xref: /freebsd/sys/netinet/in_pcb.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 #endif /* INET */
214 
215 /*
216  * in_pcb.c: manage the Protocol Control Blocks.
217  *
218  * NOTE: It is assumed that most of these functions will be called with
219  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
220  * functions often modify hash chains or addresses in pcbs.
221  */
222 
223 static struct inpcblbgroup *
224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
225     uint16_t port, const union in_dependaddr *addr, int size)
226 {
227 	struct inpcblbgroup *grp;
228 	size_t bytes;
229 
230 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
231 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
232 	if (!grp)
233 		return (NULL);
234 	grp->il_vflag = vflag;
235 	grp->il_lport = port;
236 	grp->il_dependladdr = *addr;
237 	grp->il_inpsiz = size;
238 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
239 	return (grp);
240 }
241 
242 static void
243 in_pcblbgroup_free_deferred(epoch_context_t ctx)
244 {
245 	struct inpcblbgroup *grp;
246 
247 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
248 	free(grp, M_PCB);
249 }
250 
251 static void
252 in_pcblbgroup_free(struct inpcblbgroup *grp)
253 {
254 
255 	CK_LIST_REMOVE(grp, il_list);
256 	epoch_call(net_epoch_preempt, &grp->il_epoch_ctx,
257 	    in_pcblbgroup_free_deferred);
258 }
259 
260 static struct inpcblbgroup *
261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
262     struct inpcblbgroup *old_grp, int size)
263 {
264 	struct inpcblbgroup *grp;
265 	int i;
266 
267 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
268 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
269 	if (grp == NULL)
270 		return (NULL);
271 
272 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
273 	    ("invalid new local group size %d and old local group count %d",
274 	     grp->il_inpsiz, old_grp->il_inpcnt));
275 
276 	for (i = 0; i < old_grp->il_inpcnt; ++i)
277 		grp->il_inp[i] = old_grp->il_inp[i];
278 	grp->il_inpcnt = old_grp->il_inpcnt;
279 	in_pcblbgroup_free(old_grp);
280 	return (grp);
281 }
282 
283 /*
284  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
285  * and shrink group if possible.
286  */
287 static void
288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
289     int i)
290 {
291 	struct inpcblbgroup *grp, *new_grp;
292 
293 	grp = *grpp;
294 	for (; i + 1 < grp->il_inpcnt; ++i)
295 		grp->il_inp[i] = grp->il_inp[i + 1];
296 	grp->il_inpcnt--;
297 
298 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
299 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
300 		/* Shrink this group. */
301 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
302 		if (new_grp != NULL)
303 			*grpp = new_grp;
304 	}
305 }
306 
307 /*
308  * Add PCB to load balance group for SO_REUSEPORT_LB option.
309  */
310 static int
311 in_pcbinslbgrouphash(struct inpcb *inp)
312 {
313 	const static struct timeval interval = { 60, 0 };
314 	static struct timeval lastprint;
315 	struct inpcbinfo *pcbinfo;
316 	struct inpcblbgrouphead *hdr;
317 	struct inpcblbgroup *grp;
318 	uint32_t idx;
319 
320 	pcbinfo = inp->inp_pcbinfo;
321 
322 	INP_WLOCK_ASSERT(inp);
323 	INP_HASH_WLOCK_ASSERT(pcbinfo);
324 
325 	/*
326 	 * Don't allow jailed socket to join local group.
327 	 */
328 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
329 		return (0);
330 
331 #ifdef INET6
332 	/*
333 	 * Don't allow IPv4 mapped INET6 wild socket.
334 	 */
335 	if ((inp->inp_vflag & INP_IPV4) &&
336 	    inp->inp_laddr.s_addr == INADDR_ANY &&
337 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
338 		return (0);
339 	}
340 #endif
341 
342 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
343 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
344 	CK_LIST_FOREACH(grp, hdr, il_list) {
345 		if (grp->il_vflag == inp->inp_vflag &&
346 		    grp->il_lport == inp->inp_lport &&
347 		    memcmp(&grp->il_dependladdr,
348 		    &inp->inp_inc.inc_ie.ie_dependladdr,
349 		    sizeof(grp->il_dependladdr)) == 0)
350 			break;
351 	}
352 	if (grp == NULL) {
353 		/* Create new load balance group. */
354 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
355 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
356 		    INPCBLBGROUP_SIZMIN);
357 		if (grp == NULL)
358 			return (ENOBUFS);
359 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
360 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
361 			if (ratecheck(&lastprint, &interval))
362 				printf("lb group port %d, limit reached\n",
363 				    ntohs(grp->il_lport));
364 			return (0);
365 		}
366 
367 		/* Expand this local group. */
368 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
369 		if (grp == NULL)
370 			return (ENOBUFS);
371 	}
372 
373 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
374 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
375 	    grp->il_inpcnt));
376 
377 	grp->il_inp[grp->il_inpcnt] = inp;
378 	grp->il_inpcnt++;
379 	return (0);
380 }
381 
382 /*
383  * Remove PCB from load balance group.
384  */
385 static void
386 in_pcbremlbgrouphash(struct inpcb *inp)
387 {
388 	struct inpcbinfo *pcbinfo;
389 	struct inpcblbgrouphead *hdr;
390 	struct inpcblbgroup *grp;
391 	int i;
392 
393 	pcbinfo = inp->inp_pcbinfo;
394 
395 	INP_WLOCK_ASSERT(inp);
396 	INP_HASH_WLOCK_ASSERT(pcbinfo);
397 
398 	hdr = &pcbinfo->ipi_lbgrouphashbase[
399 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
400 	CK_LIST_FOREACH(grp, hdr, il_list) {
401 		for (i = 0; i < grp->il_inpcnt; ++i) {
402 			if (grp->il_inp[i] != inp)
403 				continue;
404 
405 			if (grp->il_inpcnt == 1) {
406 				/* We are the last, free this local group. */
407 				in_pcblbgroup_free(grp);
408 			} else {
409 				/* Pull up inpcbs, shrink group if possible. */
410 				in_pcblbgroup_reorder(hdr, &grp, i);
411 			}
412 			return;
413 		}
414 	}
415 }
416 
417 /*
418  * Different protocols initialize their inpcbs differently - giving
419  * different name to the lock.  But they all are disposed the same.
420  */
421 static void
422 inpcb_fini(void *mem, int size)
423 {
424 	struct inpcb *inp = mem;
425 
426 	INP_LOCK_DESTROY(inp);
427 }
428 
429 /*
430  * Initialize an inpcbinfo -- we should be able to reduce the number of
431  * arguments in time.
432  */
433 void
434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
435     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
436     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
437 {
438 
439 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
440 
441 	INP_INFO_LOCK_INIT(pcbinfo, name);
442 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
443 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
444 #ifdef VIMAGE
445 	pcbinfo->ipi_vnet = curvnet;
446 #endif
447 	pcbinfo->ipi_listhead = listhead;
448 	CK_LIST_INIT(pcbinfo->ipi_listhead);
449 	pcbinfo->ipi_count = 0;
450 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
451 	    &pcbinfo->ipi_hashmask);
452 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
453 	    &pcbinfo->ipi_porthashmask);
454 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
455 	    &pcbinfo->ipi_lbgrouphashmask);
456 #ifdef PCBGROUP
457 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
458 #endif
459 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
460 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
461 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
462 	uma_zone_set_warning(pcbinfo->ipi_zone,
463 	    "kern.ipc.maxsockets limit reached");
464 }
465 
466 /*
467  * Destroy an inpcbinfo.
468  */
469 void
470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
471 {
472 
473 	KASSERT(pcbinfo->ipi_count == 0,
474 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
475 
476 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
477 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
478 	    pcbinfo->ipi_porthashmask);
479 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
480 	    pcbinfo->ipi_lbgrouphashmask);
481 #ifdef PCBGROUP
482 	in_pcbgroup_destroy(pcbinfo);
483 #endif
484 	uma_zdestroy(pcbinfo->ipi_zone);
485 	INP_LIST_LOCK_DESTROY(pcbinfo);
486 	INP_HASH_LOCK_DESTROY(pcbinfo);
487 	INP_INFO_LOCK_DESTROY(pcbinfo);
488 }
489 
490 /*
491  * Allocate a PCB and associate it with the socket.
492  * On success return with the PCB locked.
493  */
494 int
495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
496 {
497 	struct inpcb *inp;
498 	int error;
499 
500 #ifdef INVARIANTS
501 	if (pcbinfo == &V_tcbinfo) {
502 		INP_INFO_RLOCK_ASSERT(pcbinfo);
503 	} else {
504 		INP_INFO_WLOCK_ASSERT(pcbinfo);
505 	}
506 #endif
507 
508 	error = 0;
509 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
510 	if (inp == NULL)
511 		return (ENOBUFS);
512 	bzero(&inp->inp_start_zero, inp_zero_size);
513 	inp->inp_pcbinfo = pcbinfo;
514 	inp->inp_socket = so;
515 	inp->inp_cred = crhold(so->so_cred);
516 	inp->inp_inc.inc_fibnum = so->so_fibnum;
517 #ifdef MAC
518 	error = mac_inpcb_init(inp, M_NOWAIT);
519 	if (error != 0)
520 		goto out;
521 	mac_inpcb_create(so, inp);
522 #endif
523 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
524 	error = ipsec_init_pcbpolicy(inp);
525 	if (error != 0) {
526 #ifdef MAC
527 		mac_inpcb_destroy(inp);
528 #endif
529 		goto out;
530 	}
531 #endif /*IPSEC*/
532 #ifdef INET6
533 	if (INP_SOCKAF(so) == AF_INET6) {
534 		inp->inp_vflag |= INP_IPV6PROTO;
535 		if (V_ip6_v6only)
536 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
537 	}
538 #endif
539 	INP_WLOCK(inp);
540 	INP_LIST_WLOCK(pcbinfo);
541 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
542 	pcbinfo->ipi_count++;
543 	so->so_pcb = (caddr_t)inp;
544 #ifdef INET6
545 	if (V_ip6_auto_flowlabel)
546 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
547 #endif
548 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
549 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
550 
551 	/*
552 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
553 	 * to be cleaned up.
554 	 */
555 	inp->inp_route.ro_flags = RT_LLE_CACHE;
556 	INP_LIST_WUNLOCK(pcbinfo);
557 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
558 out:
559 	if (error != 0) {
560 		crfree(inp->inp_cred);
561 		uma_zfree(pcbinfo->ipi_zone, inp);
562 	}
563 #endif
564 	return (error);
565 }
566 
567 #ifdef INET
568 int
569 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
570 {
571 	int anonport, error;
572 
573 	INP_WLOCK_ASSERT(inp);
574 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
575 
576 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
577 		return (EINVAL);
578 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
579 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
580 	    &inp->inp_lport, cred);
581 	if (error)
582 		return (error);
583 	if (in_pcbinshash(inp) != 0) {
584 		inp->inp_laddr.s_addr = INADDR_ANY;
585 		inp->inp_lport = 0;
586 		return (EAGAIN);
587 	}
588 	if (anonport)
589 		inp->inp_flags |= INP_ANONPORT;
590 	return (0);
591 }
592 #endif
593 
594 /*
595  * Select a local port (number) to use.
596  */
597 #if defined(INET) || defined(INET6)
598 int
599 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
600     struct ucred *cred, int lookupflags)
601 {
602 	struct inpcbinfo *pcbinfo;
603 	struct inpcb *tmpinp;
604 	unsigned short *lastport;
605 	int count, dorandom, error;
606 	u_short aux, first, last, lport;
607 #ifdef INET
608 	struct in_addr laddr;
609 #endif
610 
611 	pcbinfo = inp->inp_pcbinfo;
612 
613 	/*
614 	 * Because no actual state changes occur here, a global write lock on
615 	 * the pcbinfo isn't required.
