xref: /freebsd/sys/netinet/in_pcb.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipsec.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mac.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/proc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 
51 #include <vm/uma.h>
52 
53 #include <net/if.h>
54 #include <net/if_types.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_pcb.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/tcp_var.h>
62 #include <netinet/udp.h>
63 #include <netinet/udp_var.h>
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #endif /* INET6 */
68 
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #include <netkey/key.h>
72 #endif /* IPSEC */
73 
74 #ifdef FAST_IPSEC
75 #if defined(IPSEC) || defined(IPSEC_ESP)
76 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
77 #endif
78 
79 #include <netipsec/ipsec.h>
80 #include <netipsec/key.h>
81 #endif /* FAST_IPSEC */
82 
83 /*
84  * These configure the range of local port addresses assigned to
85  * "unspecified" outgoing connections/packets/whatever.
86  */
87 int	ipport_lowfirstauto  = IPPORT_RESERVED - 1;	/* 1023 */
88 int	ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
89 int	ipport_firstauto = IPPORT_HIFIRSTAUTO;		/* 49152 */
90 int	ipport_lastauto  = IPPORT_HILASTAUTO;		/* 65535 */
91 int	ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
92 int	ipport_hilastauto  = IPPORT_HILASTAUTO;		/* 65535 */
93 
94 /*
95  * Reserved ports accessible only to root. There are significant
96  * security considerations that must be accounted for when changing these,
97  * but the security benefits can be great. Please be careful.
98  */
99 int	ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
100 int	ipport_reservedlow = 0;
101 
102 /* Variables dealing with random ephemeral port allocation. */
103 int	ipport_randomized = 1;	/* user controlled via sysctl */
104 int	ipport_randomcps = 10;	/* user controlled via sysctl */
105 int	ipport_randomtime = 45;	/* user controlled via sysctl */
106 int	ipport_stoprandom = 0;	/* toggled by ipport_tick */
107 int	ipport_tcpallocs;
108 int	ipport_tcplastcount;
109 
110 #define RANGECHK(var, min, max) \
111 	if ((var) < (min)) { (var) = (min); } \
112 	else if ((var) > (max)) { (var) = (max); }
113 
114 static int
115 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
116 {
117 	int error;
118 
119 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
120 	if (error == 0) {
121 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
122 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
123 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
124 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
125 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
126 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
127 	}
128 	return (error);
129 }
130 
131 #undef RANGECHK
132 
133 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
134 
135 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
136 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
137 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
138 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
139 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
140 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
141 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
142 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
143 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
144 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
145 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
146 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
147 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
148 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
149 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
150 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
151 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
152 	   &ipport_randomized, 0, "Enable random port allocation");
153 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
154 	   &ipport_randomcps, 0, "Maximum number of random port "
155 	   "allocations before switching to a sequental one");
156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
157 	   &ipport_randomtime, 0, "Minimum time to keep sequental port "
158 	   "allocation before switching to a random one");
159 
160 /*
161  * in_pcb.c: manage the Protocol Control Blocks.
162  *
163  * NOTE: It is assumed that most of these functions will be called with
164  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
165  * functions often modify hash chains or addresses in pcbs.
166  */
167 
168 /*
169  * Allocate a PCB and associate it with the socket.
170  */
171 int
172 in_pcballoc(so, pcbinfo, type)
173 	struct socket *so;
174 	struct inpcbinfo *pcbinfo;
175 	const char *type;
176 {
177 	register struct inpcb *inp;
178 	int error;
179 
180 	INP_INFO_WLOCK_ASSERT(pcbinfo);
181 	error = 0;
182 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT | M_ZERO);
183 	if (inp == NULL)
184 		return (ENOBUFS);
185 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
186 	inp->inp_pcbinfo = pcbinfo;
187 	inp->inp_socket = so;
