1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free_deferred(epoch_context_t ctx) 244 { 245 struct inpcblbgroup *grp; 246 247 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 248 free(grp, M_PCB); 249 } 250 251 static void 252 in_pcblbgroup_free(struct inpcblbgroup *grp) 253 { 254 255 CK_LIST_REMOVE(grp, il_list); 256 epoch_call(net_epoch_preempt, &grp->il_epoch_ctx, 257 in_pcblbgroup_free_deferred); 258 } 259 260 static struct inpcblbgroup * 261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 262 struct inpcblbgroup *old_grp, int size) 263 { 264 struct inpcblbgroup *grp; 265 int i; 266 267 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 268 old_grp->il_lport, &old_grp->il_dependladdr, size); 269 if (grp == NULL) 270 return (NULL); 271 272 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 273 ("invalid new local group size %d and old local group count %d", 274 grp->il_inpsiz, old_grp->il_inpcnt)); 275 276 for (i = 0; i < old_grp->il_inpcnt; ++i) 277 grp->il_inp[i] = old_grp->il_inp[i]; 278 grp->il_inpcnt = old_grp->il_inpcnt; 279 in_pcblbgroup_free(old_grp); 280 return (grp); 281 } 282 283 /* 284 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 285 * and shrink group if possible. 286 */ 287 static void 288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 289 int i) 290 { 291 struct inpcblbgroup *grp, *new_grp; 292 293 grp = *grpp; 294 for (; i + 1 < grp->il_inpcnt; ++i) 295 grp->il_inp[i] = grp->il_inp[i + 1]; 296 grp->il_inpcnt--; 297 298 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 299 grp->il_inpcnt <= grp->il_inpsiz / 4) { 300 /* Shrink this group. */ 301 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 302 if (new_grp != NULL) 303 *grpp = new_grp; 304 } 305 } 306 307 /* 308 * Add PCB to load balance group for SO_REUSEPORT_LB option. 309 */ 310 static int 311 in_pcbinslbgrouphash(struct inpcb *inp) 312 { 313 const static struct timeval interval = { 60, 0 }; 314 static struct timeval lastprint; 315 struct inpcbinfo *pcbinfo; 316 struct inpcblbgrouphead *hdr; 317 struct inpcblbgroup *grp; 318 uint32_t idx; 319 320 pcbinfo = inp->inp_pcbinfo; 321 322 INP_WLOCK_ASSERT(inp); 323 INP_HASH_WLOCK_ASSERT(pcbinfo); 324 325 /* 326 * Don't allow jailed socket to join local group. 327 */ 328 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 329 return (0); 330 331 #ifdef INET6 332 /* 333 * Don't allow IPv4 mapped INET6 wild socket. 334 */ 335 if ((inp->inp_vflag & INP_IPV4) && 336 inp->inp_laddr.s_addr == INADDR_ANY && 337 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 338 return (0); 339 } 340 #endif 341 342 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 343 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 344 CK_LIST_FOREACH(grp, hdr, il_list) { 345 if (grp->il_vflag == inp->inp_vflag && 346 grp->il_lport == inp->inp_lport && 347 memcmp(&grp->il_dependladdr, 348 &inp->inp_inc.inc_ie.ie_dependladdr, 349 sizeof(grp->il_dependladdr)) == 0) 350 break; 351 } 352 if (grp == NULL) { 353 /* Create new load balance group. */ 354 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 355 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 356 INPCBLBGROUP_SIZMIN); 357 if (grp == NULL) 358 return (ENOBUFS); 359 } else if (grp->il_inpcnt == grp->il_inpsiz) { 360 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 361 if (ratecheck(&lastprint, &interval)) 362 printf("lb group port %d, limit reached\n", 363 ntohs(grp->il_lport)); 364 return (0); 365 } 366 367 /* Expand this local group. */ 368 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 369 if (grp == NULL) 370 return (ENOBUFS); 371 } 372 373 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 374 ("invalid local group size %d and count %d", grp->il_inpsiz, 375 grp->il_inpcnt)); 376 377 grp->il_inp[grp->il_inpcnt] = inp; 378 grp->il_inpcnt++; 379 return (0); 380 } 381 382 /* 383 * Remove PCB from load balance group. 384 */ 385 static void 386 in_pcbremlbgrouphash(struct inpcb *inp) 387 { 388 struct inpcbinfo *pcbinfo; 389 struct inpcblbgrouphead *hdr; 390 struct inpcblbgroup *grp; 391 int i; 392 393 pcbinfo = inp->inp_pcbinfo; 394 395 INP_WLOCK_ASSERT(inp); 396 INP_HASH_WLOCK_ASSERT(pcbinfo); 397 398 hdr = &pcbinfo->ipi_lbgrouphashbase[ 399 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 400 CK_LIST_FOREACH(grp, hdr, il_list) { 401 for (i = 0; i < grp->il_inpcnt; ++i) { 402 if (grp->il_inp[i] != inp) 403 continue; 404 405 if (grp->il_inpcnt == 1) { 406 /* We are the last, free this local group. */ 407 in_pcblbgroup_free(grp); 408 } else { 409 /* Pull up inpcbs, shrink group if possible. */ 410 in_pcblbgroup_reorder(hdr, &grp, i); 411 } 412 return; 413 } 414 } 415 } 416 417 /* 418 * Different protocols initialize their inpcbs differently - giving 419 * different name to the lock. But they all are disposed the same. 420 */ 421 static void 422 inpcb_fini(void *mem, int size) 423 { 424 struct inpcb *inp = mem; 425 426 INP_LOCK_DESTROY(inp); 427 } 428 429 /* 430 * Initialize an inpcbinfo -- we should be able to reduce the number of 431 * arguments in time. 432 */ 433 void 434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 435 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 436 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 437 { 438 439 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 440 441 INP_INFO_LOCK_INIT(pcbinfo, name); 442 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 443 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 444 #ifdef VIMAGE 445 pcbinfo->ipi_vnet = curvnet; 446 #endif 447 pcbinfo->ipi_listhead = listhead; 448 CK_LIST_INIT(pcbinfo->ipi_listhead); 449 pcbinfo->ipi_count = 0; 450 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 451 &pcbinfo->ipi_hashmask); 452 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 453 &pcbinfo->ipi_porthashmask); 454 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 455 &pcbinfo->ipi_lbgrouphashmask); 456 #ifdef PCBGROUP 457 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 458 #endif 459 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 460 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 461 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 462 uma_zone_set_warning(pcbinfo->ipi_zone, 463 "kern.ipc.maxsockets limit reached"); 464 } 465 466 /* 467 * Destroy an inpcbinfo. 468 */ 469 void 470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 471 { 472 473 KASSERT(pcbinfo->ipi_count == 0, 474 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 475 476 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 477 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 478 pcbinfo->ipi_porthashmask); 479 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 480 pcbinfo->ipi_lbgrouphashmask); 481 #ifdef PCBGROUP 482 in_pcbgroup_destroy(pcbinfo); 483 #endif 484 uma_zdestroy(pcbinfo->ipi_zone); 485 INP_LIST_LOCK_DESTROY(pcbinfo); 486 INP_HASH_LOCK_DESTROY(pcbinfo); 487 INP_INFO_LOCK_DESTROY(pcbinfo); 488 } 489 490 /* 491 * Allocate a PCB and associate it with the socket. 492 * On success return with the PCB locked. 493 */ 494 int 495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 496 { 497 struct inpcb *inp; 498 int error; 499 500 #ifdef INVARIANTS 501 if (pcbinfo == &V_tcbinfo) { 502 INP_INFO_RLOCK_ASSERT(pcbinfo); 503 } else { 504 INP_INFO_WLOCK_ASSERT(pcbinfo); 505 } 506 #endif 507 508 error = 0; 509 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 510 if (inp == NULL) 511 return (ENOBUFS); 512 bzero(&inp->inp_start_zero, inp_zero_size); 513 inp->inp_pcbinfo = pcbinfo; 514 inp->inp_socket = so; 515 inp->inp_cred = crhold(so->so_cred); 516 inp->inp_inc.inc_fibnum = so->so_fibnum; 517 #ifdef MAC 518 error = mac_inpcb_init(inp, M_NOWAIT); 519 if (error != 0) 520 goto out; 521 mac_inpcb_create(so, inp); 522 #endif 523 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 524 error = ipsec_init_pcbpolicy(inp); 525 if (error != 0) { 526 #ifdef MAC 527 mac_inpcb_destroy(inp); 528 #endif 529 goto out; 530 } 531 #endif /*IPSEC*/ 532 #ifdef INET6 533 if (INP_SOCKAF(so) == AF_INET6) { 534 inp->inp_vflag |= INP_IPV6PROTO; 535 if (V_ip6_v6only) 536 inp->inp_flags |= IN6P_IPV6_V6ONLY; 537 } 538 #endif 539 INP_WLOCK(inp); 540 INP_LIST_WLOCK(pcbinfo); 541 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 542 pcbinfo->ipi_count++; 543 so->so_pcb = (caddr_t)inp; 544 #ifdef INET6 545 if (V_ip6_auto_flowlabel) 546 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 547 #endif 548 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 549 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 550 551 /* 552 * Routes in inpcb's can cache L2 as well; they are guaranteed 553 * to be cleaned up. 554 */ 555 inp->inp_route.ro_flags = RT_LLE_CACHE; 556 INP_LIST_WUNLOCK(pcbinfo); 557 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 558 out: 559 if (error != 0) { 560 crfree(inp->inp_cred); 561 uma_zfree(pcbinfo->ipi_zone, inp); 562 } 563 #endif 564 return (error); 565 } 566 567 #ifdef INET 568 int 569 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 570 { 571 int anonport, error; 572 573 INP_WLOCK_ASSERT(inp); 574 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 575 576 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 577 return (EINVAL); 578 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 579 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 580 &inp->inp_lport, cred); 581 if (error) 582 return (error); 583 if (in_pcbinshash(inp) != 0) { 584 inp->inp_laddr.s_addr = INADDR_ANY; 585 inp->inp_lport = 0; 586 return (EAGAIN); 587 } 588 if (anonport) 589 inp->inp_flags |= INP_ANONPORT; 590 return (0); 591 } 592 #endif 593 594 /* 595 * Select a local port (number) to use. 596 */ 597 #if defined(INET) || defined(INET6) 598 int 599 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 600 struct ucred *cred, int lookupflags) 601 { 602 struct inpcbinfo *pcbinfo; 603 struct inpcb *tmpinp; 604 unsigned short *lastport; 605 int count, dorandom, error; 606 u_short aux, first, last, lport; 607 #ifdef INET 608 struct in_addr laddr; 609 #endif 610 611 pcbinfo = inp->inp_pcbinfo; 612 613 /* 614 * Because no actual state changes occur here, a global write lock on 615 * the pcbinfo isn't required. 616 */ 617 INP_LOCK_ASSERT(inp); 618 INP_HASH_LOCK_ASSERT(pcbinfo); 619 620 if (inp->inp_flags & INP_HIGHPORT) { 621 first = V_ipport_hifirstauto; /* sysctl */ 622 last = V_ipport_hilastauto; 623 lastport = &pcbinfo->ipi_lasthi; 624 } else if (inp->inp_flags & INP_LOWPORT) { 625 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 626 if (error) 627 return (error); 628 first = V_ipport_lowfirstauto; /* 1023 */ 629 last = V_ipport_lowlastauto; /* 600 */ 630 lastport = &pcbinfo->ipi_lastlow; 631 } else { 632 first = V_ipport_firstauto; /* sysctl */ 633 last = V_ipport_lastauto; 634 lastport = &pcbinfo->ipi_lastport; 635 } 636 /* 637 * For UDP(-Lite), use random port allocation as long as the user 638 * allows it. For TCP (and as of yet unknown) connections, 639 * use random port allocation only if the user allows it AND 640 * ipport_tick() allows it. 641 */ 642 if (V_ipport_randomized && 643 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 644 pcbinfo == &V_ulitecbinfo)) 645 dorandom = 1; 646 else 647 dorandom = 0; 648 /* 649 * It makes no sense to do random port allocation if 650 * we have the only port available. 