616 	 */
617 	INP_LOCK_ASSERT(inp);
618 	INP_HASH_LOCK_ASSERT(pcbinfo);
619 
620 	if (inp->inp_flags & INP_HIGHPORT) {
621 		first = V_ipport_hifirstauto;	/* sysctl */
622 		last  = V_ipport_hilastauto;
623 		lastport = &pcbinfo->ipi_lasthi;
624 	} else if (inp->inp_flags & INP_LOWPORT) {
625 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
626 		if (error)
627 			return (error);
628 		first = V_ipport_lowfirstauto;	/* 1023 */
629 		last  = V_ipport_lowlastauto;	/* 600 */
630 		lastport = &pcbinfo->ipi_lastlow;
631 	} else {
632 		first = V_ipport_firstauto;	/* sysctl */
633 		last  = V_ipport_lastauto;
634 		lastport = &pcbinfo->ipi_lastport;
635 	}
636 	/*
637 	 * For UDP(-Lite), use random port allocation as long as the user
638 	 * allows it.  For TCP (and as of yet unknown) connections,
639 	 * use random port allocation only if the user allows it AND
640 	 * ipport_tick() allows it.
641 	 */
642 	if (V_ipport_randomized &&
643 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
644 		pcbinfo == &V_ulitecbinfo))
645 		dorandom = 1;
646 	else
647 		dorandom = 0;
648 	/*
649 	 * It makes no sense to do random port allocation if
650 	 * we have the only port available.
651 	 */
652 	if (first == last)
653 		dorandom = 0;
654 	/* Make sure to not include UDP(-Lite) packets in the count. */
655 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
656 		V_ipport_tcpallocs++;
657 	/*
658 	 * Instead of having two loops further down counting up or down
659 	 * make sure that first is always <= last and go with only one
660 	 * code path implementing all logic.
661 	 */
662 	if (first > last) {
663 		aux = first;
664 		first = last;
665 		last = aux;
666 	}
667 
668 #ifdef INET
669 	/* Make the compiler happy. */
670 	laddr.s_addr = 0;
671 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
672 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
673 		    __func__, inp));
674 		laddr = *laddrp;
675 	}
676 #endif
677 	tmpinp = NULL;	/* Make compiler happy. */
678 	lport = *lportp;
679 
680 	if (dorandom)
681 		*lastport = first + (arc4random() % (last - first));
682 
683 	count = last - first;
684 
685 	do {
686 		if (count-- < 0)	/* completely used? */
687 			return (EADDRNOTAVAIL);
688 		++*lastport;
689 		if (*lastport < first || *lastport > last)
690 			*lastport = first;
691 		lport = htons(*lastport);
692 
693 #ifdef INET6
694 		if ((inp->inp_vflag & INP_IPV6) != 0)
695 			tmpinp = in6_pcblookup_local(pcbinfo,
696 			    &inp->in6p_laddr, lport, lookupflags, cred);
697 #endif
698 #if defined(INET) && defined(INET6)
699 		else
700 #endif
701 #ifdef INET
702 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
703 			    lport, lookupflags, cred);
704 #endif
705 	} while (tmpinp != NULL);
706 
707 #ifdef INET
708 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
709 		laddrp->s_addr = laddr.s_addr;
710 #endif
711 	*lportp = lport;
712 
713 	return (0);
714 }
715 
716 /*
717  * Return cached socket options.
718  */
719 int
720 inp_so_options(const struct inpcb *inp)
721 {
722 	int so_options;
723 
724 	so_options = 0;
725 
726 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
727 		so_options |= SO_REUSEPORT_LB;
728 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
729 		so_options |= SO_REUSEPORT;
730 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
731 		so_options |= SO_REUSEADDR;
732 	return (so_options);
733 }
734 #endif /* INET || INET6 */
735 
736 /*
737  * Check if a new BINDMULTI socket is allowed to be created.
738  *
739  * ni points to the new inp.
740  * oi points to the exisitng inp.
741  *
742  * This checks whether the existing inp also has BINDMULTI and
743  * whether the credentials match.
744  */
745 int
746 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
747 {
748 	/* Check permissions match */
749 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
750 	    (ni->inp_cred->cr_uid !=
751 	    oi->inp_cred->cr_uid))
752 		return (0);
753 
754 	/* Check the existing inp has BINDMULTI set */
755 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
756 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
757 		return (0);
758 
759 	/*
760 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
761 	 * it is and it matches the checks.
762 	 */
763 	return (1);
764 }
765 
766 #ifdef INET
767 /*
768  * Set up a bind operation on a PCB, performing port allocation
769  * as required, but do not actually modify the PCB. Callers can
770  * either complete the bind by setting inp_laddr/inp_lport and
771  * calling in_pcbinshash(), or they can just use the resulting
772  * port and address to authorise the sending of a once-off packet.
773  *
774  * On error, the values of *laddrp and *lportp are not changed.
775  */
776 int
777 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
778     u_short *lportp, struct ucred *cred)
779 {
780 	struct socket *so = inp->inp_socket;
781 	struct sockaddr_in *sin;
782 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
783 	struct in_addr laddr;
784 	u_short lport = 0;
785 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
786 	int error;
787 
788 	/*
789 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
790 	 * so that we don't have to add to the (already messy) code below.
791 	 */
792 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
793 
794 	/*
795 	 * No state changes, so read locks are sufficient here.
796 	 */
797 	INP_LOCK_ASSERT(inp);
798 	INP_HASH_LOCK_ASSERT(pcbinfo);
799 
800 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
801 		return (EADDRNOTAVAIL);
802 	laddr.s_addr = *laddrp;
803 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
804 		return (EINVAL);
805 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
806 		lookupflags = INPLOOKUP_WILDCARD;
807 	if (nam == NULL) {
808 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
809 			return (error);
810 	} else {
811 		sin = (struct sockaddr_in *)nam;
812 		if (nam->sa_len != sizeof (*sin))
813 			return (EINVAL);
814 #ifdef notdef
815 		/*
816 		 * We should check the family, but old programs
817 		 * incorrectly fail to initialize it.
818 		 */
819 		if (sin->sin_family != AF_INET)
820 			return (EAFNOSUPPORT);
821 #endif
822 		error = prison_local_ip4(cred, &sin->sin_addr);
823 		if (error)
824 			return (error);
825 		if (sin->sin_port != *lportp) {
826 			/* Don't allow the port to change. */
827 			if (*lportp != 0)
828 				return (EINVAL);
829 			lport = sin->sin_port;
830 		}
831 		/* NB: lport is left as 0 if the port isn't being changed. */
832 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
833 			/*
834 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
835 			 * allow complete duplication of binding if
836 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
837 			 * and a multicast address is bound on both
838 			 * new and duplicated sockets.
839 			 */
840 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
841 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
842 			/*
843 			 * XXX: How to deal with SO_REUSEPORT_LB here?
844 			 * Treat same as SO_REUSEPORT for now.
845 			 */
846 			if ((so->so_options &
847 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
848 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
849 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
850 			sin->sin_port = 0;		/* yech... */
851 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
852 			/*
853 			 * Is the address a local IP address?
854 			 * If INP_BINDANY is set, then the socket may be bound
855 			 * to any endpoint address, local or not.
856 			 */
857 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
858 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
859 				return (EADDRNOTAVAIL);
860 		}
861 		laddr = sin->sin_addr;
862 		if (lport) {
863 			struct inpcb *t;
864 			struct tcptw *tw;
865 
866 			/* GROSS */
867 			if (ntohs(lport) <= V_ipport_reservedhigh &&
868 			    ntohs(lport) >= V_ipport_reservedlow &&
869 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
870 				return (EACCES);
871 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
872 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
873 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
874 				    lport, INPLOOKUP_WILDCARD, cred);
875 	/*
876 	 * XXX
877 	 * This entire block sorely needs a rewrite.
878 	 */
879 				if (t &&
880 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
881 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
882 				    (so->so_type != SOCK_STREAM ||
883 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
884 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
885 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
886 				     (t->inp_flags2 & INP_REUSEPORT) ||
887 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
888 				    (inp->inp_cred->cr_uid !=
889 				     t->inp_cred->cr_uid))
890 					return (EADDRINUSE);
891 
892 				/*
893 				 * If the socket is a BINDMULTI socket, then
894 				 * the credentials need to match and the
895 				 * original socket also has to have been bound
896 				 * with BINDMULTI.
897 				 */
898 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
899 					return (EADDRINUSE);
900 			}
901 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
902 			    lport, lookupflags, cred);
903 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
904 				/*
905 				 * XXXRW: If an incpb has had its timewait
906 				 * state recycled, we treat the address as
907 				 * being in use (for now).  This is better
908 				 * than a panic, but not desirable.
909 				 */
910 				tw = intotw(t);
911 				if (tw == NULL ||
912 				    ((reuseport & tw->tw_so_options) == 0 &&
913 					(reuseport_lb &
914 				            tw->tw_so_options) == 0)) {
915 					return (EADDRINUSE);
916 				}
917 			} else if (t &&
918 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
919 				   (reuseport & inp_so_options(t)) == 0 &&
920 				   (reuseport_lb & inp_so_options(t)) == 0) {
921 #ifdef INET6
922 				if (ntohl(sin->sin_addr.s_addr) !=
923 				    INADDR_ANY ||
924 				    ntohl(t->inp_laddr.s_addr) !=
925 				    INADDR_ANY ||
926 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
927 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
928 #endif
929 						return (EADDRINUSE);
930 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
931 					return (EADDRINUSE);
932 			}
933 		}
934 	}
935 	if (*lportp != 0)
936 		lport = *lportp;
937 	if (lport == 0) {
938 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
939 		if (error != 0)
940 			return (error);
941 
942 	}
943 	*laddrp = laddr.s_addr;
944 	*lportp = lport;
945 	return (0);
946 }
947 
948 /*
949  * Connect from a socket to a specified address.
950  * Both address and port must be specified in argument sin.
951  * If don't have a local address for this socket yet,
952  * then pick one.
953  */
954 int
955 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
956     struct ucred *cred, struct mbuf *m)
957 {
958 	u_short lport, fport;
959 	in_addr_t laddr, faddr;
960 	int anonport, error;
961 
962 	INP_WLOCK_ASSERT(inp);
963 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
964 
965 	lport = inp->inp_lport;
966 	laddr = inp->inp_laddr.s_addr;
967 	anonport = (lport == 0);
968 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
969 	    NULL, cred);
970 	if (error)
971 		return (error);
972 
973 	/* Do the initial binding of the local address if required. */
974 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
975 		inp->inp_lport = lport;
976 		inp->inp_laddr.s_addr = laddr;
977 		if (in_pcbinshash(inp) != 0) {
978 			inp->inp_laddr.s_addr = INADDR_ANY;
979 			inp->inp_lport = 0;
980 			return (EAGAIN);
981 		}
982 	}
983 
984 	/* Commit the remaining changes. */
985 	inp->inp_lport = lport;
986 	inp->inp_laddr.s_addr = laddr;
987 	inp->inp_faddr.s_addr = faddr;
988 	inp->inp_fport = fport;
989 	in_pcbrehash_mbuf(inp, m);
990 
991 	if (anonport)
992 		inp->inp_flags |= INP_ANONPORT;
993 	return (0);
994 }
995 
996 int
997 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
998 {
999 
1000 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
1001 }
1002 
1003 /*
1004  * Do proper source address selection on an unbound socket in case
1005  * of connect. Take jails into account as well.
1006  */
1007 int
1008 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1009     struct ucred *cred)
1010 {
1011 	struct ifaddr *ifa;
1012 	struct sockaddr *sa;
1013 	struct sockaddr_in *sin;
1014 	struct route sro;
1015 	struct epoch_tracker et;
1016 	int error;
1017 
1018 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1019 	/*
1020 	 * Bypass source address selection and use the primary jail IP
1021 	 * if requested.
1022 	 */
1023 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1024 		return (0);
1025 
1026 	error = 0;
1027 	bzero(&sro, sizeof(sro));
1028 
1029 	sin = (struct sockaddr_in *)&sro.ro_dst;
1030 	sin->sin_family = AF_INET;
1031 	sin->sin_len = sizeof(struct sockaddr_in);
1032 	sin->sin_addr.s_addr = faddr->s_addr;
1033 
1034 	/*
1035 	 * If route is known our src addr is taken from the i/f,
1036 	 * else punt.