188 #ifdef MAC
189 	error = mac_init_inpcb(inp, M_NOWAIT);
190 	if (error != 0)
191 		goto out;
192 	SOCK_LOCK(so);
193 	mac_create_inpcb_from_socket(so, inp);
194 	SOCK_UNLOCK(so);
195 #endif
196 #if defined(IPSEC) || defined(FAST_IPSEC)
197 #ifdef FAST_IPSEC
198 	error = ipsec_init_policy(so, &inp->inp_sp);
199 #else
200 	error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
201 #endif
202 	if (error != 0)
203 		goto out;
204 #endif /*IPSEC*/
205 #if defined(INET6)
206 	if (INP_SOCKAF(so) == AF_INET6) {
207 		inp->inp_vflag |= INP_IPV6PROTO;
208 		if (ip6_v6only)
209 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
210 	}
211 #endif
212 	LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
213 	pcbinfo->ipi_count++;
214 	so->so_pcb = (caddr_t)inp;
215 	INP_LOCK_INIT(inp, "inp", type);
216 #ifdef INET6
217 	if (ip6_auto_flowlabel)
218 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
219 #endif
220 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
221 out:
222 	if (error != 0)
223 		uma_zfree(pcbinfo->ipi_zone, inp);
224 #endif
225 	return (error);
226 }
227 
228 int
229 in_pcbbind(inp, nam, cred)
230 	register struct inpcb *inp;
231 	struct sockaddr *nam;
232 	struct ucred *cred;
233 {
234 	int anonport, error;
235 
236 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
237 	INP_LOCK_ASSERT(inp);
238 
239 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
240 		return (EINVAL);
241 	anonport = inp->inp_lport == 0 && (nam == NULL ||
242 	    ((struct sockaddr_in *)nam)->sin_port == 0);
243 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
244 	    &inp->inp_lport, cred);
245 	if (error)
246 		return (error);
247 	if (in_pcbinshash(inp) != 0) {
248 		inp->inp_laddr.s_addr = INADDR_ANY;
249 		inp->inp_lport = 0;
250 		return (EAGAIN);
251 	}
252 	if (anonport)
253 		inp->inp_flags |= INP_ANONPORT;
254 	return (0);
255 }
256 
257 /*
258  * Set up a bind operation on a PCB, performing port allocation
259  * as required, but do not actually modify the PCB. Callers can
260  * either complete the bind by setting inp_laddr/inp_lport and
261  * calling in_pcbinshash(), or they can just use the resulting
262  * port and address to authorise the sending of a once-off packet.
263  *
264  * On error, the values of *laddrp and *lportp are not changed.
265  */
266 int
267 in_pcbbind_setup(inp, nam, laddrp, lportp, cred)
268 	struct inpcb *inp;
269 	struct sockaddr *nam;
270 	in_addr_t *laddrp;
271 	u_short *lportp;
272 	struct ucred *cred;
273 {
274 	struct socket *so = inp->inp_socket;
275 	unsigned short *lastport;
276 	struct sockaddr_in *sin;
277 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
278 	struct in_addr laddr;
279 	u_short lport = 0;
280 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
281 	int error, prison = 0;
282 	int dorandom;
283 
284 	INP_INFO_WLOCK_ASSERT(pcbinfo);
285 	INP_LOCK_ASSERT(inp);
286 
287 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
288 		return (EADDRNOTAVAIL);
289 	laddr.s_addr = *laddrp;
290 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
291 		return (EINVAL);
292 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
293 		wild = 1;
294 	if (nam) {
295 		sin = (struct sockaddr_in *)nam;
296 		if (nam->sa_len != sizeof (*sin))
297 			return (EINVAL);
298 #ifdef notdef
299 		/*
300 		 * We should check the family, but old programs
301 		 * incorrectly fail to initialize it.
302 		 */
303 		if (sin->sin_family != AF_INET)
304 			return (EAFNOSUPPORT);
305 #endif
306 		if (sin->sin_addr.s_addr != INADDR_ANY)
307 			if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
308 				return(EINVAL);
309 		if (sin->sin_port != *lportp) {
310 			/* Don't allow the port to change. */
311 			if (*lportp != 0)
312 				return (EINVAL);
313 			lport = sin->sin_port;
314 		}
315 		/* NB: lport is left as 0 if the port isn't being changed. */
316 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
317 			/*
318 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
319 			 * allow complete duplication of binding if
320 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
321 			 * and a multicast address is bound on both
322 			 * new and duplicated sockets.
323 			 */
324 			if (so->so_options & SO_REUSEADDR)
325 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
326 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
327 			sin->sin_port = 0;		/* yech... */
328 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
329 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
330 				return (EADDRNOTAVAIL);
331 		}
332 		laddr = sin->sin_addr;
333 		if (lport) {
334 			struct inpcb *t;
335 			/* GROSS */
336 			if (ntohs(lport) <= ipport_reservedhigh &&
337 			    ntohs(lport) >= ipport_reservedlow &&
338 			    suser_cred(cred, SUSER_ALLOWJAIL))
339 				return (EACCES);
340 			if (jailed(cred))
341 				prison = 1;
342 			if (so->so_cred->cr_uid != 0 &&
343 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
344 				t = in_pcblookup_local(inp->inp_pcbinfo,
345 				    sin->sin_addr, lport,
346 				    prison ? 0 :  INPLOOKUP_WILDCARD);
347 	/*
348 	 * XXX
349 	 * This entire block sorely needs a rewrite.
