xref: /freebsd/sys/netinet/in_pcb.c (revision 2dd94b045e8c069c1a748d40d30d979e30e02fc9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #ifdef INET
90 #include <netinet/in_var.h>
91 #endif
92 #include <netinet/ip_var.h>
93 #include <netinet/tcp_var.h>
94 #ifdef TCPHPTS
95 #include <netinet/tcp_hpts.h>
96 #endif
97 #include <netinet/udp.h>
98 #include <netinet/udp_var.h>
99 #ifdef INET6
100 #include <netinet/ip6.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #endif /* INET6 */
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 
214 #ifdef RATELIMIT
215 counter_u64_t rate_limit_active;
216 counter_u64_t rate_limit_alloc_fail;
217 counter_u64_t rate_limit_set_ok;
218 
219 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD, 0,
220     "IP Rate Limiting");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
222     &rate_limit_active, "Active rate limited connections");
223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
224    &rate_limit_alloc_fail, "Rate limited connection failures");
225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
226    &rate_limit_set_ok, "Rate limited setting succeeded");
227 #endif /* RATELIMIT */
228 
229 #endif /* INET */
230 
231 /*
232  * in_pcb.c: manage the Protocol Control Blocks.
233  *
234  * NOTE: It is assumed that most of these functions will be called with
235  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
236  * functions often modify hash chains or addresses in pcbs.
237  */
238 
239 static struct inpcblbgroup *
240 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
241     uint16_t port, const union in_dependaddr *addr, int size)
242 {
243 	struct inpcblbgroup *grp;
244 	size_t bytes;
245 
246 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
247 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
248 	if (!grp)
249 		return (NULL);
250 	grp->il_vflag = vflag;
251 	grp->il_lport = port;
252 	grp->il_dependladdr = *addr;
253 	grp->il_inpsiz = size;
254 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
255 	return (grp);
256 }
257 
258 static void
259 in_pcblbgroup_free_deferred(epoch_context_t ctx)
260 {
261 	struct inpcblbgroup *grp;
262 
263 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
264 	free(grp, M_PCB);
265 }
266 
267 static void
268 in_pcblbgroup_free(struct inpcblbgroup *grp)
269 {
270 
271 	CK_LIST_REMOVE(grp, il_list);
272 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
273 }
274 
275 static struct inpcblbgroup *
276 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
277     struct inpcblbgroup *old_grp, int size)
278 {
279 	struct inpcblbgroup *grp;
280 	int i;
281 
282 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
283 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
284 	if (grp == NULL)
285 		return (NULL);
286 
287 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
288 	    ("invalid new local group size %d and old local group count %d",
289 	     grp->il_inpsiz, old_grp->il_inpcnt));
290 
291 	for (i = 0; i < old_grp->il_inpcnt; ++i)
292 		grp->il_inp[i] = old_grp->il_inp[i];
293 	grp->il_inpcnt = old_grp->il_inpcnt;
294 	in_pcblbgroup_free(old_grp);
295 	return (grp);
296 }
297 
298 /*
299  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
300  * and shrink group if possible.
301  */
302 static void
303 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
304     int i)
305 {
306 	struct inpcblbgroup *grp, *new_grp;
307 
308 	grp = *grpp;
309 	for (; i + 1 < grp->il_inpcnt; ++i)
310 		grp->il_inp[i] = grp->il_inp[i + 1];
311 	grp->il_inpcnt--;
312 
313 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
314 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
315 		/* Shrink this group. */
316 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
317 		if (new_grp != NULL)
318 			*grpp = new_grp;
319 	}
320 }
321 
322 /*
323  * Add PCB to load balance group for SO_REUSEPORT_LB option.
324  */
325 static int
326 in_pcbinslbgrouphash(struct inpcb *inp)
327 {
328 	const static struct timeval interval = { 60, 0 };
329 	static struct timeval lastprint;
330 	struct inpcbinfo *pcbinfo;
331 	struct inpcblbgrouphead *hdr;
332 	struct inpcblbgroup *grp;
333 	uint32_t idx;
334 
335 	pcbinfo = inp->inp_pcbinfo;
336 
337 	INP_WLOCK_ASSERT(inp);
338 	INP_HASH_WLOCK_ASSERT(pcbinfo);
339 
340 	/*
341 	 * Don't allow jailed socket to join local group.
342 	 */
343 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
344 		return (0);
345 
346 #ifdef INET6
347 	/*
348 	 * Don't allow IPv4 mapped INET6 wild socket.
349 	 */
350 	if ((inp->inp_vflag & INP_IPV4) &&
351 	    inp->inp_laddr.s_addr == INADDR_ANY &&
352 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
353 		return (0);
354 	}
355 #endif
356 
357 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
358 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
359 	CK_LIST_FOREACH(grp, hdr, il_list) {
360 		if (grp->il_vflag == inp->inp_vflag &&
361 		    grp->il_lport == inp->inp_lport &&
362 		    memcmp(&grp->il_dependladdr,
363 		    &inp->inp_inc.inc_ie.ie_dependladdr,
364 		    sizeof(grp->il_dependladdr)) == 0)
365 			break;
366 	}
367 	if (grp == NULL) {
368 		/* Create new load balance group. */
369 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
370 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
371 		    INPCBLBGROUP_SIZMIN);
372 		if (grp == NULL)
373 			return (ENOBUFS);
374 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
375 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
376 			if (ratecheck(&lastprint, &interval))
377 				printf("lb group port %d, limit reached\n",
378 				    ntohs(grp->il_lport));
379 			return (0);
380 		}
381 
382 		/* Expand this local group. */
383 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
384 		if (grp == NULL)
385 			return (ENOBUFS);
386 	}
387 
388 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
389 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
390 	    grp->il_inpcnt));
391 
392 	grp->il_inp[grp->il_inpcnt] = inp;
393 	grp->il_inpcnt++;
394 	return (0);
395 }
396 
397 /*
398  * Remove PCB from load balance group.
399  */
400 static void
401 in_pcbremlbgrouphash(struct inpcb *inp)
402 {
403 	struct inpcbinfo *pcbinfo;
404 	struct inpcblbgrouphead *hdr;
405 	struct inpcblbgroup *grp;
406 	int i;
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	INP_WLOCK_ASSERT(inp);
411 	INP_HASH_WLOCK_ASSERT(pcbinfo);
412 
413 	hdr = &pcbinfo->ipi_lbgrouphashbase[
414 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
415 	CK_LIST_FOREACH(grp, hdr, il_list) {
416 		for (i = 0; i < grp->il_inpcnt; ++i) {
417 			if (grp->il_inp[i] != inp)
418 				continue;
419 
420 			if (grp->il_inpcnt == 1) {
421 				/* We are the last, free this local group. */
422 				in_pcblbgroup_free(grp);
423 			} else {
424 				/* Pull up inpcbs, shrink group if possible. */
425 				in_pcblbgroup_reorder(hdr, &grp, i);
426 			}
427 			return;
428 		}
429 	}
430 }
431 
432 /*
433  * Different protocols initialize their inpcbs differently - giving
434  * different name to the lock.  But they all are disposed the same.
435  */
436 static void
437 inpcb_fini(void *mem, int size)
438 {
439 	struct inpcb *inp = mem;
440 
441 	INP_LOCK_DESTROY(inp);
442 }
443 
444 /*
445  * Initialize an inpcbinfo -- we should be able to reduce the number of
446  * arguments in time.
447  */
448 void
449 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
450     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
451     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
452 {
453 
454 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
455 
456 	INP_INFO_LOCK_INIT(pcbinfo, name);
457 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
458 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
459 #ifdef VIMAGE
460 	pcbinfo->ipi_vnet = curvnet;
461 #endif
462 	pcbinfo->ipi_listhead = listhead;
463 	CK_LIST_INIT(pcbinfo->ipi_listhead);
464 	pcbinfo->ipi_count = 0;
465 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
466 	    &pcbinfo->ipi_hashmask);
467 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
468 	    &pcbinfo->ipi_porthashmask);
469 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
470 	    &pcbinfo->ipi_lbgrouphashmask);
471 #ifdef PCBGROUP
472 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
473 #endif
474 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
475 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
476 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
477 	uma_zone_set_warning(pcbinfo->ipi_zone,
478 	    "kern.ipc.maxsockets limit reached");
479 }
480 
481 /*
482  * Destroy an inpcbinfo.
483  */
484 void
485 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
486 {
487 
488 	KASSERT(pcbinfo->ipi_count == 0,
489 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
490 
491 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
492 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
493 	    pcbinfo->ipi_porthashmask);
494 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
495 	    pcbinfo->ipi_lbgrouphashmask);
496 #ifdef PCBGROUP
497 	in_pcbgroup_destroy(pcbinfo);
498 #endif
499 	uma_zdestroy(pcbinfo->ipi_zone);
500 	INP_LIST_LOCK_DESTROY(pcbinfo);
501 	INP_HASH_LOCK_DESTROY(pcbinfo);
502 	INP_INFO_LOCK_DESTROY(pcbinfo);
503 }
504 
505 /*
506  * Allocate a PCB and associate it with the socket.
507  * On success return with the PCB locked.
508  */
509 int
510 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
511 {
512 	struct inpcb *inp;
513 	int error;
514 
515 #ifdef INVARIANTS
516 	if (pcbinfo == &V_tcbinfo) {
517 		NET_EPOCH_ASSERT();
518 	} else {
519 		INP_INFO_WLOCK_ASSERT(pcbinfo);
520 	}
521 #endif
522 
523 	error = 0;
524 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
525 	if (inp == NULL)
526 		return (ENOBUFS);
527 	bzero(&inp->inp_start_zero, inp_zero_size);
528 #ifdef NUMA
529 	inp->inp_numa_domain = M_NODOM;
530 #endif
531 	inp->inp_pcbinfo = pcbinfo;
532 	inp->inp_socket = so;
533 	inp->inp_cred = crhold(so->so_cred);
534 	inp->inp_inc.inc_fibnum = so->so_fibnum;
535 #ifdef MAC
536 	error = mac_inpcb_init(inp, M_NOWAIT);
537 	if (error != 0)
538 		goto out;
539 	mac_inpcb_create(so, inp);
540 #endif
541 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
542 	error = ipsec_init_pcbpolicy(inp);
543 	if (error != 0) {
544 #ifdef MAC
545 		mac_inpcb_destroy(inp);
546 #endif
547 		goto out;
548 	}
549 #endif /*IPSEC*/
550 #ifdef INET6
551 	if (INP_SOCKAF(so) == AF_INET6) {
552 		inp->inp_vflag |= INP_IPV6PROTO;
553 		if (V_ip6_v6only)
554 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
555 	}
556 #endif
557 	INP_WLOCK(inp);
558 	INP_LIST_WLOCK(pcbinfo);
559 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
560 	pcbinfo->ipi_count++;
561 	so->so_pcb = (caddr_t)inp;
562 #ifdef INET6
563 	if (V_ip6_auto_flowlabel)
564 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
565 #endif
566 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
567 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
568 
569 	/*
570 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
571 	 * to be cleaned up.
572 	 */
573 	inp->inp_route.ro_flags = RT_LLE_CACHE;
574 	INP_LIST_WUNLOCK(pcbinfo);
575 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
576 out:
577 	if (error != 0) {
578 		crfree(inp->inp_cred);
579 		uma_zfree(pcbinfo->ipi_zone, inp);
580 	}
581 #endif
582 	return (error);
583 }
584 
585 #ifdef INET
586 int
587 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
588 {
589 	int anonport, error;
590 
591 	INP_WLOCK_ASSERT(inp);
592 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
593 
594 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
595 		return (EINVAL);
596 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
597 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
598 	    &inp->inp_lport, cred);
599 	if (error)
600 		return (error);
601 	if (in_pcbinshash(inp) != 0) {
602 		inp->inp_laddr.s_addr = INADDR_ANY;
603 		inp->inp_lport = 0;
604 		return (EAGAIN);
605 	}
606 	if (anonport)
607 		inp->inp_flags |= INP_ANONPORT;
608 	return (0);
609 }
610 #endif
611 
612 /*
613  * Select a local port (number) to use.