1037 	 *
1038 	 * Find out route to destination.
1039 	 */
1040 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1041 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1042 
1043 	/*
1044 	 * If we found a route, use the address corresponding to
1045 	 * the outgoing interface.
1046 	 *
1047 	 * Otherwise assume faddr is reachable on a directly connected
1048 	 * network and try to find a corresponding interface to take
1049 	 * the source address from.
1050 	 */
1051 	NET_EPOCH_ENTER(et);
1052 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1053 		struct in_ifaddr *ia;
1054 		struct ifnet *ifp;
1055 
1056 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1057 					inp->inp_socket->so_fibnum));
1058 		if (ia == NULL) {
1059 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1060 						inp->inp_socket->so_fibnum));
1061 
1062 		}
1063 		if (ia == NULL) {
1064 			error = ENETUNREACH;
1065 			goto done;
1066 		}
1067 
1068 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1069 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1070 			goto done;
1071 		}
1072 
1073 		ifp = ia->ia_ifp;
1074 		ia = NULL;
1075 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1076 
1077 			sa = ifa->ifa_addr;
1078 			if (sa->sa_family != AF_INET)
1079 				continue;
1080 			sin = (struct sockaddr_in *)sa;
1081 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1082 				ia = (struct in_ifaddr *)ifa;
1083 				break;
1084 			}
1085 		}
1086 		if (ia != NULL) {
1087 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1088 			goto done;
1089 		}
1090 
1091 		/* 3. As a last resort return the 'default' jail address. */
1092 		error = prison_get_ip4(cred, laddr);
1093 		goto done;
1094 	}
1095 
1096 	/*
1097 	 * If the outgoing interface on the route found is not
1098 	 * a loopback interface, use the address from that interface.
1099 	 * In case of jails do those three steps:
1100 	 * 1. check if the interface address belongs to the jail. If so use it.
1101 	 * 2. check if we have any address on the outgoing interface
1102 	 *    belonging to this jail. If so use it.
1103 	 * 3. as a last resort return the 'default' jail address.
1104 	 */
1105 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1106 		struct in_ifaddr *ia;
1107 		struct ifnet *ifp;
1108 
1109 		/* If not jailed, use the default returned. */
1110 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1111 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1112 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1113 			goto done;
1114 		}
1115 
1116 		/* Jailed. */
1117 		/* 1. Check if the iface address belongs to the jail. */
1118 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1119 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1120 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1121 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1122 			goto done;
1123 		}
1124 
1125 		/*
1126 		 * 2. Check if we have any address on the outgoing interface
1127 		 *    belonging to this jail.
1128 		 */
1129 		ia = NULL;
1130 		ifp = sro.ro_rt->rt_ifp;
1131 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1132 			sa = ifa->ifa_addr;
1133 			if (sa->sa_family != AF_INET)
1134 				continue;
1135 			sin = (struct sockaddr_in *)sa;
1136 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1137 				ia = (struct in_ifaddr *)ifa;
1138 				break;
1139 			}
1140 		}
1141 		if (ia != NULL) {
1142 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1143 			goto done;
1144 		}
1145 
1146 		/* 3. As a last resort return the 'default' jail address. */
1147 		error = prison_get_ip4(cred, laddr);
1148 		goto done;
1149 	}
1150 
1151 	/*
1152 	 * The outgoing interface is marked with 'loopback net', so a route
1153 	 * to ourselves is here.
1154 	 * Try to find the interface of the destination address and then
1155 	 * take the address from there. That interface is not necessarily
1156 	 * a loopback interface.
1157 	 * In case of jails, check that it is an address of the jail
1158 	 * and if we cannot find, fall back to the 'default' jail address.
1159 	 */
1160 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1161 		struct sockaddr_in sain;
1162 		struct in_ifaddr *ia;
1163 
1164 		bzero(&sain, sizeof(struct sockaddr_in));
1165 		sain.sin_family = AF_INET;
1166 		sain.sin_len = sizeof(struct sockaddr_in);
1167 		sain.sin_addr.s_addr = faddr->s_addr;
1168 
1169 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1170 					inp->inp_socket->so_fibnum));
1171 		if (ia == NULL)
1172 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1173 						inp->inp_socket->so_fibnum));
1174 		if (ia == NULL)
1175 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1176 
1177 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1178 			if (ia == NULL) {
1179 				error = ENETUNREACH;
1180 				goto done;
1181 			}
1182 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1183 			goto done;
1184 		}
1185 
1186 		/* Jailed. */
1187 		if (ia != NULL) {
1188 			struct ifnet *ifp;
1189 
1190 			ifp = ia->ia_ifp;
1191 			ia = NULL;
1192 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1193 				sa = ifa->ifa_addr;
1194 				if (sa->sa_family != AF_INET)
1195 					continue;
1196 				sin = (struct sockaddr_in *)sa;
1197 				if (prison_check_ip4(cred,
1198 				    &sin->sin_addr) == 0) {
1199 					ia = (struct in_ifaddr *)ifa;
1200 					break;
1201 				}
1202 			}
1203 			if (ia != NULL) {
1204 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1205 				goto done;
1206 			}
1207 		}
1208 
1209 		/* 3. As a last resort return the 'default' jail address. */
1210 		error = prison_get_ip4(cred, laddr);
1211 		goto done;
1212 	}
1213 
1214 done:
1215 	NET_EPOCH_EXIT(et);
1216 	if (sro.ro_rt != NULL)
1217 		RTFREE(sro.ro_rt);
1218 	return (error);
1219 }
1220 
1221 /*
1222  * Set up for a connect from a socket to the specified address.
1223  * On entry, *laddrp and *lportp should contain the current local
1224  * address and port for the PCB; these are updated to the values
1225  * that should be placed in inp_laddr and inp_lport to complete
1226  * the connect.
1227  *
1228  * On success, *faddrp and *fportp will be set to the remote address
1229  * and port. These are not updated in the error case.
1230  *
1231  * If the operation fails because the connection already exists,
1232  * *oinpp will be set to the PCB of that connection so that the
1233  * caller can decide to override it. In all other cases, *oinpp
1234  * is set to NULL.
1235  */
1236 int
1237 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1238     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1239     struct inpcb **oinpp, struct ucred *cred)
1240 {
1241 	struct rm_priotracker in_ifa_tracker;
1242 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1243 	struct in_ifaddr *ia;
1244 	struct inpcb *oinp;
1245 	struct in_addr laddr, faddr;
1246 	u_short lport, fport;
1247 	int error;
1248 
1249 	/*
1250 	 * Because a global state change doesn't actually occur here, a read
1251 	 * lock is sufficient.
1252 	 */
1253 	INP_LOCK_ASSERT(inp);
1254 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1255 
1256 	if (oinpp != NULL)
1257 		*oinpp = NULL;
1258 	if (nam->sa_len != sizeof (*sin))
1259 		return (EINVAL);
1260 	if (sin->sin_family != AF_INET)
1261 		return (EAFNOSUPPORT);
1262 	if (sin->sin_port == 0)
1263 		return (EADDRNOTAVAIL);
1264 	laddr.s_addr = *laddrp;
1265 	lport = *lportp;
1266 	faddr = sin->sin_addr;
1267 	fport = sin->sin_port;
1268 
1269 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1270 		/*
1271 		 * If the destination address is INADDR_ANY,
1272 		 * use the primary local address.
1273 		 * If the supplied address is INADDR_BROADCAST,
1274 		 * and the primary interface supports broadcast,
1275 		 * choose the broadcast address for that interface.
1276 		 */
1277 		if (faddr.s_addr == INADDR_ANY) {
1278 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1279 			faddr =
1280 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1281 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1282 			if (cred != NULL &&
1283 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1284 				return (error);
1285 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1286 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1287 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1288 			    IFF_BROADCAST)
1289 				faddr = satosin(&CK_STAILQ_FIRST(
1290 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1291 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1292 		}
1293 	}
1294 	if (laddr.s_addr == INADDR_ANY) {
1295 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1296 		/*
1297 		 * If the destination address is multicast and an outgoing
1298 		 * interface has been set as a multicast option, prefer the
1299 		 * address of that interface as our source address.
1300 		 */
1301 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1302 		    inp->inp_moptions != NULL) {
1303 			struct ip_moptions *imo;
1304 			struct ifnet *ifp;
1305 
1306 			imo = inp->inp_moptions;
1307 			if (imo->imo_multicast_ifp != NULL) {
1308 				ifp = imo->imo_multicast_ifp;
1309 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1310 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1311 					if ((ia->ia_ifp == ifp) &&
1312 					    (cred == NULL ||
1313 					    prison_check_ip4(cred,
1314 					    &ia->ia_addr.sin_addr) == 0))
1315 						break;
1316 				}
1317 				if (ia == NULL)
1318 					error = EADDRNOTAVAIL;
1319 				else {
1320 					laddr = ia->ia_addr.sin_addr;
1321 					error = 0;
1322 				}
1323 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1324 			}
1325 		}
1326 		if (error)
1327 			return (error);
1328 	}
1329 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1330 	    laddr, lport, 0, NULL);
1331 	if (oinp != NULL) {
1332 		if (oinpp != NULL)
1333 			*oinpp = oinp;
1334 		return (EADDRINUSE);
1335 	}
1336 	if (lport == 0) {
1337 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1338 		    cred);
1339 		if (error)
1340 			return (error);
1341 	}
1342 	*laddrp = laddr.s_addr;
1343 	*lportp = lport;
1344 	*faddrp = faddr.s_addr;
1345 	*fportp = fport;
1346 	return (0);
1347 }
1348 
1349 void
1350 in_pcbdisconnect(struct inpcb *inp)
1351 {
1352 
1353 	INP_WLOCK_ASSERT(inp);
1354 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1355 
1356 	inp->inp_faddr.s_addr = INADDR_ANY;
1357 	inp->inp_fport = 0;
1358 	in_pcbrehash(inp);
1359 }
1360 #endif /* INET */
1361 
1362 /*
1363  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1364  * For most protocols, this will be invoked immediately prior to calling
1365  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1366  * socket, in which case in_pcbfree() is deferred.
1367  */
1368 void
1369 in_pcbdetach(struct inpcb *inp)
1370 {
1371 
1372 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1373 
1374 #ifdef RATELIMIT
1375 	if (inp->inp_snd_tag != NULL)
1376 		in_pcbdetach_txrtlmt(inp);
1377 #endif
1378 	inp->inp_socket->so_pcb = NULL;
1379 	inp->inp_socket = NULL;
1380 }
1381 
1382 /*
1383  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1384  * stability of an inpcb pointer despite the inpcb lock being released.  This
1385  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1386  * but where the inpcb lock may already held, or when acquiring a reference
1387  * via a pcbgroup.
1388  *
1389  * in_pcbref() should be used only to provide brief memory stability, and
1390  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1391  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1392  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1393  * lock and rele are the *only* safe operations that may be performed on the
1394  * inpcb.
1395  *
1396  * While the inpcb will not be freed, releasing the inpcb lock means that the
1397  * connection's state may change, so the caller should be careful to
1398  * revalidate any cached state on reacquiring the lock.  Drop the reference
1399  * using in_pcbrele().
1400  */
1401 void
1402 in_pcbref(struct inpcb *inp)
1403 {
1404 
1405 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1406 
1407 	refcount_acquire(&inp->inp_refcount);
1408 }
1409 
1410 /*
1411  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1412  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1413  * return a flag indicating whether or not the inpcb remains valid.  If it is
1414  * valid, we return with the inpcb lock held.
1415  *
1416  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1417  * reference on an inpcb.  Historically more work was done here (actually, in
1418  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1419  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1420  * about memory stability (and continued use of the write lock).
1421  */
1422 int
1423 in_pcbrele_rlocked(struct inpcb *inp)
1424 {
1425 	struct inpcbinfo *pcbinfo;
1426 
1427 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1428 
1429 	INP_RLOCK_ASSERT(inp);
1430 
1431 	if (refcount_release(&inp->inp_refcount) == 0) {
1432 		/*
1433 		 * If the inpcb has been freed, let the caller know, even if
1434 		 * this isn't the last reference.