350 	 */
351 				if (t &&
352 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
353 				    (so->so_type != SOCK_STREAM ||
354 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
355 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
356 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
357 				     (t->inp_socket->so_options &
358 					 SO_REUSEPORT) == 0) &&
359 				    (so->so_cred->cr_uid !=
360 				     t->inp_socket->so_cred->cr_uid))
361 					return (EADDRINUSE);
362 			}
363 			if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
364 				return (EADDRNOTAVAIL);
365 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
366 			    lport, prison ? 0 : wild);
367 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
368 				if ((reuseport & intotw(t)->tw_so_options) == 0)
369 					return (EADDRINUSE);
370 			} else
371 			if (t &&
372 			    (reuseport & t->inp_socket->so_options) == 0) {
373 #if defined(INET6)
374 				if (ntohl(sin->sin_addr.s_addr) !=
375 				    INADDR_ANY ||
376 				    ntohl(t->inp_laddr.s_addr) !=
377 				    INADDR_ANY ||
378 				    INP_SOCKAF(so) ==
379 				    INP_SOCKAF(t->inp_socket))
380 #endif /* defined(INET6) */
381 				return (EADDRINUSE);
382 			}
383 		}
384 	}
385 	if (*lportp != 0)
386 		lport = *lportp;
387 	if (lport == 0) {
388 		u_short first, last;
389 		int count;
390 
391 		if (laddr.s_addr != INADDR_ANY)
392 			if (prison_ip(cred, 0, &laddr.s_addr))
393 				return (EINVAL);
394 
395 		if (inp->inp_flags & INP_HIGHPORT) {
396 			first = ipport_hifirstauto;	/* sysctl */
397 			last  = ipport_hilastauto;
398 			lastport = &pcbinfo->lasthi;
399 		} else if (inp->inp_flags & INP_LOWPORT) {
400 			if ((error = suser_cred(cred, SUSER_ALLOWJAIL)) != 0)
401 				return error;
402 			first = ipport_lowfirstauto;	/* 1023 */
403 			last  = ipport_lowlastauto;	/* 600 */
404 			lastport = &pcbinfo->lastlow;
405 		} else {
406 			first = ipport_firstauto;	/* sysctl */
407 			last  = ipport_lastauto;
408 			lastport = &pcbinfo->lastport;
409 		}
410 		/*
411 		 * For UDP, use random port allocation as long as the user
412 		 * allows it.  For TCP (and as of yet unknown) connections,
413 		 * use random port allocation only if the user allows it AND
414 		 * ipport_tick() allows it.
415 		 */
416 		if (ipport_randomized &&
417 			(!ipport_stoprandom || pcbinfo == &udbinfo))
418 			dorandom = 1;
419 		else
420 			dorandom = 0;
421 		/*
422 		 * It makes no sense to do random port allocation if
423 		 * we have the only port available.
424 		 */
425 		if (first == last)
426 			dorandom = 0;
427 		/* Make sure to not include UDP packets in the count. */
428 		if (pcbinfo != &udbinfo)
429 			ipport_tcpallocs++;
430 		/*
431 		 * Simple check to ensure all ports are not used up causing
432 		 * a deadlock here.
433 		 *
434 		 * We split the two cases (up and down) so that the direction
435 		 * is not being tested on each round of the loop.
436 		 */
437 		if (first > last) {
438 			/*
439 			 * counting down
440 			 */
441 			if (dorandom)
442 				*lastport = first -
443 					    (arc4random() % (first - last));
444 			count = first - last;
445 
446 			do {
447 				if (count-- < 0)	/* completely used? */
448 					return (EADDRNOTAVAIL);
449 				--*lastport;
450 				if (*lastport > first || *lastport < last)
451 					*lastport = first;
452 				lport = htons(*lastport);
453 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
454 			    wild));
455 		} else {
456 			/*
457 			 * counting up
458 			 */
459 			if (dorandom)
460 				*lastport = first +
461 					    (arc4random() % (last - first));
462 			count = last - first;
463 
464 			do {
465 				if (count-- < 0)	/* completely used? */
466 					return (EADDRNOTAVAIL);
467 				++*lastport;
468 				if (*lastport < first || *lastport > last)
469 					*lastport = first;
470 				lport = htons(*lastport);
471 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
472 			    wild));
473 		}
474 	}
475 	if (prison_ip(cred, 0, &laddr.s_addr))
476 		return (EINVAL);
477 	*laddrp = laddr.s_addr;
478 	*lportp = lport;
479 	return (0);
480 }
481 
482 /*
483  * Connect from a socket to a specified address.
484  * Both address and port must be specified in argument sin.
485  * If don't have a local address for this socket yet,
486  * then pick one.
