xref: /freebsd/sys/netinet/in_pcb.c (revision 1a61beb0549e05b33df31380e427d90f6e46ff7e)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_types.h>
72 #include <net/route.h>
73 #include <net/vnet.h>
74 
75 #if defined(INET) || defined(INET6)
76 #include <netinet/in.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/tcp_var.h>
80 #include <netinet/udp.h>
81 #include <netinet/udp_var.h>
82 #endif
83 #ifdef INET
84 #include <netinet/in_var.h>
85 #endif
86 #ifdef INET6
87 #include <netinet/ip6.h>
88 #include <netinet6/in6_pcb.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92 
93 
94 #ifdef IPSEC
95 #include <netipsec/ipsec.h>
96 #include <netipsec/key.h>
97 #endif /* IPSEC */
98 
99 #include <security/mac/mac_framework.h>
100 
101 static struct callout	ipport_tick_callout;
102 
103 /*
104  * These configure the range of local port addresses assigned to
105  * "unspecified" outgoing connections/packets/whatever.
106  */
107 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
108 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
109 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
110 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
111 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
112 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
113 
114 /*
115  * Reserved ports accessible only to root. There are significant
116  * security considerations that must be accounted for when changing these,
117  * but the security benefits can be great. Please be careful.
118  */
119 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
120 VNET_DEFINE(int, ipport_reservedlow);
121 
122 /* Variables dealing with random ephemeral port allocation. */
123 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
126 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
127 VNET_DEFINE(int, ipport_tcpallocs);
128 static VNET_DEFINE(int, ipport_tcplastcount);
129 
130 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
131 
132 static void	in_pcbremlists(struct inpcb *inp);
133 #ifdef INET
134 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
135 			    struct in_addr faddr, u_int fport_arg,
136 			    struct in_addr laddr, u_int lport_arg,
137 			    int lookupflags, struct ifnet *ifp);
138 
139 #define RANGECHK(var, min, max) \
140 	if ((var) < (min)) { (var) = (min); } \
141 	else if ((var) > (max)) { (var) = (max); }
142 
143 static int
144 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
145 {
146 	int error;
147 
148 	error = sysctl_handle_int(oidp, arg1, arg2, req);
149 	if (error == 0) {
150 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
151 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
152 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
153 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
154 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
155 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
156 	}
157 	return (error);
158 }
159 
160 #undef RANGECHK
161 
162 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
163     "IP Ports");
164 
165 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
166 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
167 	&sysctl_net_ipport_check, "I", "");
168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
169 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
170 	&sysctl_net_ipport_check, "I", "");
171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
172 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
173 	&sysctl_net_ipport_check, "I", "");
174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
175 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
176 	&sysctl_net_ipport_check, "I", "");
177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
178 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
179 	&sysctl_net_ipport_check, "I", "");
180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
181 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
182 	&sysctl_net_ipport_check, "I", "");
183 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
184 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
185 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
186 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
187 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
188 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
189 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
190 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
191 	"allocations before switching to a sequental one");
192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
193 	&VNET_NAME(ipport_randomtime), 0,
194 	"Minimum time to keep sequental port "
195 	"allocation before switching to a random one");
196 #endif /* INET */
197 
198 /*
199  * in_pcb.c: manage the Protocol Control Blocks.
200  *
201  * NOTE: It is assumed that most of these functions will be called with
202  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
203  * functions often modify hash chains or addresses in pcbs.
204  */
205 
206 /*
207  * Initialize an inpcbinfo -- we should be able to reduce the number of
208  * arguments in time.
209  */
210 void
211 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
212     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
213     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
214     uint32_t inpcbzone_flags, u_int hashfields)
215 {
216 
217 	INP_INFO_LOCK_INIT(pcbinfo, name);
218 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
219 #ifdef VIMAGE
220 	pcbinfo->ipi_vnet = curvnet;
221 #endif
222 	pcbinfo->ipi_listhead = listhead;
223 	LIST_INIT(pcbinfo->ipi_listhead);
224 	pcbinfo->ipi_count = 0;
225 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
226 	    &pcbinfo->ipi_hashmask);
227 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
228 	    &pcbinfo->ipi_porthashmask);
229 #ifdef PCBGROUP
230 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
231 #endif
232 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
233 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
234 	    inpcbzone_flags);
235 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
236 	uma_zone_set_warning(pcbinfo->ipi_zone,
237 	    "kern.ipc.maxsockets limit reached");
238 }
239 
240 /*
241  * Destroy an inpcbinfo.
242  */
243 void
244 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
245 {
246 
247 	KASSERT(pcbinfo->ipi_count == 0,
248 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
249 
250 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
251 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
252 	    pcbinfo->ipi_porthashmask);
253 #ifdef PCBGROUP
254 	in_pcbgroup_destroy(pcbinfo);
255 #endif
256 	uma_zdestroy(pcbinfo->ipi_zone);
257 	INP_HASH_LOCK_DESTROY(pcbinfo);
258 	INP_INFO_LOCK_DESTROY(pcbinfo);
259 }
260 
261 /*
262  * Allocate a PCB and associate it with the socket.
263  * On success return with the PCB locked.