1435 		 */
1436 		if (inp->inp_flags2 & INP_FREED) {
1437 			INP_RUNLOCK(inp);
1438 			return (1);
1439 		}
1440 		return (0);
1441 	}
1442 
1443 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1444 #ifdef TCPHPTS
1445 	if (inp->inp_in_hpts || inp->inp_in_input) {
1446 		struct tcp_hpts_entry *hpts;
1447 		/*
1448 		 * We should not be on the hpts at
1449 		 * this point in any form. we must
1450 		 * get the lock to be sure.
1451 		 */
1452 		hpts = tcp_hpts_lock(inp);
1453 		if (inp->inp_in_hpts)
1454 			panic("Hpts:%p inp:%p at free still on hpts",
1455 			      hpts, inp);
1456 		mtx_unlock(&hpts->p_mtx);
1457 		hpts = tcp_input_lock(inp);
1458 		if (inp->inp_in_input)
1459 			panic("Hpts:%p inp:%p at free still on input hpts",
1460 			      hpts, inp);
1461 		mtx_unlock(&hpts->p_mtx);
1462 	}
1463 #endif
1464 	INP_RUNLOCK(inp);
1465 	pcbinfo = inp->inp_pcbinfo;
1466 	uma_zfree(pcbinfo->ipi_zone, inp);
1467 	return (1);
1468 }
1469 
1470 int
1471 in_pcbrele_wlocked(struct inpcb *inp)
1472 {
1473 	struct inpcbinfo *pcbinfo;
1474 
1475 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1476 
1477 	INP_WLOCK_ASSERT(inp);
1478 
1479 	if (refcount_release(&inp->inp_refcount) == 0) {
1480 		/*
1481 		 * If the inpcb has been freed, let the caller know, even if
1482 		 * this isn't the last reference.
1483 		 */
1484 		if (inp->inp_flags2 & INP_FREED) {
1485 			INP_WUNLOCK(inp);
1486 			return (1);
1487 		}
1488 		return (0);
1489 	}
1490 
1491 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1492 #ifdef TCPHPTS
1493 	if (inp->inp_in_hpts || inp->inp_in_input) {
1494 		struct tcp_hpts_entry *hpts;
1495 		/*
1496 		 * We should not be on the hpts at
1497 		 * this point in any form. we must
1498 		 * get the lock to be sure.
1499 		 */
1500 		hpts = tcp_hpts_lock(inp);
1501 		if (inp->inp_in_hpts)
1502 			panic("Hpts:%p inp:%p at free still on hpts",
1503 			      hpts, inp);
1504 		mtx_unlock(&hpts->p_mtx);
1505 		hpts = tcp_input_lock(inp);
1506 		if (inp->inp_in_input)
1507 			panic("Hpts:%p inp:%p at free still on input hpts",
1508 			      hpts, inp);
1509 		mtx_unlock(&hpts->p_mtx);
1510 	}
1511 #endif
1512 	INP_WUNLOCK(inp);
1513 	pcbinfo = inp->inp_pcbinfo;
1514 	uma_zfree(pcbinfo->ipi_zone, inp);
1515 	return (1);
1516 }
1517 
1518 /*
1519  * Temporary wrapper.
1520  */
1521 int
1522 in_pcbrele(struct inpcb *inp)
1523 {
1524 
1525 	return (in_pcbrele_wlocked(inp));
1526 }
1527 
1528 void
1529 in_pcblist_rele_rlocked(epoch_context_t ctx)
1530 {
1531 	struct in_pcblist *il;
1532 	struct inpcb *inp;
1533 	struct inpcbinfo *pcbinfo;
1534 	int i, n;
1535 
1536 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1537 	pcbinfo = il->il_pcbinfo;
1538 	n = il->il_count;
1539 	INP_INFO_WLOCK(pcbinfo);
1540 	for (i = 0; i < n; i++) {
1541 		inp = il->il_inp_list[i];
1542 		INP_RLOCK(inp);
1543 		if (!in_pcbrele_rlocked(inp))
1544 			INP_RUNLOCK(inp);
1545 	}
1546 	INP_INFO_WUNLOCK(pcbinfo);
1547 	free(il, M_TEMP);
1548 }
1549 
1550 static void
1551 inpcbport_free(epoch_context_t ctx)
1552 {
1553 	struct inpcbport *phd;
1554 
1555 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1556 	free(phd, M_PCB);
1557 }
1558 
1559 static void
1560 in_pcbfree_deferred(epoch_context_t ctx)
1561 {
1562 	struct inpcb *inp;
1563 	int released __unused;
1564 
1565 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1566 
1567 	INP_WLOCK(inp);
1568 #ifdef INET
1569 	struct ip_moptions *imo = inp->inp_moptions;
1570 	inp->inp_moptions = NULL;
1571 #endif
1572 	/* XXXRW: Do as much as possible here. */
1573 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1574 	if (inp->inp_sp != NULL)
1575 		ipsec_delete_pcbpolicy(inp);
1576 #endif
1577 #ifdef INET6
1578 	struct ip6_moptions *im6o = NULL;
1579 	if (inp->inp_vflag & INP_IPV6PROTO) {
1580 		ip6_freepcbopts(inp->in6p_outputopts);
1581 		im6o = inp->in6p_moptions;
1582 		inp->in6p_moptions = NULL;
1583 	}
1584 #endif
1585 	if (inp->inp_options)
1586 		(void)m_free(inp->inp_options);
1587 	inp->inp_vflag = 0;
1588 	crfree(inp->inp_cred);
1589 #ifdef MAC
1590 	mac_inpcb_destroy(inp);
1591 #endif
1592 	released = in_pcbrele_wlocked(inp);
1593 	MPASS(released);
1594 #ifdef INET6
1595 	ip6_freemoptions(im6o);
1596 #endif
1597 #ifdef INET
1598 	inp_freemoptions(imo);
1599 #endif
1600 }
1601 
1602 /*
1603  * Unconditionally schedule an inpcb to be freed by decrementing its
1604  * reference count, which should occur only after the inpcb has been detached
1605  * from its socket.  If another thread holds a temporary reference (acquired
1606  * using in_pcbref()) then the free is deferred until that reference is
1607  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1608  * work, including removal from global lists, is done in this context, where
1609  * the pcbinfo lock is held.
1610  */
1611 void
1612 in_pcbfree(struct inpcb *inp)
1613 {
1614 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1615 
1616 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1617 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1618 	    ("%s: called twice for pcb %p", __func__, inp));
1619 	if (inp->inp_flags2 & INP_FREED) {
1620 		INP_WUNLOCK(inp);
1621 		return;
1622 	}
1623 
1624 #ifdef INVARIANTS
1625 	if (pcbinfo == &V_tcbinfo) {
1626 		INP_INFO_LOCK_ASSERT(pcbinfo);
1627 	} else {
1628 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1629 	}
1630 #endif
1631 	INP_WLOCK_ASSERT(inp);
1632 	INP_LIST_WLOCK(pcbinfo);
1633 	in_pcbremlists(inp);
1634 	INP_LIST_WUNLOCK(pcbinfo);
1635 	RO_INVALIDATE_CACHE(&inp->inp_route);
1636 	/* mark as destruction in progress */
1637 	inp->inp_flags2 |= INP_FREED;
1638 	INP_WUNLOCK(inp);
1639 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1640 }
1641 
1642 /*
1643  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1644  * port reservation, and preventing it from being returned by inpcb lookups.
1645  *
1646  * It is used by TCP to mark an inpcb as unused and avoid future packet
1647  * delivery or event notification when a socket remains open but TCP has
1648  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1649  * or a RST on the wire, and allows the port binding to be reused while still
1650  * maintaining the invariant that so_pcb always points to a valid inpcb until
1651  * in_pcbdetach().
1652  *
1653  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1654  * in_pcbnotifyall() and in_pcbpurgeif0()?
1655  */
1656 void
1657 in_pcbdrop(struct inpcb *inp)
1658 {
1659 
1660 	INP_WLOCK_ASSERT(inp);
1661 #ifdef INVARIANTS
1662 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1663 		MPASS(inp->inp_refcount > 1);
1664 #endif
1665 
1666 	/*
1667 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1668 	 * the hash lock...?
1669 	 */
1670 	inp->inp_flags |= INP_DROPPED;
1671 	if (inp->inp_flags & INP_INHASHLIST) {
1672 		struct inpcbport *phd = inp->inp_phd;
1673 
1674 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1675 		in_pcbremlbgrouphash(inp);
1676 		CK_LIST_REMOVE(inp, inp_hash);
1677 		CK_LIST_REMOVE(inp, inp_portlist);
1678 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1679 			CK_LIST_REMOVE(phd, phd_hash);
1680 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
1681 		}
1682 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1683 		inp->inp_flags &= ~INP_INHASHLIST;
1684 #ifdef PCBGROUP
1685 		in_pcbgroup_remove(inp);
1686 #endif
1687 	}
1688 }
1689 
1690 #ifdef INET
1691 /*
1692  * Common routines to return the socket addresses associated with inpcbs.
1693  */
1694 struct sockaddr *
1695 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1696 {
1697 	struct sockaddr_in *sin;
1698 
1699 	sin = malloc(sizeof *sin, M_SONAME,
1700 		M_WAITOK | M_ZERO);
1701 	sin->sin_family = AF_INET;
1702 	sin->sin_len = sizeof(*sin);
1703 	sin->sin_addr = *addr_p;
1704 	sin->sin_port = port;
1705 
1706 	return (struct sockaddr *)sin;
1707 }
1708 
1709 int
1710 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1711 {
1712 	struct inpcb *inp;
1713 	struct in_addr addr;
1714 	in_port_t port;
1715 
1716 	inp = sotoinpcb(so);
1717 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1718 
1719 	INP_RLOCK(inp);
1720 	port = inp->inp_lport;
1721 	addr = inp->inp_laddr;
1722 	INP_RUNLOCK(inp);
1723 
1724 	*nam = in_sockaddr(port, &addr);
1725 	return 0;
1726 }
1727 
1728 int
1729 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1730 {
1731 	struct inpcb *inp;
1732 	struct in_addr addr;
1733 	in_port_t port;
1734 
1735 	inp = sotoinpcb(so);
1736 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1737 
1738 	INP_RLOCK(inp);
1739 	port = inp->inp_fport;
1740 	addr = inp->inp_faddr;
1741 	INP_RUNLOCK(inp);
1742 
1743 	*nam = in_sockaddr(port, &addr);
1744 	return 0;
1745 }
1746 
1747 void
1748 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1749     struct inpcb *(*notify)(struct inpcb *, int))
1750 {
1751 	struct inpcb *inp, *inp_temp;
1752 
1753 	INP_INFO_WLOCK(pcbinfo);
1754 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1755 		INP_WLOCK(inp);
1756 #ifdef INET6
1757 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1758 			INP_WUNLOCK(inp);
1759 			continue;
1760 		}
1761 #endif
1762 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1763 		    inp->inp_socket == NULL) {
1764 			INP_WUNLOCK(inp);
1765 			continue;
1766 		}
1767 		if ((*notify)(inp, errno))
1768 			INP_WUNLOCK(inp);
1769 	}
1770 	INP_INFO_WUNLOCK(pcbinfo);
1771 }
1772 
1773 void
1774 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1775 {
1776 	struct inpcb *inp;
1777 	struct ip_moptions *imo;
1778 	int i, gap;
1779 
1780 	INP_INFO_WLOCK(pcbinfo);
1781 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1782 		INP_WLOCK(inp);
1783 		imo = inp->inp_moptions;
1784 		if ((inp->inp_vflag & INP_IPV4) &&
1785 		    imo != NULL) {
1786 			/*
1787 			 * Unselect the outgoing interface if it is being
1788 			 * detached.