487  */
488 int
489 in_pcbconnect(inp, nam, cred)
490 	register struct inpcb *inp;
491 	struct sockaddr *nam;
492 	struct ucred *cred;
493 {
494 	u_short lport, fport;
495 	in_addr_t laddr, faddr;
496 	int anonport, error;
497 
498 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
499 	INP_LOCK_ASSERT(inp);
500 
501 	lport = inp->inp_lport;
502 	laddr = inp->inp_laddr.s_addr;
503 	anonport = (lport == 0);
504 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
505 	    NULL, cred);
506 	if (error)
507 		return (error);
508 
509 	/* Do the initial binding of the local address if required. */
510 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
511 		inp->inp_lport = lport;
512 		inp->inp_laddr.s_addr = laddr;
513 		if (in_pcbinshash(inp) != 0) {
514 			inp->inp_laddr.s_addr = INADDR_ANY;
515 			inp->inp_lport = 0;
516 			return (EAGAIN);
517 		}
518 	}
519 
520 	/* Commit the remaining changes. */
521 	inp->inp_lport = lport;
522 	inp->inp_laddr.s_addr = laddr;
523 	inp->inp_faddr.s_addr = faddr;
524 	inp->inp_fport = fport;
525 	in_pcbrehash(inp);
526 #ifdef IPSEC
527 	if (inp->inp_socket->so_type == SOCK_STREAM)
528 		ipsec_pcbconn(inp->inp_sp);
529 #endif
530 	if (anonport)
531 		inp->inp_flags |= INP_ANONPORT;
532 	return (0);
533 }
534 
535 /*
536  * Set up for a connect from a socket to the specified address.
537  * On entry, *laddrp and *lportp should contain the current local
538  * address and port for the PCB; these are updated to the values
539  * that should be placed in inp_laddr and inp_lport to complete
540  * the connect.
541  *
542  * On success, *faddrp and *fportp will be set to the remote address
543  * and port. These are not updated in the error case.
544  *
545  * If the operation fails because the connection already exists,
546  * *oinpp will be set to the PCB of that connection so that the
547  * caller can decide to override it. In all other cases, *oinpp
548  * is set to NULL.
549  */
550 int
551 in_pcbconnect_setup(inp, nam, laddrp, lportp, faddrp, fportp, oinpp, cred)
552 	register struct inpcb *inp;
553 	struct sockaddr *nam;
554 	in_addr_t *laddrp;
555 	u_short *lportp;
556 	in_addr_t *faddrp;
557 	u_short *fportp;
558 	struct inpcb **oinpp;
559 	struct ucred *cred;
560 {
561 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
562 	struct in_ifaddr *ia;
563 	struct sockaddr_in sa;
564 	struct ucred *socred;
565 	struct inpcb *oinp;
566 	struct in_addr laddr, faddr;
567 	u_short lport, fport;
568 	int error;
569 
570 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
571 	INP_LOCK_ASSERT(inp);
572 
573 	if (oinpp != NULL)
574 		*oinpp = NULL;
575 	if (nam->sa_len != sizeof (*sin))
576 		return (EINVAL);
577 	if (sin->sin_family != AF_INET)
578 		return (EAFNOSUPPORT);
579 	if (sin->sin_port == 0)
580 		return (EADDRNOTAVAIL);
581 	laddr.s_addr = *laddrp;
582 	lport = *lportp;
583 	faddr = sin->sin_addr;
584 	fport = sin->sin_port;
585 	socred = inp->inp_socket->so_cred;
586 	if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
587 		bzero(&sa, sizeof(sa));
588 		sa.sin_addr.s_addr = htonl(prison_getip(socred));
589 		sa.sin_len = sizeof(sa);
590 		sa.sin_family = AF_INET;
591 		error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
592 		    &laddr.s_addr, &lport, cred);
593 		if (error)
594 			return (error);
595 	}
596 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
597 		/*
598 		 * If the destination address is INADDR_ANY,
599 		 * use the primary local address.
600 		 * If the supplied address is INADDR_BROADCAST,
601 		 * and the primary interface supports broadcast,
602 		 * choose the broadcast address for that interface.
603 		 */
604 		if (faddr.s_addr == INADDR_ANY)
605 			faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
606 		else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
607 		    (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
608 		    IFF_BROADCAST))
609 			faddr = satosin(&TAILQ_FIRST(
610 			    &in_ifaddrhead)->ia_broadaddr)->sin_addr;
611 	}
612 	if (laddr.s_addr == INADDR_ANY) {
613 		struct route sro;
614 
615 		bzero(&sro, sizeof(sro));
616 		ia = (struct in_ifaddr *)0;
617 		/*
618 		 * If route is known our src addr is taken from the i/f,
619 		 * else punt.
620 		 */
621 		if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) {
622 			/* Find out route to destination */
623 			sro.ro_dst.sa_family = AF_INET;
624 			sro.ro_dst.sa_len = sizeof(struct sockaddr_in);
625 			((struct sockaddr_in *)&sro.ro_dst)->sin_addr = faddr;
626 			rtalloc_ign(&sro, RTF_CLONING);
627 		}
628 		/*
629 		 * If we found a route, use the address
630 		 * corresponding to the outgoing interface.