614  */
615 #if defined(INET) || defined(INET6)
616 int
617 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
618     struct ucred *cred, int lookupflags)
619 {
620 	struct inpcbinfo *pcbinfo;
621 	struct inpcb *tmpinp;
622 	unsigned short *lastport;
623 	int count, dorandom, error;
624 	u_short aux, first, last, lport;
625 #ifdef INET
626 	struct in_addr laddr;
627 #endif
628 
629 	pcbinfo = inp->inp_pcbinfo;
630 
631 	/*
632 	 * Because no actual state changes occur here, a global write lock on
633 	 * the pcbinfo isn't required.
634 	 */
635 	INP_LOCK_ASSERT(inp);
636 	INP_HASH_LOCK_ASSERT(pcbinfo);
637 
638 	if (inp->inp_flags & INP_HIGHPORT) {
639 		first = V_ipport_hifirstauto;	/* sysctl */
640 		last  = V_ipport_hilastauto;
641 		lastport = &pcbinfo->ipi_lasthi;
642 	} else if (inp->inp_flags & INP_LOWPORT) {
643 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
644 		if (error)
645 			return (error);
646 		first = V_ipport_lowfirstauto;	/* 1023 */
647 		last  = V_ipport_lowlastauto;	/* 600 */
648 		lastport = &pcbinfo->ipi_lastlow;
649 	} else {
650 		first = V_ipport_firstauto;	/* sysctl */
651 		last  = V_ipport_lastauto;
652 		lastport = &pcbinfo->ipi_lastport;
653 	}
654 	/*
655 	 * For UDP(-Lite), use random port allocation as long as the user
656 	 * allows it.  For TCP (and as of yet unknown) connections,
657 	 * use random port allocation only if the user allows it AND
658 	 * ipport_tick() allows it.
659 	 */
660 	if (V_ipport_randomized &&
661 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
662 		pcbinfo == &V_ulitecbinfo))
663 		dorandom = 1;
664 	else
665 		dorandom = 0;
666 	/*
667 	 * It makes no sense to do random port allocation if
668 	 * we have the only port available.
669 	 */
670 	if (first == last)
671 		dorandom = 0;
672 	/* Make sure to not include UDP(-Lite) packets in the count. */
673 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
674 		V_ipport_tcpallocs++;
675 	/*
676 	 * Instead of having two loops further down counting up or down
677 	 * make sure that first is always <= last and go with only one
678 	 * code path implementing all logic.
679 	 */
680 	if (first > last) {
681 		aux = first;
682 		first = last;
683 		last = aux;
684 	}
685 
686 #ifdef INET
687 	/* Make the compiler happy. */
688 	laddr.s_addr = 0;
689 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
690 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
691 		    __func__, inp));
692 		laddr = *laddrp;
693 	}
694 #endif
695 	tmpinp = NULL;	/* Make compiler happy. */
696 	lport = *lportp;
697 
698 	if (dorandom)
699 		*lastport = first + (arc4random() % (last - first));
700 
701 	count = last - first;
702 
703 	do {
704 		if (count-- < 0)	/* completely used? */
705 			return (EADDRNOTAVAIL);
706 		++*lastport;
707 		if (*lastport < first || *lastport > last)
708 			*lastport = first;
709 		lport = htons(*lastport);
710 
711 #ifdef INET6
712 		if ((inp->inp_vflag & INP_IPV6) != 0)
713 			tmpinp = in6_pcblookup_local(pcbinfo,
714 			    &inp->in6p_laddr, lport, lookupflags, cred);
715 #endif
716 #if defined(INET) && defined(INET6)
717 		else
718 #endif
719 #ifdef INET
720 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
721 			    lport, lookupflags, cred);
722 #endif
723 	} while (tmpinp != NULL);
724 
725 #ifdef INET
726 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
727 		laddrp->s_addr = laddr.s_addr;
728 #endif
729 	*lportp = lport;
730 
731 	return (0);
732 }
733 
734 /*
735  * Return cached socket options.
736  */
737 int
738 inp_so_options(const struct inpcb *inp)
739 {
740 	int so_options;
741 
742 	so_options = 0;
743 
744 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
745 		so_options |= SO_REUSEPORT_LB;
746 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
747 		so_options |= SO_REUSEPORT;
748 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
749 		so_options |= SO_REUSEADDR;
750 	return (so_options);
751 }
752 #endif /* INET || INET6 */
753 
754 /*
755  * Check if a new BINDMULTI socket is allowed to be created.
756  *
757  * ni points to the new inp.
758  * oi points to the exisitng inp.
759  *
760  * This checks whether the existing inp also has BINDMULTI and
761  * whether the credentials match.
762  */
763 int
764 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
765 {
766 	/* Check permissions match */
767 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
768 	    (ni->inp_cred->cr_uid !=
769 	    oi->inp_cred->cr_uid))
770 		return (0);
771 
772 	/* Check the existing inp has BINDMULTI set */
773 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
774 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
775 		return (0);
776 
777 	/*
778 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
779 	 * it is and it matches the checks.
780 	 */
781 	return (1);
782 }
783 
784 #ifdef INET
785 /*
786  * Set up a bind operation on a PCB, performing port allocation
787  * as required, but do not actually modify the PCB. Callers can
788  * either complete the bind by setting inp_laddr/inp_lport and
789  * calling in_pcbinshash(), or they can just use the resulting
790  * port and address to authorise the sending of a once-off packet.
791  *
792  * On error, the values of *laddrp and *lportp are not changed.
793  */
794 int
795 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
796     u_short *lportp, struct ucred *cred)
797 {
798 	struct socket *so = inp->inp_socket;
799 	struct sockaddr_in *sin;
800 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
801 	struct in_addr laddr;
802 	u_short lport = 0;
803 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
804 	int error;
805 
806 	/*
807 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
808 	 * so that we don't have to add to the (already messy) code below.
809 	 */
810 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
811 
812 	/*
813 	 * No state changes, so read locks are sufficient here.
814 	 */
815 	INP_LOCK_ASSERT(inp);
816 	INP_HASH_LOCK_ASSERT(pcbinfo);
817 
818 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
819 		return (EADDRNOTAVAIL);
820 	laddr.s_addr = *laddrp;
821 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
822 		return (EINVAL);
823 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
824 		lookupflags = INPLOOKUP_WILDCARD;
825 	if (nam == NULL) {
826 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
827 			return (error);
828 	} else {
829 		sin = (struct sockaddr_in *)nam;
830 		if (nam->sa_len != sizeof (*sin))
831 			return (EINVAL);
832 #ifdef notdef
833 		/*
834 		 * We should check the family, but old programs
835 		 * incorrectly fail to initialize it.
836 		 */
837 		if (sin->sin_family != AF_INET)
838 			return (EAFNOSUPPORT);
839 #endif
840 		error = prison_local_ip4(cred, &sin->sin_addr);
841 		if (error)
842 			return (error);
843 		if (sin->sin_port != *lportp) {
844 			/* Don't allow the port to change. */
845 			if (*lportp != 0)
846 				return (EINVAL);
847 			lport = sin->sin_port;
848 		}
849 		/* NB: lport is left as 0 if the port isn't being changed. */
850 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
851 			/*
852 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
853 			 * allow complete duplication of binding if
854 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
855 			 * and a multicast address is bound on both
856 			 * new and duplicated sockets.
857 			 */
858 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
859 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
860 			/*
861 			 * XXX: How to deal with SO_REUSEPORT_LB here?
862 			 * Treat same as SO_REUSEPORT for now.
863 			 */
864 			if ((so->so_options &
865 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
866 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
867 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
868 			sin->sin_port = 0;		/* yech... */
869 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
870 			/*
871 			 * Is the address a local IP address?
872 			 * If INP_BINDANY is set, then the socket may be bound
873 			 * to any endpoint address, local or not.
874 			 */
875 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
876 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
877 				return (EADDRNOTAVAIL);
878 		}
879 		laddr = sin->sin_addr;
880 		if (lport) {
881 			struct inpcb *t;
882 			struct tcptw *tw;
883 
884 			/* GROSS */
885 			if (ntohs(lport) <= V_ipport_reservedhigh &&
886 			    ntohs(lport) >= V_ipport_reservedlow &&
887 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
888 				return (EACCES);
889 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
890 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
891 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
892 				    lport, INPLOOKUP_WILDCARD, cred);
893 	/*
894 	 * XXX
895 	 * This entire block sorely needs a rewrite.
896 	 */
897 				if (t &&
898 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
899 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
900 				    (so->so_type != SOCK_STREAM ||
901 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
902 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
903 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
904 				     (t->inp_flags2 & INP_REUSEPORT) ||
905 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
906 				    (inp->inp_cred->cr_uid !=
907 				     t->inp_cred->cr_uid))
908 					return (EADDRINUSE);
909 
910 				/*
911 				 * If the socket is a BINDMULTI socket, then
912 				 * the credentials need to match and the
913 				 * original socket also has to have been bound
914 				 * with BINDMULTI.
915 				 */
916 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
917 					return (EADDRINUSE);
918 			}
919 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
920 			    lport, lookupflags, cred);
921 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
922 				/*
923 				 * XXXRW: If an incpb has had its timewait
924 				 * state recycled, we treat the address as
925 				 * being in use (for now).  This is better
926 				 * than a panic, but not desirable.
927 				 */
928 				tw = intotw(t);
929 				if (tw == NULL ||
930 				    ((reuseport & tw->tw_so_options) == 0 &&
931 					(reuseport_lb &
932 				            tw->tw_so_options) == 0)) {
933 					return (EADDRINUSE);
934 				}
935 			} else if (t &&
936 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
937 				   (reuseport & inp_so_options(t)) == 0 &&
938 				   (reuseport_lb & inp_so_options(t)) == 0) {
939 #ifdef INET6
940 				if (ntohl(sin->sin_addr.s_addr) !=
941 				    INADDR_ANY ||
942 				    ntohl(t->inp_laddr.s_addr) !=
943 				    INADDR_ANY ||
944 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
945 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
946 #endif
947 						return (EADDRINUSE);
948 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
949 					return (EADDRINUSE);
950 			}
951 		}
952 	}
953 	if (*lportp != 0)
954 		lport = *lportp;
955 	if (lport == 0) {
956 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
957 		if (error != 0)
958 			return (error);
959 
960 	}
961 	*laddrp = laddr.s_addr;
962 	*lportp = lport;
963 	return (0);
964 }
965 
966 /*
967  * Connect from a socket to a specified address.
968  * Both address and port must be specified in argument sin.
969  * If don't have a local address for this socket yet,
970  * then pick one.
971  */
972 int
973 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
974     struct ucred *cred, struct mbuf *m, bool rehash)
975 {
976 	u_short lport, fport;
977 	in_addr_t laddr, faddr;
978 	int anonport, error;
979 
980 	INP_WLOCK_ASSERT(inp);
981 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
982 
983 	lport = inp->inp_lport;
984 	laddr = inp->inp_laddr.s_addr;
985 	anonport = (lport == 0);
986 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
987 	    NULL, cred);
988 	if (error)
989 		return (error);
990 
991 	/* Do the initial binding of the local address if required. */
992 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
993 		KASSERT(rehash == true,
994 		    ("Rehashing required for unbound inps"));
995 		inp->inp_lport = lport;
996 		inp->inp_laddr.s_addr = laddr;
997 		if (in_pcbinshash(inp) != 0) {
998 			inp->inp_laddr.s_addr = INADDR_ANY;
999 			inp->inp_lport = 0;
1000 			return (EAGAIN);
1001 		}
1002 	}
1003 
1004 	/* Commit the remaining changes. */
1005 	inp->inp_lport = lport;
1006 	inp->inp_laddr.s_addr = laddr;
1007 	inp->inp_faddr.s_addr = faddr;
1008 	inp->inp_fport = fport;
1009 	if (rehash) {
1010 		in_pcbrehash_mbuf(inp, m);
1011 	} else {
1012 		in_pcbinshash_mbuf(inp, m);
1013 	}
1014 
1015 	if (anonport)
1016 		inp->inp_flags |= INP_ANONPORT;
1017 	return (0);
1018 }
1019 
1020 int
1021 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1022 {
1023 
1024 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1025 }
1026 
1027 /*
1028  * Do proper source address selection on an unbound socket in case
1029  * of connect. Take jails into account as well.