1789 			 */
1790 			if (imo->imo_multicast_ifp == ifp)
1791 				imo->imo_multicast_ifp = NULL;
1792 
1793 			/*
1794 			 * Drop multicast group membership if we joined
1795 			 * through the interface being detached.
1796 			 *
1797 			 * XXX This can all be deferred to an epoch_call
1798 			 */
1799 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1800 			    i++) {
1801 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1802 					IN_MULTI_LOCK_ASSERT();
1803 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1804 					gap++;
1805 				} else if (gap != 0)
1806 					imo->imo_membership[i - gap] =
1807 					    imo->imo_membership[i];
1808 			}
1809 			imo->imo_num_memberships -= gap;
1810 		}
1811 		INP_WUNLOCK(inp);
1812 	}
1813 	INP_INFO_WUNLOCK(pcbinfo);
1814 }
1815 
1816 /*
1817  * Lookup a PCB based on the local address and port.  Caller must hold the
1818  * hash lock.  No inpcb locks or references are acquired.
1819  */
1820 #define INP_LOOKUP_MAPPED_PCB_COST	3
1821 struct inpcb *
1822 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1823     u_short lport, int lookupflags, struct ucred *cred)
1824 {
1825 	struct inpcb *inp;
1826 #ifdef INET6
1827 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1828 #else
1829 	int matchwild = 3;
1830 #endif
1831 	int wildcard;
1832 
1833 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1834 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1835 
1836 	INP_HASH_LOCK_ASSERT(pcbinfo);
1837 
1838 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1839 		struct inpcbhead *head;
1840 		/*
1841 		 * Look for an unconnected (wildcard foreign addr) PCB that
1842 		 * matches the local address and port we're looking for.
1843 		 */
1844 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1845 		    0, pcbinfo->ipi_hashmask)];
1846 		CK_LIST_FOREACH(inp, head, inp_hash) {
1847 #ifdef INET6
1848 			/* XXX inp locking */
1849 			if ((inp->inp_vflag & INP_IPV4) == 0)
1850 				continue;
1851 #endif
1852 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1853 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1854 			    inp->inp_lport == lport) {
1855 				/*
1856 				 * Found?
1857 				 */
1858 				if (cred == NULL ||
1859 				    prison_equal_ip4(cred->cr_prison,
1860 					inp->inp_cred->cr_prison))
1861 					return (inp);
1862 			}
1863 		}
1864 		/*
1865 		 * Not found.
1866 		 */
1867 		return (NULL);
1868 	} else {
1869 		struct inpcbporthead *porthash;
1870 		struct inpcbport *phd;
1871 		struct inpcb *match = NULL;
1872 		/*
1873 		 * Best fit PCB lookup.
1874 		 *
1875 		 * First see if this local port is in use by looking on the
1876 		 * port hash list.
1877 		 */
1878 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1879 		    pcbinfo->ipi_porthashmask)];
1880 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1881 			if (phd->phd_port == lport)
1882 				break;
1883 		}
1884 		if (phd != NULL) {
1885 			/*
1886 			 * Port is in use by one or more PCBs. Look for best
1887 			 * fit.
1888 			 */
1889 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1890 				wildcard = 0;
1891 				if (cred != NULL &&
1892 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1893 					cred->cr_prison))
1894 					continue;
1895 #ifdef INET6
1896 				/* XXX inp locking */
1897 				if ((inp->inp_vflag & INP_IPV4) == 0)
1898 					continue;
1899 				/*
1900 				 * We never select the PCB that has
1901 				 * INP_IPV6 flag and is bound to :: if
1902 				 * we have another PCB which is bound
1903 				 * to 0.0.0.0.  If a PCB has the
1904 				 * INP_IPV6 flag, then we set its cost
1905 				 * higher than IPv4 only PCBs.
1906 				 *
1907 				 * Note that the case only happens
1908 				 * when a socket is bound to ::, under
1909 				 * the condition that the use of the
1910 				 * mapped address is allowed.
1911 				 */
1912 				if ((inp->inp_vflag & INP_IPV6) != 0)
1913 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1914 #endif
1915 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1916 					wildcard++;
1917 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1918 					if (laddr.s_addr == INADDR_ANY)
1919 						wildcard++;
1920 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1921 						continue;
1922 				} else {
1923 					if (laddr.s_addr != INADDR_ANY)
1924 						wildcard++;
1925 				}
1926 				if (wildcard < matchwild) {
1927 					match = inp;
1928 					matchwild = wildcard;
1929 					if (matchwild == 0)
1930 						break;
1931 				}
1932 			}
1933 		}
1934 		return (match);
1935 	}
1936 }
1937 #undef INP_LOOKUP_MAPPED_PCB_COST
1938 
1939 static struct inpcb *
1940 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1941     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1942     uint16_t fport, int lookupflags)
1943 {
1944 	struct inpcb *local_wild;
1945 	const struct inpcblbgrouphead *hdr;
1946 	struct inpcblbgroup *grp;
1947 	uint32_t idx;
1948 
1949 	INP_HASH_LOCK_ASSERT(pcbinfo);
1950 
1951 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1952 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1953 
1954 	/*
1955 	 * Order of socket selection:
1956 	 * 1. non-wild.
1957 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1958 	 *
1959 	 * NOTE:
1960 	 * - Load balanced group does not contain jailed sockets
1961 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1962 	 */
1963 	local_wild = NULL;
1964 	CK_LIST_FOREACH(grp, hdr, il_list) {
1965 #ifdef INET6
1966 		if (!(grp->il_vflag & INP_IPV4))
1967 			continue;
1968 #endif
1969 		if (grp->il_lport != lport)
1970 			continue;
1971 
1972 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1973 		    grp->il_inpcnt;
1974 		if (grp->il_laddr.s_addr == laddr->s_addr)
1975 			return (grp->il_inp[idx]);
1976 		if (grp->il_laddr.s_addr == INADDR_ANY &&
1977 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
1978 			local_wild = grp->il_inp[idx];
1979 	}
1980 	return (local_wild);
1981 }
1982 
1983 #ifdef PCBGROUP
1984 /*
1985  * Lookup PCB in hash list, using pcbgroup tables.
1986  */
1987 static struct inpcb *
1988 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1989     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1990     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1991 {
1992 	struct inpcbhead *head;
1993 	struct inpcb *inp, *tmpinp;
1994 	u_short fport = fport_arg, lport = lport_arg;
1995 	bool locked;
1996 
1997 	/*
1998 	 * First look for an exact match.
1999 	 */
2000 	tmpinp = NULL;
2001 	INP_GROUP_LOCK(pcbgroup);
2002 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2003 	    pcbgroup->ipg_hashmask)];
2004 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2005 #ifdef INET6
2006 		/* XXX inp locking */
2007 		if ((inp->inp_vflag & INP_IPV4) == 0)
2008 			continue;
2009 #endif
2010 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2011 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2012 		    inp->inp_fport == fport &&
2013 		    inp->inp_lport == lport) {
2014 			/*
2015 			 * XXX We should be able to directly return
2016 			 * the inp here, without any checks.
2017 			 * Well unless both bound with SO_REUSEPORT?
2018 			 */
2019 			if (prison_flag(inp->inp_cred, PR_IP4))
2020 				goto found;
2021 			if (tmpinp == NULL)
2022 				tmpinp = inp;
2023 		}
2024 	}
2025 	if (tmpinp != NULL) {
2026 		inp = tmpinp;
2027 		goto found;
2028 	}
2029 
2030 #ifdef	RSS
2031 	/*
2032 	 * For incoming connections, we may wish to do a wildcard
2033 	 * match for an RSS-local socket.
2034 	 */
2035 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2036 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2037 #ifdef INET6
2038 		struct inpcb *local_wild_mapped = NULL;
2039 #endif
2040 		struct inpcb *jail_wild = NULL;
2041 		struct inpcbhead *head;
2042 		int injail;
2043 
2044 		/*
2045 		 * Order of socket selection - we always prefer jails.
2046 		 *      1. jailed, non-wild.
2047 		 *      2. jailed, wild.
2048 		 *      3. non-jailed, non-wild.
2049 		 *      4. non-jailed, wild.
2050 		 */
2051 
2052 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2053 		    lport, 0, pcbgroup->ipg_hashmask)];
2054 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2055 #ifdef INET6
2056 			/* XXX inp locking */
2057 			if ((inp->inp_vflag & INP_IPV4) == 0)
2058 				continue;
2059 #endif
2060 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2061 			    inp->inp_lport != lport)
2062 				continue;
2063 
2064 			injail = prison_flag(inp->inp_cred, PR_IP4);
2065 			if (injail) {
2066 				if (prison_check_ip4(inp->inp_cred,
2067 				    &laddr) != 0)
2068 					continue;
2069 			} else {
2070 				if (local_exact != NULL)
2071 					continue;
2072 			}
2073 
2074 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2075 				if (injail)
2076 					goto found;
2077 				else
2078 					local_exact = inp;
2079 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2080 #ifdef INET6
2081 				/* XXX inp locking, NULL check */
2082 				if (inp->inp_vflag & INP_IPV6PROTO)
2083 					local_wild_mapped = inp;
2084 				else
2085 #endif
2086 					if (injail)
2087 						jail_wild = inp;
2088 					else
2089 						local_wild = inp;
2090 			}
2091 		} /* LIST_FOREACH */
2092 
2093 		inp = jail_wild;
2094 		if (inp == NULL)
2095 			inp = local_exact;
2096 		if (inp == NULL)
2097 			inp = local_wild;
2098 #ifdef INET6
2099 		if (inp == NULL)
2100 			inp = local_wild_mapped;
2101 #endif
2102 		if (inp != NULL)
2103 			goto found;
2104 	}
2105 #endif
2106 
2107 	/*
2108 	 * Then look for a wildcard match, if requested.
2109 	 */
2110 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2111 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2112 #ifdef INET6
2113 		struct inpcb *local_wild_mapped = NULL;
2114 #endif
2115 		struct inpcb *jail_wild = NULL;
2116 		struct inpcbhead *head;
2117 		int injail;
2118 
2119 		/*
2120 		 * Order of socket selection - we always prefer jails.
2121 		 *      1. jailed, non-wild.
2122 		 *      2. jailed, wild.
2123 		 *      3. non-jailed, non-wild.
2124 		 *      4. non-jailed, wild.
2125 		 */
2126 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2127 		    0, pcbinfo->ipi_wildmask)];
2128 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2129 #ifdef INET6
2130 			/* XXX inp locking */
2131 			if ((inp->inp_vflag & INP_IPV4) == 0)
2132 				continue;
2133 #endif
2134 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2135 			    inp->inp_lport != lport)
2136 				continue;
2137 
2138 			injail = prison_flag(inp->inp_cred, PR_IP4);
2139 			if (injail) {
2140 				if (prison_check_ip4(inp->inp_cred,
2141 				    &laddr) != 0)
2142 					continue;
2143 			} else {
2144 				if (local_exact != NULL)
2145 					continue;
2146 			}
2147 
2148 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2149 				if (injail)
2150 					goto found;
2151 				else
2152 					local_exact = inp;
2153 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2154 #ifdef INET6
2155 				/* XXX inp locking, NULL check */
2156 				if (inp->inp_vflag & INP_IPV6PROTO)
2157 					local_wild_mapped = inp;
2158 				else
2159 #endif
2160 					if (injail)
2161 						jail_wild = inp;
2162 					else
2163 						local_wild = inp;
2164 			}
2165 		} /* LIST_FOREACH */
2166 		inp = jail_wild;
2167 		if (inp == NULL)
2168 			inp = local_exact;
2169 		if (inp == NULL)
2170 			inp = local_wild;
2171 #ifdef INET6
2172 		if (inp == NULL)
2173 			inp = local_wild_mapped;
2174 #endif
2175 		if (inp != NULL)
2176 			goto found;
2177 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2178 	INP_GROUP_UNLOCK(pcbgroup);
2179 	return (NULL);
2180 
2181 found:
2182 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2183 		locked = INP_TRY_WLOCK(inp);
2184 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2185 		locked = INP_TRY_RLOCK(inp);
2186 	else
2187 		panic("%s: locking bug", __func__);
2188 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2189 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2190 			INP_WUNLOCK(inp);
2191 		else
2192 			INP_RUNLOCK(inp);
2193 		return (NULL);
2194 	} else if (!locked)
2195 		in_pcbref(inp);
2196 	INP_GROUP_UNLOCK(pcbgroup);
2197 	if (!locked) {
2198 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2199 			INP_WLOCK(inp);
2200 			if (in_pcbrele_wlocked(inp))
2201 				return (NULL);
2202 		} else {
2203 			INP_RLOCK(inp);
2204 			if (in_pcbrele_rlocked(inp))
2205 				return (NULL);
2206 		}
2207 	}
2208 #ifdef INVARIANTS
2209 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2210 		INP_WLOCK_ASSERT(inp);
2211 	else
2212 		INP_RLOCK_ASSERT(inp);
2213 #endif
2214 	return (inp);
2215 }
2216 #endif /* PCBGROUP */
2217 
2218 /*
2219  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2220  * that the caller has locked the hash list, and will not perform any further
2221  * locking or reference operations on either the hash list or the connection.
