889 /* 2890 * Create an external-format (``xinpcb'') structure using the information in 2891 * the kernel-format in_pcb structure pointed to by inp. This is done to 2892 * reduce the spew of irrelevant information over this interface, to isolate 2893 * user code from changes in the kernel structure, and potentially to provide 2894 * information-hiding if we decide that some of this information should be 2895 * hidden from users. 2896 */ 2897 void 2898 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2899 { 2900 2901 bzero(xi, sizeof(*xi)); 2902 xi->xi_len = sizeof(struct xinpcb); 2903 if (inp->inp_socket) 2904 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2905 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2906 xi->inp_gencnt = inp->inp_gencnt; 2907 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2908 xi->inp_flow = inp->inp_flow; 2909 xi->inp_flowid = inp->inp_flowid; 2910 xi->inp_flowtype = inp->inp_flowtype; 2911 xi->inp_flags = inp->inp_flags; 2912 xi->inp_flags2 = inp->inp_flags2; 2913 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2914 xi->in6p_cksum = inp->in6p_cksum; 2915 xi->in6p_hops = inp->in6p_hops; 2916 xi->inp_ip_tos = inp->inp_ip_tos; 2917 xi->inp_vflag = inp->inp_vflag; 2918 xi->inp_ip_ttl = inp->inp_ip_ttl; 2919 xi->inp_ip_p = inp->inp_ip_p; 2920 xi->inp_ip_minttl = inp->inp_ip_minttl; 2921 } 2922 2923 #ifdef DDB 2924 static void 2925 db_print_indent(int indent) 2926 { 2927 int i; 2928 2929 for (i = 0; i < indent; i++) 2930 db_printf(" "); 2931 } 2932 2933 static void 2934 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2935 { 2936 char faddr_str[48], laddr_str[48]; 2937 2938 db_print_indent(indent); 2939 db_printf("%s at %p\n", name, inc); 2940 2941 indent += 2; 2942 2943 #ifdef INET6 2944 if (inc->inc_flags & INC_ISIPV6) { 2945 /* IPv6. */ 2946 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2947 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2948 } else 2949 #endif 2950 { 2951 /* IPv4. */ 2952 inet_ntoa_r(inc->inc_laddr, laddr_str); 2953 inet_ntoa_r(inc->inc_faddr, faddr_str); 2954 } 2955 db_print_indent(indent); 2956 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2957 ntohs(inc->inc_lport)); 2958 db_print_indent(indent); 2959 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2960 ntohs(inc->inc_fport)); 2961 } 2962 2963 static void 2964 db_print_inpflags(int inp_flags) 2965 { 2966 int comma; 2967 2968 comma = 0; 2969 if (inp_flags & INP_RECVOPTS) { 2970 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2971 comma = 1; 2972 } 2973 if (inp_flags & INP_RECVRETOPTS) { 2974 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2975 comma = 1; 2976 } 2977 if (inp_flags & INP_RECVDSTADDR) { 2978 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2979 comma = 1; 2980 } 2981 if (inp_flags & INP_ORIGDSTADDR) { 2982 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2983 comma = 1; 2984 } 2985 if (inp_flags & INP_HDRINCL) { 2986 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2987 comma = 1; 2988 } 2989 if (inp_flags & INP_HIGHPORT) { 2990 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2991 comma = 1; 2992 } 2993 if (inp_flags & INP_LOWPORT) { 2994 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2995 comma = 1; 2996 } 2997 if (inp_flags & INP_ANONPORT) { 2998 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2999 comma = 1; 3000 } 3001 if (inp_flags & INP_RECVIF) { 3002 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3003 comma = 1; 3004 } 3005 if (inp_flags & INP_MTUDISC) { 3006 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3007 comma = 1; 3008 } 3009 if (inp_flags & INP_RECVTTL) { 3010 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3011 comma = 1; 3012 } 3013 if (inp_flags & INP_DONTFRAG) { 3014 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3015 comma = 1; 3016 } 3017 if (inp_flags & INP_RECVTOS) { 3018 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3019 comma = 1; 3020 } 3021 if (inp_flags & IN6P_IPV6_V6ONLY) { 3022 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3023 comma = 1; 3024 } 3025 if (inp_flags & IN6P_PKTINFO) { 3026 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3027 comma = 1; 3028 } 3029 if (inp_flags & IN6P_HOPLIMIT) { 3030 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3031 comma = 1; 3032 } 3033 if (inp_flags & IN6P_HOPOPTS) { 3034 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 if (inp_flags & IN6P_DSTOPTS) { 3038 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3039 comma = 1; 3040 } 3041 if (inp_flags & IN6P_RTHDR) { 3042 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3043 comma = 1; 3044 } 3045 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3046 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_flags & IN6P_TCLASS) { 3050 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3054 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 if (inp_flags & INP_TIMEWAIT) { 3058 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3059 comma = 1; 3060 } 3061 if (inp_flags & INP_ONESBCAST) { 3062 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3063 comma = 1; 3064 } 3065 if (inp_flags & INP_DROPPED) { 3066 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3067 comma = 1; 3068 } 3069 if (inp_flags & INP_SOCKREF) { 3070 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3071 comma = 1; 3072 } 3073 if (inp_flags & IN6P_RFC2292) { 3074 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3075 comma = 1; 3076 } 3077 if (inp_flags & IN6P_MTU) { 3078 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3079 comma = 1; 3080 } 3081 } 3082 3083 static void 3084 db_print_inpvflag(u_char inp_vflag) 3085 { 3086 int comma; 3087 3088 comma = 0; 3089 if (inp_vflag & INP_IPV4) { 3090 db_printf("%sINP_IPV4", comma ? ", " : ""); 3091 comma = 1; 3092 } 3093 if (inp_vflag & INP_IPV6) { 3094 db_printf("%sINP_IPV6", comma ? ", " : ""); 3095 comma = 1; 3096 } 3097 if (inp_vflag & INP_IPV6PROTO) { 3098 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3099 comma = 1; 3100 } 3101 } 3102 3103 static void 3104 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3105 { 3106 3107 db_print_indent(indent); 3108 db_printf("%s at %p\n", name, inp); 3109 3110 indent += 2; 3111 3112 db_print_indent(indent); 3113 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3114 3115 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3116 3117 db_print_indent(indent); 3118 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3119 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3120 3121 db_print_indent(indent); 3122 db_printf("inp_label: %p inp_flags: 0x%x (", 3123 inp->inp_label, inp->inp_flags); 3124 db_print_inpflags(inp->inp_flags); 3125 db_printf(")\n"); 3126 3127 db_print_indent(indent); 3128 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3129 inp->inp_vflag); 3130 db_print_inpvflag(inp->inp_vflag); 3131 db_printf(")\n"); 3132 3133 db_print_indent(indent); 3134 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3135 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3136 3137 db_print_indent(indent); 3138 #ifdef INET6 3139 if (inp->inp_vflag & INP_IPV6) { 3140 db_printf("in6p_options: %p in6p_outputopts: %p " 3141 "in6p_moptions: %p\n", inp->in6p_options, 3142 inp->in6p_outputopts, inp->in6p_moptions); 3143 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3144 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3145 inp->in6p_hops); 3146 } else 3147 #endif 3148 { 3149 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3150 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3151 inp->inp_options, inp->inp_moptions); 3152 } 3153 3154 db_print_indent(indent); 3155 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3156 (uintmax_t)inp->inp_gencnt); 3157 } 3158 3159 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3160 { 3161 struct inpcb *inp; 3162 3163 if (!have_addr) { 3164 db_printf("usage: show inpcb <addr>\n"); 3165 return; 3166 } 3167 inp = (struct inpcb *)addr; 3168 3169 db_print_inpcb(inp, "inpcb", 0); 3170 } 3171 #endif /* DDB */ 3172 3173 #ifdef RATELIMIT 3174 /* 3175 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3176 * if any. 3177 */ 3178 int 3179 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3180 { 3181 union if_snd_tag_modify_params params = { 3182 .rate_limit.max_rate = max_pacing_rate, 3183 .rate_limit.flags = M_NOWAIT, 3184 }; 3185 struct m_snd_tag *mst; 3186 struct ifnet *ifp; 3187 int error; 3188 3189 mst = inp->inp_snd_tag; 3190 if (mst == NULL) 3191 return (EINVAL); 3192 3193 ifp = mst->ifp; 3194 if (ifp == NULL) 3195 return (EINVAL); 3196 3197 if (ifp->if_snd_tag_modify == NULL) { 3198 error = EOPNOTSUPP; 3199 } else { 3200 error = ifp->if_snd_tag_modify(mst, ¶ms); 3201 } 3202 return (error); 3203 } 3204 3205 /* 3206 * Query existing TX rate limit based on the existing 3207 * "inp->inp_snd_tag", if any. 3208 */ 3209 int 3210 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3211 { 3212 union if_snd_tag_query_params params = { }; 3213 struct m_snd_tag *mst; 3214 struct ifnet *ifp; 3215 int error; 3216 3217 mst = inp->inp_snd_tag; 3218 if (mst == NULL) 3219 return (EINVAL); 3220 3221 ifp = mst->ifp; 3222 if (ifp == NULL) 3223 return (EINVAL); 3224 3225 if (ifp->if_snd_tag_query == NULL) { 3226 error = EOPNOTSUPP; 3227 } else { 3228 error = ifp->if_snd_tag_query(mst, ¶ms); 3229 if (error == 0 && p_max_pacing_rate != NULL) 3230 *p_max_pacing_rate = params.rate_limit.max_rate; 3231 } 3232 return (error); 3233 } 3234 3235 /* 3236 * Query existing TX queue level based on the existing 3237 * "inp->inp_snd_tag", if any. 3238 */ 3239 int 3240 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3241 { 3242 union if_snd_tag_query_params params = { }; 3243 struct m_snd_tag *mst; 3244 struct ifnet *ifp; 3245 int error; 3246 3247 mst = inp->inp_snd_tag; 3248 if (mst == NULL) 3249 return (EINVAL); 3250 3251 ifp = mst->ifp; 3252 if (ifp == NULL) 3253 return (EINVAL); 3254 3255 if (ifp->if_snd_tag_query == NULL) 3256 return (EOPNOTSUPP); 3257 3258 error = ifp->if_snd_tag_query(mst, ¶ms); 3259 if (error == 0 && p_txqueue_level != NULL) 3260 *p_txqueue_level = params.rate_limit.queue_level; 3261 return (error); 3262 } 3263 3264 /* 3265 * Allocate a new TX rate limit send tag from the network interface 3266 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3267 */ 3268 int 3269 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3270 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3271 3272 { 3273 union if_snd_tag_alloc_params params = { 3274 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3275 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3276 .rate_limit.hdr.flowid = flowid, 3277 .rate_limit.hdr.flowtype = flowtype, 3278 .rate_limit.max_rate = max_pacing_rate, 3279 .rate_limit.flags = M_NOWAIT, 3280 }; 3281 int error; 3282 3283 INP_WLOCK_ASSERT(inp); 3284 3285 if (*st != NULL) 3286 return (EINVAL); 3287 3288 if (ifp->if_snd_tag_alloc == NULL) { 3289 error = EOPNOTSUPP; 3290 } else { 3291 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3292 3293 #ifdef INET 3294 if (error == 0) { 3295 counter_u64_add(rate_limit_set_ok, 1); 3296 counter_u64_add(rate_limit_active, 1); 3297 } else 3298 counter_u64_add(rate_limit_alloc_fail, 1); 3299 #endif 3300 } 3301 return (error); 3302 } 3303 3304 void 3305 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst) 3306 { 3307 if (ifp == NULL) 3308 return; 3309 3310 /* 3311 * If the device was detached while we still had reference(s) 3312 * on the ifp, we assume if_snd_tag_free() was replaced with 3313 * stubs. 3314 */ 3315 ifp->if_snd_tag_free(mst); 3316 3317 /* release reference count on network interface */ 3318 if_rele(ifp); 3319 #ifdef INET 3320 counter_u64_add(rate_limit_active, -1); 3321 #endif 3322 } 3323 3324 /* 3325 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3326 * if any: 3327 */ 3328 void 3329 in_pcbdetach_txrtlmt(struct inpcb *inp) 3330 { 3331 struct m_snd_tag *mst; 3332 3333 INP_WLOCK_ASSERT(inp); 3334 3335 mst = inp->inp_snd_tag; 3336 inp->inp_snd_tag = NULL; 3337 3338 if (mst == NULL) 3339 return; 3340 3341 m_snd_tag_rele(mst); 3342 } 3343 3344 int 3345 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3346 { 