1030  */
1031 int
1032 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1033     struct ucred *cred)
1034 {
1035 	struct ifaddr *ifa;
1036 	struct sockaddr *sa;
1037 	struct sockaddr_in *sin;
1038 	struct route sro;
1039 	struct epoch_tracker et;
1040 	int error;
1041 
1042 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1043 	/*
1044 	 * Bypass source address selection and use the primary jail IP
1045 	 * if requested.
1046 	 */
1047 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1048 		return (0);
1049 
1050 	error = 0;
1051 	bzero(&sro, sizeof(sro));
1052 
1053 	sin = (struct sockaddr_in *)&sro.ro_dst;
1054 	sin->sin_family = AF_INET;
1055 	sin->sin_len = sizeof(struct sockaddr_in);
1056 	sin->sin_addr.s_addr = faddr->s_addr;
1057 
1058 	/*
1059 	 * If route is known our src addr is taken from the i/f,
1060 	 * else punt.
1061 	 *
1062 	 * Find out route to destination.
1063 	 */
1064 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1065 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1066 
1067 	/*
1068 	 * If we found a route, use the address corresponding to
1069 	 * the outgoing interface.
1070 	 *
1071 	 * Otherwise assume faddr is reachable on a directly connected
1072 	 * network and try to find a corresponding interface to take
1073 	 * the source address from.
1074 	 */
1075 	NET_EPOCH_ENTER(et);
1076 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1077 		struct in_ifaddr *ia;
1078 		struct ifnet *ifp;
1079 
1080 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1081 					inp->inp_socket->so_fibnum));
1082 		if (ia == NULL) {
1083 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1084 						inp->inp_socket->so_fibnum));
1085 
1086 		}
1087 		if (ia == NULL) {
1088 			error = ENETUNREACH;
1089 			goto done;
1090 		}
1091 
1092 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1093 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1094 			goto done;
1095 		}
1096 
1097 		ifp = ia->ia_ifp;
1098 		ia = NULL;
1099 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1100 
1101 			sa = ifa->ifa_addr;
1102 			if (sa->sa_family != AF_INET)
1103 				continue;
1104 			sin = (struct sockaddr_in *)sa;
1105 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1106 				ia = (struct in_ifaddr *)ifa;
1107 				break;
1108 			}
1109 		}
1110 		if (ia != NULL) {
1111 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1112 			goto done;
1113 		}
1114 
1115 		/* 3. As a last resort return the 'default' jail address. */
1116 		error = prison_get_ip4(cred, laddr);
1117 		goto done;
1118 	}
1119 
1120 	/*
1121 	 * If the outgoing interface on the route found is not
1122 	 * a loopback interface, use the address from that interface.
1123 	 * In case of jails do those three steps:
1124 	 * 1. check if the interface address belongs to the jail. If so use it.
1125 	 * 2. check if we have any address on the outgoing interface
1126 	 *    belonging to this jail. If so use it.
1127 	 * 3. as a last resort return the 'default' jail address.
1128 	 */
1129 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1130 		struct in_ifaddr *ia;
1131 		struct ifnet *ifp;
1132 
1133 		/* If not jailed, use the default returned. */
1134 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1135 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1136 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1137 			goto done;
1138 		}
1139 
1140 		/* Jailed. */
1141 		/* 1. Check if the iface address belongs to the jail. */
1142 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1143 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1144 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1145 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1146 			goto done;
1147 		}
1148 
1149 		/*
1150 		 * 2. Check if we have any address on the outgoing interface
1151 		 *    belonging to this jail.
1152 		 */
1153 		ia = NULL;
1154 		ifp = sro.ro_rt->rt_ifp;
1155 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1156 			sa = ifa->ifa_addr;
1157 			if (sa->sa_family != AF_INET)
1158 				continue;
1159 			sin = (struct sockaddr_in *)sa;
1160 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1161 				ia = (struct in_ifaddr *)ifa;
1162 				break;
1163 			}
1164 		}
1165 		if (ia != NULL) {
1166 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1167 			goto done;
1168 		}
1169 
1170 		/* 3. As a last resort return the 'default' jail address. */
1171 		error = prison_get_ip4(cred, laddr);
1172 		goto done;
1173 	}
1174 
1175 	/*
1176 	 * The outgoing interface is marked with 'loopback net', so a route
1177 	 * to ourselves is here.
1178 	 * Try to find the interface of the destination address and then
1179 	 * take the address from there. That interface is not necessarily
1180 	 * a loopback interface.
1181 	 * In case of jails, check that it is an address of the jail
1182 	 * and if we cannot find, fall back to the 'default' jail address.
1183 	 */
1184 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1185 		struct sockaddr_in sain;
1186 		struct in_ifaddr *ia;
1187 
1188 		bzero(&sain, sizeof(struct sockaddr_in));
1189 		sain.sin_family = AF_INET;
1190 		sain.sin_len = sizeof(struct sockaddr_in);
1191 		sain.sin_addr.s_addr = faddr->s_addr;
1192 
1193 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1194 					inp->inp_socket->so_fibnum));
1195 		if (ia == NULL)
1196 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1197 						inp->inp_socket->so_fibnum));
1198 		if (ia == NULL)
1199 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1200 
1201 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1202 			if (ia == NULL) {
1203 				error = ENETUNREACH;
1204 				goto done;
1205 			}
1206 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1207 			goto done;
1208 		}
1209 
1210 		/* Jailed. */
1211 		if (ia != NULL) {
1212 			struct ifnet *ifp;
1213 
1214 			ifp = ia->ia_ifp;
1215 			ia = NULL;
1216 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1217 				sa = ifa->ifa_addr;
1218 				if (sa->sa_family != AF_INET)
1219 					continue;
1220 				sin = (struct sockaddr_in *)sa;
1221 				if (prison_check_ip4(cred,
1222 				    &sin->sin_addr) == 0) {
1223 					ia = (struct in_ifaddr *)ifa;
1224 					break;
1225 				}
1226 			}
1227 			if (ia != NULL) {
1228 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1229 				goto done;
1230 			}
1231 		}
1232 
1233 		/* 3. As a last resort return the 'default' jail address. */
1234 		error = prison_get_ip4(cred, laddr);
1235 		goto done;
1236 	}
1237 
1238 done:
1239 	NET_EPOCH_EXIT(et);
1240 	if (sro.ro_rt != NULL)
1241 		RTFREE(sro.ro_rt);
1242 	return (error);
1243 }
1244 
1245 /*
1246  * Set up for a connect from a socket to the specified address.
1247  * On entry, *laddrp and *lportp should contain the current local
1248  * address and port for the PCB; these are updated to the values
1249  * that should be placed in inp_laddr and inp_lport to complete
1250  * the connect.
1251  *
1252  * On success, *faddrp and *fportp will be set to the remote address
1253  * and port. These are not updated in the error case.
1254  *
1255  * If the operation fails because the connection already exists,
1256  * *oinpp will be set to the PCB of that connection so that the
1257  * caller can decide to override it. In all other cases, *oinpp
1258  * is set to NULL.
1259  */
1260 int
1261 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1262     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1263     struct inpcb **oinpp, struct ucred *cred)
1264 {
1265 	struct rm_priotracker in_ifa_tracker;
1266 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1267 	struct in_ifaddr *ia;
1268 	struct inpcb *oinp;
1269 	struct in_addr laddr, faddr;
1270 	u_short lport, fport;
1271 	int error;
1272 
1273 	/*
1274 	 * Because a global state change doesn't actually occur here, a read
1275 	 * lock is sufficient.
1276 	 */
1277 	INP_LOCK_ASSERT(inp);
1278 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1279 
1280 	if (oinpp != NULL)
1281 		*oinpp = NULL;
1282 	if (nam->sa_len != sizeof (*sin))
1283 		return (EINVAL);
1284 	if (sin->sin_family != AF_INET)
1285 		return (EAFNOSUPPORT);
1286 	if (sin->sin_port == 0)
1287 		return (EADDRNOTAVAIL);
1288 	laddr.s_addr = *laddrp;
1289 	lport = *lportp;
1290 	faddr = sin->sin_addr;
1291 	fport = sin->sin_port;
1292 
1293 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1294 		/*
1295 		 * If the destination address is INADDR_ANY,
1296 		 * use the primary local address.
1297 		 * If the supplied address is INADDR_BROADCAST,
1298 		 * and the primary interface supports broadcast,
1299 		 * choose the broadcast address for that interface.
1300 		 */
1301 		if (faddr.s_addr == INADDR_ANY) {
1302 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1303 			faddr =
1304 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1305 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1306 			if (cred != NULL &&
1307 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1308 				return (error);
1309 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1310 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1311 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1312 			    IFF_BROADCAST)
1313 				faddr = satosin(&CK_STAILQ_FIRST(
1314 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1315 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1316 		}
1317 	}
1318 	if (laddr.s_addr == INADDR_ANY) {
1319 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1320 		/*
1321 		 * If the destination address is multicast and an outgoing
1322 		 * interface has been set as a multicast option, prefer the
1323 		 * address of that interface as our source address.
1324 		 */
1325 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1326 		    inp->inp_moptions != NULL) {
1327 			struct ip_moptions *imo;
1328 			struct ifnet *ifp;
1329 
1330 			imo = inp->inp_moptions;
1331 			if (imo->imo_multicast_ifp != NULL) {
1332 				ifp = imo->imo_multicast_ifp;
1333 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1334 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1335 					if ((ia->ia_ifp == ifp) &&
1336 					    (cred == NULL ||
1337 					    prison_check_ip4(cred,
1338 					    &ia->ia_addr.sin_addr) == 0))
1339 						break;
1340 				}
1341 				if (ia == NULL)
1342 					error = EADDRNOTAVAIL;
1343 				else {
1344 					laddr = ia->ia_addr.sin_addr;
1345 					error = 0;
1346 				}
1347 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1348 			}
1349 		}
1350 		if (error)
1351 			return (error);
1352 	}
1353 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1354 	    laddr, lport, 0, NULL);
1355 	if (oinp != NULL) {
1356 		if (oinpp != NULL)
1357 			*oinpp = oinp;
1358 		return (EADDRINUSE);
1359 	}
1360 	if (lport == 0) {
1361 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1362 		    cred);
1363 		if (error)
1364 			return (error);
1365 	}
1366 	*laddrp = laddr.s_addr;
1367 	*lportp = lport;
1368 	*faddrp = faddr.s_addr;
1369 	*fportp = fport;
1370 	return (0);
1371 }
1372 
1373 void
1374 in_pcbdisconnect(struct inpcb *inp)
1375 {
1376 
1377 	INP_WLOCK_ASSERT(inp);
1378 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1379 
1380 	inp->inp_faddr.s_addr = INADDR_ANY;
1381 	inp->inp_fport = 0;
1382 	in_pcbrehash(inp);
1383 }
1384 #endif /* INET */
1385 
1386 /*
1387  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1388  * For most protocols, this will be invoked immediately prior to calling
1389  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1390  * socket, in which case in_pcbfree() is deferred.
1391  */
1392 void
1393 in_pcbdetach(struct inpcb *inp)
1394 {
1395 
1396 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1397 
1398 #ifdef RATELIMIT
1399 	if (inp->inp_snd_tag != NULL)
1400 		in_pcbdetach_txrtlmt(inp);
1401 #endif
1402 	inp->inp_socket->so_pcb = NULL;
1403 	inp->inp_socket = NULL;
1404 }
1405 
1406 /*
1407  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1408  * stability of an inpcb pointer despite the inpcb lock being released.  This
1409  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1410  * but where the inpcb lock may already held, or when acquiring a reference
1411  * via a pcbgroup.
1412  *
1413  * in_pcbref() should be used only to provide brief memory stability, and
1414  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1415  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1416  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1417  * lock and rele are the *only* safe operations that may be performed on the
1418  * inpcb.
1419  *
1420  * While the inpcb will not be freed, releasing the inpcb lock means that the
1421  * connection's state may change, so the caller should be careful to
1422  * revalidate any cached state on reacquiring the lock.  Drop the reference
1423  * using in_pcbrele().
1424  */
1425 void
1426 in_pcbref(struct inpcb *inp)
1427 {
1428 
1429 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1430 
1431 	refcount_acquire(&inp->inp_refcount);
1432 }
1433 
1434 /*
1435  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1436  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1437  * return a flag indicating whether or not the inpcb remains valid.  If it is
1438  * valid, we return with the inpcb lock held.