651 */ 652 if (first == last) 653 dorandom = 0; 654 /* Make sure to not include UDP(-Lite) packets in the count. */ 655 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 656 V_ipport_tcpallocs++; 657 /* 658 * Instead of having two loops further down counting up or down 659 * make sure that first is always <= last and go with only one 660 * code path implementing all logic. 661 */ 662 if (first > last) { 663 aux = first; 664 first = last; 665 last = aux; 666 } 667 668 #ifdef INET 669 /* Make the compiler happy. */ 670 laddr.s_addr = 0; 671 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 672 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 673 __func__, inp)); 674 laddr = *laddrp; 675 } 676 #endif 677 tmpinp = NULL; /* Make compiler happy. */ 678 lport = *lportp; 679 680 if (dorandom) 681 *lastport = first + (arc4random() % (last - first)); 682 683 count = last - first; 684 685 do { 686 if (count-- < 0) /* completely used? */ 687 return (EADDRNOTAVAIL); 688 ++*lastport; 689 if (*lastport < first || *lastport > last) 690 *lastport = first; 691 lport = htons(*lastport); 692 693 #ifdef INET6 694 if ((inp->inp_vflag & INP_IPV6) != 0) 695 tmpinp = in6_pcblookup_local(pcbinfo, 696 &inp->in6p_laddr, lport, lookupflags, cred); 697 #endif 698 #if defined(INET) && defined(INET6) 699 else 700 #endif 701 #ifdef INET 702 tmpinp = in_pcblookup_local(pcbinfo, laddr, 703 lport, lookupflags, cred); 704 #endif 705 } while (tmpinp != NULL); 706 707 #ifdef INET 708 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 709 laddrp->s_addr = laddr.s_addr; 710 #endif 711 *lportp = lport; 712 713 return (0); 714 } 715 716 /* 717 * Return cached socket options. 718 */ 719 int 720 inp_so_options(const struct inpcb *inp) 721 { 722 int so_options; 723 724 so_options = 0; 725 726 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 727 so_options |= SO_REUSEPORT_LB; 728 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 729 so_options |= SO_REUSEPORT; 730 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 731 so_options |= SO_REUSEADDR; 732 return (so_options); 733 } 734 #endif /* INET || INET6 */ 735 736 /* 737 * Check if a new BINDMULTI socket is allowed to be created. 738 * 739 * ni points to the new inp. 740 * oi points to the exisitng inp. 741 * 742 * This checks whether the existing inp also has BINDMULTI and 743 * whether the credentials match. 744 */ 745 int 746 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 747 { 748 /* Check permissions match */ 749 if ((ni->inp_flags2 & INP_BINDMULTI) && 750 (ni->inp_cred->cr_uid != 751 oi->inp_cred->cr_uid)) 752 return (0); 753 754 /* Check the existing inp has BINDMULTI set */ 755 if ((ni->inp_flags2 & INP_BINDMULTI) && 756 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 757 return (0); 758 759 /* 760 * We're okay - either INP_BINDMULTI isn't set on ni, or 761 * it is and it matches the checks. 762 */ 763 return (1); 764 } 765 766 #ifdef INET 767 /* 768 * Set up a bind operation on a PCB, performing port allocation 769 * as required, but do not actually modify the PCB. Callers can 770 * either complete the bind by setting inp_laddr/inp_lport and 771 * calling in_pcbinshash(), or they can just use the resulting 772 * port and address to authorise the sending of a once-off packet. 773 * 774 * On error, the values of *laddrp and *lportp are not changed. 775 */ 776 int 777 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 778 u_short *lportp, struct ucred *cred) 779 { 780 struct socket *so = inp->inp_socket; 781 struct sockaddr_in *sin; 782 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 783 struct in_addr laddr; 784 u_short lport = 0; 785 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 786 int error; 787 788 /* 789 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 790 * so that we don't have to add to the (already messy) code below. 791 */ 792 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 793 794 /* 795 * No state changes, so read locks are sufficient here. 796 */ 797 INP_LOCK_ASSERT(inp); 798 INP_HASH_LOCK_ASSERT(pcbinfo); 799 800 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 801 return (EADDRNOTAVAIL); 802 laddr.s_addr = *laddrp; 803 if (nam != NULL && laddr.s_addr != INADDR_ANY) 804 return (EINVAL); 805 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 806 lookupflags = INPLOOKUP_WILDCARD; 807 if (nam == NULL) { 808 if ((error = prison_local_ip4(cred, &laddr)) != 0) 809 return (error); 810 } else { 811 sin = (struct sockaddr_in *)nam; 812 if (nam->sa_len != sizeof (*sin)) 813 return (EINVAL); 814 #ifdef notdef 815 /* 816 * We should check the family, but old programs 817 * incorrectly fail to initialize it. 818 */ 819 if (sin->sin_family != AF_INET) 820 return (EAFNOSUPPORT); 821 #endif 822 error = prison_local_ip4(cred, &sin->sin_addr); 823 if (error) 824 return (error); 825 if (sin->sin_port != *lportp) { 826 /* Don't allow the port to change. */ 827 if (*lportp != 0) 828 return (EINVAL); 829 lport = sin->sin_port; 830 } 831 /* NB: lport is left as 0 if the port isn't being changed. */ 832 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 833 /* 834 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 835 * allow complete duplication of binding if 836 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 837 * and a multicast address is bound on both 838 * new and duplicated sockets. 839 */ 840 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 841 reuseport = SO_REUSEADDR|SO_REUSEPORT; 842 /* 843 * XXX: How to deal with SO_REUSEPORT_LB here? 844 * Treat same as SO_REUSEPORT for now. 845 */ 846 if ((so->so_options & 847 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 848 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 849 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 850 sin->sin_port = 0; /* yech... */ 851 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 852 /* 853 * Is the address a local IP address? 854 * If INP_BINDANY is set, then the socket may be bound 855 * to any endpoint address, local or not. 856 */ 857 if ((inp->inp_flags & INP_BINDANY) == 0 && 858 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 859 return (EADDRNOTAVAIL); 860 } 861 laddr = sin->sin_addr; 862 if (lport) { 863 struct inpcb *t; 864 struct tcptw *tw; 865 866 /* GROSS */ 867 if (ntohs(lport) <= V_ipport_reservedhigh && 868 ntohs(lport) >= V_ipport_reservedlow && 869 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 870 return (EACCES); 871 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 872 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 873 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 874 lport, INPLOOKUP_WILDCARD, cred); 875 /* 876 * XXX 877 * This entire block sorely needs a rewrite. 878 */ 879 if (t && 880 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 881 ((t->inp_flags & INP_TIMEWAIT) == 0) && 882 (so->so_type != SOCK_STREAM || 883 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 884 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 885 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 886 (t->inp_flags2 & INP_REUSEPORT) || 887 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 888 (inp->inp_cred->cr_uid != 889 t->inp_cred->cr_uid)) 890 return (EADDRINUSE); 891 892 /* 893 * If the socket is a BINDMULTI socket, then 894 * the credentials need to match and the 895 * original socket also has to have been bound 896 * with BINDMULTI. 897 */ 898 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 899 return (EADDRINUSE); 900 } 901 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 902 lport, lookupflags, cred); 903 if (t && (t->inp_flags & INP_TIMEWAIT)) { 904 /* 905 * XXXRW: If an incpb has had its timewait 906 * state recycled, we treat the address as 907 * being in use (for now). This is better 908 * than a panic, but not desirable. 909 */ 910 tw = intotw(t); 911 if (tw == NULL || 912 ((reuseport & tw->tw_so_options) == 0 && 913 (reuseport_lb & 914 tw->tw_so_options) == 0)) { 915 return (EADDRINUSE); 916 } 917 } else if (t && 918 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 919 (reuseport & inp_so_options(t)) == 0 && 920 (reuseport_lb & inp_so_options(t)) == 0) { 921 #ifdef INET6 922 if (ntohl(sin->sin_addr.s_addr) != 923 INADDR_ANY || 924 ntohl(t->inp_laddr.s_addr) != 925 INADDR_ANY || 926 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 927 (t->inp_vflag & INP_IPV6PROTO) == 0) 928 #endif 929 return (EADDRINUSE); 930 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 931 return (EADDRINUSE); 932 } 933 } 934 } 935 if (*lportp != 0) 936 lport = *lportp; 937 if (lport == 0) { 938 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 939 if (error != 0) 940 return (error); 941 942 } 943 *laddrp = laddr.s_addr; 944 *lportp = lport; 945 return (0); 946 } 947 948 /* 949 * Connect from a socket to a specified address. 950 * Both address and port must be specified in argument sin. 951 * If don't have a local address for this socket yet, 952 * then pick one. 953 */ 954 int 955 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 956 struct ucred *cred, struct mbuf *m) 957 { 958 u_short lport, fport; 959 in_addr_t laddr, faddr; 960 int anonport, error; 961 962 INP_WLOCK_ASSERT(inp); 963 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 964 965 lport = inp->inp_lport; 966 laddr = inp->inp_laddr.s_addr; 967 anonport = (lport == 0); 968 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 969 NULL, cred); 970 if (error) 971 return (error); 972 973 /* Do the initial binding of the local address if required. */ 974 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 975 inp->inp_lport = lport; 976 inp->inp_laddr.s_addr = laddr; 977 if (in_pcbinshash(inp) != 0) { 978 inp->inp_laddr.s_addr = INADDR_ANY; 979 inp->inp_lport = 0; 980 return (EAGAIN); 981 } 982 } 983 984 /* Commit the remaining changes. */ 985 inp->inp_lport = lport; 986 inp->inp_laddr.s_addr = laddr; 987 inp->inp_faddr.s_addr = faddr; 988 inp->inp_fport = fport; 989 in_pcbrehash_mbuf(inp, m); 990 991 if (anonport) 992 inp->inp_flags |= INP_ANONPORT; 993 return (0); 994 } 995 996 int 997 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 998 { 999 1000 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1001 } 1002 1003 /* 1004 * Do proper source address selection on an unbound socket in case 1005 * of connect. Take jails into account as well. 1006 */ 1007 int 1008 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1009 struct ucred *cred) 1010 { 1011 struct ifaddr *ifa; 1012 struct sockaddr *sa; 1013 struct sockaddr_in *sin; 1014 struct route sro; 1015 struct epoch_tracker et; 1016 int error; 1017 1018 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1019 /* 1020 * Bypass source address selection and use the primary jail IP 1021 * if requested. 