631 		 */
632 		if (sro.ro_rt) {
633 			ia = ifatoia(sro.ro_rt->rt_ifa);
634 			RTFREE(sro.ro_rt);
635 		}
636 		if (ia == 0) {
637 			bzero(&sa, sizeof(sa));
638 			sa.sin_addr = faddr;
639 			sa.sin_len = sizeof(sa);
640 			sa.sin_family = AF_INET;
641 
642 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
643 			if (ia == 0)
644 				ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
645 			if (ia == 0)
646 				return (ENETUNREACH);
647 		}
648 		/*
649 		 * If the destination address is multicast and an outgoing
650 		 * interface has been set as a multicast option, use the
651 		 * address of that interface as our source address.
652 		 */
653 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
654 		    inp->inp_moptions != NULL) {
655 			struct ip_moptions *imo;
656 			struct ifnet *ifp;
657 
658 			imo = inp->inp_moptions;
659 			if (imo->imo_multicast_ifp != NULL) {
660 				ifp = imo->imo_multicast_ifp;
661 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
662 					if (ia->ia_ifp == ifp)
663 						break;
664 				if (ia == 0)
665 					return (EADDRNOTAVAIL);
666 			}
667 		}
668 		laddr = ia->ia_addr.sin_addr;
669 	}
670 
671 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
672 	    0, NULL);
673 	if (oinp != NULL) {
674 		if (oinpp != NULL)
675 			*oinpp = oinp;
676 		return (EADDRINUSE);
677 	}
678 	if (lport == 0) {
679 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
680 		    cred);
681 		if (error)
682 			return (error);
683 	}
684 	*laddrp = laddr.s_addr;
685 	*lportp = lport;
686 	*faddrp = faddr.s_addr;
687 	*fportp = fport;
688 	return (0);
689 }
690 
691 void
692 in_pcbdisconnect(inp)
693 	struct inpcb *inp;
694 {
695 
696 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
697 	INP_LOCK_ASSERT(inp);
698 
699 	inp->inp_faddr.s_addr = INADDR_ANY;
700 	inp->inp_fport = 0;
701 	in_pcbrehash(inp);
702 #ifdef IPSEC
703 	ipsec_pcbdisconn(inp->inp_sp);
704 #endif
705 	if (inp->inp_socket->so_state & SS_NOFDREF)
706 		in_pcbdetach(inp);
707 }
708 
709 void
710 in_pcbdetach(inp)
711 	struct inpcb *inp;
712 {
713 	struct socket *so = inp->inp_socket;
714 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
715 
716 	INP_INFO_WLOCK_ASSERT(ipi);
717 	INP_LOCK_ASSERT(inp);
718 
719 #if defined(IPSEC) || defined(FAST_IPSEC)
720 	ipsec4_delete_pcbpolicy(inp);
721 #endif /*IPSEC*/
722 	inp->inp_gencnt = ++ipi->ipi_gencnt;
723 	in_pcbremlists(inp);
724 	if (so) {
725 		ACCEPT_LOCK();
726 		SOCK_LOCK(so);
727 		so->so_pcb = NULL;
728 		sotryfree(so);
729 	}
730 	if (inp->inp_options)
731 		(void)m_free(inp->inp_options);
732 	ip_freemoptions(inp->inp_moptions);
733 	inp->inp_vflag = 0;
734 	INP_LOCK_DESTROY(inp);
735 #ifdef MAC
736 	mac_destroy_inpcb(inp);
737 #endif
738 	uma_zfree(ipi->ipi_zone, inp);
739 }
740 
741 struct sockaddr *
742 in_sockaddr(port, addr_p)
743 	in_port_t port;
744 	struct in_addr *addr_p;
745 {
746 	struct sockaddr_in *sin;
747 
748 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
749 		M_WAITOK | M_ZERO);
750 	sin->sin_family = AF_INET;
751 	sin->sin_len = sizeof(*sin);
752 	sin->sin_addr = *addr_p;
753 	sin->sin_port = port;
754 
755 	return (struct sockaddr *)sin;
756 }
757 
758 /*
759  * The wrapper function will pass down the pcbinfo for this function to lock.