1439  *
1440  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1441  * reference on an inpcb.  Historically more work was done here (actually, in
1442  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1443  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1444  * about memory stability (and continued use of the write lock).
1445  */
1446 int
1447 in_pcbrele_rlocked(struct inpcb *inp)
1448 {
1449 	struct inpcbinfo *pcbinfo;
1450 
1451 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1452 
1453 	INP_RLOCK_ASSERT(inp);
1454 
1455 	if (refcount_release(&inp->inp_refcount) == 0) {
1456 		/*
1457 		 * If the inpcb has been freed, let the caller know, even if
1458 		 * this isn't the last reference.
1459 		 */
1460 		if (inp->inp_flags2 & INP_FREED) {
1461 			INP_RUNLOCK(inp);
1462 			return (1);
1463 		}
1464 		return (0);
1465 	}
1466 
1467 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1468 #ifdef TCPHPTS
1469 	if (inp->inp_in_hpts || inp->inp_in_input) {
1470 		struct tcp_hpts_entry *hpts;
1471 		/*
1472 		 * We should not be on the hpts at
1473 		 * this point in any form. we must
1474 		 * get the lock to be sure.
1475 		 */
1476 		hpts = tcp_hpts_lock(inp);
1477 		if (inp->inp_in_hpts)
1478 			panic("Hpts:%p inp:%p at free still on hpts",
1479 			      hpts, inp);
1480 		mtx_unlock(&hpts->p_mtx);
1481 		hpts = tcp_input_lock(inp);
1482 		if (inp->inp_in_input)
1483 			panic("Hpts:%p inp:%p at free still on input hpts",
1484 			      hpts, inp);
1485 		mtx_unlock(&hpts->p_mtx);
1486 	}
1487 #endif
1488 	INP_RUNLOCK(inp);
1489 	pcbinfo = inp->inp_pcbinfo;
1490 	uma_zfree(pcbinfo->ipi_zone, inp);
1491 	return (1);
1492 }
1493 
1494 int
1495 in_pcbrele_wlocked(struct inpcb *inp)
1496 {
1497 	struct inpcbinfo *pcbinfo;
1498 
1499 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1500 
1501 	INP_WLOCK_ASSERT(inp);
1502 
1503 	if (refcount_release(&inp->inp_refcount) == 0) {
1504 		/*
1505 		 * If the inpcb has been freed, let the caller know, even if
1506 		 * this isn't the last reference.
1507 		 */
1508 		if (inp->inp_flags2 & INP_FREED) {
1509 			INP_WUNLOCK(inp);
1510 			return (1);
1511 		}
1512 		return (0);
1513 	}
1514 
1515 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1516 #ifdef TCPHPTS
1517 	if (inp->inp_in_hpts || inp->inp_in_input) {
1518 		struct tcp_hpts_entry *hpts;
1519 		/*
1520 		 * We should not be on the hpts at
1521 		 * this point in any form. we must
1522 		 * get the lock to be sure.
1523 		 */
1524 		hpts = tcp_hpts_lock(inp);
1525 		if (inp->inp_in_hpts)
1526 			panic("Hpts:%p inp:%p at free still on hpts",
1527 			      hpts, inp);
1528 		mtx_unlock(&hpts->p_mtx);
1529 		hpts = tcp_input_lock(inp);
1530 		if (inp->inp_in_input)
1531 			panic("Hpts:%p inp:%p at free still on input hpts",
1532 			      hpts, inp);
1533 		mtx_unlock(&hpts->p_mtx);
1534 	}
1535 #endif
1536 	INP_WUNLOCK(inp);
1537 	pcbinfo = inp->inp_pcbinfo;
1538 	uma_zfree(pcbinfo->ipi_zone, inp);
1539 	return (1);
1540 }
1541 
1542 /*
1543  * Temporary wrapper.
1544  */
1545 int
1546 in_pcbrele(struct inpcb *inp)
1547 {
1548 
1549 	return (in_pcbrele_wlocked(inp));
1550 }
1551 
1552 void
1553 in_pcblist_rele_rlocked(epoch_context_t ctx)
1554 {
1555 	struct in_pcblist *il;
1556 	struct inpcb *inp;
1557 	struct inpcbinfo *pcbinfo;
1558 	int i, n;
1559 
1560 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1561 	pcbinfo = il->il_pcbinfo;
1562 	n = il->il_count;
1563 	INP_INFO_WLOCK(pcbinfo);
1564 	for (i = 0; i < n; i++) {
1565 		inp = il->il_inp_list[i];
1566 		INP_RLOCK(inp);
1567 		if (!in_pcbrele_rlocked(inp))
1568 			INP_RUNLOCK(inp);
1569 	}
1570 	INP_INFO_WUNLOCK(pcbinfo);
1571 	free(il, M_TEMP);
1572 }
1573 
1574 static void
1575 inpcbport_free(epoch_context_t ctx)
1576 {
1577 	struct inpcbport *phd;
1578 
1579 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1580 	free(phd, M_PCB);
1581 }
1582 
1583 static void
1584 in_pcbfree_deferred(epoch_context_t ctx)
1585 {
1586 	struct inpcb *inp;
1587 	int released __unused;
1588 
1589 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1590 
1591 	INP_WLOCK(inp);
1592 	CURVNET_SET(inp->inp_vnet);
1593 #ifdef INET
1594 	struct ip_moptions *imo = inp->inp_moptions;
1595 	inp->inp_moptions = NULL;
1596 #endif
1597 	/* XXXRW: Do as much as possible here. */
1598 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1599 	if (inp->inp_sp != NULL)
1600 		ipsec_delete_pcbpolicy(inp);
1601 #endif
1602 #ifdef INET6
1603 	struct ip6_moptions *im6o = NULL;
1604 	if (inp->inp_vflag & INP_IPV6PROTO) {
1605 		ip6_freepcbopts(inp->in6p_outputopts);
1606 		im6o = inp->in6p_moptions;
1607 		inp->in6p_moptions = NULL;
1608 	}
1609 #endif
1610 	if (inp->inp_options)
1611 		(void)m_free(inp->inp_options);
1612 	inp->inp_vflag = 0;
1613 	crfree(inp->inp_cred);
1614 #ifdef MAC
1615 	mac_inpcb_destroy(inp);
1616 #endif
1617 	released = in_pcbrele_wlocked(inp);
1618 	MPASS(released);
1619 #ifdef INET6
1620 	ip6_freemoptions(im6o);
1621 #endif
1622 #ifdef INET
1623 	inp_freemoptions(imo);
1624 #endif
1625 	CURVNET_RESTORE();
1626 }
1627 
1628 /*
1629  * Unconditionally schedule an inpcb to be freed by decrementing its
1630  * reference count, which should occur only after the inpcb has been detached
1631  * from its socket.  If another thread holds a temporary reference (acquired
1632  * using in_pcbref()) then the free is deferred until that reference is
1633  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1634  * work, including removal from global lists, is done in this context, where
1635  * the pcbinfo lock is held.
1636  */
1637 void
1638 in_pcbfree(struct inpcb *inp)
1639 {
1640 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1641 
1642 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1643 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1644 	    ("%s: called twice for pcb %p", __func__, inp));
1645 	if (inp->inp_flags2 & INP_FREED) {
1646 		INP_WUNLOCK(inp);
1647 		return;
1648 	}
1649 
1650 #ifdef INVARIANTS
1651 	if (pcbinfo == &V_tcbinfo) {
1652 		INP_INFO_LOCK_ASSERT(pcbinfo);
1653 	} else {
1654 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1655 	}
1656 #endif
1657 	INP_WLOCK_ASSERT(inp);
1658 	INP_LIST_WLOCK(pcbinfo);
1659 	in_pcbremlists(inp);
1660 	INP_LIST_WUNLOCK(pcbinfo);
1661 	RO_INVALIDATE_CACHE(&inp->inp_route);
1662 	/* mark as destruction in progress */
1663 	inp->inp_flags2 |= INP_FREED;
1664 	INP_WUNLOCK(inp);
1665 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1666 }
1667 
1668 /*
1669  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1670  * port reservation, and preventing it from being returned by inpcb lookups.
1671  *
1672  * It is used by TCP to mark an inpcb as unused and avoid future packet
1673  * delivery or event notification when a socket remains open but TCP has
1674  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1675  * or a RST on the wire, and allows the port binding to be reused while still
1676  * maintaining the invariant that so_pcb always points to a valid inpcb until
1677  * in_pcbdetach().
1678  *
1679  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1680  * in_pcbnotifyall() and in_pcbpurgeif0()?
1681  */
1682 void
1683 in_pcbdrop(struct inpcb *inp)
1684 {
1685 
1686 	INP_WLOCK_ASSERT(inp);
1687 #ifdef INVARIANTS
1688 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1689 		MPASS(inp->inp_refcount > 1);
1690 #endif
1691 
1692 	/*
1693 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1694 	 * the hash lock...?
1695 	 */
1696 	inp->inp_flags |= INP_DROPPED;
1697 	if (inp->inp_flags & INP_INHASHLIST) {
1698 		struct inpcbport *phd = inp->inp_phd;
1699 
1700 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1701 		in_pcbremlbgrouphash(inp);
1702 		CK_LIST_REMOVE(inp, inp_hash);
1703 		CK_LIST_REMOVE(inp, inp_portlist);
1704 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1705 			CK_LIST_REMOVE(phd, phd_hash);
1706 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1707 		}
1708 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1709 		inp->inp_flags &= ~INP_INHASHLIST;
1710 #ifdef PCBGROUP
1711 		in_pcbgroup_remove(inp);
1712 #endif
1713 	}
1714 }
1715 
1716 #ifdef INET
1717 /*
1718  * Common routines to return the socket addresses associated with inpcbs.
1719  */
1720 struct sockaddr *
1721 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1722 {
1723 	struct sockaddr_in *sin;
1724 
1725 	sin = malloc(sizeof *sin, M_SONAME,
1726 		M_WAITOK | M_ZERO);
1727 	sin->sin_family = AF_INET;
1728 	sin->sin_len = sizeof(*sin);
1729 	sin->sin_addr = *addr_p;
1730 	sin->sin_port = port;
1731 
1732 	return (struct sockaddr *)sin;
1733 }
1734 
1735 int
1736 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1737 {
1738 	struct inpcb *inp;
1739 	struct in_addr addr;
1740 	in_port_t port;
1741 
1742 	inp = sotoinpcb(so);
1743 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1744 
1745 	INP_RLOCK(inp);
1746 	port = inp->inp_lport;
1747 	addr = inp->inp_laddr;
1748 	INP_RUNLOCK(inp);
1749 
1750 	*nam = in_sockaddr(port, &addr);
1751 	return 0;
1752 }
1753 
1754 int
1755 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1756 {
1757 	struct inpcb *inp;
1758 	struct in_addr addr;
1759 	in_port_t port;
1760 
1761 	inp = sotoinpcb(so);
1762 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1763 
1764 	INP_RLOCK(inp);
1765 	port = inp->inp_fport;
1766 	addr = inp->inp_faddr;
1767 	INP_RUNLOCK(inp);
1768 
1769 	*nam = in_sockaddr(port, &addr);
1770 	return 0;
1771 }
1772 
1773 void
1774 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1775     struct inpcb *(*notify)(struct inpcb *, int))
1776 {
1777 	struct inpcb *inp, *inp_temp;
1778 
1779 	INP_INFO_WLOCK(pcbinfo);
1780 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1781 		INP_WLOCK(inp);
1782 #ifdef INET6
1783 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1784 			INP_WUNLOCK(inp);
1785 			continue;
1786 		}
1787 #endif
1788 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1789 		    inp->inp_socket == NULL) {
1790 			INP_WUNLOCK(inp);
1791 			continue;
1792 		}
1793 		if ((*notify)(inp, errno))
1794 			INP_WUNLOCK(inp);
1795 	}
1796 	INP_INFO_WUNLOCK(pcbinfo);
1797 }
1798 
1799 void
1800 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1801 {
1802 	struct inpcb *inp;
1803 	struct in_multi *inm;
1804 	struct in_mfilter *imf;
1805 	struct ip_moptions *imo;
1806 
1807 	INP_INFO_WLOCK(pcbinfo);
1808 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1809 		INP_WLOCK(inp);
1810 		imo = inp->inp_moptions;
1811 		if ((inp->inp_vflag & INP_IPV4) &&
1812 		    imo != NULL) {
1813 			/*
1814 			 * Unselect the outgoing interface if it is being
1815 			 * detached.