1022 */ 1023 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1024 return (0); 1025 1026 error = 0; 1027 bzero(&sro, sizeof(sro)); 1028 1029 sin = (struct sockaddr_in *)&sro.ro_dst; 1030 sin->sin_family = AF_INET; 1031 sin->sin_len = sizeof(struct sockaddr_in); 1032 sin->sin_addr.s_addr = faddr->s_addr; 1033 1034 /* 1035 * If route is known our src addr is taken from the i/f, 1036 * else punt. 1037 * 1038 * Find out route to destination. 1039 */ 1040 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1041 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1042 1043 /* 1044 * If we found a route, use the address corresponding to 1045 * the outgoing interface. 1046 * 1047 * Otherwise assume faddr is reachable on a directly connected 1048 * network and try to find a corresponding interface to take 1049 * the source address from. 1050 */ 1051 NET_EPOCH_ENTER(et); 1052 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1053 struct in_ifaddr *ia; 1054 struct ifnet *ifp; 1055 1056 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1057 inp->inp_socket->so_fibnum)); 1058 if (ia == NULL) { 1059 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1060 inp->inp_socket->so_fibnum)); 1061 1062 } 1063 if (ia == NULL) { 1064 error = ENETUNREACH; 1065 goto done; 1066 } 1067 1068 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1069 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1070 goto done; 1071 } 1072 1073 ifp = ia->ia_ifp; 1074 ia = NULL; 1075 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1076 1077 sa = ifa->ifa_addr; 1078 if (sa->sa_family != AF_INET) 1079 continue; 1080 sin = (struct sockaddr_in *)sa; 1081 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1082 ia = (struct in_ifaddr *)ifa; 1083 break; 1084 } 1085 } 1086 if (ia != NULL) { 1087 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1088 goto done; 1089 } 1090 1091 /* 3. As a last resort return the 'default' jail address. */ 1092 error = prison_get_ip4(cred, laddr); 1093 goto done; 1094 } 1095 1096 /* 1097 * If the outgoing interface on the route found is not 1098 * a loopback interface, use the address from that interface. 1099 * In case of jails do those three steps: 1100 * 1. check if the interface address belongs to the jail. If so use it. 1101 * 2. check if we have any address on the outgoing interface 1102 * belonging to this jail. If so use it. 1103 * 3. as a last resort return the 'default' jail address. 1104 */ 1105 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1106 struct in_ifaddr *ia; 1107 struct ifnet *ifp; 1108 1109 /* If not jailed, use the default returned. */ 1110 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1111 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1112 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1113 goto done; 1114 } 1115 1116 /* Jailed. */ 1117 /* 1. Check if the iface address belongs to the jail. */ 1118 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1119 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1120 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1121 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1122 goto done; 1123 } 1124 1125 /* 1126 * 2. Check if we have any address on the outgoing interface 1127 * belonging to this jail. 1128 */ 1129 ia = NULL; 1130 ifp = sro.ro_rt->rt_ifp; 1131 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1132 sa = ifa->ifa_addr; 1133 if (sa->sa_family != AF_INET) 1134 continue; 1135 sin = (struct sockaddr_in *)sa; 1136 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1137 ia = (struct in_ifaddr *)ifa; 1138 break; 1139 } 1140 } 1141 if (ia != NULL) { 1142 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1143 goto done; 1144 } 1145 1146 /* 3. As a last resort return the 'default' jail address. */ 1147 error = prison_get_ip4(cred, laddr); 1148 goto done; 1149 } 1150 1151 /* 1152 * The outgoing interface is marked with 'loopback net', so a route 1153 * to ourselves is here. 1154 * Try to find the interface of the destination address and then 1155 * take the address from there. That interface is not necessarily 1156 * a loopback interface. 1157 * In case of jails, check that it is an address of the jail 1158 * and if we cannot find, fall back to the 'default' jail address. 1159 */ 1160 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1161 struct sockaddr_in sain; 1162 struct in_ifaddr *ia; 1163 1164 bzero(&sain, sizeof(struct sockaddr_in)); 1165 sain.sin_family = AF_INET; 1166 sain.sin_len = sizeof(struct sockaddr_in); 1167 sain.sin_addr.s_addr = faddr->s_addr; 1168 1169 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1170 inp->inp_socket->so_fibnum)); 1171 if (ia == NULL) 1172 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1173 inp->inp_socket->so_fibnum)); 1174 if (ia == NULL) 1175 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1176 1177 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1178 if (ia == NULL) { 1179 error = ENETUNREACH; 1180 goto done; 1181 } 1182 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1183 goto done; 1184 } 1185 1186 /* Jailed. */ 1187 if (ia != NULL) { 1188 struct ifnet *ifp; 1189 1190 ifp = ia->ia_ifp; 1191 ia = NULL; 1192 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1193 sa = ifa->ifa_addr; 1194 if (sa->sa_family != AF_INET) 1195 continue; 1196 sin = (struct sockaddr_in *)sa; 1197 if (prison_check_ip4(cred, 1198 &sin->sin_addr) == 0) { 1199 ia = (struct in_ifaddr *)ifa; 1200 break; 1201 } 1202 } 1203 if (ia != NULL) { 1204 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1205 goto done; 1206 } 1207 } 1208 1209 /* 3. As a last resort return the 'default' jail address. */ 1210 error = prison_get_ip4(cred, laddr); 1211 goto done; 1212 } 1213 1214 done: 1215 NET_EPOCH_EXIT(et); 1216 if (sro.ro_rt != NULL) 1217 RTFREE(sro.ro_rt); 1218 return (error); 1219 } 1220 1221 /* 1222 * Set up for a connect from a socket to the specified address. 1223 * On entry, *laddrp and *lportp should contain the current local 1224 * address and port for the PCB; these are updated to the values 1225 * that should be placed in inp_laddr and inp_lport to complete 1226 * the connect. 1227 * 1228 * On success, *faddrp and *fportp will be set to the remote address 1229 * and port. These are not updated in the error case. 1230 * 1231 * If the operation fails because the connection already exists, 1232 * *oinpp will be set to the PCB of that connection so that the 1233 * caller can decide to override it. In all other cases, *oinpp 1234 * is set to NULL. 1235 */ 1236 int 1237 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1238 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1239 struct inpcb **oinpp, struct ucred *cred) 1240 { 1241 struct rm_priotracker in_ifa_tracker; 1242 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1243 struct in_ifaddr *ia; 1244 struct inpcb *oinp; 1245 struct in_addr laddr, faddr; 1246 u_short lport, fport; 1247 int error; 1248 1249 /* 1250 * Because a global state change doesn't actually occur here, a read 1251 * lock is sufficient. 1252 */ 1253 INP_LOCK_ASSERT(inp); 1254 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1255 1256 if (oinpp != NULL) 1257 *oinpp = NULL; 1258 if (nam->sa_len != sizeof (*sin)) 1259 return (EINVAL); 1260 if (sin->sin_family != AF_INET) 1261 return (EAFNOSUPPORT); 1262 if (sin->sin_port == 0) 1263 return (EADDRNOTAVAIL); 1264 laddr.s_addr = *laddrp; 1265 lport = *lportp; 1266 faddr = sin->sin_addr; 1267 fport = sin->sin_port; 1268 1269 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1270 /* 1271 * If the destination address is INADDR_ANY, 1272 * use the primary local address. 1273 * If the supplied address is INADDR_BROADCAST, 1274 * and the primary interface supports broadcast, 1275 * choose the broadcast address for that interface. 1276 */ 1277 if (faddr.s_addr == INADDR_ANY) { 1278 IN_IFADDR_RLOCK(&in_ifa_tracker); 1279 faddr = 1280 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1281 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1282 if (cred != NULL && 1283 (error = prison_get_ip4(cred, &faddr)) != 0) 1284 return (error); 1285 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1286 IN_IFADDR_RLOCK(&in_ifa_tracker); 1287 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1288 IFF_BROADCAST) 1289 faddr = satosin(&CK_STAILQ_FIRST( 1290 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1291 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1292 } 1293 } 1294 if (laddr.s_addr == INADDR_ANY) { 1295 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1296 /* 1297 * If the destination address is multicast and an outgoing 1298 * interface has been set as a multicast option, prefer the 1299 * address of that interface as our source address. 1300 */ 1301 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1302 inp->inp_moptions != NULL) { 1303 struct ip_moptions *imo; 1304 struct ifnet *ifp; 1305 1306 imo = inp->inp_moptions; 1307 if (imo->imo_multicast_ifp != NULL) { 1308 ifp = imo->imo_multicast_ifp; 1309 IN_IFADDR_RLOCK(&in_ifa_tracker); 1310 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1311 if ((ia->ia_ifp == ifp) && 1312 (cred == NULL || 1313 prison_check_ip4(cred, 1314 &ia->ia_addr.sin_addr) == 0)) 1315 break; 1316 } 1317 if (ia == NULL) 1318 error = EADDRNOTAVAIL; 1319 else { 1320 laddr = ia->ia_addr.sin_addr; 1321 error = 0; 1322 } 1323 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1324 } 1325 } 1326 if (error) 1327 return (error); 1328 } 1329 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1330 laddr, lport, 0, NULL); 1331 if (oinp != NULL) { 1332 if (oinpp != NULL) 1333 *oinpp = oinp; 1334 return (EADDRINUSE); 1335 } 1336 if (lport == 0) { 1337 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1338 cred); 1339 if (error) 1340 return (error); 1341 } 1342 *laddrp = laddr.s_addr; 1343 *lportp = lport; 1344 *faddrp = faddr.s_addr; 1345 *fportp = fport; 1346 return (0); 1347 } 1348 1349 void 1350 in_pcbdisconnect(struct inpcb *inp) 1351 { 1352 1353 INP_WLOCK_ASSERT(inp); 1354 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1355 1356 inp->inp_faddr.s_addr = INADDR_ANY; 1357 inp->inp_fport = 0; 1358 in_pcbrehash(inp); 1359 } 1360 #endif /* INET */ 1361 1362 /* 1363 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1364 * For most protocols, this will be invoked immediately prior to calling 1365 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1366 * socket, in which case in_pcbfree() is deferred. 1367 */ 1368 void 1369 in_pcbdetach(struct inpcb *inp) 1370 { 1371 1372 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1373 1374 #ifdef RATELIMIT 1375 if (inp->inp_snd_tag != NULL) 1376 in_pcbdetach_txrtlmt(inp); 1377 #endif 1378 inp->inp_socket->so_pcb = NULL; 1379 inp->inp_socket = NULL; 1380 } 1381 1382 /* 1383 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1384 * stability of an inpcb pointer despite the inpcb lock being released. This 1385 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1386 * but where the inpcb lock may already held, or when acquiring a reference 1387 * via a pcbgroup. 