3347 int error; 3348 3349 /* 3350 * If the existing send tag is for the wrong interface due to 3351 * a route change, first drop the existing tag. Set the 3352 * CHANGED flag so that we will keep trying to allocate a new 3353 * tag if we fail to allocate one this time. 3354 */ 3355 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3356 in_pcbdetach_txrtlmt(inp); 3357 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3358 } 3359 3360 /* 3361 * NOTE: When attaching to a network interface a reference is 3362 * made to ensure the network interface doesn't go away until 3363 * all ratelimit connections are gone. The network interface 3364 * pointers compared below represent valid network interfaces, 3365 * except when comparing towards NULL. 3366 */ 3367 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3368 error = 0; 3369 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3370 if (inp->inp_snd_tag != NULL) 3371 in_pcbdetach_txrtlmt(inp); 3372 error = 0; 3373 } else if (inp->inp_snd_tag == NULL) { 3374 /* 3375 * In order to utilize packet pacing with RSS, we need 3376 * to wait until there is a valid RSS hash before we 3377 * can proceed: 3378 */ 3379 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3380 error = EAGAIN; 3381 } else { 3382 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3383 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3384 } 3385 } else { 3386 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3387 } 3388 if (error == 0 || error == EOPNOTSUPP) 3389 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3390 3391 return (error); 3392 } 3393 3394 /* 3395 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3396 * is set in the fast path and will attach/detach/modify the TX rate 3397 * limit send tag based on the socket's so_max_pacing_rate value. 3398 */ 3399 void 3400 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3401 { 3402 struct socket *socket; 3403 uint32_t max_pacing_rate; 3404 bool did_upgrade; 3405 int error; 3406 3407 if (inp == NULL) 3408 return; 3409 3410 socket = inp->inp_socket; 3411 if (socket == NULL) 3412 return; 3413 3414 if (!INP_WLOCKED(inp)) { 3415 /* 3416 * NOTE: If the write locking fails, we need to bail 3417 * out and use the non-ratelimited ring for the 3418 * transmit until there is a new chance to get the 3419 * write lock. 3420 */ 3421 if (!INP_TRY_UPGRADE(inp)) 3422 return; 3423 did_upgrade = 1; 3424 } else { 3425 did_upgrade = 0; 3426 } 3427 3428 /* 3429 * NOTE: The so_max_pacing_rate value is read unlocked, 3430 * because atomic updates are not required since the variable 3431 * is checked at every mbuf we send. It is assumed that the 3432 * variable read itself will be atomic. 3433 */ 3434 max_pacing_rate = socket->so_max_pacing_rate; 3435 3436 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3437 3438 if (did_upgrade) 3439 INP_DOWNGRADE(inp); 3440 } 3441 3442 /* 3443 * Track route changes for TX rate limiting. 3444 */ 3445 void 3446 in_pcboutput_eagain(struct inpcb *inp) 3447 { 3448 bool did_upgrade; 3449 3450 if (inp == NULL) 3451 return; 3452 3453 if (inp->inp_snd_tag == NULL) 3454 return; 3455 3456 if (!INP_WLOCKED(inp)) { 3457 /* 3458 * NOTE: If the write locking fails, we need to bail 3459 * out and use the non-ratelimited ring for the 3460 * transmit until there is a new chance to get the 3461 * write lock. 3462 */ 3463 if (!INP_TRY_UPGRADE(inp)) 3464 return; 3465 did_upgrade = 1; 3466 } else { 3467 did_upgrade = 0; 3468 } 3469 3470 /* detach rate limiting */ 3471 in_pcbdetach_txrtlmt(inp); 3472 3473 /* make sure new mbuf send tag allocation is made */ 3474 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3475 3476 if (did_upgrade) 3477 INP_DOWNGRADE(inp); 3478 } 3479 3480 #ifdef INET 3481 static void 3482 rl_init(void *st) 3483 { 3484 rate_limit_active = counter_u64_alloc(M_WAITOK); 3485 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3486 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3487 } 3488 3489 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3490 #endif 3491 #endif /* RATELIMIT */ 3492