1816 			 */
1817 			if (imo->imo_multicast_ifp == ifp)
1818 				imo->imo_multicast_ifp = NULL;
1819 
1820 			/*
1821 			 * Drop multicast group membership if we joined
1822 			 * through the interface being detached.
1823 			 *
1824 			 * XXX This can all be deferred to an epoch_call
1825 			 */
1826 restart:
1827 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1828 				if ((inm = imf->imf_inm) == NULL)
1829 					continue;
1830 				if (inm->inm_ifp != ifp)
1831 					continue;
1832 				ip_mfilter_remove(&imo->imo_head, imf);
1833 				IN_MULTI_LOCK_ASSERT();
1834 				in_leavegroup_locked(inm, NULL);
1835 				ip_mfilter_free(imf);
1836 				goto restart;
1837 			}
1838 		}
1839 		INP_WUNLOCK(inp);
1840 	}
1841 	INP_INFO_WUNLOCK(pcbinfo);
1842 }
1843 
1844 /*
1845  * Lookup a PCB based on the local address and port.  Caller must hold the
1846  * hash lock.  No inpcb locks or references are acquired.
1847  */
1848 #define INP_LOOKUP_MAPPED_PCB_COST	3
1849 struct inpcb *
1850 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1851     u_short lport, int lookupflags, struct ucred *cred)
1852 {
1853 	struct inpcb *inp;
1854 #ifdef INET6
1855 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1856 #else
1857 	int matchwild = 3;
1858 #endif
1859 	int wildcard;
1860 
1861 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1862 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1863 
1864 	INP_HASH_LOCK_ASSERT(pcbinfo);
1865 
1866 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1867 		struct inpcbhead *head;
1868 		/*
1869 		 * Look for an unconnected (wildcard foreign addr) PCB that
1870 		 * matches the local address and port we're looking for.
1871 		 */
1872 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1873 		    0, pcbinfo->ipi_hashmask)];
1874 		CK_LIST_FOREACH(inp, head, inp_hash) {
1875 #ifdef INET6
1876 			/* XXX inp locking */
1877 			if ((inp->inp_vflag & INP_IPV4) == 0)
1878 				continue;
1879 #endif
1880 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1881 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1882 			    inp->inp_lport == lport) {
1883 				/*
1884 				 * Found?
1885 				 */
1886 				if (cred == NULL ||
1887 				    prison_equal_ip4(cred->cr_prison,
1888 					inp->inp_cred->cr_prison))
1889 					return (inp);
1890 			}
1891 		}
1892 		/*
1893 		 * Not found.
1894 		 */
1895 		return (NULL);
1896 	} else {
1897 		struct inpcbporthead *porthash;
1898 		struct inpcbport *phd;
1899 		struct inpcb *match = NULL;
1900 		/*
1901 		 * Best fit PCB lookup.
1902 		 *
1903 		 * First see if this local port is in use by looking on the
1904 		 * port hash list.
1905 		 */
1906 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1907 		    pcbinfo->ipi_porthashmask)];
1908 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1909 			if (phd->phd_port == lport)
1910 				break;
1911 		}
1912 		if (phd != NULL) {
1913 			/*
1914 			 * Port is in use by one or more PCBs. Look for best
1915 			 * fit.
1916 			 */
1917 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1918 				wildcard = 0;
1919 				if (cred != NULL &&
1920 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1921 					cred->cr_prison))
1922 					continue;
1923 #ifdef INET6
1924 				/* XXX inp locking */
1925 				if ((inp->inp_vflag & INP_IPV4) == 0)
1926 					continue;
1927 				/*
1928 				 * We never select the PCB that has
1929 				 * INP_IPV6 flag and is bound to :: if
1930 				 * we have another PCB which is bound
1931 				 * to 0.0.0.0.  If a PCB has the
1932 				 * INP_IPV6 flag, then we set its cost
1933 				 * higher than IPv4 only PCBs.
1934 				 *
1935 				 * Note that the case only happens
1936 				 * when a socket is bound to ::, under
1937 				 * the condition that the use of the
1938 				 * mapped address is allowed.
1939 				 */
1940 				if ((inp->inp_vflag & INP_IPV6) != 0)
1941 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1942 #endif
1943 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1944 					wildcard++;
1945 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1946 					if (laddr.s_addr == INADDR_ANY)
1947 						wildcard++;
1948 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1949 						continue;
1950 				} else {
1951 					if (laddr.s_addr != INADDR_ANY)
1952 						wildcard++;
1953 				}
1954 				if (wildcard < matchwild) {
1955 					match = inp;
1956 					matchwild = wildcard;
1957 					if (matchwild == 0)
1958 						break;
1959 				}
1960 			}
1961 		}
1962 		return (match);
1963 	}
1964 }
1965 #undef INP_LOOKUP_MAPPED_PCB_COST
1966 
1967 static struct inpcb *
1968 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1969     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1970     uint16_t fport, int lookupflags)
1971 {
1972 	struct inpcb *local_wild;
1973 	const struct inpcblbgrouphead *hdr;
1974 	struct inpcblbgroup *grp;
1975 	uint32_t idx;
1976 
1977 	INP_HASH_LOCK_ASSERT(pcbinfo);
1978 
1979 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1980 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1981 
1982 	/*
1983 	 * Order of socket selection:
1984 	 * 1. non-wild.
1985 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1986 	 *
1987 	 * NOTE:
1988 	 * - Load balanced group does not contain jailed sockets
1989 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1990 	 */
1991 	local_wild = NULL;
1992 	CK_LIST_FOREACH(grp, hdr, il_list) {
1993 #ifdef INET6
1994 		if (!(grp->il_vflag & INP_IPV4))
1995 			continue;
1996 #endif
1997 		if (grp->il_lport != lport)
1998 			continue;
1999 
2000 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2001 		    grp->il_inpcnt;
2002 		if (grp->il_laddr.s_addr == laddr->s_addr)
2003 			return (grp->il_inp[idx]);
2004 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2005 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
2006 			local_wild = grp->il_inp[idx];
2007 	}
2008 	return (local_wild);
2009 }
2010 
2011 #ifdef PCBGROUP
2012 /*
2013  * Lookup PCB in hash list, using pcbgroup tables.
2014  */
2015 static struct inpcb *
2016 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2017     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2018     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2019 {
2020 	struct inpcbhead *head;
2021 	struct inpcb *inp, *tmpinp;
2022 	u_short fport = fport_arg, lport = lport_arg;
2023 	bool locked;
2024 
2025 	/*
2026 	 * First look for an exact match.
2027 	 */
2028 	tmpinp = NULL;
2029 	INP_GROUP_LOCK(pcbgroup);
2030 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2031 	    pcbgroup->ipg_hashmask)];
2032 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2033 #ifdef INET6
2034 		/* XXX inp locking */
2035 		if ((inp->inp_vflag & INP_IPV4) == 0)
2036 			continue;
2037 #endif
2038 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2039 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2040 		    inp->inp_fport == fport &&
2041 		    inp->inp_lport == lport) {
2042 			/*
2043 			 * XXX We should be able to directly return
2044 			 * the inp here, without any checks.
2045 			 * Well unless both bound with SO_REUSEPORT?
2046 			 */
2047 			if (prison_flag(inp->inp_cred, PR_IP4))
2048 				goto found;
2049 			if (tmpinp == NULL)
2050 				tmpinp = inp;
2051 		}
2052 	}
2053 	if (tmpinp != NULL) {
2054 		inp = tmpinp;
2055 		goto found;
2056 	}
2057 
2058 #ifdef	RSS
2059 	/*
2060 	 * For incoming connections, we may wish to do a wildcard
2061 	 * match for an RSS-local socket.
2062 	 */
2063 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2064 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2065 #ifdef INET6
2066 		struct inpcb *local_wild_mapped = NULL;
2067 #endif
2068 		struct inpcb *jail_wild = NULL;
2069 		struct inpcbhead *head;
2070 		int injail;
2071 
2072 		/*
2073 		 * Order of socket selection - we always prefer jails.
2074 		 *      1. jailed, non-wild.
2075 		 *      2. jailed, wild.
2076 		 *      3. non-jailed, non-wild.
2077 		 *      4. non-jailed, wild.
2078 		 */
2079 
2080 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2081 		    lport, 0, pcbgroup->ipg_hashmask)];
2082 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2083 #ifdef INET6
2084 			/* XXX inp locking */
2085 			if ((inp->inp_vflag & INP_IPV4) == 0)
2086 				continue;
2087 #endif
2088 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2089 			    inp->inp_lport != lport)
2090 				continue;
2091 
2092 			injail = prison_flag(inp->inp_cred, PR_IP4);
2093 			if (injail) {
2094 				if (prison_check_ip4(inp->inp_cred,
2095 				    &laddr) != 0)
2096 					continue;
2097 			} else {
2098 				if (local_exact != NULL)
2099 					continue;
2100 			}
2101 
2102 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2103 				if (injail)
2104 					goto found;
2105 				else
2106 					local_exact = inp;
2107 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2108 #ifdef INET6
2109 				/* XXX inp locking, NULL check */
2110 				if (inp->inp_vflag & INP_IPV6PROTO)
2111 					local_wild_mapped = inp;
2112 				else
2113 #endif
2114 					if (injail)
2115 						jail_wild = inp;
2116 					else
2117 						local_wild = inp;
2118 			}
2119 		} /* LIST_FOREACH */
2120 
2121 		inp = jail_wild;
2122 		if (inp == NULL)
2123 			inp = local_exact;
2124 		if (inp == NULL)
2125 			inp = local_wild;
2126 #ifdef INET6
2127 		if (inp == NULL)
2128 			inp = local_wild_mapped;
2129 #endif
2130 		if (inp != NULL)
2131 			goto found;
2132 	}
2133 #endif
2134 
2135 	/*
2136 	 * Then look for a wildcard match, if requested.
2137 	 */
2138 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2139 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2140 #ifdef INET6
2141 		struct inpcb *local_wild_mapped = NULL;
2142 #endif
2143 		struct inpcb *jail_wild = NULL;
2144 		struct inpcbhead *head;
2145 		int injail;
2146 
2147 		/*
2148 		 * Order of socket selection - we always prefer jails.
2149 		 *      1. jailed, non-wild.
2150 		 *      2. jailed, wild.
2151 		 *      3. non-jailed, non-wild.
2152 		 *      4. non-jailed, wild.