1388 * 1389 * in_pcbref() should be used only to provide brief memory stability, and 1390 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1391 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1392 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1393 * lock and rele are the *only* safe operations that may be performed on the 1394 * inpcb. 1395 * 1396 * While the inpcb will not be freed, releasing the inpcb lock means that the 1397 * connection's state may change, so the caller should be careful to 1398 * revalidate any cached state on reacquiring the lock. Drop the reference 1399 * using in_pcbrele(). 1400 */ 1401 void 1402 in_pcbref(struct inpcb *inp) 1403 { 1404 1405 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1406 1407 refcount_acquire(&inp->inp_refcount); 1408 } 1409 1410 /* 1411 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1412 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1413 * return a flag indicating whether or not the inpcb remains valid. If it is 1414 * valid, we return with the inpcb lock held. 1415 * 1416 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1417 * reference on an inpcb. Historically more work was done here (actually, in 1418 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1419 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1420 * about memory stability (and continued use of the write lock). 1421 */ 1422 int 1423 in_pcbrele_rlocked(struct inpcb *inp) 1424 { 1425 struct inpcbinfo *pcbinfo; 1426 1427 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1428 1429 INP_RLOCK_ASSERT(inp); 1430 1431 if (refcount_release(&inp->inp_refcount) == 0) { 1432 /* 1433 * If the inpcb has been freed, let the caller know, even if 1434 * this isn't the last reference. 1435 */ 1436 if (inp->inp_flags2 & INP_FREED) { 1437 INP_RUNLOCK(inp); 1438 return (1); 1439 } 1440 return (0); 1441 } 1442 1443 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1444 #ifdef TCPHPTS 1445 if (inp->inp_in_hpts || inp->inp_in_input) { 1446 struct tcp_hpts_entry *hpts; 1447 /* 1448 * We should not be on the hpts at 1449 * this point in any form. we must 1450 * get the lock to be sure. 1451 */ 1452 hpts = tcp_hpts_lock(inp); 1453 if (inp->inp_in_hpts) 1454 panic("Hpts:%p inp:%p at free still on hpts", 1455 hpts, inp); 1456 mtx_unlock(&hpts->p_mtx); 1457 hpts = tcp_input_lock(inp); 1458 if (inp->inp_in_input) 1459 panic("Hpts:%p inp:%p at free still on input hpts", 1460 hpts, inp); 1461 mtx_unlock(&hpts->p_mtx); 1462 } 1463 #endif 1464 INP_RUNLOCK(inp); 1465 pcbinfo = inp->inp_pcbinfo; 1466 uma_zfree(pcbinfo->ipi_zone, inp); 1467 return (1); 1468 } 1469 1470 int 1471 in_pcbrele_wlocked(struct inpcb *inp) 1472 { 1473 struct inpcbinfo *pcbinfo; 1474 1475 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1476 1477 INP_WLOCK_ASSERT(inp); 1478 1479 if (refcount_release(&inp->inp_refcount) == 0) { 1480 /* 1481 * If the inpcb has been freed, let the caller know, even if 1482 * this isn't the last reference. 1483 */ 1484 if (inp->inp_flags2 & INP_FREED) { 1485 INP_WUNLOCK(inp); 1486 return (1); 1487 } 1488 return (0); 1489 } 1490 1491 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1492 #ifdef TCPHPTS 1493 if (inp->inp_in_hpts || inp->inp_in_input) { 1494 struct tcp_hpts_entry *hpts; 1495 /* 1496 * We should not be on the hpts at 1497 * this point in any form. we must 1498 * get the lock to be sure. 1499 */ 1500 hpts = tcp_hpts_lock(inp); 1501 if (inp->inp_in_hpts) 1502 panic("Hpts:%p inp:%p at free still on hpts", 1503 hpts, inp); 1504 mtx_unlock(&hpts->p_mtx); 1505 hpts = tcp_input_lock(inp); 1506 if (inp->inp_in_input) 1507 panic("Hpts:%p inp:%p at free still on input hpts", 1508 hpts, inp); 1509 mtx_unlock(&hpts->p_mtx); 1510 } 1511 #endif 1512 INP_WUNLOCK(inp); 1513 pcbinfo = inp->inp_pcbinfo; 1514 uma_zfree(pcbinfo->ipi_zone, inp); 1515 return (1); 1516 } 1517 1518 /* 1519 * Temporary wrapper. 1520 */ 1521 int 1522 in_pcbrele(struct inpcb *inp) 1523 { 1524 1525 return (in_pcbrele_wlocked(inp)); 1526 } 1527 1528 void 1529 in_pcblist_rele_rlocked(epoch_context_t ctx) 1530 { 1531 struct in_pcblist *il; 1532 struct inpcb *inp; 1533 struct inpcbinfo *pcbinfo; 1534 int i, n; 1535 1536 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1537 pcbinfo = il->il_pcbinfo; 1538 n = il->il_count; 1539 INP_INFO_WLOCK(pcbinfo); 1540 for (i = 0; i < n; i++) { 1541 inp = il->il_inp_list[i]; 1542 INP_RLOCK(inp); 1543 if (!in_pcbrele_rlocked(inp)) 1544 INP_RUNLOCK(inp); 1545 } 1546 INP_INFO_WUNLOCK(pcbinfo); 1547 free(il, M_TEMP); 1548 } 1549 1550 static void 1551 inpcbport_free(epoch_context_t ctx) 1552 { 1553 struct inpcbport *phd; 1554 1555 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1556 free(phd, M_PCB); 1557 } 1558 1559 static void 1560 in_pcbfree_deferred(epoch_context_t ctx) 1561 { 1562 struct inpcb *inp; 1563 int released __unused; 1564 1565 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1566 1567 INP_WLOCK(inp); 1568 #ifdef INET 1569 struct ip_moptions *imo = inp->inp_moptions; 1570 inp->inp_moptions = NULL; 1571 #endif 1572 /* XXXRW: Do as much as possible here. */ 1573 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1574 if (inp->inp_sp != NULL) 1575 ipsec_delete_pcbpolicy(inp); 1576 #endif 1577 #ifdef INET6 1578 struct ip6_moptions *im6o = NULL; 1579 if (inp->inp_vflag & INP_IPV6PROTO) { 1580 ip6_freepcbopts(inp->in6p_outputopts); 1581 im6o = inp->in6p_moptions; 1582 inp->in6p_moptions = NULL; 1583 } 1584 #endif 1585 if (inp->inp_options) 1586 (void)m_free(inp->inp_options); 1587 inp->inp_vflag = 0; 1588 crfree(inp->inp_cred); 1589 #ifdef MAC 1590 mac_inpcb_destroy(inp); 1591 #endif 1592 released = in_pcbrele_wlocked(inp); 1593 MPASS(released); 1594 #ifdef INET6 1595 ip6_freemoptions(im6o); 1596 #endif 1597 #ifdef INET 1598 inp_freemoptions(imo); 1599 #endif 1600 } 1601 1602 /* 1603 * Unconditionally schedule an inpcb to be freed by decrementing its 1604 * reference count, which should occur only after the inpcb has been detached 1605 * from its socket. If another thread holds a temporary reference (acquired 1606 * using in_pcbref()) then the free is deferred until that reference is 1607 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1608 * work, including removal from global lists, is done in this context, where 1609 * the pcbinfo lock is held. 1610 */ 1611 void 1612 in_pcbfree(struct inpcb *inp) 1613 { 1614 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1615 1616 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1617 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1618 ("%s: called twice for pcb %p", __func__, inp)); 1619 if (inp->inp_flags2 & INP_FREED) { 1620 INP_WUNLOCK(inp); 1621 return; 1622 } 1623 1624 #ifdef INVARIANTS 1625 if (pcbinfo == &V_tcbinfo) { 1626 INP_INFO_LOCK_ASSERT(pcbinfo); 1627 } else { 1628 INP_INFO_WLOCK_ASSERT(pcbinfo); 1629 } 1630 #endif 1631 INP_WLOCK_ASSERT(inp); 1632 INP_LIST_WLOCK(pcbinfo); 1633 in_pcbremlists(inp); 1634 INP_LIST_WUNLOCK(pcbinfo); 1635 RO_INVALIDATE_CACHE(&inp->inp_route); 1636 /* mark as destruction in progress */ 1637 inp->inp_flags2 |= INP_FREED; 1638 INP_WUNLOCK(inp); 1639 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1640 } 1641 1642 /* 1643 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1644 * port reservation, and preventing it from being returned by inpcb lookups. 1645 * 1646 * It is used by TCP to mark an inpcb as unused and avoid future packet 1647 * delivery or event notification when a socket remains open but TCP has 1648 * closed. This might occur as a result of a shutdown()-initiated TCP close 1649 * or a RST on the wire, and allows the port binding to be reused while still 1650 * maintaining the invariant that so_pcb always points to a valid inpcb until 1651 * in_pcbdetach(). 1652 * 1653 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1654 * in_pcbnotifyall() and in_pcbpurgeif0()? 1655 */ 1656 void 1657 in_pcbdrop(struct inpcb *inp) 1658 { 1659 1660 INP_WLOCK_ASSERT(inp); 1661 #ifdef INVARIANTS 1662 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1663 MPASS(inp->inp_refcount > 1); 1664 #endif 1665 1666 /* 1667 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1668 * the hash lock...? 1669 */ 1670 inp->inp_flags |= INP_DROPPED; 1671 if (inp->inp_flags & INP_INHASHLIST) { 1672 struct inpcbport *phd = inp->inp_phd; 1673 1674 INP_HASH_WLOCK(inp->inp_pcbinfo); 1675 in_pcbremlbgrouphash(inp); 1676 CK_LIST_REMOVE(inp, inp_hash); 1677 CK_LIST_REMOVE(inp, inp_portlist); 1678 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1679 CK_LIST_REMOVE(phd, phd_hash); 1680 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1681 } 1682 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1683 inp->inp_flags &= ~INP_INHASHLIST; 1684 #ifdef PCBGROUP 1685 in_pcbgroup_remove(inp); 1686 #endif 1687 } 1688 } 1689 1690 #ifdef INET 1691 /* 1692 * Common routines to return the socket addresses associated with inpcbs. 1693 */ 1694 struct sockaddr * 1695 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1696 { 1697 struct sockaddr_in *sin; 1698 1699 sin = malloc(sizeof *sin, M_SONAME, 1700 M_WAITOK | M_ZERO); 1701 sin->sin_family = AF_INET; 1702 sin->sin_len = sizeof(*sin); 1703 sin->sin_addr = *addr_p; 1704 sin->sin_port = port; 1705 1706 return (struct sockaddr *)sin; 1707 } 1708 1709 int 1710 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1711 { 1712 struct inpcb *inp; 1713 struct in_addr addr; 1714 in_port_t port; 1715 1716 inp = sotoinpcb(so); 1717 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1718 1719 INP_RLOCK(inp); 1720 port = inp->inp_lport; 1721 addr = inp->inp_laddr; 1722 INP_RUNLOCK(inp); 1723 1724 *nam = in_sockaddr(port, &addr); 1725 return 0; 1726 } 1727 1728 int 1729 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1730 { 1731 struct inpcb *inp; 1732 struct in_addr addr; 1733 in_port_t port; 1734 1735 inp = sotoinpcb(so); 1736 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1737 1738 INP_RLOCK(inp); 1739 port = inp->inp_fport; 1740 addr = inp->inp_faddr; 1741 INP_RUNLOCK(inp); 1742 1743 *nam = in_sockaddr(port, &addr); 1744 return 0; 1745 } 1746 1747 void 1748 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1749 struct inpcb *(*notify)(struct inpcb *, int)) 1750 { 1751 struct inpcb *inp, *inp_temp; 1752 1753 INP_INFO_WLOCK(pcbinfo); 1754 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1755 INP_WLOCK(inp); 1756 #ifdef INET6 1757 if ((inp->inp_vflag & INP_IPV4) == 0) { 1758 INP_WUNLOCK(inp); 1759 continue; 1760 } 1761 #endif 1762 if (inp->inp_faddr.s_addr != faddr.s_addr || 1763 inp->inp_socket == NULL) { 1764 INP_WUNLOCK(inp); 1765 continue; 1766 } 1767 if ((*notify)(inp, errno)) 1768 INP_WUNLOCK(inp); 1769 } 1770 INP_INFO_WUNLOCK(pcbinfo); 1771 } 1772 1773 void 1774 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1775 { 1776 struct inpcb *inp; 1777 struct ip_moptions *imo; 1778 int i, gap; 1779 1780 INP_INFO_WLOCK(pcbinfo); 1781 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1782 INP_WLOCK(inp); 1783 imo = inp->inp_moptions; 1784 if ((inp->inp_vflag & INP_IPV4) && 1785 imo != NULL) { 1786 /* 1787 * Unselect the outgoing interface if it is being 1788 * detached. 