760  * The socket must have a valid
761  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
762  * except through a kernel programming error, so it is acceptable to panic
763  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
764  * because there actually /is/ a programming error somewhere... XXX)
765  */
766 int
767 in_setsockaddr(so, nam, pcbinfo)
768 	struct socket *so;
769 	struct sockaddr **nam;
770 	struct inpcbinfo *pcbinfo;
771 {
772 	register struct inpcb *inp;
773 	struct in_addr addr;
774 	in_port_t port;
775 
776 	INP_INFO_RLOCK(pcbinfo);
777 	inp = sotoinpcb(so);
778 	if (!inp) {
779 		INP_INFO_RUNLOCK(pcbinfo);
780 		return ECONNRESET;
781 	}
782 	INP_LOCK(inp);
783 	port = inp->inp_lport;
784 	addr = inp->inp_laddr;
785 	INP_UNLOCK(inp);
786 	INP_INFO_RUNLOCK(pcbinfo);
787 
788 	*nam = in_sockaddr(port, &addr);
789 	return 0;
790 }
791 
792 /*
793  * The wrapper function will pass down the pcbinfo for this function to lock.
794  */
795 int
796 in_setpeeraddr(so, nam, pcbinfo)
797 	struct socket *so;
798 	struct sockaddr **nam;
799 	struct inpcbinfo *pcbinfo;
800 {
801 	register struct inpcb *inp;
802 	struct in_addr addr;
803 	in_port_t port;
804 
805 	INP_INFO_RLOCK(pcbinfo);
806 	inp = sotoinpcb(so);
807 	if (!inp) {
808 		INP_INFO_RUNLOCK(pcbinfo);
809 		return ECONNRESET;
810 	}
811 	INP_LOCK(inp);
812 	port = inp->inp_fport;
813 	addr = inp->inp_faddr;
814 	INP_UNLOCK(inp);
815 	INP_INFO_RUNLOCK(pcbinfo);
816 
817 	*nam = in_sockaddr(port, &addr);
818 	return 0;
819 }
820 
821 void
822 in_pcbnotifyall(pcbinfo, faddr, errno, notify)
823 	struct inpcbinfo *pcbinfo;
824 	struct in_addr faddr;
825 	int errno;
826 	struct inpcb *(*notify)(struct inpcb *, int);
827 {
828 	struct inpcb *inp, *ninp;
829 	struct inpcbhead *head;
830 
831 	INP_INFO_WLOCK(pcbinfo);
832 	head = pcbinfo->listhead;
833 	for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
834 		INP_LOCK(inp);
835 		ninp = LIST_NEXT(inp, inp_list);
836 #ifdef INET6
837 		if ((inp->inp_vflag & INP_IPV4) == 0) {
838 			INP_UNLOCK(inp);
839 			continue;
840 		}
841 #endif
842 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
843 		    inp->inp_socket == NULL) {
844 			INP_UNLOCK(inp);
845 			continue;
846 		}
847 		if ((*notify)(inp, errno))
848 			INP_UNLOCK(inp);
849 	}
850 	INP_INFO_WUNLOCK(pcbinfo);
851 }
852 
853 void
854 in_pcbpurgeif0(pcbinfo, ifp)
855 	struct inpcbinfo *pcbinfo;
856 	struct ifnet *ifp;
857 {
858 	struct inpcb *inp;
859 	struct ip_moptions *imo;
860 	int i, gap;
861 
862 	INP_INFO_RLOCK(pcbinfo);
863 	LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
864 		INP_LOCK(inp);
865 		imo = inp->inp_moptions;
866 		if ((inp->inp_vflag & INP_IPV4) &&
867 		    imo != NULL) {
868 			/*
869 			 * Unselect the outgoing interface if it is being
870 			 * detached.
871 			 */
872 			if (imo->imo_multicast_ifp == ifp)
873 				imo->imo_multicast_ifp = NULL;
874 
875 			/*
876 			 * Drop multicast group membership if we joined
877 			 * through the interface being detached.
878 			 */
879 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
880 			    i++) {
881 				if (imo->imo_membership[i]->inm_ifp == ifp) {
882 					in_delmulti(imo->imo_membership[i]);
883 					gap++;
884 				} else if (gap != 0)
885 					imo->imo_membership[i - gap] =
886 					    imo->imo_membership[i];
887 			}
888 			imo->imo_num_memberships -= gap;
889 		}
890 		INP_UNLOCK(inp);
891 	}
892 	INP_INFO_RUNLOCK(pcbinfo);
893 }
894 
895 /*
896  * Lookup a PCB based on the local address and port.
897  */
898 struct inpcb *
899 in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
900 	struct inpcbinfo *pcbinfo;
901 	struct in_addr laddr;
902 	u_int lport_arg;
903 	int wild_okay;
904 {
905 	register struct inpcb *inp;
906 	int matchwild = 3, wildcard;
907 	u_short lport = lport_arg;
908 
909 	INP_INFO_WLOCK_ASSERT(pcbinfo);
910 
911 	if (!wild_okay) {
912 		struct inpcbhead *head;
913 		/*
914 		 * Look for an unconnected (wildcard foreign addr) PCB that
915 		 * matches the local address and port we're looking for.