2222  */
2223 static struct inpcb *
2224 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2225     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2226     struct ifnet *ifp)
2227 {
2228 	struct inpcbhead *head;
2229 	struct inpcb *inp, *tmpinp;
2230 	u_short fport = fport_arg, lport = lport_arg;
2231 
2232 #ifdef INVARIANTS
2233 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2234 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2235 	if (!mtx_owned(&pcbinfo->ipi_hash_lock))
2236 		MPASS(in_epoch_verbose(net_epoch_preempt, 1));
2237 #endif
2238 	/*
2239 	 * First look for an exact match.
2240 	 */
2241 	tmpinp = NULL;
2242 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2243 	    pcbinfo->ipi_hashmask)];
2244 	CK_LIST_FOREACH(inp, head, inp_hash) {
2245 #ifdef INET6
2246 		/* XXX inp locking */
2247 		if ((inp->inp_vflag & INP_IPV4) == 0)
2248 			continue;
2249 #endif
2250 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2251 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2252 		    inp->inp_fport == fport &&
2253 		    inp->inp_lport == lport) {
2254 			/*
2255 			 * XXX We should be able to directly return
2256 			 * the inp here, without any checks.
2257 			 * Well unless both bound with SO_REUSEPORT?
2258 			 */
2259 			if (prison_flag(inp->inp_cred, PR_IP4))
2260 				return (inp);
2261 			if (tmpinp == NULL)
2262 				tmpinp = inp;
2263 		}
2264 	}
2265 	if (tmpinp != NULL)
2266 		return (tmpinp);
2267 
2268 	/*
2269 	 * Then look in lb group (for wildcard match).
2270 	 */
2271 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2272 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2273 		    fport, lookupflags);
2274 		if (inp != NULL)
2275 			return (inp);
2276 	}
2277 
2278 	/*
2279 	 * Then look for a wildcard match, if requested.
2280 	 */
2281 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2282 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2283 #ifdef INET6
2284 		struct inpcb *local_wild_mapped = NULL;
2285 #endif
2286 		struct inpcb *jail_wild = NULL;
2287 		int injail;
2288 
2289 		/*
2290 		 * Order of socket selection - we always prefer jails.
2291 		 *      1. jailed, non-wild.
2292 		 *      2. jailed, wild.
2293 		 *      3. non-jailed, non-wild.
2294 		 *      4. non-jailed, wild.
2295 		 */
2296 
2297 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2298 		    0, pcbinfo->ipi_hashmask)];
2299 		CK_LIST_FOREACH(inp, head, inp_hash) {
2300 #ifdef INET6
2301 			/* XXX inp locking */
2302 			if ((inp->inp_vflag & INP_IPV4) == 0)
2303 				continue;
2304 #endif
2305 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2306 			    inp->inp_lport != lport)
2307 				continue;
2308 
2309 			injail = prison_flag(inp->inp_cred, PR_IP4);
2310 			if (injail) {
2311 				if (prison_check_ip4(inp->inp_cred,
2312 				    &laddr) != 0)
2313 					continue;
2314 			} else {
2315 				if (local_exact != NULL)
2316 					continue;
2317 			}
2318 
2319 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2320 				if (injail)
2321 					return (inp);
2322 				else
2323 					local_exact = inp;
2324 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2325 #ifdef INET6
2326 				/* XXX inp locking, NULL check */
2327 				if (inp->inp_vflag & INP_IPV6PROTO)
2328 					local_wild_mapped = inp;
2329 				else
2330 #endif
2331 					if (injail)
2332 						jail_wild = inp;
2333 					else
2334 						local_wild = inp;
2335 			}
2336 		} /* LIST_FOREACH */
2337 		if (jail_wild != NULL)
2338 			return (jail_wild);
2339 		if (local_exact != NULL)
2340 			return (local_exact);
2341 		if (local_wild != NULL)
2342 			return (local_wild);
2343 #ifdef INET6
2344 		if (local_wild_mapped != NULL)
2345 			return (local_wild_mapped);
2346 #endif
2347 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2348 
2349 	return (NULL);
2350 }
2351 
2352 /*
2353  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2354  * hash list lock, and will return the inpcb locked (i.e., requires
2355  * INPLOOKUP_LOCKPCB).
2356  */
2357 static struct inpcb *
2358 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2359     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2360     struct ifnet *ifp)
2361 {
2362 	struct inpcb *inp;
2363 
2364 	INP_HASH_RLOCK(pcbinfo);
2365 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2366 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2367 	if (inp != NULL) {
2368 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2369 			INP_WLOCK(inp);
2370 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2371 				INP_WUNLOCK(inp);
2372 				inp = NULL;
2373 			}
2374 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2375 			INP_RLOCK(inp);
2376 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2377 				INP_RUNLOCK(inp);
2378 				inp = NULL;
2379 			}
2380 		} else
2381 			panic("%s: locking bug", __func__);
2382 #ifdef INVARIANTS
2383 		if (inp != NULL) {
2384 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2385 				INP_WLOCK_ASSERT(inp);
2386 			else
2387 				INP_RLOCK_ASSERT(inp);
2388 		}
2389 #endif
2390 	}
2391 	INP_HASH_RUNLOCK(pcbinfo);
2392 	return (inp);
2393 }
2394 
2395 /*
2396  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2397  * from which a pre-calculated hash value may be extracted.
2398  *
2399  * Possibly more of this logic should be in in_pcbgroup.c.
2400  */
2401 struct inpcb *
2402 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2403     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2404 {
2405 #if defined(PCBGROUP) && !defined(RSS)
2406 	struct inpcbgroup *pcbgroup;
2407 #endif
2408 
2409 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2410 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2411 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2412 	    ("%s: LOCKPCB not set", __func__));
2413 
2414 	/*
2415 	 * When not using RSS, use connection groups in preference to the
2416 	 * reservation table when looking up 4-tuples.  When using RSS, just
2417 	 * use the reservation table, due to the cost of the Toeplitz hash
2418 	 * in software.
2419 	 *
2420 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2421 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2422 	 * in software.
2423 	 */
2424 #if defined(PCBGROUP) && !defined(RSS)
2425 	if (in_pcbgroup_enabled(pcbinfo)) {
2426 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2427 		    fport);
2428 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2429 		    laddr, lport, lookupflags, ifp));
2430 	}
2431 #endif
2432 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2433 	    lookupflags, ifp));
2434 }
2435 
2436 struct inpcb *
2437 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2438     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2439     struct ifnet *ifp, struct mbuf *m)
2440 {
2441 #ifdef PCBGROUP
2442 	struct inpcbgroup *pcbgroup;
2443 #endif
2444 
2445 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2446 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2447 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2448 	    ("%s: LOCKPCB not set", __func__));
2449 
2450 #ifdef PCBGROUP
2451 	/*
2452 	 * If we can use a hardware-generated hash to look up the connection
2453 	 * group, use that connection group to find the inpcb.  Otherwise
2454 	 * fall back on a software hash -- or the reservation table if we're
2455 	 * using RSS.
2456 	 *
2457 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2458 	 */
2459 	if (in_pcbgroup_enabled(pcbinfo) &&
2460 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2461 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2462 		    m->m_pkthdr.flowid);
2463 		if (pcbgroup != NULL)
2464 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2465 			    fport, laddr, lport, lookupflags, ifp));
2466 #ifndef RSS
2467 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2468 		    fport);
2469 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2470 		    laddr, lport, lookupflags, ifp));
2471 #endif
2472 	}
2473 #endif
2474 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2475 	    lookupflags, ifp));
2476 }
2477 #endif /* INET */
2478 
2479 /*
2480  * Insert PCB onto various hash lists.
2481  */
2482 static int
2483 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2484 {
2485 	struct inpcbhead *pcbhash;
2486 	struct inpcbporthead *pcbporthash;
2487 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2488 	struct inpcbport *phd;
2489 	u_int32_t hashkey_faddr;
2490 	int so_options;
2491 
2492 	INP_WLOCK_ASSERT(inp);
2493 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2494 
2495 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2496 	    ("in_pcbinshash: INP_INHASHLIST"));
2497 
2498 #ifdef INET6
2499 	if (inp->inp_vflag & INP_IPV6)
2500 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2501 	else
2502 #endif
2503 	hashkey_faddr = inp->inp_faddr.s_addr;
2504 
2505 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2506 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2507 
2508 	pcbporthash = &pcbinfo->ipi_porthashbase[
2509 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2510 
2511 	/*
2512 	 * Add entry to load balance group.
2513 	 * Only do this if SO_REUSEPORT_LB is set.
2514 	 */
2515 	so_options = inp_so_options(inp);
2516 	if (so_options & SO_REUSEPORT_LB) {
2517 		int ret = in_pcbinslbgrouphash(inp);
2518 		if (ret) {
2519 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2520 			return (ret);
2521 		}
2522 	}
2523 
2524 	/*
2525 	 * Go through port list and look for a head for this lport.
2526 	 */
2527 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2528 		if (phd->phd_port == inp->inp_lport)
2529 			break;
2530 	}
2531 	/*
2532 	 * If none exists, malloc one and tack it on.
2533 	 */
2534 	if (phd == NULL) {
2535 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2536 		if (phd == NULL) {
2537 			return (ENOBUFS); /* XXX */
2538 		}
2539 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2540 		phd->phd_port = inp->inp_lport;
2541 		CK_LIST_INIT(&phd->phd_pcblist);
2542 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2543 	}
2544 	inp->inp_phd = phd;
2545 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2546 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2547 	inp->inp_flags |= INP_INHASHLIST;
2548 #ifdef PCBGROUP
2549 	if (do_pcbgroup_update)
2550 		in_pcbgroup_update(inp);
2551 #endif
2552 	return (0);
2553 }
2554 
2555 /*
2556  * For now, there are two public interfaces to insert an inpcb into the hash
2557  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2558  * is used only in the TCP syncache, where in_pcbinshash is called before the
2559  * full 4-tuple is set for the inpcb, and we don't want to install in the
2560  * pcbgroup until later.
2561  *
2562  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2563  * connection groups, and partially initialised inpcbs should not be exposed
2564  * to either reservation hash tables or pcbgroups.
2565  */
2566 int
2567 in_pcbinshash(struct inpcb *inp)
2568 {
2569 
2570 	return (in_pcbinshash_internal(inp, 1));
2571 }
2572 
2573 int
2574 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2575 {
2576 
2577 	return (in_pcbinshash_internal(inp, 0));
2578 }
2579 
2580 /*
2581  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2582  * changed. NOTE: This does not handle the case of the lport changing (the
2583  * hashed port list would have to be updated as well), so the lport must
2584  * not change after in_pcbinshash() has been called.