1789 */ 1790 if (imo->imo_multicast_ifp == ifp) 1791 imo->imo_multicast_ifp = NULL; 1792 1793 /* 1794 * Drop multicast group membership if we joined 1795 * through the interface being detached. 1796 * 1797 * XXX This can all be deferred to an epoch_call 1798 */ 1799 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1800 i++) { 1801 if (imo->imo_membership[i]->inm_ifp == ifp) { 1802 IN_MULTI_LOCK_ASSERT(); 1803 in_leavegroup_locked(imo->imo_membership[i], NULL); 1804 gap++; 1805 } else if (gap != 0) 1806 imo->imo_membership[i - gap] = 1807 imo->imo_membership[i]; 1808 } 1809 imo->imo_num_memberships -= gap; 1810 } 1811 INP_WUNLOCK(inp); 1812 } 1813 INP_INFO_WUNLOCK(pcbinfo); 1814 } 1815 1816 /* 1817 * Lookup a PCB based on the local address and port. Caller must hold the 1818 * hash lock. No inpcb locks or references are acquired. 1819 */ 1820 #define INP_LOOKUP_MAPPED_PCB_COST 3 1821 struct inpcb * 1822 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1823 u_short lport, int lookupflags, struct ucred *cred) 1824 { 1825 struct inpcb *inp; 1826 #ifdef INET6 1827 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1828 #else 1829 int matchwild = 3; 1830 #endif 1831 int wildcard; 1832 1833 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1834 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1835 1836 INP_HASH_LOCK_ASSERT(pcbinfo); 1837 1838 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1839 struct inpcbhead *head; 1840 /* 1841 * Look for an unconnected (wildcard foreign addr) PCB that 1842 * matches the local address and port we're looking for. 1843 */ 1844 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1845 0, pcbinfo->ipi_hashmask)]; 1846 CK_LIST_FOREACH(inp, head, inp_hash) { 1847 #ifdef INET6 1848 /* XXX inp locking */ 1849 if ((inp->inp_vflag & INP_IPV4) == 0) 1850 continue; 1851 #endif 1852 if (inp->inp_faddr.s_addr == INADDR_ANY && 1853 inp->inp_laddr.s_addr == laddr.s_addr && 1854 inp->inp_lport == lport) { 1855 /* 1856 * Found? 1857 */ 1858 if (cred == NULL || 1859 prison_equal_ip4(cred->cr_prison, 1860 inp->inp_cred->cr_prison)) 1861 return (inp); 1862 } 1863 } 1864 /* 1865 * Not found. 1866 */ 1867 return (NULL); 1868 } else { 1869 struct inpcbporthead *porthash; 1870 struct inpcbport *phd; 1871 struct inpcb *match = NULL; 1872 /* 1873 * Best fit PCB lookup. 1874 * 1875 * First see if this local port is in use by looking on the 1876 * port hash list. 1877 */ 1878 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1879 pcbinfo->ipi_porthashmask)]; 1880 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1881 if (phd->phd_port == lport) 1882 break; 1883 } 1884 if (phd != NULL) { 1885 /* 1886 * Port is in use by one or more PCBs. Look for best 1887 * fit. 1888 */ 1889 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1890 wildcard = 0; 1891 if (cred != NULL && 1892 !prison_equal_ip4(inp->inp_cred->cr_prison, 1893 cred->cr_prison)) 1894 continue; 1895 #ifdef INET6 1896 /* XXX inp locking */ 1897 if ((inp->inp_vflag & INP_IPV4) == 0) 1898 continue; 1899 /* 1900 * We never select the PCB that has 1901 * INP_IPV6 flag and is bound to :: if 1902 * we have another PCB which is bound 1903 * to 0.0.0.0. If a PCB has the 1904 * INP_IPV6 flag, then we set its cost 1905 * higher than IPv4 only PCBs. 1906 * 1907 * Note that the case only happens 1908 * when a socket is bound to ::, under 1909 * the condition that the use of the 1910 * mapped address is allowed. 1911 */ 1912 if ((inp->inp_vflag & INP_IPV6) != 0) 1913 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1914 #endif 1915 if (inp->inp_faddr.s_addr != INADDR_ANY) 1916 wildcard++; 1917 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1918 if (laddr.s_addr == INADDR_ANY) 1919 wildcard++; 1920 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1921 continue; 1922 } else { 1923 if (laddr.s_addr != INADDR_ANY) 1924 wildcard++; 1925 } 1926 if (wildcard < matchwild) { 1927 match = inp; 1928 matchwild = wildcard; 1929 if (matchwild == 0) 1930 break; 1931 } 1932 } 1933 } 1934 return (match); 1935 } 1936 } 1937 #undef INP_LOOKUP_MAPPED_PCB_COST 1938 1939 static struct inpcb * 1940 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1941 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1942 uint16_t fport, int lookupflags) 1943 { 1944 struct inpcb *local_wild; 1945 const struct inpcblbgrouphead *hdr; 1946 struct inpcblbgroup *grp; 1947 uint32_t idx; 1948 1949 INP_HASH_LOCK_ASSERT(pcbinfo); 1950 1951 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1952 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1953 1954 /* 1955 * Order of socket selection: 1956 * 1. non-wild. 1957 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1958 * 1959 * NOTE: 1960 * - Load balanced group does not contain jailed sockets 1961 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1962 */ 1963 local_wild = NULL; 1964 CK_LIST_FOREACH(grp, hdr, il_list) { 1965 #ifdef INET6 1966 if (!(grp->il_vflag & INP_IPV4)) 1967 continue; 1968 #endif 1969 if (grp->il_lport != lport) 1970 continue; 1971 1972 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1973 grp->il_inpcnt; 1974 if (grp->il_laddr.s_addr == laddr->s_addr) 1975 return (grp->il_inp[idx]); 1976 if (grp->il_laddr.s_addr == INADDR_ANY && 1977 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1978 local_wild = grp->il_inp[idx]; 1979 } 1980 return (local_wild); 1981 } 1982 1983 #ifdef PCBGROUP 1984 /* 1985 * Lookup PCB in hash list, using pcbgroup tables. 1986 */ 1987 static struct inpcb * 1988 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1989 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1990 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1991 { 1992 struct inpcbhead *head; 1993 struct inpcb *inp, *tmpinp; 1994 u_short fport = fport_arg, lport = lport_arg; 1995 bool locked; 1996 1997 /* 1998 * First look for an exact match. 1999 */ 2000 tmpinp = NULL; 2001 INP_GROUP_LOCK(pcbgroup); 2002 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2003 pcbgroup->ipg_hashmask)]; 2004 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2005 #ifdef INET6 2006 /* XXX inp locking */ 2007 if ((inp->inp_vflag & INP_IPV4) == 0) 2008 continue; 2009 #endif 2010 if (inp->inp_faddr.s_addr == faddr.s_addr && 2011 inp->inp_laddr.s_addr == laddr.s_addr && 2012 inp->inp_fport == fport && 2013 inp->inp_lport == lport) { 2014 /* 2015 * XXX We should be able to directly return 2016 * the inp here, without any checks. 2017 * Well unless both bound with SO_REUSEPORT? 2018 */ 2019 if (prison_flag(inp->inp_cred, PR_IP4)) 2020 goto found; 2021 if (tmpinp == NULL) 2022 tmpinp = inp; 2023 } 2024 } 2025 if (tmpinp != NULL) { 2026 inp = tmpinp; 2027 goto found; 2028 } 2029 2030 #ifdef RSS 2031 /* 2032 * For incoming connections, we may wish to do a wildcard 2033 * match for an RSS-local socket. 2034 */ 2035 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2036 struct inpcb *local_wild = NULL, *local_exact = NULL; 2037 #ifdef INET6 2038 struct inpcb *local_wild_mapped = NULL; 2039 #endif 2040 struct inpcb *jail_wild = NULL; 2041 struct inpcbhead *head; 2042 int injail; 2043 2044 /* 2045 * Order of socket selection - we always prefer jails. 2046 * 1. jailed, non-wild. 2047 * 2. jailed, wild. 2048 * 3. non-jailed, non-wild. 2049 * 4. non-jailed, wild. 2050 */ 2051 2052 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2053 lport, 0, pcbgroup->ipg_hashmask)]; 2054 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2055 #ifdef INET6 2056 /* XXX inp locking */ 2057 if ((inp->inp_vflag & INP_IPV4) == 0) 2058 continue; 2059 #endif 2060 if (inp->inp_faddr.s_addr != INADDR_ANY || 2061 inp->inp_lport != lport) 2062 continue; 2063 2064 injail = prison_flag(inp->inp_cred, PR_IP4); 2065 if (injail) { 2066 if (prison_check_ip4(inp->inp_cred, 2067 &laddr) != 0) 2068 continue; 2069 } else { 2070 if (local_exact != NULL) 2071 continue; 2072 } 2073 2074 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2075 if (injail) 2076 goto found; 2077 else 2078 local_exact = inp; 2079 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2080 #ifdef INET6 2081 /* XXX inp locking, NULL check */ 2082 if (inp->inp_vflag & INP_IPV6PROTO) 2083 local_wild_mapped = inp; 2084 else 2085 #endif 2086 if (injail) 2087 jail_wild = inp; 2088 else 2089 local_wild = inp; 2090 } 2091 } /* LIST_FOREACH */ 2092 2093 inp = jail_wild; 2094 if (inp == NULL) 2095 inp = local_exact; 2096 if (inp == NULL) 2097 inp = local_wild; 2098 #ifdef INET6 2099 if (inp == NULL) 2100 inp = local_wild_mapped; 2101 #endif 2102 if (inp != NULL) 2103 goto found; 2104 } 2105 #endif 2106 2107 /* 2108 * Then look for a wildcard match, if requested. 2109 */ 2110 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2111 struct inpcb *local_wild = NULL, *local_exact = NULL; 2112 #ifdef INET6 2113 struct inpcb *local_wild_mapped = NULL; 2114 #endif 2115 struct inpcb *jail_wild = NULL; 2116 struct inpcbhead *head; 2117 int injail; 2118 2119 /* 2120 * Order of socket selection - we always prefer jails. 2121 * 1. jailed, non-wild. 2122 * 2. jailed, wild. 2123 * 3. non-jailed, non-wild. 2124 * 4. non-jailed, wild. 2125 */ 2126 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2127 0, pcbinfo->ipi_wildmask)]; 2128 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2129 #ifdef INET6 2130 /* XXX inp locking */ 2131 if ((inp->inp_vflag & INP_IPV4) == 0) 2132 continue; 2133 #endif 2134 if (inp->inp_faddr.s_addr != INADDR_ANY || 2135 inp->inp_lport != lport) 2136 continue; 2137 2138 injail = prison_flag(inp->inp_cred, PR_IP4); 2139 if (injail) { 2140 if (prison_check_ip4(inp->inp_cred, 2141 &laddr) != 0) 2142 continue; 2143 } else { 2144 if (local_exact != NULL) 2145 continue; 2146 } 2147 2148 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2149 if (injail) 2150 goto found; 2151 else 2152 local_exact = inp; 2153 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2154 #ifdef INET6 2155 /* XXX inp locking, NULL check */ 2156 if (inp->inp_vflag & INP_IPV6PROTO) 2157 local_wild_mapped = inp; 2158 else 2159 #endif 2160 if (injail) 2161 jail_wild = inp; 2162 else 2163 local_wild = inp; 2164 } 2165 } /* LIST_FOREACH */ 2166 inp = jail_wild; 2167 if (inp == NULL) 2168 inp = local_exact; 2169 if (inp == NULL) 2170 inp = local_wild; 2171 #ifdef INET6 2172 if (inp == NULL) 2173 inp = local_wild_mapped; 2174 #endif 2175 if (inp != NULL) 2176 goto found; 2177 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2178 INP_GROUP_UNLOCK(pcbgroup); 2179 return (NULL); 2180 2181 found: 2182 if (lookupflags & INPLOOKUP_WLOCKPCB) 2183 locked = INP_TRY_WLOCK(inp); 2184 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2185 locked = INP_TRY_RLOCK(inp); 2186 else 2187 panic("%s: locking bug", __func__); 2188 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2189 if (lookupflags & INPLOOKUP_WLOCKPCB) 2190 INP_WUNLOCK(inp); 2191 else 2192 INP_RUNLOCK(inp); 2193 return (NULL); 2194 } else if (!locked) 2195 in_pcbref(inp); 2196 INP_GROUP_UNLOCK(pcbgroup); 2197 if (!locked) { 2198 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2199 INP_WLOCK(inp); 2200 if (in_pcbrele_wlocked(inp)) 2201 return (NULL); 2202 } else { 2203 INP_RLOCK(inp); 2204 if (in_pcbrele_rlocked(inp)) 2205 return (NULL); 2206 } 2207 } 2208 #ifdef INVARIANTS 2209 if (lookupflags & INPLOOKUP_WLOCKPCB) 2210 INP_WLOCK_ASSERT(inp); 2211 else 2212 INP_RLOCK_ASSERT(inp); 2213 #endif 2214 return (inp); 2215 } 2216 #endif /* PCBGROUP */ 2217 2218 /* 2219 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2220 * that the caller has locked the hash list, and will not perform any further 2221 * locking or reference operations on either the hash list or the connection. 