916 		 */
917 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
918 		LIST_FOREACH(inp, head, inp_hash) {
919 #ifdef INET6
920 			if ((inp->inp_vflag & INP_IPV4) == 0)
921 				continue;
922 #endif
923 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
924 			    inp->inp_laddr.s_addr == laddr.s_addr &&
925 			    inp->inp_lport == lport) {
926 				/*
927 				 * Found.
928 				 */
929 				return (inp);
930 			}
931 		}
932 		/*
933 		 * Not found.
934 		 */
935 		return (NULL);
936 	} else {
937 		struct inpcbporthead *porthash;
938 		struct inpcbport *phd;
939 		struct inpcb *match = NULL;
940 		/*
941 		 * Best fit PCB lookup.
942 		 *
943 		 * First see if this local port is in use by looking on the
944 		 * port hash list.
945 		 */
946 		retrylookup:
947 		porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
948 		    pcbinfo->porthashmask)];
949 		LIST_FOREACH(phd, porthash, phd_hash) {
950 			if (phd->phd_port == lport)
951 				break;
952 		}
953 		if (phd != NULL) {
954 			/*
955 			 * Port is in use by one or more PCBs. Look for best
956 			 * fit.
957 			 */
958 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
959 				wildcard = 0;
960 #ifdef INET6
961 				if ((inp->inp_vflag & INP_IPV4) == 0)
962 					continue;
963 #endif
964 				/*
965 				 * Clean out old time_wait sockets if they
966 				 * are clogging up needed local ports.
967 				 */
968 				if ((inp->inp_vflag & INP_TIMEWAIT) != 0) {
969 					if (tcp_twrecycleable((struct tcptw *)inp->inp_ppcb)) {
970 						INP_LOCK(inp);
971 						tcp_twclose((struct tcptw *)inp->inp_ppcb, 0);
972 						match = NULL;
973 						goto retrylookup;
974 					}
975 				}
976 				if (inp->inp_faddr.s_addr != INADDR_ANY)
977 					wildcard++;
978 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
979 					if (laddr.s_addr == INADDR_ANY)
980 						wildcard++;
981 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
982 						continue;
983 				} else {
984 					if (laddr.s_addr != INADDR_ANY)
985 						wildcard++;
986 				}
987 				if (wildcard < matchwild) {
988 					match = inp;
989 					matchwild = wildcard;
990 					if (matchwild == 0) {
991 						break;
992 					}
993 				}
994 			}
995 		}
996 		return (match);
997 	}
998 }
999 
1000 /*
1001  * Lookup PCB in hash list.
1002  */
1003 struct inpcb *
1004 in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard,
1005 		  ifp)
1006 	struct inpcbinfo *pcbinfo;
1007 	struct in_addr faddr, laddr;
1008 	u_int fport_arg, lport_arg;
1009 	int wildcard;
1010 	struct ifnet *ifp;
1011 {
1012 	struct inpcbhead *head;
1013 	register struct inpcb *inp;
1014 	u_short fport = fport_arg, lport = lport_arg;
1015 
1016 	INP_INFO_RLOCK_ASSERT(pcbinfo);
1017 	/*
1018 	 * First look for an exact match.
1019 	 */
1020 	head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
1021 	LIST_FOREACH(inp, head, inp_hash) {
1022 #ifdef INET6
1023 		if ((inp->inp_vflag & INP_IPV4) == 0)
1024 			continue;
1025 #endif
1026 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1027 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1028 		    inp->inp_fport == fport &&
1029 		    inp->inp_lport == lport) {
1030 			/*
1031 			 * Found.
1032 			 */
1033 			return (inp);
1034 		}
1035 	}
1036 	if (wildcard) {
1037 		struct inpcb *local_wild = NULL;
1038 #if defined(INET6)
1039 		struct inpcb *local_wild_mapped = NULL;
1040 #endif /* defined(INET6) */
1041 
1042 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
1043 		LIST_FOREACH(inp, head, inp_hash) {
1044 #ifdef INET6
1045 			if ((inp->inp_vflag & INP_IPV4) == 0)
1046 				continue;
1047 #endif
1048 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1049 			    inp->inp_lport == lport) {
1050 				if (ifp && ifp->if_type == IFT_FAITH &&
1051 				    (inp->inp_flags & INP_FAITH) == 0)
1052 					continue;
1053 				if (inp->inp_laddr.s_addr == laddr.s_addr)
1054 					return (inp);
1055 				else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1056 #if defined(INET6)
1057 					if (INP_CHECK_SOCKAF(inp->inp_socket,
1058 							     AF_INET6))
1059 						local_wild_mapped = inp;
1060 					else
1061 #endif /* defined(INET6) */
1062 					local_wild = inp;
1063 				}
1064 			}
1065 		}
1066 #if defined(INET6)
1067 		if (local_wild == NULL)
1068 			return (local_wild_mapped);
1069 #endif /* defined(INET6) */
1070 		return (local_wild);
1071 	}
1072 
1073 	/*
1074 	 * Not found.