2153 		 */
2154 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2155 		    0, pcbinfo->ipi_wildmask)];
2156 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2157 #ifdef INET6
2158 			/* XXX inp locking */
2159 			if ((inp->inp_vflag & INP_IPV4) == 0)
2160 				continue;
2161 #endif
2162 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2163 			    inp->inp_lport != lport)
2164 				continue;
2165 
2166 			injail = prison_flag(inp->inp_cred, PR_IP4);
2167 			if (injail) {
2168 				if (prison_check_ip4(inp->inp_cred,
2169 				    &laddr) != 0)
2170 					continue;
2171 			} else {
2172 				if (local_exact != NULL)
2173 					continue;
2174 			}
2175 
2176 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2177 				if (injail)
2178 					goto found;
2179 				else
2180 					local_exact = inp;
2181 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2182 #ifdef INET6
2183 				/* XXX inp locking, NULL check */
2184 				if (inp->inp_vflag & INP_IPV6PROTO)
2185 					local_wild_mapped = inp;
2186 				else
2187 #endif
2188 					if (injail)
2189 						jail_wild = inp;
2190 					else
2191 						local_wild = inp;
2192 			}
2193 		} /* LIST_FOREACH */
2194 		inp = jail_wild;
2195 		if (inp == NULL)
2196 			inp = local_exact;
2197 		if (inp == NULL)
2198 			inp = local_wild;
2199 #ifdef INET6
2200 		if (inp == NULL)
2201 			inp = local_wild_mapped;
2202 #endif
2203 		if (inp != NULL)
2204 			goto found;
2205 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2206 	INP_GROUP_UNLOCK(pcbgroup);
2207 	return (NULL);
2208 
2209 found:
2210 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2211 		locked = INP_TRY_WLOCK(inp);
2212 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2213 		locked = INP_TRY_RLOCK(inp);
2214 	else
2215 		panic("%s: locking bug", __func__);
2216 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2217 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2218 			INP_WUNLOCK(inp);
2219 		else
2220 			INP_RUNLOCK(inp);
2221 		return (NULL);
2222 	} else if (!locked)
2223 		in_pcbref(inp);
2224 	INP_GROUP_UNLOCK(pcbgroup);
2225 	if (!locked) {
2226 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2227 			INP_WLOCK(inp);
2228 			if (in_pcbrele_wlocked(inp))
2229 				return (NULL);
2230 		} else {
2231 			INP_RLOCK(inp);
2232 			if (in_pcbrele_rlocked(inp))
2233 				return (NULL);
2234 		}
2235 	}
2236 #ifdef INVARIANTS
2237 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2238 		INP_WLOCK_ASSERT(inp);
2239 	else
2240 		INP_RLOCK_ASSERT(inp);
2241 #endif
2242 	return (inp);
2243 }
2244 #endif /* PCBGROUP */
2245 
2246 /*
2247  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2248  * that the caller has locked the hash list, and will not perform any further
2249  * locking or reference operations on either the hash list or the connection.
2250  */
2251 static struct inpcb *
2252 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2253     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2254     struct ifnet *ifp)
2255 {
2256 	struct inpcbhead *head;
2257 	struct inpcb *inp, *tmpinp;
2258 	u_short fport = fport_arg, lport = lport_arg;
2259 
2260 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2261 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2262 	INP_HASH_LOCK_ASSERT(pcbinfo);
2263 
2264 	/*
2265 	 * First look for an exact match.
2266 	 */
2267 	tmpinp = NULL;
2268 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2269 	    pcbinfo->ipi_hashmask)];
2270 	CK_LIST_FOREACH(inp, head, inp_hash) {
2271 #ifdef INET6
2272 		/* XXX inp locking */
2273 		if ((inp->inp_vflag & INP_IPV4) == 0)
2274 			continue;
2275 #endif
2276 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2277 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2278 		    inp->inp_fport == fport &&
2279 		    inp->inp_lport == lport) {
2280 			/*
2281 			 * XXX We should be able to directly return
2282 			 * the inp here, without any checks.
2283 			 * Well unless both bound with SO_REUSEPORT?
2284 			 */
2285 			if (prison_flag(inp->inp_cred, PR_IP4))
2286 				return (inp);
2287 			if (tmpinp == NULL)
2288 				tmpinp = inp;
2289 		}
2290 	}
2291 	if (tmpinp != NULL)
2292 		return (tmpinp);
2293 
2294 	/*
2295 	 * Then look in lb group (for wildcard match).
2296 	 */
2297 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2298 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2299 		    fport, lookupflags);
2300 		if (inp != NULL)
2301 			return (inp);
2302 	}
2303 
2304 	/*
2305 	 * Then look for a wildcard match, if requested.
2306 	 */
2307 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2308 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2309 #ifdef INET6
2310 		struct inpcb *local_wild_mapped = NULL;
2311 #endif
2312 		struct inpcb *jail_wild = NULL;
2313 		int injail;
2314 
2315 		/*
2316 		 * Order of socket selection - we always prefer jails.
2317 		 *      1. jailed, non-wild.
2318 		 *      2. jailed, wild.
2319 		 *      3. non-jailed, non-wild.
2320 		 *      4. non-jailed, wild.
2321 		 */
2322 
2323 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2324 		    0, pcbinfo->ipi_hashmask)];
2325 		CK_LIST_FOREACH(inp, head, inp_hash) {
2326 #ifdef INET6
2327 			/* XXX inp locking */
2328 			if ((inp->inp_vflag & INP_IPV4) == 0)
2329 				continue;
2330 #endif
2331 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2332 			    inp->inp_lport != lport)
2333 				continue;
2334 
2335 			injail = prison_flag(inp->inp_cred, PR_IP4);
2336 			if (injail) {
2337 				if (prison_check_ip4(inp->inp_cred,
2338 				    &laddr) != 0)
2339 					continue;
2340 			} else {
2341 				if (local_exact != NULL)
2342 					continue;
2343 			}
2344 
2345 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2346 				if (injail)
2347 					return (inp);
2348 				else
2349 					local_exact = inp;
2350 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2351 #ifdef INET6
2352 				/* XXX inp locking, NULL check */
2353 				if (inp->inp_vflag & INP_IPV6PROTO)
2354 					local_wild_mapped = inp;
2355 				else
2356 #endif
2357 					if (injail)
2358 						jail_wild = inp;
2359 					else
2360 						local_wild = inp;
2361 			}
2362 		} /* LIST_FOREACH */
2363 		if (jail_wild != NULL)
2364 			return (jail_wild);
2365 		if (local_exact != NULL)
2366 			return (local_exact);
2367 		if (local_wild != NULL)
2368 			return (local_wild);
2369 #ifdef INET6
2370 		if (local_wild_mapped != NULL)
2371 			return (local_wild_mapped);
2372 #endif
2373 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2374 
2375 	return (NULL);
2376 }
2377 
2378 /*
2379  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2380  * hash list lock, and will return the inpcb locked (i.e., requires
2381  * INPLOOKUP_LOCKPCB).
2382  */
2383 static struct inpcb *
2384 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2385     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2386     struct ifnet *ifp)
2387 {
2388 	struct inpcb *inp;
2389 
2390 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2391 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2392 	if (inp != NULL) {
2393 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2394 			INP_WLOCK(inp);
2395 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2396 				INP_WUNLOCK(inp);
2397 				inp = NULL;
2398 			}
2399 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2400 			INP_RLOCK(inp);
2401 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2402 				INP_RUNLOCK(inp);
2403 				inp = NULL;
2404 			}
2405 		} else
2406 			panic("%s: locking bug", __func__);
2407 #ifdef INVARIANTS
2408 		if (inp != NULL) {
2409 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2410 				INP_WLOCK_ASSERT(inp);
2411 			else
2412 				INP_RLOCK_ASSERT(inp);
2413 		}
2414 #endif
2415 	}
2416 
2417 	return (inp);
2418 }
2419 
2420 /*
2421  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2422  * from which a pre-calculated hash value may be extracted.
2423  *
2424  * Possibly more of this logic should be in in_pcbgroup.c.
2425  */
2426 struct inpcb *
2427 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2428     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2429 {
2430 #if defined(PCBGROUP) && !defined(RSS)
2431 	struct inpcbgroup *pcbgroup;
2432 #endif
2433 
2434 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2435 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2436 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2437 	    ("%s: LOCKPCB not set", __func__));
2438 
2439 	/*
2440 	 * When not using RSS, use connection groups in preference to the
2441 	 * reservation table when looking up 4-tuples.  When using RSS, just
2442 	 * use the reservation table, due to the cost of the Toeplitz hash
2443 	 * in software.
2444 	 *
2445 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2446 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2447 	 * in software.
2448 	 */
2449 #if defined(PCBGROUP) && !defined(RSS)
2450 	if (in_pcbgroup_enabled(pcbinfo)) {
2451 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2452 		    fport);
2453 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2454 		    laddr, lport, lookupflags, ifp));
2455 	}
2456 #endif
2457 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2458 	    lookupflags, ifp));
2459 }
2460 
2461 struct inpcb *
2462 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2463     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2464     struct ifnet *ifp, struct mbuf *m)
2465 {
2466 #ifdef PCBGROUP
2467 	struct inpcbgroup *pcbgroup;
2468 #endif
2469 
2470 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2471 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2472 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2473 	    ("%s: LOCKPCB not set", __func__));
2474 
2475 #ifdef PCBGROUP
2476 	/*
2477 	 * If we can use a hardware-generated hash to look up the connection
2478 	 * group, use that connection group to find the inpcb.  Otherwise
2479 	 * fall back on a software hash -- or the reservation table if we're
2480 	 * using RSS.
2481 	 *
2482 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2483 	 */
2484 	if (in_pcbgroup_enabled(pcbinfo) &&
2485 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2486 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2487 		    m->m_pkthdr.flowid);
2488 		if (pcbgroup != NULL)
2489 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2490 			    fport, laddr, lport, lookupflags, ifp));
2491 #ifndef RSS
2492 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2493 		    fport);
2494 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2495 		    laddr, lport, lookupflags, ifp));
2496 #endif
2497 	}
2498 #endif
2499 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2500 	    lookupflags, ifp));
2501 }
2502 #endif /* INET */
2503 
2504 /*
2505  * Insert PCB onto various hash lists.
2506  */
2507 static int
2508 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2509 {
2510 	struct inpcbhead *pcbhash;
2511 	struct inpcbporthead *pcbporthash;
2512 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2513 	struct inpcbport *phd;
2514 	u_int32_t hashkey_faddr;
2515 	int so_options;
2516 
2517 	INP_WLOCK_ASSERT(inp);
2518 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2519 
2520 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2521 	    ("in_pcbinshash: INP_INHASHLIST"));
2522 
2523 #ifdef INET6
2524 	if (inp->inp_vflag & INP_IPV6)
2525 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2526 	else
2527 #endif
2528 	hashkey_faddr = inp->inp_faddr.s_addr;
2529 
2530 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2531 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2532 
2533 	pcbporthash = &pcbinfo->ipi_porthashbase[
2534 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2535 
2536 	/*
2537 	 * Add entry to load balance group.
2538 	 * Only do this if SO_REUSEPORT_LB is set.
2539 	 */
2540 	so_options = inp_so_options(inp);
2541 	if (so_options & SO_REUSEPORT_LB) {
2542 		int ret = in_pcbinslbgrouphash(inp);
2543 		if (ret) {
2544 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2545 			return (ret);
2546 		}
2547 	}
2548 
2549 	/*
2550 	 * Go through port list and look for a head for this lport.
2551 	 */
2552 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2553 		if (phd->phd_port == inp->inp_lport)
2554 			break;
2555 	}
2556 	/*
2557 	 * If none exists, malloc one and tack it on.
2558 	 */
2559 	if (phd == NULL) {
2560 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2561 		if (phd == NULL) {
2562 			return (ENOBUFS); /* XXX */
2563 		}
2564 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2565 		phd->phd_port = inp->inp_lport;
2566 		CK_LIST_INIT(&phd->phd_pcblist);
2567 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2568 	}
2569 	inp->inp_phd = phd;
2570 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2571 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2572 	inp->inp_flags |= INP_INHASHLIST;
2573 #ifdef PCBGROUP
2574 	if (m != NULL) {
2575 		in_pcbgroup_update_mbuf(inp, m);
2576 	} else {
2577 		in_pcbgroup_update(inp);
2578 	}
2579 #endif
2580 	return (0);
2581 }
2582 
2583 int
2584 in_pcbinshash(struct inpcb *inp)
2585 {
2586 
2587 	return (in_pcbinshash_internal(inp, NULL));
2588 }
2589 
2590 int
2591 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2592 {
2593 
2594 	return (in_pcbinshash_internal(inp, m));
2595 }
2596 
2597 /*
2598  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2599  * changed. NOTE: This does not handle the case of the lport changing (the
2600  * hashed port list would have to be updated as well), so the lport must
2601  * not change after in_pcbinshash() has been called.
2602  */
2603 void
2604 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2605 {
2606 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2607 	struct inpcbhead *head;
2608 	u_int32_t hashkey_faddr;
2609 
2610 	INP_WLOCK_ASSERT(inp);
2611 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2612 
2613 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2614 	    ("in_pcbrehash: !INP_INHASHLIST"));
2615 
2616 #ifdef INET6
2617 	if (inp->inp_vflag & INP_IPV6)
2618 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2619 	else
2620 #endif
2621 	hashkey_faddr = inp->inp_faddr.s_addr;
2622 
2623 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2624 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2625 
2626 	CK_LIST_REMOVE(inp, inp_hash);
2627 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2628 
2629 #ifdef PCBGROUP
2630 	if (m != NULL)
2631 		in_pcbgroup_update_mbuf(inp, m);
2632 	else
2633 		in_pcbgroup_update(inp);
2634 #endif
2635 }
2636 
2637 void
2638 in_pcbrehash(struct inpcb *inp)
2639 {
2640 
2641 	in_pcbrehash_mbuf(inp, NULL);
2642 }
2643 
2644 /*
2645  * Remove PCB from various lists.