2222 */ 2223 static struct inpcb * 2224 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2225 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2226 struct ifnet *ifp) 2227 { 2228 struct inpcbhead *head; 2229 struct inpcb *inp, *tmpinp; 2230 u_short fport = fport_arg, lport = lport_arg; 2231 2232 #ifdef INVARIANTS 2233 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2234 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2235 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2236 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2237 #endif 2238 /* 2239 * First look for an exact match. 2240 */ 2241 tmpinp = NULL; 2242 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2243 pcbinfo->ipi_hashmask)]; 2244 CK_LIST_FOREACH(inp, head, inp_hash) { 2245 #ifdef INET6 2246 /* XXX inp locking */ 2247 if ((inp->inp_vflag & INP_IPV4) == 0) 2248 continue; 2249 #endif 2250 if (inp->inp_faddr.s_addr == faddr.s_addr && 2251 inp->inp_laddr.s_addr == laddr.s_addr && 2252 inp->inp_fport == fport && 2253 inp->inp_lport == lport) { 2254 /* 2255 * XXX We should be able to directly return 2256 * the inp here, without any checks. 2257 * Well unless both bound with SO_REUSEPORT? 2258 */ 2259 if (prison_flag(inp->inp_cred, PR_IP4)) 2260 return (inp); 2261 if (tmpinp == NULL) 2262 tmpinp = inp; 2263 } 2264 } 2265 if (tmpinp != NULL) 2266 return (tmpinp); 2267 2268 /* 2269 * Then look in lb group (for wildcard match). 2270 */ 2271 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2272 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2273 fport, lookupflags); 2274 if (inp != NULL) 2275 return (inp); 2276 } 2277 2278 /* 2279 * Then look for a wildcard match, if requested. 2280 */ 2281 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2282 struct inpcb *local_wild = NULL, *local_exact = NULL; 2283 #ifdef INET6 2284 struct inpcb *local_wild_mapped = NULL; 2285 #endif 2286 struct inpcb *jail_wild = NULL; 2287 int injail; 2288 2289 /* 2290 * Order of socket selection - we always prefer jails. 2291 * 1. jailed, non-wild. 2292 * 2. jailed, wild. 2293 * 3. non-jailed, non-wild. 2294 * 4. non-jailed, wild. 2295 */ 2296 2297 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2298 0, pcbinfo->ipi_hashmask)]; 2299 CK_LIST_FOREACH(inp, head, inp_hash) { 2300 #ifdef INET6 2301 /* XXX inp locking */ 2302 if ((inp->inp_vflag & INP_IPV4) == 0) 2303 continue; 2304 #endif 2305 if (inp->inp_faddr.s_addr != INADDR_ANY || 2306 inp->inp_lport != lport) 2307 continue; 2308 2309 injail = prison_flag(inp->inp_cred, PR_IP4); 2310 if (injail) { 2311 if (prison_check_ip4(inp->inp_cred, 2312 &laddr) != 0) 2313 continue; 2314 } else { 2315 if (local_exact != NULL) 2316 continue; 2317 } 2318 2319 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2320 if (injail) 2321 return (inp); 2322 else 2323 local_exact = inp; 2324 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2325 #ifdef INET6 2326 /* XXX inp locking, NULL check */ 2327 if (inp->inp_vflag & INP_IPV6PROTO) 2328 local_wild_mapped = inp; 2329 else 2330 #endif 2331 if (injail) 2332 jail_wild = inp; 2333 else 2334 local_wild = inp; 2335 } 2336 } /* LIST_FOREACH */ 2337 if (jail_wild != NULL) 2338 return (jail_wild); 2339 if (local_exact != NULL) 2340 return (local_exact); 2341 if (local_wild != NULL) 2342 return (local_wild); 2343 #ifdef INET6 2344 if (local_wild_mapped != NULL) 2345 return (local_wild_mapped); 2346 #endif 2347 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2348 2349 return (NULL); 2350 } 2351 2352 /* 2353 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2354 * hash list lock, and will return the inpcb locked (i.e., requires 2355 * INPLOOKUP_LOCKPCB). 2356 */ 2357 static struct inpcb * 2358 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2359 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2360 struct ifnet *ifp) 2361 { 2362 struct inpcb *inp; 2363 2364 INP_HASH_RLOCK(pcbinfo); 2365 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2366 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2367 if (inp != NULL) { 2368 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2369 INP_WLOCK(inp); 2370 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2371 INP_WUNLOCK(inp); 2372 inp = NULL; 2373 } 2374 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2375 INP_RLOCK(inp); 2376 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2377 INP_RUNLOCK(inp); 2378 inp = NULL; 2379 } 2380 } else 2381 panic("%s: locking bug", __func__); 2382 #ifdef INVARIANTS 2383 if (inp != NULL) { 2384 if (lookupflags & INPLOOKUP_WLOCKPCB) 2385 INP_WLOCK_ASSERT(inp); 2386 else 2387 INP_RLOCK_ASSERT(inp); 2388 } 2389 #endif 2390 } 2391 INP_HASH_RUNLOCK(pcbinfo); 2392 return (inp); 2393 } 2394 2395 /* 2396 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2397 * from which a pre-calculated hash value may be extracted. 2398 * 2399 * Possibly more of this logic should be in in_pcbgroup.c. 2400 */ 2401 struct inpcb * 2402 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2403 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2404 { 2405 #if defined(PCBGROUP) && !defined(RSS) 2406 struct inpcbgroup *pcbgroup; 2407 #endif 2408 2409 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2410 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2411 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2412 ("%s: LOCKPCB not set", __func__)); 2413 2414 /* 2415 * When not using RSS, use connection groups in preference to the 2416 * reservation table when looking up 4-tuples. When using RSS, just 2417 * use the reservation table, due to the cost of the Toeplitz hash 2418 * in software. 2419 * 2420 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2421 * we could be doing RSS with a non-Toeplitz hash that is affordable 2422 * in software. 2423 */ 2424 #if defined(PCBGROUP) && !defined(RSS) 2425 if (in_pcbgroup_enabled(pcbinfo)) { 2426 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2427 fport); 2428 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2429 laddr, lport, lookupflags, ifp)); 2430 } 2431 #endif 2432 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2433 lookupflags, ifp)); 2434 } 2435 2436 struct inpcb * 2437 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2438 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2439 struct ifnet *ifp, struct mbuf *m) 2440 { 2441 #ifdef PCBGROUP 2442 struct inpcbgroup *pcbgroup; 2443 #endif 2444 2445 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2446 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2447 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2448 ("%s: LOCKPCB not set", __func__)); 2449 2450 #ifdef PCBGROUP 2451 /* 2452 * If we can use a hardware-generated hash to look up the connection 2453 * group, use that connection group to find the inpcb. Otherwise 2454 * fall back on a software hash -- or the reservation table if we're 2455 * using RSS. 2456 * 2457 * XXXRW: As above, that policy belongs in the pcbgroup code. 2458 */ 2459 if (in_pcbgroup_enabled(pcbinfo) && 2460 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2461 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2462 m->m_pkthdr.flowid); 2463 if (pcbgroup != NULL) 2464 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2465 fport, laddr, lport, lookupflags, ifp)); 2466 #ifndef RSS 2467 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2468 fport); 2469 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2470 laddr, lport, lookupflags, ifp)); 2471 #endif 2472 } 2473 #endif 2474 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2475 lookupflags, ifp)); 2476 } 2477 #endif /* INET */ 2478 2479 /* 2480 * Insert PCB onto various hash lists. 2481 */ 2482 static int 2483 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2484 { 2485 struct inpcbhead *pcbhash; 2486 struct inpcbporthead *pcbporthash; 2487 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2488 struct inpcbport *phd; 2489 u_int32_t hashkey_faddr; 2490 int so_options; 2491 2492 INP_WLOCK_ASSERT(inp); 2493 INP_HASH_WLOCK_ASSERT(pcbinfo); 2494 2495 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2496 ("in_pcbinshash: INP_INHASHLIST")); 2497 2498 #ifdef INET6 2499 if (inp->inp_vflag & INP_IPV6) 2500 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2501 else 2502 #endif 2503 hashkey_faddr = inp->inp_faddr.s_addr; 2504 2505 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2506 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2507 2508 pcbporthash = &pcbinfo->ipi_porthashbase[ 2509 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2510 2511 /* 2512 * Add entry to load balance group. 2513 * Only do this if SO_REUSEPORT_LB is set. 2514 */ 2515 so_options = inp_so_options(inp); 2516 if (so_options & SO_REUSEPORT_LB) { 2517 int ret = in_pcbinslbgrouphash(inp); 2518 if (ret) { 2519 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2520 return (ret); 2521 } 2522 } 2523 2524 /* 2525 * Go through port list and look for a head for this lport. 2526 */ 2527 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2528 if (phd->phd_port == inp->inp_lport) 2529 break; 2530 } 2531 /* 2532 * If none exists, malloc one and tack it on. 2533 */ 2534 if (phd == NULL) { 2535 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2536 if (phd == NULL) { 2537 return (ENOBUFS); /* XXX */ 2538 } 2539 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2540 phd->phd_port = inp->inp_lport; 2541 CK_LIST_INIT(&phd->phd_pcblist); 2542 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2543 } 2544 inp->inp_phd = phd; 2545 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2546 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2547 inp->inp_flags |= INP_INHASHLIST; 2548 #ifdef PCBGROUP 2549 if (do_pcbgroup_update) 2550 in_pcbgroup_update(inp); 2551 #endif 2552 return (0); 2553 } 2554 2555 /* 2556 * For now, there are two public interfaces to insert an inpcb into the hash 2557 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2558 * is used only in the TCP syncache, where in_pcbinshash is called before the 2559 * full 4-tuple is set for the inpcb, and we don't want to install in the 2560 * pcbgroup until later. 2561 * 2562 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2563 * connection groups, and partially initialised inpcbs should not be exposed 2564 * to either reservation hash tables or pcbgroups. 2565 */ 2566 int 2567 in_pcbinshash(struct inpcb *inp) 2568 { 2569 2570 return (in_pcbinshash_internal(inp, 1)); 2571 } 2572 2573 int 2574 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2575 { 2576 2577 return (in_pcbinshash_internal(inp, 0)); 2578 } 2579 2580 /* 2581 * Move PCB to the proper hash bucket when { faddr, fport } have been 2582 * changed. NOTE: This does not handle the case of the lport changing (the 2583 * hashed port list would have to be updated as well), so the lport must 2584 * not change after in_pcbinshash() has been called. 