1075 	 */
1076 	return (NULL);
1077 }
1078 
1079 /*
1080  * Insert PCB onto various hash lists.
1081  */
1082 int
1083 in_pcbinshash(inp)
1084 	struct inpcb *inp;
1085 {
1086 	struct inpcbhead *pcbhash;
1087 	struct inpcbporthead *pcbporthash;
1088 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1089 	struct inpcbport *phd;
1090 	u_int32_t hashkey_faddr;
1091 
1092 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1093 #ifdef INET6
1094 	if (inp->inp_vflag & INP_IPV6)
1095 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1096 	else
1097 #endif /* INET6 */
1098 	hashkey_faddr = inp->inp_faddr.s_addr;
1099 
1100 	pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1101 		 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1102 
1103 	pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
1104 	    pcbinfo->porthashmask)];
1105 
1106 	/*
1107 	 * Go through port list and look for a head for this lport.
1108 	 */
1109 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1110 		if (phd->phd_port == inp->inp_lport)
1111 			break;
1112 	}
1113 	/*
1114 	 * If none exists, malloc one and tack it on.
1115 	 */
1116 	if (phd == NULL) {
1117 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1118 		if (phd == NULL) {
1119 			return (ENOBUFS); /* XXX */
1120 		}
1121 		phd->phd_port = inp->inp_lport;
1122 		LIST_INIT(&phd->phd_pcblist);
1123 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1124 	}
1125 	inp->inp_phd = phd;
1126 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1127 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1133  * changed. NOTE: This does not handle the case of the lport changing (the
1134  * hashed port list would have to be updated as well), so the lport must
1135  * not change after in_pcbinshash() has been called.
1136  */
1137 void
1138 in_pcbrehash(inp)
1139 	struct inpcb *inp;
1140 {
1141 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1142 	struct inpcbhead *head;
1143 	u_int32_t hashkey_faddr;
1144 
1145 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1146 	INP_LOCK_ASSERT(inp);
1147 #ifdef INET6
1148 	if (inp->inp_vflag & INP_IPV6)
1149 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1150 	else
1151 #endif /* INET6 */
1152 	hashkey_faddr = inp->inp_faddr.s_addr;
1153 
1154 	head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1155 		inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1156 
1157 	LIST_REMOVE(inp, inp_hash);
1158 	LIST_INSERT_HEAD(head, inp, inp_hash);
1159 }
1160 
1161 /*
1162  * Remove PCB from various lists.
1163  */
1164 void
1165 in_pcbremlists(inp)
1166 	struct inpcb *inp;
1167 {
1168 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1169 
1170 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1171 	INP_LOCK_ASSERT(inp);
1172 
1173 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1174 	if (inp->inp_lport) {
1175 		struct inpcbport *phd = inp->inp_phd;
1176 
1177 		LIST_REMOVE(inp, inp_hash);
1178 		LIST_REMOVE(inp, inp_portlist);
1179 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1180 			LIST_REMOVE(phd, phd_hash);
1181 			free(phd, M_PCB);
1182 		}
1183 	}
1184 	LIST_REMOVE(inp, inp_list);
1185 	pcbinfo->ipi_count--;
1186 }
1187 
1188 /*
1189  * A set label operation has occurred at the socket layer, propagate the
1190  * label change into the in_pcb for the socket.
1191  */
1192 void
1193 in_pcbsosetlabel(so)
1194 	struct socket *so;
1195 {
1196 #ifdef MAC
1197 	struct inpcb *inp;
1198 
1199 	inp = (struct inpcb *)so->so_pcb;
1200 	INP_LOCK(inp);
1201 	SOCK_LOCK(so);
1202 	mac_inpcb_sosetlabel(so, inp);
1203 	SOCK_UNLOCK(so);
1204 	INP_UNLOCK(inp);
1205 #endif
1206 }
1207 
1208 /*
1209  * ipport_tick runs once per second, determining if random port
1210  * allocation should be continued.  If more than ipport_randomcps
1211  * ports have been allocated in the last second, then we return to
1212  * sequential port allocation. We return to random allocation only
1213  * once we drop below ipport_randomcps for at least ipport_randomtime
1214  * seconds.
1215  */
1216 
1217 void
1218 ipport_tick(xtp)
1219 	void *xtp;
1220 {
1221 	if (ipport_tcpallocs > ipport_tcplastcount + ipport_randomcps) {
1222 		ipport_stoprandom = ipport_randomtime;
1223 	} else {
1224 		if (ipport_stoprandom > 0)
1225 			ipport_stoprandom--;
1226 	}
1227 	ipport_tcplastcount = ipport_tcpallocs;
1228 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1229 }
1230