2646  */
2647 static void
2648 in_pcbremlists(struct inpcb *inp)
2649 {
2650 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2651 
2652 #ifdef INVARIANTS
2653 	if (pcbinfo == &V_tcbinfo) {
2654 		NET_EPOCH_ASSERT();
2655 	} else {
2656 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2657 	}
2658 #endif
2659 
2660 	INP_WLOCK_ASSERT(inp);
2661 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2662 
2663 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2664 	if (inp->inp_flags & INP_INHASHLIST) {
2665 		struct inpcbport *phd = inp->inp_phd;
2666 
2667 		INP_HASH_WLOCK(pcbinfo);
2668 
2669 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2670 		in_pcbremlbgrouphash(inp);
2671 
2672 		CK_LIST_REMOVE(inp, inp_hash);
2673 		CK_LIST_REMOVE(inp, inp_portlist);
2674 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2675 			CK_LIST_REMOVE(phd, phd_hash);
2676 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2677 		}
2678 		INP_HASH_WUNLOCK(pcbinfo);
2679 		inp->inp_flags &= ~INP_INHASHLIST;
2680 	}
2681 	CK_LIST_REMOVE(inp, inp_list);
2682 	pcbinfo->ipi_count--;
2683 #ifdef PCBGROUP
2684 	in_pcbgroup_remove(inp);
2685 #endif
2686 }
2687 
2688 /*
2689  * Check for alternatives when higher level complains
2690  * about service problems.  For now, invalidate cached
2691  * routing information.  If the route was created dynamically
2692  * (by a redirect), time to try a default gateway again.
2693  */
2694 void
2695 in_losing(struct inpcb *inp)
2696 {
2697 
2698 	RO_INVALIDATE_CACHE(&inp->inp_route);
2699 	return;
2700 }
2701 
2702 /*
2703  * A set label operation has occurred at the socket layer, propagate the
2704  * label change into the in_pcb for the socket.
2705  */
2706 void
2707 in_pcbsosetlabel(struct socket *so)
2708 {
2709 #ifdef MAC
2710 	struct inpcb *inp;
2711 
2712 	inp = sotoinpcb(so);
2713 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2714 
2715 	INP_WLOCK(inp);
2716 	SOCK_LOCK(so);
2717 	mac_inpcb_sosetlabel(so, inp);
2718 	SOCK_UNLOCK(so);
2719 	INP_WUNLOCK(inp);
2720 #endif
2721 }
2722 
2723 /*
2724  * ipport_tick runs once per second, determining if random port allocation
2725  * should be continued.  If more than ipport_randomcps ports have been
2726  * allocated in the last second, then we return to sequential port
2727  * allocation. We return to random allocation only once we drop below
2728  * ipport_randomcps for at least ipport_randomtime seconds.
2729  */
2730 static void
2731 ipport_tick(void *xtp)
2732 {
2733 	VNET_ITERATOR_DECL(vnet_iter);
2734 
2735 	VNET_LIST_RLOCK_NOSLEEP();
2736 	VNET_FOREACH(vnet_iter) {
2737 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2738 		if (V_ipport_tcpallocs <=
2739 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2740 			if (V_ipport_stoprandom > 0)
2741 				V_ipport_stoprandom--;
2742 		} else
2743 			V_ipport_stoprandom = V_ipport_randomtime;
2744 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2745 		CURVNET_RESTORE();
2746 	}
2747 	VNET_LIST_RUNLOCK_NOSLEEP();
2748 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2749 }
2750 
2751 static void
2752 ip_fini(void *xtp)
2753 {
2754 
2755 	callout_stop(&ipport_tick_callout);
2756 }
2757 
2758 /*
2759  * The ipport_callout should start running at about the time we attach the
2760  * inet or inet6 domains.
2761  */
2762 static void
2763 ipport_tick_init(const void *unused __unused)
2764 {
2765 
2766 	/* Start ipport_tick. */
2767 	callout_init(&ipport_tick_callout, 1);
2768 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2769 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2770 		SHUTDOWN_PRI_DEFAULT);
2771 }
2772 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2773     ipport_tick_init, NULL);
2774 
2775 void
2776 inp_wlock(struct inpcb *inp)
2777 {
2778 
2779 	INP_WLOCK(inp);
2780 }
2781 
2782 void
2783 inp_wunlock(struct inpcb *inp)
2784 {
2785 
2786 	INP_WUNLOCK(inp);
2787 }
2788 
2789 void
2790 inp_rlock(struct inpcb *inp)
2791 {
2792 
2793 	INP_RLOCK(inp);
2794 }
2795 
2796 void
2797 inp_runlock(struct inpcb *inp)
2798 {
2799 
2800 	INP_RUNLOCK(inp);
2801 }
2802 
2803 #ifdef INVARIANT_SUPPORT
2804 void
2805 inp_lock_assert(struct inpcb *inp)
2806 {
2807 
2808 	INP_WLOCK_ASSERT(inp);
2809 }
2810 
2811 void
2812 inp_unlock_assert(struct inpcb *inp)
2813 {
2814 
2815 	INP_UNLOCK_ASSERT(inp);
2816 }
2817 #endif
2818 
2819 void
2820 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2821 {
2822 	struct inpcb *inp;
2823 
2824 	INP_INFO_WLOCK(&V_tcbinfo);
2825 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2826 		INP_WLOCK(inp);
2827 		func(inp, arg);
2828 		INP_WUNLOCK(inp);
2829 	}
2830 	INP_INFO_WUNLOCK(&V_tcbinfo);
2831 }
2832 
2833 struct socket *
2834 inp_inpcbtosocket(struct inpcb *inp)
2835 {
2836 
2837 	INP_WLOCK_ASSERT(inp);
2838 	return (inp->inp_socket);
2839 }
2840 
2841 struct tcpcb *
2842 inp_inpcbtotcpcb(struct inpcb *inp)
2843 {
2844 
2845 	INP_WLOCK_ASSERT(inp);
2846 	return ((struct tcpcb *)inp->inp_ppcb);
2847 }
2848 
2849 int
2850 inp_ip_tos_get(const struct inpcb *inp)
2851 {
2852 
2853 	return (inp->inp_ip_tos);
2854 }
2855 
2856 void
2857 inp_ip_tos_set(struct inpcb *inp, int val)
2858 {
2859 
2860 	inp->inp_ip_tos = val;
2861 }
2862 
2863 void
2864 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2865     uint32_t *faddr, uint16_t *fp)
2866 {
2867 
2868 	INP_LOCK_ASSERT(inp);
2869 	*laddr = inp->inp_laddr.s_addr;
2870 	*faddr = inp->inp_faddr.s_addr;
2871 	*lp = inp->inp_lport;
2872 	*fp = inp->inp_fport;
2873 }
2874 
2875 struct inpcb *
2876 so_sotoinpcb(struct socket *so)
2877 {
2878 
2879 	return (sotoinpcb(so));
2880 }
2881 
2882 struct tcpcb *
2883 so_sototcpcb(struct socket *so)
2884 {
2885 
2886 	return (sototcpcb(so));
2887 }
2888 
2889 /*
2890  * Create an external-format (``xinpcb'') structure using the information in
2891  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2892  * reduce the spew of irrelevant information over this interface, to isolate
2893  * user code from changes in the kernel structure, and potentially to provide
2894  * information-hiding if we decide that some of this information should be
2895  * hidden from users.
2896  */
2897 void
2898 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2899 {
2900 
2901 	bzero(xi, sizeof(*xi));
2902 	xi->xi_len = sizeof(struct xinpcb);
2903 	if (inp->inp_socket)
2904 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2905 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2906 	xi->inp_gencnt = inp->inp_gencnt;
2907 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2908 	xi->inp_flow = inp->inp_flow;
2909 	xi->inp_flowid = inp->inp_flowid;
2910 	xi->inp_flowtype = inp->inp_flowtype;
2911 	xi->inp_flags = inp->inp_flags;
2912 	xi->inp_flags2 = inp->inp_flags2;
2913 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2914 	xi->in6p_cksum = inp->in6p_cksum;
2915 	xi->in6p_hops = inp->in6p_hops;
2916 	xi->inp_ip_tos = inp->inp_ip_tos;
2917 	xi->inp_vflag = inp->inp_vflag;
2918 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2919 	xi->inp_ip_p = inp->inp_ip_p;
2920 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2921 }
2922 
2923 #ifdef DDB
2924 static void
2925 db_print_indent(int indent)
2926 {
2927 	int i;
2928 
2929 	for (i = 0; i < indent; i++)
2930 		db_printf(" ");
2931 }
2932 
2933 static void
2934 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2935 {
2936 	char faddr_str[48], laddr_str[48];
2937 
2938 	db_print_indent(indent);
2939 	db_printf("%s at %p\n", name, inc);
2940 
2941 	indent += 2;
2942 
2943 #ifdef INET6
2944 	if (inc->inc_flags & INC_ISIPV6) {
2945 		/* IPv6. */
2946 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2947 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2948 	} else
2949 #endif
2950 	{
2951 		/* IPv4. */
2952 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2953 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2954 	}
2955 	db_print_indent(indent);
2956 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2957 	    ntohs(inc->inc_lport));
2958 	db_print_indent(indent);
2959 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2960 	    ntohs(inc->inc_fport));
2961 }
2962 
2963 static void
2964 db_print_inpflags(int inp_flags)
2965 {
2966 	int comma;
2967 
2968 	comma = 0;
2969 	if (inp_flags & INP_RECVOPTS) {
2970 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2971 		comma = 1;
2972 	}
2973 	if (inp_flags & INP_RECVRETOPTS) {
2974 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2975 		comma = 1;
2976 	}
2977 	if (inp_flags & INP_RECVDSTADDR) {
2978 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2979 		comma = 1;
2980 	}
2981 	if (inp_flags & INP_ORIGDSTADDR) {
2982 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2983 		comma = 1;
2984 	}
2985 	if (inp_flags & INP_HDRINCL) {
2986 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2987 		comma = 1;
2988 	}
2989 	if (inp_flags & INP_HIGHPORT) {
2990 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2991 		comma = 1;
2992 	}
2993 	if (inp_flags & INP_LOWPORT) {
2994 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2995 		comma = 1;
2996 	}
2997 	if (inp_flags & INP_ANONPORT) {
2998 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2999 		comma = 1;
3000 	}
3001 	if (inp_flags & INP_RECVIF) {
3002 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3003 		comma = 1;
3004 	}
3005 	if (inp_flags & INP_MTUDISC) {
3006 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3007 		comma = 1;
3008 	}
3009 	if (inp_flags & INP_RECVTTL) {
3010 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3011 		comma = 1;
3012 	}
3013 	if (inp_flags & INP_DONTFRAG) {
3014 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3015 		comma = 1;
3016 	}
3017 	if (inp_flags & INP_RECVTOS) {
3018 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3019 		comma = 1;
3020 	}
3021 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3022 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3023 		comma = 1;
3024 	}
3025 	if (inp_flags & IN6P_PKTINFO) {
3026 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3027 		comma = 1;
3028 	}
3029 	if (inp_flags & IN6P_HOPLIMIT) {
3030 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3031 		comma = 1;
3032 	}
3033 	if (inp_flags & IN6P_HOPOPTS) {
3034 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3035 		comma = 1;
3036 	}
3037 	if (inp_flags & IN6P_DSTOPTS) {
3038 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3039 		comma = 1;
3040 	}
3041 	if (inp_flags & IN6P_RTHDR) {
3042 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3043 		comma = 1;
3044 	}
3045 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3046 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3047 		comma = 1;
3048 	}
3049 	if (inp_flags & IN6P_TCLASS) {
3050 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3051 		comma = 1;
3052 	}
3053 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3054 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3055 		comma = 1;
3056 	}
3057 	if (inp_flags & INP_TIMEWAIT) {
3058 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3059 		comma  = 1;
3060 	}
3061 	if (inp_flags & INP_ONESBCAST) {
3062 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3063 		comma  = 1;
3064 	}
3065 	if (inp_flags & INP_DROPPED) {
3066 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3067 		comma  = 1;
3068 	}
3069 	if (inp_flags & INP_SOCKREF) {
3070 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3071 		comma  = 1;
3072 	}
3073 	if (inp_flags & IN6P_RFC2292) {
3074 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3075 		comma = 1;
3076 	}
3077 	if (inp_flags & IN6P_MTU) {
3078 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3079 		comma = 1;
3080 	}
3081 }
3082 
3083 static void
3084 db_print_inpvflag(u_char inp_vflag)
3085 {
3086 	int comma;
3087 
3088 	comma = 0;
3089 	if (inp_vflag & INP_IPV4) {
3090 		db_printf("%sINP_IPV4", comma ? ", " : "");
3091 		comma  = 1;
3092 	}
3093 	if (inp_vflag & INP_IPV6) {
3094 		db_printf("%sINP_IPV6", comma ? ", " : "");
3095 		comma  = 1;
3096 	}
3097 	if (inp_vflag & INP_IPV6PROTO) {
3098 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3099 		comma  = 1;
3100 	}
3101 }
3102 
3103 static void
3104 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3105 {
3106 
3107 	db_print_indent(indent);
3108 	db_printf("%s at %p\n", name, inp);
3109 
3110 	indent += 2;
3111 
3112 	db_print_indent(indent);
3113 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3114 
3115 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3116 
3117 	db_print_indent(indent);
3118 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3119 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3120 
3121 	db_print_indent(indent);
3122 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3123 	   inp->inp_label, inp->inp_flags);
3124 	db_print_inpflags(inp->inp_flags);
3125 	db_printf(")\n");
3126 
3127 	db_print_indent(indent);
3128 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3129 	    inp->inp_vflag);
3130 	db_print_inpvflag(inp->inp_vflag);
3131 	db_printf(")\n");
3132 
3133 	db_print_indent(indent);
3134 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3135 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3136 
3137 	db_print_indent(indent);
3138 #ifdef INET6
3139 	if (inp->inp_vflag & INP_IPV6) {
3140 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3141 		    "in6p_moptions: %p\n", inp->in6p_options,
3142 		    inp->in6p_outputopts, inp->in6p_moptions);
3143 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3144 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3145 		    inp->in6p_hops);
3146 	} else
3147 #endif
3148 	{
3149 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3150 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3151 		    inp->inp_options, inp->inp_moptions);
3152 	}
3153 
3154 	db_print_indent(indent);
3155 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3156 	    (uintmax_t)inp->inp_gencnt);
3157 }
3158 
3159 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3160 {
3161 	struct inpcb *inp;
3162 
3163 	if (!have_addr) {
3164 		db_printf("usage: show inpcb <addr>\n");
3165 		return;
3166 	}
3167 	inp = (struct inpcb *)addr;
3168 
3169 	db_print_inpcb(inp, "inpcb", 0);
3170 }
3171 #endif /* DDB */
3172 
3173 #ifdef RATELIMIT
3174 /*
3175  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3176  * if any.