2585 */ 2586 void 2587 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2588 { 2589 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2590 struct inpcbhead *head; 2591 u_int32_t hashkey_faddr; 2592 2593 INP_WLOCK_ASSERT(inp); 2594 INP_HASH_WLOCK_ASSERT(pcbinfo); 2595 2596 KASSERT(inp->inp_flags & INP_INHASHLIST, 2597 ("in_pcbrehash: !INP_INHASHLIST")); 2598 2599 #ifdef INET6 2600 if (inp->inp_vflag & INP_IPV6) 2601 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2602 else 2603 #endif 2604 hashkey_faddr = inp->inp_faddr.s_addr; 2605 2606 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2607 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2608 2609 CK_LIST_REMOVE(inp, inp_hash); 2610 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2611 2612 #ifdef PCBGROUP 2613 if (m != NULL) 2614 in_pcbgroup_update_mbuf(inp, m); 2615 else 2616 in_pcbgroup_update(inp); 2617 #endif 2618 } 2619 2620 void 2621 in_pcbrehash(struct inpcb *inp) 2622 { 2623 2624 in_pcbrehash_mbuf(inp, NULL); 2625 } 2626 2627 /* 2628 * Remove PCB from various lists. 2629 */ 2630 static void 2631 in_pcbremlists(struct inpcb *inp) 2632 { 2633 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2634 2635 #ifdef INVARIANTS 2636 if (pcbinfo == &V_tcbinfo) { 2637 INP_INFO_RLOCK_ASSERT(pcbinfo); 2638 } else { 2639 INP_INFO_WLOCK_ASSERT(pcbinfo); 2640 } 2641 #endif 2642 2643 INP_WLOCK_ASSERT(inp); 2644 INP_LIST_WLOCK_ASSERT(pcbinfo); 2645 2646 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2647 if (inp->inp_flags & INP_INHASHLIST) { 2648 struct inpcbport *phd = inp->inp_phd; 2649 2650 INP_HASH_WLOCK(pcbinfo); 2651 2652 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2653 in_pcbremlbgrouphash(inp); 2654 2655 CK_LIST_REMOVE(inp, inp_hash); 2656 CK_LIST_REMOVE(inp, inp_portlist); 2657 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2658 CK_LIST_REMOVE(phd, phd_hash); 2659 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2660 } 2661 INP_HASH_WUNLOCK(pcbinfo); 2662 inp->inp_flags &= ~INP_INHASHLIST; 2663 } 2664 CK_LIST_REMOVE(inp, inp_list); 2665 pcbinfo->ipi_count--; 2666 #ifdef PCBGROUP 2667 in_pcbgroup_remove(inp); 2668 #endif 2669 } 2670 2671 /* 2672 * Check for alternatives when higher level complains 2673 * about service problems. For now, invalidate cached 2674 * routing information. If the route was created dynamically 2675 * (by a redirect), time to try a default gateway again. 2676 */ 2677 void 2678 in_losing(struct inpcb *inp) 2679 { 2680 2681 RO_INVALIDATE_CACHE(&inp->inp_route); 2682 return; 2683 } 2684 2685 /* 2686 * A set label operation has occurred at the socket layer, propagate the 2687 * label change into the in_pcb for the socket. 2688 */ 2689 void 2690 in_pcbsosetlabel(struct socket *so) 2691 { 2692 #ifdef MAC 2693 struct inpcb *inp; 2694 2695 inp = sotoinpcb(so); 2696 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2697 2698 INP_WLOCK(inp); 2699 SOCK_LOCK(so); 2700 mac_inpcb_sosetlabel(so, inp); 2701 SOCK_UNLOCK(so); 2702 INP_WUNLOCK(inp); 2703 #endif 2704 } 2705 2706 /* 2707 * ipport_tick runs once per second, determining if random port allocation 2708 * should be continued. If more than ipport_randomcps ports have been 2709 * allocated in the last second, then we return to sequential port 2710 * allocation. We return to random allocation only once we drop below 2711 * ipport_randomcps for at least ipport_randomtime seconds. 2712 */ 2713 static void 2714 ipport_tick(void *xtp) 2715 { 2716 VNET_ITERATOR_DECL(vnet_iter); 2717 2718 VNET_LIST_RLOCK_NOSLEEP(); 2719 VNET_FOREACH(vnet_iter) { 2720 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2721 if (V_ipport_tcpallocs <= 2722 V_ipport_tcplastcount + V_ipport_randomcps) { 2723 if (V_ipport_stoprandom > 0) 2724 V_ipport_stoprandom--; 2725 } else 2726 V_ipport_stoprandom = V_ipport_randomtime; 2727 V_ipport_tcplastcount = V_ipport_tcpallocs; 2728 CURVNET_RESTORE(); 2729 } 2730 VNET_LIST_RUNLOCK_NOSLEEP(); 2731 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2732 } 2733 2734 static void 2735 ip_fini(void *xtp) 2736 { 2737 2738 callout_stop(&ipport_tick_callout); 2739 } 2740 2741 /* 2742 * The ipport_callout should start running at about the time we attach the 2743 * inet or inet6 domains. 2744 */ 2745 static void 2746 ipport_tick_init(const void *unused __unused) 2747 { 2748 2749 /* Start ipport_tick. */ 2750 callout_init(&ipport_tick_callout, 1); 2751 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2752 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2753 SHUTDOWN_PRI_DEFAULT); 2754 } 2755 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2756 ipport_tick_init, NULL); 2757 2758 void 2759 inp_wlock(struct inpcb *inp) 2760 { 2761 2762 INP_WLOCK(inp); 2763 } 2764 2765 void 2766 inp_wunlock(struct inpcb *inp) 2767 { 2768 2769 INP_WUNLOCK(inp); 2770 } 2771 2772 void 2773 inp_rlock(struct inpcb *inp) 2774 { 2775 2776 INP_RLOCK(inp); 2777 } 2778 2779 void 2780 inp_runlock(struct inpcb *inp) 2781 { 2782 2783 INP_RUNLOCK(inp); 2784 } 2785 2786 #ifdef INVARIANT_SUPPORT 2787 void 2788 inp_lock_assert(struct inpcb *inp) 2789 { 2790 2791 INP_WLOCK_ASSERT(inp); 2792 } 2793 2794 void 2795 inp_unlock_assert(struct inpcb *inp) 2796 { 2797 2798 INP_UNLOCK_ASSERT(inp); 2799 } 2800 #endif 2801 2802 void 2803 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2804 { 2805 struct inpcb *inp; 2806 2807 INP_INFO_WLOCK(&V_tcbinfo); 2808 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2809 INP_WLOCK(inp); 2810 func(inp, arg); 2811 INP_WUNLOCK(inp); 2812 } 2813 INP_INFO_WUNLOCK(&V_tcbinfo); 2814 } 2815 2816 struct socket * 2817 inp_inpcbtosocket(struct inpcb *inp) 2818 { 2819 2820 INP_WLOCK_ASSERT(inp); 2821 return (inp->inp_socket); 2822 } 2823 2824 struct tcpcb * 2825 inp_inpcbtotcpcb(struct inpcb *inp) 2826 { 2827 2828 INP_WLOCK_ASSERT(inp); 2829 return ((struct tcpcb *)inp->inp_ppcb); 2830 } 2831 2832 int 2833 inp_ip_tos_get(const struct inpcb *inp) 2834 { 2835 2836 return (inp->inp_ip_tos); 2837 } 2838 2839 void 2840 inp_ip_tos_set(struct inpcb *inp, int val) 2841 { 2842 2843 inp->inp_ip_tos = val; 2844 } 2845 2846 void 2847 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2848 uint32_t *faddr, uint16_t *fp) 2849 { 2850 2851 INP_LOCK_ASSERT(inp); 2852 *laddr = inp->inp_laddr.s_addr; 2853 *faddr = inp->inp_faddr.s_addr; 2854 *lp = inp->inp_lport; 2855 *fp = inp->inp_fport; 2856 } 2857 2858 struct inpcb * 2859 so_sotoinpcb(struct socket *so) 2860 { 2861 2862 return (sotoinpcb(so)); 2863 } 2864 2865 struct tcpcb * 2866 so_sototcpcb(struct socket *so) 2867 { 2868 2869 return (sototcpcb(so)); 2870 } 2871 2872 /* 2873 * Create an external-format (``xinpcb'') structure using the information in 2874 * the kernel-format in_pcb structure pointed to by inp. This is done to 2875 * reduce the spew of irrelevant information over this interface, to isolate 2876 * user code from changes in the kernel structure, and potentially to provide 2877 * information-hiding if we decide that some of this information should be 2878 * hidden from users. 2879 */ 2880 void 2881 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2882 { 2883 2884 bzero(xi, sizeof(*xi)); 2885 xi->xi_len = sizeof(struct xinpcb); 2886 if (inp->inp_socket) 2887 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2888 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2889 xi->inp_gencnt = inp->inp_gencnt; 2890 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2891 xi->inp_flow = inp->inp_flow; 2892 xi->inp_flowid = inp->inp_flowid; 2893 xi->inp_flowtype = inp->inp_flowtype; 2894 xi->inp_flags = inp->inp_flags; 2895 xi->inp_flags2 = inp->inp_flags2; 2896 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2897 xi->in6p_cksum = inp->in6p_cksum; 2898 xi->in6p_hops = inp->in6p_hops; 2899 xi->inp_ip_tos = inp->inp_ip_tos; 2900 xi->inp_vflag = inp->inp_vflag; 2901 xi->inp_ip_ttl = inp->inp_ip_ttl; 2902 xi->inp_ip_p = inp->inp_ip_p; 2903 xi->inp_ip_minttl = inp->inp_ip_minttl; 2904 } 2905 2906 #ifdef DDB 2907 static void 2908 db_print_indent(int indent) 2909 { 2910 int i; 2911 2912 for (i = 0; i < indent; i++) 2913 db_printf(" "); 2914 } 2915 2916 static void 2917 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2918 { 2919 char faddr_str[48], laddr_str[48]; 2920 2921 db_print_indent(indent); 2922 db_printf("%s at %p\n", name, inc); 2923 2924 indent += 2; 2925 2926 #ifdef INET6 2927 if (inc->inc_flags & INC_ISIPV6) { 2928 /* IPv6. */ 2929 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2930 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2931 } else 2932 #endif 2933 { 2934 /* IPv4. */ 2935 inet_ntoa_r(inc->inc_laddr, laddr_str); 2936 inet_ntoa_r(inc->inc_faddr, faddr_str); 2937 } 2938 db_print_indent(indent); 2939 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2940 ntohs(inc->inc_lport)); 2941 db_print_indent(indent); 2942 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2943 ntohs(inc->inc_fport)); 2944 } 2945 2946 static void 2947 db_print_inpflags(int inp_flags) 2948 { 2949 int comma; 2950 2951 comma = 0; 2952 if (inp_flags & INP_RECVOPTS) { 2953 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2954 comma = 1; 2955 } 2956 if (inp_flags & INP_RECVRETOPTS) { 2957 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2958 comma = 1; 2959 } 2960 if (inp_flags & INP_RECVDSTADDR) { 2961 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2962 comma = 1; 2963 } 2964 if (inp_flags & INP_ORIGDSTADDR) { 2965 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2966 comma = 1; 2967 } 2968 if (inp_flags & INP_HDRINCL) { 2969 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2970 comma = 1; 2971 } 2972 if (inp_flags & INP_HIGHPORT) { 2973 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2974 comma = 1; 2975 } 2976 if (inp_flags & INP_LOWPORT) { 2977 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2978 comma = 1; 2979 } 2980 if (inp_flags & INP_ANONPORT) { 2981 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2982 comma = 1; 2983 } 2984 if (inp_flags & INP_RECVIF) { 2985 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2986 comma = 1; 2987 } 2988 if (inp_flags & INP_MTUDISC) { 2989 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2990 comma = 1; 2991 } 2992 if (inp_flags & INP_RECVTTL) { 2993 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2994 comma = 1; 2995 } 2996 if (inp_flags & INP_DONTFRAG) { 2997 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2998 comma = 1; 2999 } 3000 if (inp_flags & INP_RECVTOS) { 3001 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3002 comma = 1; 3003 } 3004 if (inp_flags & IN6P_IPV6_V6ONLY) { 3005 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3006 comma = 1; 3007 } 3008 if (inp_flags & IN6P_PKTINFO) { 3009 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3010 comma = 1; 3011 } 3012 if (inp_flags & IN6P_HOPLIMIT) { 3013 