2585  */
2586 void
2587 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2588 {
2589 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2590 	struct inpcbhead *head;
2591 	u_int32_t hashkey_faddr;
2592 
2593 	INP_WLOCK_ASSERT(inp);
2594 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2595 
2596 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2597 	    ("in_pcbrehash: !INP_INHASHLIST"));
2598 
2599 #ifdef INET6
2600 	if (inp->inp_vflag & INP_IPV6)
2601 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2602 	else
2603 #endif
2604 	hashkey_faddr = inp->inp_faddr.s_addr;
2605 
2606 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2607 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2608 
2609 	CK_LIST_REMOVE(inp, inp_hash);
2610 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2611 
2612 #ifdef PCBGROUP
2613 	if (m != NULL)
2614 		in_pcbgroup_update_mbuf(inp, m);
2615 	else
2616 		in_pcbgroup_update(inp);
2617 #endif
2618 }
2619 
2620 void
2621 in_pcbrehash(struct inpcb *inp)
2622 {
2623 
2624 	in_pcbrehash_mbuf(inp, NULL);
2625 }
2626 
2627 /*
2628  * Remove PCB from various lists.
2629  */
2630 static void
2631 in_pcbremlists(struct inpcb *inp)
2632 {
2633 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2634 
2635 #ifdef INVARIANTS
2636 	if (pcbinfo == &V_tcbinfo) {
2637 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2638 	} else {
2639 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2640 	}
2641 #endif
2642 
2643 	INP_WLOCK_ASSERT(inp);
2644 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2645 
2646 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2647 	if (inp->inp_flags & INP_INHASHLIST) {
2648 		struct inpcbport *phd = inp->inp_phd;
2649 
2650 		INP_HASH_WLOCK(pcbinfo);
2651 
2652 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2653 		in_pcbremlbgrouphash(inp);
2654 
2655 		CK_LIST_REMOVE(inp, inp_hash);
2656 		CK_LIST_REMOVE(inp, inp_portlist);
2657 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2658 			CK_LIST_REMOVE(phd, phd_hash);
2659 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
2660 		}
2661 		INP_HASH_WUNLOCK(pcbinfo);
2662 		inp->inp_flags &= ~INP_INHASHLIST;
2663 	}
2664 	CK_LIST_REMOVE(inp, inp_list);
2665 	pcbinfo->ipi_count--;
2666 #ifdef PCBGROUP
2667 	in_pcbgroup_remove(inp);
2668 #endif
2669 }
2670 
2671 /*
2672  * Check for alternatives when higher level complains
2673  * about service problems.  For now, invalidate cached
2674  * routing information.  If the route was created dynamically
2675  * (by a redirect), time to try a default gateway again.
2676  */
2677 void
2678 in_losing(struct inpcb *inp)
2679 {
2680 
2681 	RO_INVALIDATE_CACHE(&inp->inp_route);
2682 	return;
2683 }
2684 
2685 /*
2686  * A set label operation has occurred at the socket layer, propagate the
2687  * label change into the in_pcb for the socket.
2688  */
2689 void
2690 in_pcbsosetlabel(struct socket *so)
2691 {
2692 #ifdef MAC
2693 	struct inpcb *inp;
2694 
2695 	inp = sotoinpcb(so);
2696 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2697 
2698 	INP_WLOCK(inp);
2699 	SOCK_LOCK(so);
2700 	mac_inpcb_sosetlabel(so, inp);
2701 	SOCK_UNLOCK(so);
2702 	INP_WUNLOCK(inp);
2703 #endif
2704 }
2705 
2706 /*
2707  * ipport_tick runs once per second, determining if random port allocation
2708  * should be continued.  If more than ipport_randomcps ports have been
2709  * allocated in the last second, then we return to sequential port
2710  * allocation. We return to random allocation only once we drop below
2711  * ipport_randomcps for at least ipport_randomtime seconds.
2712  */
2713 static void
2714 ipport_tick(void *xtp)
2715 {
2716 	VNET_ITERATOR_DECL(vnet_iter);
2717 
2718 	VNET_LIST_RLOCK_NOSLEEP();
2719 	VNET_FOREACH(vnet_iter) {
2720 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2721 		if (V_ipport_tcpallocs <=
2722 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2723 			if (V_ipport_stoprandom > 0)
2724 				V_ipport_stoprandom--;
2725 		} else
2726 			V_ipport_stoprandom = V_ipport_randomtime;
2727 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2728 		CURVNET_RESTORE();
2729 	}
2730 	VNET_LIST_RUNLOCK_NOSLEEP();
2731 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2732 }
2733 
2734 static void
2735 ip_fini(void *xtp)
2736 {
2737 
2738 	callout_stop(&ipport_tick_callout);
2739 }
2740 
2741 /*
2742  * The ipport_callout should start running at about the time we attach the
2743  * inet or inet6 domains.
2744  */
2745 static void
2746 ipport_tick_init(const void *unused __unused)
2747 {
2748 
2749 	/* Start ipport_tick. */
2750 	callout_init(&ipport_tick_callout, 1);
2751 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2752 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2753 		SHUTDOWN_PRI_DEFAULT);
2754 }
2755 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2756     ipport_tick_init, NULL);
2757 
2758 void
2759 inp_wlock(struct inpcb *inp)
2760 {
2761 
2762 	INP_WLOCK(inp);
2763 }
2764 
2765 void
2766 inp_wunlock(struct inpcb *inp)
2767 {
2768 
2769 	INP_WUNLOCK(inp);
2770 }
2771 
2772 void
2773 inp_rlock(struct inpcb *inp)
2774 {
2775 
2776 	INP_RLOCK(inp);
2777 }
2778 
2779 void
2780 inp_runlock(struct inpcb *inp)
2781 {
2782 
2783 	INP_RUNLOCK(inp);
2784 }
2785 
2786 #ifdef INVARIANT_SUPPORT
2787 void
2788 inp_lock_assert(struct inpcb *inp)
2789 {
2790 
2791 	INP_WLOCK_ASSERT(inp);
2792 }
2793 
2794 void
2795 inp_unlock_assert(struct inpcb *inp)
2796 {
2797 
2798 	INP_UNLOCK_ASSERT(inp);
2799 }
2800 #endif
2801 
2802 void
2803 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2804 {
2805 	struct inpcb *inp;
2806 
2807 	INP_INFO_WLOCK(&V_tcbinfo);
2808 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2809 		INP_WLOCK(inp);
2810 		func(inp, arg);
2811 		INP_WUNLOCK(inp);
2812 	}
2813 	INP_INFO_WUNLOCK(&V_tcbinfo);
2814 }
2815 
2816 struct socket *
2817 inp_inpcbtosocket(struct inpcb *inp)
2818 {
2819 
2820 	INP_WLOCK_ASSERT(inp);
2821 	return (inp->inp_socket);
2822 }
2823 
2824 struct tcpcb *
2825 inp_inpcbtotcpcb(struct inpcb *inp)
2826 {
2827 
2828 	INP_WLOCK_ASSERT(inp);
2829 	return ((struct tcpcb *)inp->inp_ppcb);
2830 }
2831 
2832 int
2833 inp_ip_tos_get(const struct inpcb *inp)
2834 {
2835 
2836 	return (inp->inp_ip_tos);
2837 }
2838 
2839 void
2840 inp_ip_tos_set(struct inpcb *inp, int val)
2841 {
2842 
2843 	inp->inp_ip_tos = val;
2844 }
2845 
2846 void
2847 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2848     uint32_t *faddr, uint16_t *fp)
2849 {
2850 
2851 	INP_LOCK_ASSERT(inp);
2852 	*laddr = inp->inp_laddr.s_addr;
2853 	*faddr = inp->inp_faddr.s_addr;
2854 	*lp = inp->inp_lport;
2855 	*fp = inp->inp_fport;
2856 }
2857 
2858 struct inpcb *
2859 so_sotoinpcb(struct socket *so)
2860 {
2861 
2862 	return (sotoinpcb(so));
2863 }
2864 
2865 struct tcpcb *
2866 so_sototcpcb(struct socket *so)
2867 {
2868 
2869 	return (sototcpcb(so));
2870 }
2871 
2872 /*
2873  * Create an external-format (``xinpcb'') structure using the information in
2874  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2875  * reduce the spew of irrelevant information over this interface, to isolate
2876  * user code from changes in the kernel structure, and potentially to provide
2877  * information-hiding if we decide that some of this information should be
2878  * hidden from users.
2879  */
2880 void
2881 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2882 {
2883 
2884 	bzero(xi, sizeof(*xi));
2885 	xi->xi_len = sizeof(struct xinpcb);
2886 	if (inp->inp_socket)
2887 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2888 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2889 	xi->inp_gencnt = inp->inp_gencnt;
2890 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2891 	xi->inp_flow = inp->inp_flow;
2892 	xi->inp_flowid = inp->inp_flowid;
2893 	xi->inp_flowtype = inp->inp_flowtype;
2894 	xi->inp_flags = inp->inp_flags;
2895 	xi->inp_flags2 = inp->inp_flags2;
2896 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2897 	xi->in6p_cksum = inp->in6p_cksum;
2898 	xi->in6p_hops = inp->in6p_hops;
2899 	xi->inp_ip_tos = inp->inp_ip_tos;
2900 	xi->inp_vflag = inp->inp_vflag;
2901 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2902 	xi->inp_ip_p = inp->inp_ip_p;
2903 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2904 }
2905 
2906 #ifdef DDB
2907 static void
2908 db_print_indent(int indent)
2909 {
2910 	int i;
2911 
2912 	for (i = 0; i < indent; i++)
2913 		db_printf(" ");
2914 }
2915 
2916 static void
2917 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2918 {
2919 	char faddr_str[48], laddr_str[48];
2920 
2921 	db_print_indent(indent);
2922 	db_printf("%s at %p\n", name, inc);
2923 
2924 	indent += 2;
2925 
2926 #ifdef INET6
2927 	if (inc->inc_flags & INC_ISIPV6) {
2928 		/* IPv6. */
2929 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2930 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2931 	} else
2932 #endif
2933 	{
2934 		/* IPv4. */
2935 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2936 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2937 	}
2938 	db_print_indent(indent);
2939 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2940 	    ntohs(inc->inc_lport));
2941 	db_print_indent(indent);
2942 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2943 	    ntohs(inc->inc_fport));
2944 }
2945 
2946 static void
2947 db_print_inpflags(int inp_flags)
2948 {
2949 	int comma;
2950 
2951 	comma = 0;
2952 	if (inp_flags & INP_RECVOPTS) {
2953 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2954 		comma = 1;
2955 	}
2956 	if (inp_flags & INP_RECVRETOPTS) {
2957 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2958 		comma = 1;
2959 	}
2960 	if (inp_flags & INP_RECVDSTADDR) {
2961 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2962 		comma = 1;
2963 	}
2964 	if (inp_flags & INP_ORIGDSTADDR) {
2965 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2966 		comma = 1;
2967 	}
2968 	if (inp_flags & INP_HDRINCL) {
2969 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2970 		comma = 1;
2971 	}
2972 	if (inp_flags & INP_HIGHPORT) {
2973 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2974 		comma = 1;
2975 	}
2976 	if (inp_flags & INP_LOWPORT) {
2977 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2978 		comma = 1;
2979 	}
2980 	if (inp_flags & INP_ANONPORT) {
2981 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2982 		comma = 1;
2983 	}
2984 	if (inp_flags & INP_RECVIF) {
2985 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2986 		comma = 1;
2987 	}
2988 	if (inp_flags & INP_MTUDISC) {
2989 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2990 		comma = 1;
2991 	}
2992 	if (inp_flags & INP_RECVTTL) {
2993 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2994 		comma = 1;
2995 	}
2996 	if (inp_flags & INP_DONTFRAG) {
2997 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2998 		comma = 1;
2999 	}
3000 	if (inp_flags & INP_RECVTOS) {
3001 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3002 		comma = 1;
3003 	}
3004 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3005 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3006 		comma = 1;
3007 	}
3008 	if (inp_flags & IN6P_PKTINFO) {
3009 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3010 		comma = 1;
3011 	}
3012 	if (inp_flags & IN6P_HOPLIMIT) {
3013 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3014 		comma = 1;
3015 	}
3016 	if (inp_flags & IN6P_HOPOPTS) {