3177  */
3178 int
3179 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3180 {
3181 	union if_snd_tag_modify_params params = {
3182 		.rate_limit.max_rate = max_pacing_rate,
3183 		.rate_limit.flags = M_NOWAIT,
3184 	};
3185 	struct m_snd_tag *mst;
3186 	struct ifnet *ifp;
3187 	int error;
3188 
3189 	mst = inp->inp_snd_tag;
3190 	if (mst == NULL)
3191 		return (EINVAL);
3192 
3193 	ifp = mst->ifp;
3194 	if (ifp == NULL)
3195 		return (EINVAL);
3196 
3197 	if (ifp->if_snd_tag_modify == NULL) {
3198 		error = EOPNOTSUPP;
3199 	} else {
3200 		error = ifp->if_snd_tag_modify(mst, &params);
3201 	}
3202 	return (error);
3203 }
3204 
3205 /*
3206  * Query existing TX rate limit based on the existing
3207  * "inp->inp_snd_tag", if any.
3208  */
3209 int
3210 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3211 {
3212 	union if_snd_tag_query_params params = { };
3213 	struct m_snd_tag *mst;
3214 	struct ifnet *ifp;
3215 	int error;
3216 
3217 	mst = inp->inp_snd_tag;
3218 	if (mst == NULL)
3219 		return (EINVAL);
3220 
3221 	ifp = mst->ifp;
3222 	if (ifp == NULL)
3223 		return (EINVAL);
3224 
3225 	if (ifp->if_snd_tag_query == NULL) {
3226 		error = EOPNOTSUPP;
3227 	} else {
3228 		error = ifp->if_snd_tag_query(mst, &params);
3229 		if (error == 0 &&  p_max_pacing_rate != NULL)
3230 			*p_max_pacing_rate = params.rate_limit.max_rate;
3231 	}
3232 	return (error);
3233 }
3234 
3235 /*
3236  * Query existing TX queue level based on the existing
3237  * "inp->inp_snd_tag", if any.
3238  */
3239 int
3240 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3241 {
3242 	union if_snd_tag_query_params params = { };
3243 	struct m_snd_tag *mst;
3244 	struct ifnet *ifp;
3245 	int error;
3246 
3247 	mst = inp->inp_snd_tag;
3248 	if (mst == NULL)
3249 		return (EINVAL);
3250 
3251 	ifp = mst->ifp;
3252 	if (ifp == NULL)
3253 		return (EINVAL);
3254 
3255 	if (ifp->if_snd_tag_query == NULL)
3256 		return (EOPNOTSUPP);
3257 
3258 	error = ifp->if_snd_tag_query(mst, &params);
3259 	if (error == 0 &&  p_txqueue_level != NULL)
3260 		*p_txqueue_level = params.rate_limit.queue_level;
3261 	return (error);
3262 }
3263 
3264 /*
3265  * Allocate a new TX rate limit send tag from the network interface
3266  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3267  */
3268 int
3269 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3270     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3271 
3272 {
3273 	union if_snd_tag_alloc_params params = {
3274 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3275 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3276 		.rate_limit.hdr.flowid = flowid,
3277 		.rate_limit.hdr.flowtype = flowtype,
3278 		.rate_limit.max_rate = max_pacing_rate,
3279 		.rate_limit.flags = M_NOWAIT,
3280 	};
3281 	int error;
3282 
3283 	INP_WLOCK_ASSERT(inp);
3284 
3285 	if (*st != NULL)
3286 		return (EINVAL);
3287 
3288 	if (ifp->if_snd_tag_alloc == NULL) {
3289 		error = EOPNOTSUPP;
3290 	} else {
3291 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3292 
3293 #ifdef INET
3294 		if (error == 0) {
3295 			counter_u64_add(rate_limit_set_ok, 1);
3296 			counter_u64_add(rate_limit_active, 1);
3297 		} else
3298 			counter_u64_add(rate_limit_alloc_fail, 1);
3299 #endif
3300 	}
3301 	return (error);
3302 }
3303 
3304 void
3305 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
3306 {
3307 	if (ifp == NULL)
3308 		return;
3309 
3310 	/*
3311 	 * If the device was detached while we still had reference(s)
3312 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3313 	 * stubs.
3314 	 */
3315 	ifp->if_snd_tag_free(mst);
3316 
3317 	/* release reference count on network interface */
3318 	if_rele(ifp);
3319 #ifdef INET
3320 	counter_u64_add(rate_limit_active, -1);
3321 #endif
3322 }
3323 
3324 /*
3325  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3326  * if any:
3327  */
3328 void
3329 in_pcbdetach_txrtlmt(struct inpcb *inp)
3330 {
3331 	struct m_snd_tag *mst;
3332 
3333 	INP_WLOCK_ASSERT(inp);
3334 
3335 	mst = inp->inp_snd_tag;
3336 	inp->inp_snd_tag = NULL;
3337 
3338 	if (mst == NULL)
3339 		return;
3340 
3341 	m_snd_tag_rele(mst);
3342 }
3343 
3344 int
3345 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3346 {
3347 	int error;
3348 
3349 	/*
3350 	 * If the existing send tag is for the wrong interface due to
3351 	 * a route change, first drop the existing tag.  Set the
3352 	 * CHANGED flag so that we will keep trying to allocate a new
3353 	 * tag if we fail to allocate one this time.
3354 	 */
3355 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3356 		in_pcbdetach_txrtlmt(inp);
3357 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3358 	}
3359 
3360 	/*
3361 	 * NOTE: When attaching to a network interface a reference is
3362 	 * made to ensure the network interface doesn't go away until
3363 	 * all ratelimit connections are gone. The network interface
3364 	 * pointers compared below represent valid network interfaces,
3365 	 * except when comparing towards NULL.
3366 	 */
3367 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3368 		error = 0;
3369 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3370 		if (inp->inp_snd_tag != NULL)
3371 			in_pcbdetach_txrtlmt(inp);
3372 		error = 0;
3373 	} else if (inp->inp_snd_tag == NULL) {
3374 		/*
3375 		 * In order to utilize packet pacing with RSS, we need
3376 		 * to wait until there is a valid RSS hash before we
3377 		 * can proceed:
3378 		 */
3379 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3380 			error = EAGAIN;
3381 		} else {
3382 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3383 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3384 		}
3385 	} else {
3386 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3387 	}
3388 	if (error == 0 || error == EOPNOTSUPP)
3389 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3390 
3391 	return (error);
3392 }
3393 
3394 /*
3395  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3396  * is set in the fast path and will attach/detach/modify the TX rate
3397  * limit send tag based on the socket's so_max_pacing_rate value.
3398  */
3399 void
3400 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3401 {
3402 	struct socket *socket;
3403 	uint32_t max_pacing_rate;
3404 	bool did_upgrade;
3405 	int error;
3406 
3407 	if (inp == NULL)
3408 		return;
3409 
3410 	socket = inp->inp_socket;
3411 	if (socket == NULL)
3412 		return;
3413 
3414 	if (!INP_WLOCKED(inp)) {
3415 		/*
3416 		 * NOTE: If the write locking fails, we need to bail
3417 		 * out and use the non-ratelimited ring for the
3418 		 * transmit until there is a new chance to get the
3419 		 * write lock.
3420 		 */
3421 		if (!INP_TRY_UPGRADE(inp))
3422 			return;
3423 		did_upgrade = 1;
3424 	} else {
3425 		did_upgrade = 0;
3426 	}
3427 
3428 	/*
3429 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3430 	 * because atomic updates are not required since the variable
3431 	 * is checked at every mbuf we send. It is assumed that the
3432 	 * variable read itself will be atomic.
3433 	 */
3434 	max_pacing_rate = socket->so_max_pacing_rate;
3435 
3436 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3437 
3438 	if (did_upgrade)
3439 		INP_DOWNGRADE(inp);
3440 }
3441 
3442 /*
3443  * Track route changes for TX rate limiting.
3444  */
3445 void
3446 in_pcboutput_eagain(struct inpcb *inp)
3447 {
3448 	bool did_upgrade;
3449 
3450 	if (inp == NULL)
3451 		return;
3452 
3453 	if (inp->inp_snd_tag == NULL)
3454 		return;
3455 
3456 	if (!INP_WLOCKED(inp)) {
3457 		/*
3458 		 * NOTE: If the write locking fails, we need to bail
3459 		 * out and use the non-ratelimited ring for the
3460 		 * transmit until there is a new chance to get the
3461 		 * write lock.
3462 		 */
3463 		if (!INP_TRY_UPGRADE(inp))
3464 			return;
3465 		did_upgrade = 1;
3466 	} else {
3467 		did_upgrade = 0;
3468 	}
3469 
3470 	/* detach rate limiting */
3471 	in_pcbdetach_txrtlmt(inp);
3472 
3473 	/* make sure new mbuf send tag allocation is made */
3474 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3475 
3476 	if (did_upgrade)
3477 		INP_DOWNGRADE(inp);
3478 }
3479 
3480 #ifdef INET
3481 static void
3482 rl_init(void *st)
3483 {
3484 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3485 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3486 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3487 }
3488 
3489 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3490 #endif
3491 #endif /* RATELIMIT */
3492