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3014 comma = 1; 3015 } 3016 if (inp_flags & IN6P_HOPOPTS) { 3017 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3018 comma = 1; 3019 } 3020 if (inp_flags & IN6P_DSTOPTS) { 3021 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3022 comma = 1; 3023 } 3024 if (inp_flags & IN6P_RTHDR) { 3025 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3026 comma = 1; 3027 } 3028 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3029 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3030 comma = 1; 3031 } 3032 if (inp_flags & IN6P_TCLASS) { 3033 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3034 comma = 1; 3035 } 3036 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3037 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3038 comma = 1; 3039 } 3040 if (inp_flags & INP_TIMEWAIT) { 3041 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3042 comma = 1; 3043 } 3044 if (inp_flags & INP_ONESBCAST) { 3045 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3046 comma = 1; 3047 } 3048 if (inp_flags & INP_DROPPED) { 3049 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3050 comma = 1; 3051 } 3052 if (inp_flags & INP_SOCKREF) { 3053 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3054 comma = 1; 3055 } 3056 if (inp_flags & IN6P_RFC2292) { 3057 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3058 comma = 1; 3059 } 3060 if (inp_flags & IN6P_MTU) { 3061 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3062 comma = 1; 3063 } 3064 } 3065 3066 static void 3067 db_print_inpvflag(u_char inp_vflag) 3068 { 3069 int comma; 3070 3071 comma = 0; 3072 if (inp_vflag & INP_IPV4) { 3073 db_printf("%sINP_IPV4", comma ? ", " : ""); 3074 comma = 1; 3075 } 3076 if (inp_vflag & INP_IPV6) { 3077 db_printf("%sINP_IPV6", comma ? ", " : ""); 3078 comma = 1; 3079 } 3080 if (inp_vflag & INP_IPV6PROTO) { 3081 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3082 comma = 1; 3083 } 3084 } 3085 3086 static void 3087 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3088 { 3089 3090 db_print_indent(indent); 3091 db_printf("%s at %p\n", name, inp); 3092 3093 indent += 2; 3094 3095 db_print_indent(indent); 3096 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3097 3098 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3099 3100 db_print_indent(indent); 3101 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3102 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3103 3104 db_print_indent(indent); 3105 db_printf("inp_label: %p inp_flags: 0x%x (", 3106 inp->inp_label, inp->inp_flags); 3107 db_print_inpflags(inp->inp_flags); 3108 db_printf(")\n"); 3109 3110 db_print_indent(indent); 3111 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3112 inp->inp_vflag); 3113 db_print_inpvflag(inp->inp_vflag); 3114 db_printf(")\n"); 3115 3116 db_print_indent(indent); 3117 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3118 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3119 3120 db_print_indent(indent); 3121 #ifdef INET6 3122 if (inp->inp_vflag & INP_IPV6) { 3123 db_printf("in6p_options: %p in6p_outputopts: %p " 3124 "in6p_moptions: %p\n", inp->in6p_options, 3125 inp->in6p_outputopts, inp->in6p_moptions); 3126 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3127 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3128 inp->in6p_hops); 3129 } else 3130 #endif 3131 { 3132 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3133 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3134 inp->inp_options, inp->inp_moptions); 3135 } 3136 3137 db_print_indent(indent); 3138 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3139 (uintmax_t)inp->inp_gencnt); 3140 } 3141 3142 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3143 { 3144 struct inpcb *inp; 3145 3146 if (!have_addr) { 3147 db_printf("usage: show inpcb <addr>\n"); 3148 return; 3149 } 3150 inp = (struct inpcb *)addr; 3151 3152 db_print_inpcb(inp, "inpcb", 0); 3153 } 3154 #endif /* DDB */ 3155 3156 #ifdef RATELIMIT 3157 /* 3158 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3159 * if any. 3160 */ 3161 int 3162 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3163 { 3164 union if_snd_tag_modify_params params = { 3165 .rate_limit.max_rate = max_pacing_rate, 3166 }; 3167 struct m_snd_tag *mst; 3168 struct ifnet *ifp; 3169 int error; 3170 3171 mst = inp->inp_snd_tag; 3172 if (mst == NULL) 3173 return (EINVAL); 3174 3175 ifp = mst->ifp; 3176 if (ifp == NULL) 3177 return (EINVAL); 3178 3179 if (ifp->if_snd_tag_modify == NULL) { 3180 error = EOPNOTSUPP; 3181 } else { 3182 error = ifp->if_snd_tag_modify(mst, ¶ms); 3183 } 3184 return (error); 3185 } 3186 3187 /* 3188 * Query existing TX rate limit based on the existing 3189 * "inp->inp_snd_tag", if any. 3190 */ 3191 int 3192 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3193 { 3194 union if_snd_tag_query_params params = { }; 3195 struct m_snd_tag *mst; 3196 struct ifnet *ifp; 3197 int error; 3198 3199 mst = inp->inp_snd_tag; 3200 if (mst == NULL) 3201 return (EINVAL); 3202 3203 ifp = mst->ifp; 3204 if (ifp == NULL) 3205 return (EINVAL); 3206 3207 if (ifp->if_snd_tag_query == NULL) { 3208 error = EOPNOTSUPP; 3209 } else { 3210 error = ifp->if_snd_tag_query(mst, ¶ms); 3211 if (error == 0 && p_max_pacing_rate != NULL) 3212 *p_max_pacing_rate = params.rate_limit.max_rate; 3213 } 3214 return (error); 3215 } 3216 3217 /* 3218 * Query existing TX queue level based on the existing 3219 * "inp->inp_snd_tag", if any. 3220 */ 3221 int 3222 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3223 { 3224 union if_snd_tag_query_params params = { }; 3225 struct m_snd_tag *mst; 3226 struct ifnet *ifp; 3227 int error; 3228 3229 mst = inp->inp_snd_tag; 3230 if (mst == NULL) 3231 return (EINVAL); 3232 3233 ifp = mst->ifp; 3234 if (ifp == NULL) 3235 return (EINVAL); 3236 3237 if (ifp->if_snd_tag_query == NULL) 3238 return (EOPNOTSUPP); 3239 3240 error = ifp->if_snd_tag_query(mst, ¶ms); 3241 if (error == 0 && p_txqueue_level != NULL) 3242 *p_txqueue_level = params.rate_limit.queue_level; 3243 return (error); 3244 } 3245 3246 /* 3247 * Allocate a new TX rate limit send tag from the network interface 3248 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3249 */ 3250 int 3251 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3252 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3253 { 3254 union if_snd_tag_alloc_params params = { 3255 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3256 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3257 .rate_limit.hdr.flowid = flowid, 3258 .rate_limit.hdr.flowtype = flowtype, 3259 .rate_limit.max_rate = max_pacing_rate, 3260 }; 3261 int error; 3262 3263 INP_WLOCK_ASSERT(inp); 3264 3265 if (inp->inp_snd_tag != NULL) 3266 return (EINVAL); 3267 3268 if (ifp->if_snd_tag_alloc == NULL) { 3269 error = EOPNOTSUPP; 3270 } else { 3271 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3272 3273 /* 3274 * At success increment the refcount on 3275 * the send tag's network interface: 3276 */ 3277 if (error == 0) 3278 if_ref(inp->inp_snd_tag->ifp); 3279 } 3280 return (error); 3281 } 3282 3283 /* 3284 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3285 * if any: 3286 */ 3287 void 3288 in_pcbdetach_txrtlmt(struct inpcb *inp) 3289 { 3290 struct m_snd_tag *mst; 3291 struct ifnet *ifp; 3292 3293 INP_WLOCK_ASSERT(inp); 3294 3295 mst = inp->inp_snd_tag; 3296 inp->inp_snd_tag = NULL; 3297 3298 if (mst == NULL) 3299 return; 3300 3301 ifp = mst->ifp; 3302 if (ifp == NULL) 3303 return; 3304 3305 /* 3306 * If the device was detached while we still had reference(s) 3307 * on the ifp, we assume if_snd_tag_free() was replaced with 3308 * stubs. 3309 */ 3310 ifp->if_snd_tag_free(mst); 3311 3312 /* release reference count on network interface */ 3313 if_rele(ifp); 3314 } 3315 3316 /* 3317 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3318 * is set in the fast path and will attach/detach/modify the TX rate 3319 * limit send tag based on the socket's so_max_pacing_rate value. 3320 */ 3321 void 3322 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3323 { 3324 struct socket *socket; 3325 uint32_t max_pacing_rate; 3326 bool did_upgrade; 3327 int error; 3328 3329 if (inp == NULL) 3330 return; 3331 3332 socket = inp->inp_socket; 3333 if (socket == NULL) 3334 return; 3335 3336 if (!INP_WLOCKED(inp)) { 3337 /* 3338 * NOTE: If the write locking fails, we need to bail 3339 * out and use the non-ratelimited ring for the 3340 * transmit until there is a new chance to get the 3341 * write lock. 3342 */ 3343 if (!INP_TRY_UPGRADE(inp)) 3344 return; 3345 did_upgrade = 1; 3346 } else { 3347 did_upgrade = 0; 3348 } 3349 3350 /* 3351 * NOTE: The so_max_pacing_rate value is read unlocked, 3352 * because atomic updates are not required since the variable 3353 * is checked at every mbuf we send. It is assumed that the 3354 * variable read itself will be atomic. 3355 */ 3356 max_pacing_rate = socket->so_max_pacing_rate; 3357 3358 /* 3359 * NOTE: When attaching to a network interface a reference is 3360 * made to ensure the network interface doesn't go away until 3361 * all ratelimit connections are gone. The network interface 3362 * pointers compared below represent valid network interfaces, 3363 * except when comparing towards NULL. 3364 */ 3365 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3366 error = 0; 3367 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3368 if (inp->inp_snd_tag != NULL) 3369 in_pcbdetach_txrtlmt(inp); 3370 error = 0; 3371 } else if (inp->inp_snd_tag == NULL) { 3372 /* 3373 * In order to utilize packet pacing with RSS, we need 3374 * to wait until there is a valid RSS hash before we 3375 * can proceed: 3376 */ 3377 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3378 error = EAGAIN; 3379 } else { 3380 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3381 mb->m_pkthdr.flowid, max_pacing_rate); 3382 } 3383 } else { 3384 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3385 } 3386 if (error == 0 || error == EOPNOTSUPP) 3387 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3388 if (did_upgrade) 3389 INP_DOWNGRADE(inp); 3390 } 3391 3392 /* 3393 * Track route changes for TX rate limiting. 3394 */ 3395 void 3396 in_pcboutput_eagain(struct inpcb *inp) 3397 { 3398 struct socket *socket; 3399 bool did_upgrade; 3400 3401 if (inp == NULL) 3402 return; 3403 3404 socket = inp->inp_socket; 3405 if (socket == NULL) 3406 return; 3407 3408 if (inp->inp_snd_tag == NULL) 3409 return; 3410 3411 if (!INP_WLOCKED(inp)) { 3412 /* 3413 * NOTE: If the write locking fails, we need to bail 3414 * out and use the non-ratelimited ring for the 3415 * transmit until there is a new chance to get the 3416 * write lock. 3417 */ 3418 if (!INP_TRY_UPGRADE(inp)) 3419 return; 3420 did_upgrade = 1; 3421 } else { 3422 did_upgrade = 0; 3423 } 3424 3425 /* detach rate limiting */ 3426 in_pcbdetach_txrtlmt(inp); 3427 3428 /* make sure new mbuf send tag allocation is made */ 3429 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3430 3431 if (did_upgrade) 3432 INP_DOWNGRADE(inp); 3433 } 3434 #endif /* RATELIMIT */ 3435