3017 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3018 		comma = 1;
3019 	}
3020 	if (inp_flags & IN6P_DSTOPTS) {
3021 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3022 		comma = 1;
3023 	}
3024 	if (inp_flags & IN6P_RTHDR) {
3025 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3026 		comma = 1;
3027 	}
3028 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3029 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3030 		comma = 1;
3031 	}
3032 	if (inp_flags & IN6P_TCLASS) {
3033 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3034 		comma = 1;
3035 	}
3036 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3037 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3038 		comma = 1;
3039 	}
3040 	if (inp_flags & INP_TIMEWAIT) {
3041 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3042 		comma  = 1;
3043 	}
3044 	if (inp_flags & INP_ONESBCAST) {
3045 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3046 		comma  = 1;
3047 	}
3048 	if (inp_flags & INP_DROPPED) {
3049 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3050 		comma  = 1;
3051 	}
3052 	if (inp_flags & INP_SOCKREF) {
3053 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3054 		comma  = 1;
3055 	}
3056 	if (inp_flags & IN6P_RFC2292) {
3057 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3058 		comma = 1;
3059 	}
3060 	if (inp_flags & IN6P_MTU) {
3061 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3062 		comma = 1;
3063 	}
3064 }
3065 
3066 static void
3067 db_print_inpvflag(u_char inp_vflag)
3068 {
3069 	int comma;
3070 
3071 	comma = 0;
3072 	if (inp_vflag & INP_IPV4) {
3073 		db_printf("%sINP_IPV4", comma ? ", " : "");
3074 		comma  = 1;
3075 	}
3076 	if (inp_vflag & INP_IPV6) {
3077 		db_printf("%sINP_IPV6", comma ? ", " : "");
3078 		comma  = 1;
3079 	}
3080 	if (inp_vflag & INP_IPV6PROTO) {
3081 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3082 		comma  = 1;
3083 	}
3084 }
3085 
3086 static void
3087 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3088 {
3089 
3090 	db_print_indent(indent);
3091 	db_printf("%s at %p\n", name, inp);
3092 
3093 	indent += 2;
3094 
3095 	db_print_indent(indent);
3096 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3097 
3098 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3099 
3100 	db_print_indent(indent);
3101 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3102 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3103 
3104 	db_print_indent(indent);
3105 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3106 	   inp->inp_label, inp->inp_flags);
3107 	db_print_inpflags(inp->inp_flags);
3108 	db_printf(")\n");
3109 
3110 	db_print_indent(indent);
3111 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3112 	    inp->inp_vflag);
3113 	db_print_inpvflag(inp->inp_vflag);
3114 	db_printf(")\n");
3115 
3116 	db_print_indent(indent);
3117 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3118 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3119 
3120 	db_print_indent(indent);
3121 #ifdef INET6
3122 	if (inp->inp_vflag & INP_IPV6) {
3123 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3124 		    "in6p_moptions: %p\n", inp->in6p_options,
3125 		    inp->in6p_outputopts, inp->in6p_moptions);
3126 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3127 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3128 		    inp->in6p_hops);
3129 	} else
3130 #endif
3131 	{
3132 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3133 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3134 		    inp->inp_options, inp->inp_moptions);
3135 	}
3136 
3137 	db_print_indent(indent);
3138 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3139 	    (uintmax_t)inp->inp_gencnt);
3140 }
3141 
3142 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3143 {
3144 	struct inpcb *inp;
3145 
3146 	if (!have_addr) {
3147 		db_printf("usage: show inpcb <addr>\n");
3148 		return;
3149 	}
3150 	inp = (struct inpcb *)addr;
3151 
3152 	db_print_inpcb(inp, "inpcb", 0);
3153 }
3154 #endif /* DDB */
3155 
3156 #ifdef RATELIMIT
3157 /*
3158  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3159  * if any.
3160  */
3161 int
3162 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3163 {
3164 	union if_snd_tag_modify_params params = {
3165 		.rate_limit.max_rate = max_pacing_rate,
3166 	};
3167 	struct m_snd_tag *mst;
3168 	struct ifnet *ifp;
3169 	int error;
3170 
3171 	mst = inp->inp_snd_tag;
3172 	if (mst == NULL)
3173 		return (EINVAL);
3174 
3175 	ifp = mst->ifp;
3176 	if (ifp == NULL)
3177 		return (EINVAL);
3178 
3179 	if (ifp->if_snd_tag_modify == NULL) {
3180 		error = EOPNOTSUPP;
3181 	} else {
3182 		error = ifp->if_snd_tag_modify(mst, &params);
3183 	}
3184 	return (error);
3185 }
3186 
3187 /*
3188  * Query existing TX rate limit based on the existing
3189  * "inp->inp_snd_tag", if any.
3190  */
3191 int
3192 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3193 {
3194 	union if_snd_tag_query_params params = { };
3195 	struct m_snd_tag *mst;
3196 	struct ifnet *ifp;
3197 	int error;
3198 
3199 	mst = inp->inp_snd_tag;
3200 	if (mst == NULL)
3201 		return (EINVAL);
3202 
3203 	ifp = mst->ifp;
3204 	if (ifp == NULL)
3205 		return (EINVAL);
3206 
3207 	if (ifp->if_snd_tag_query == NULL) {
3208 		error = EOPNOTSUPP;
3209 	} else {
3210 		error = ifp->if_snd_tag_query(mst, &params);
3211 		if (error == 0 &&  p_max_pacing_rate != NULL)
3212 			*p_max_pacing_rate = params.rate_limit.max_rate;
3213 	}
3214 	return (error);
3215 }
3216 
3217 /*
3218  * Query existing TX queue level based on the existing
3219  * "inp->inp_snd_tag", if any.
3220  */
3221 int
3222 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3223 {
3224 	union if_snd_tag_query_params params = { };
3225 	struct m_snd_tag *mst;
3226 	struct ifnet *ifp;
3227 	int error;
3228 
3229 	mst = inp->inp_snd_tag;
3230 	if (mst == NULL)
3231 		return (EINVAL);
3232 
3233 	ifp = mst->ifp;
3234 	if (ifp == NULL)
3235 		return (EINVAL);
3236 
3237 	if (ifp->if_snd_tag_query == NULL)
3238 		return (EOPNOTSUPP);
3239 
3240 	error = ifp->if_snd_tag_query(mst, &params);
3241 	if (error == 0 &&  p_txqueue_level != NULL)
3242 		*p_txqueue_level = params.rate_limit.queue_level;
3243 	return (error);
3244 }
3245 
3246 /*
3247  * Allocate a new TX rate limit send tag from the network interface
3248  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3249  */
3250 int
3251 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3252     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
3253 {
3254 	union if_snd_tag_alloc_params params = {
3255 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3256 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3257 		.rate_limit.hdr.flowid = flowid,
3258 		.rate_limit.hdr.flowtype = flowtype,
3259 		.rate_limit.max_rate = max_pacing_rate,
3260 	};
3261 	int error;
3262 
3263 	INP_WLOCK_ASSERT(inp);
3264 
3265 	if (inp->inp_snd_tag != NULL)
3266 		return (EINVAL);
3267 
3268 	if (ifp->if_snd_tag_alloc == NULL) {
3269 		error = EOPNOTSUPP;
3270 	} else {
3271 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3272 
3273 		/*
3274 		 * At success increment the refcount on
3275 		 * the send tag's network interface:
3276 		 */
3277 		if (error == 0)
3278 			if_ref(inp->inp_snd_tag->ifp);
3279 	}
3280 	return (error);
3281 }
3282 
3283 /*
3284  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3285  * if any:
3286  */
3287 void
3288 in_pcbdetach_txrtlmt(struct inpcb *inp)
3289 {
3290 	struct m_snd_tag *mst;
3291 	struct ifnet *ifp;
3292 
3293 	INP_WLOCK_ASSERT(inp);
3294 
3295 	mst = inp->inp_snd_tag;
3296 	inp->inp_snd_tag = NULL;
3297 
3298 	if (mst == NULL)
3299 		return;
3300 
3301 	ifp = mst->ifp;
3302 	if (ifp == NULL)
3303 		return;
3304 
3305 	/*
3306 	 * If the device was detached while we still had reference(s)
3307 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3308 	 * stubs.
3309 	 */
3310 	ifp->if_snd_tag_free(mst);
3311 
3312 	/* release reference count on network interface */
3313 	if_rele(ifp);
3314 }
3315 
3316 /*
3317  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3318  * is set in the fast path and will attach/detach/modify the TX rate
3319  * limit send tag based on the socket's so_max_pacing_rate value.
3320  */
3321 void
3322 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3323 {
3324 	struct socket *socket;
3325 	uint32_t max_pacing_rate;
3326 	bool did_upgrade;
3327 	int error;
3328 
3329 	if (inp == NULL)
3330 		return;
3331 
3332 	socket = inp->inp_socket;
3333 	if (socket == NULL)
3334 		return;
3335 
3336 	if (!INP_WLOCKED(inp)) {
3337 		/*
3338 		 * NOTE: If the write locking fails, we need to bail
3339 		 * out and use the non-ratelimited ring for the
3340 		 * transmit until there is a new chance to get the
3341 		 * write lock.
3342 		 */
3343 		if (!INP_TRY_UPGRADE(inp))
3344 			return;
3345 		did_upgrade = 1;
3346 	} else {
3347 		did_upgrade = 0;
3348 	}
3349 
3350 	/*
3351 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3352 	 * because atomic updates are not required since the variable
3353 	 * is checked at every mbuf we send. It is assumed that the
3354 	 * variable read itself will be atomic.
3355 	 */
3356 	max_pacing_rate = socket->so_max_pacing_rate;
3357 
3358 	/*
3359 	 * NOTE: When attaching to a network interface a reference is
3360 	 * made to ensure the network interface doesn't go away until
3361 	 * all ratelimit connections are gone. The network interface
3362 	 * pointers compared below represent valid network interfaces,
3363 	 * except when comparing towards NULL.
3364 	 */
3365 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3366 		error = 0;
3367 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3368 		if (inp->inp_snd_tag != NULL)
3369 			in_pcbdetach_txrtlmt(inp);
3370 		error = 0;
3371 	} else if (inp->inp_snd_tag == NULL) {
3372 		/*
3373 		 * In order to utilize packet pacing with RSS, we need
3374 		 * to wait until there is a valid RSS hash before we
3375 		 * can proceed:
3376 		 */
3377 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3378 			error = EAGAIN;
3379 		} else {
3380 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3381 			    mb->m_pkthdr.flowid, max_pacing_rate);
3382 		}
3383 	} else {
3384 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3385 	}
3386 	if (error == 0 || error == EOPNOTSUPP)
3387 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3388 	if (did_upgrade)
3389 		INP_DOWNGRADE(inp);
3390 }
3391 
3392 /*
3393  * Track route changes for TX rate limiting.
3394  */
3395 void
3396 in_pcboutput_eagain(struct inpcb *inp)
3397 {
3398 	struct socket *socket;
3399 	bool did_upgrade;
3400 
3401 	if (inp == NULL)
3402 		return;
3403 
3404 	socket = inp->inp_socket;
3405 	if (socket == NULL)
3406 		return;
3407 
3408 	if (inp->inp_snd_tag == NULL)
3409 		return;
3410 
3411 	if (!INP_WLOCKED(inp)) {
3412 		/*
3413 		 * NOTE: If the write locking fails, we need to bail
3414 		 * out and use the non-ratelimited ring for the
3415 		 * transmit until there is a new chance to get the
3416 		 * write lock.
3417 		 */
3418 		if (!INP_TRY_UPGRADE(inp))
3419 			return;
3420 		did_upgrade = 1;
3421 	} else {
3422 		did_upgrade = 0;
3423 	}
3424 
3425 	/* detach rate limiting */
3426 	in_pcbdetach_txrtlmt(inp);
3427 
3428 	/* make sure new mbuf send tag allocation is made */
3429 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3430 
3431 	if (did_upgrade)
3432 		INP_DOWNGRADE(inp);
3433 }
3434 #endif /* RATELIMIT */
3435