264  */
265 int
266 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
267 {
268 	struct inpcb *inp;
269 	int error;
270 
271 	INP_INFO_WLOCK_ASSERT(pcbinfo);
272 	error = 0;
273 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
274 	if (inp == NULL)
275 		return (ENOBUFS);
276 	bzero(inp, inp_zero_size);
277 	inp->inp_pcbinfo = pcbinfo;
278 	inp->inp_socket = so;
279 	inp->inp_cred = crhold(so->so_cred);
280 	inp->inp_inc.inc_fibnum = so->so_fibnum;
281 #ifdef MAC
282 	error = mac_inpcb_init(inp, M_NOWAIT);
283 	if (error != 0)
284 		goto out;
285 	mac_inpcb_create(so, inp);
286 #endif
287 #ifdef IPSEC
288 	error = ipsec_init_policy(so, &inp->inp_sp);
289 	if (error != 0) {
290 #ifdef MAC
291 		mac_inpcb_destroy(inp);
292 #endif
293 		goto out;
294 	}
295 #endif /*IPSEC*/
296 #ifdef INET6
297 	if (INP_SOCKAF(so) == AF_INET6) {
298 		inp->inp_vflag |= INP_IPV6PROTO;
299 		if (V_ip6_v6only)
300 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
301 	}
302 #endif
303 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
304 	pcbinfo->ipi_count++;
305 	so->so_pcb = (caddr_t)inp;
306 #ifdef INET6
307 	if (V_ip6_auto_flowlabel)
308 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
309 #endif
310 	INP_WLOCK(inp);
311 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
312 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
313 #if defined(IPSEC) || defined(MAC)
314 out:
315 	if (error != 0) {
316 		crfree(inp->inp_cred);
317 		uma_zfree(pcbinfo->ipi_zone, inp);
318 	}
319 #endif
320 	return (error);
321 }
322 
323 #ifdef INET
324 int
325 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
326 {
327 	int anonport, error;
328 
329 	INP_WLOCK_ASSERT(inp);
330 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
331 
332 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
333 		return (EINVAL);
334 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
335 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
336 	    &inp->inp_lport, cred);
337 	if (error)
338 		return (error);
339 	if (in_pcbinshash(inp) != 0) {
340 		inp->inp_laddr.s_addr = INADDR_ANY;
341 		inp->inp_lport = 0;
342 		return (EAGAIN);
343 	}
344 	if (anonport)
345 		inp->inp_flags |= INP_ANONPORT;
346 	return (0);
347 }
348 #endif
349 
350 #if defined(INET) || defined(INET6)
351 int
352 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
353     struct ucred *cred, int lookupflags)
354 {
355 	struct inpcbinfo *pcbinfo;
356 	struct inpcb *tmpinp;
357 	unsigned short *lastport;
358 	int count, dorandom, error;
359 	u_short aux, first, last, lport;
360 #ifdef INET
361 	struct in_addr laddr;
362 #endif
363 
364 	pcbinfo = inp->inp_pcbinfo;
365 
366 	/*
367 	 * Because no actual state changes occur here, a global write lock on
368 	 * the pcbinfo isn't required.
369 	 */
370 	INP_LOCK_ASSERT(inp);
371 	INP_HASH_LOCK_ASSERT(pcbinfo);
372 
373 	if (inp->inp_flags & INP_HIGHPORT) {
374 		first = V_ipport_hifirstauto;	/* sysctl */
375 		last  = V_ipport_hilastauto;
376 		lastport = &pcbinfo->ipi_lasthi;
377 	} else if (inp->inp_flags & INP_LOWPORT) {
378 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
379 		if (error)
380 			return (error);
381 		first = V_ipport_lowfirstauto;	/* 1023 */
382 		last  = V_ipport_lowlastauto;	/* 600 */
383 		lastport = &pcbinfo->ipi_lastlow;
384 	} else {
385 		first = V_ipport_firstauto;	/* sysctl */
386 		last  = V_ipport_lastauto;
387 		lastport = &pcbinfo->ipi_lastport;
388 	}
389 	/*
390 	 * For UDP, use random port allocation as long as the user
391 	 * allows it.  For TCP (and as of yet unknown) connections,
392 	 * use random port allocation only if the user allows it AND
393 	 * ipport_tick() allows it.
394 	 */
395 	if (V_ipport_randomized &&
396 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
397 		dorandom = 1;
398 	else
399 		dorandom = 0;
400 	/*
401 	 * It makes no sense to do random port allocation if
402 	 * we have the only port available.
403 	 */
404 	if (first == last)
405 		dorandom = 0;
406 	/* Make sure to not include UDP packets in the count. */
407 	if (pcbinfo != &V_udbinfo)
408 		V_ipport_tcpallocs++;
409 	/*
410 	 * Instead of having two loops further down counting up or down
411 	 * make sure that first is always <= last and go with only one
412 	 * code path implementing all logic.
413 	 */
414 	if (first > last) {
415 		aux = first;
416 		first = last;
417 		last = aux;
418 	}
419 
420 #ifdef INET
421 	/* Make the compiler happy. */
422 	laddr.s_addr = 0;
423 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
424 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
425 		    __func__, inp));
426 		laddr = *laddrp;
427 	}
428 #endif
429 	tmpinp = NULL;	/* Make compiler happy. */
430 	lport = *lportp;
431 
432 	if (dorandom)
433 		*lastport = first + (arc4random() % (last - first));
434 
435 	count = last - first;
436 
437 	do {
438 		if (count-- < 0)	/* completely used? */
439 			return (EADDRNOTAVAIL);
440 		++*lastport;
441 		if (*lastport < first || *lastport > last)
442 			*lastport = first;
443 		lport = htons(*lastport);
444 
445 #ifdef INET6
446 		if ((inp->inp_vflag & INP_IPV6) != 0)
447 			tmpinp = in6_pcblookup_local(pcbinfo,
448 			    &inp->in6p_laddr, lport, lookupflags, cred);
449 #endif
450 #if defined(INET) && defined(INET6)
451 		else
452 #endif
453 #ifdef INET
454 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
455 			    lport, lookupflags, cred);
456 #endif
457 	} while (tmpinp != NULL);
458 
459 #ifdef INET
460 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
461 		laddrp->s_addr = laddr.s_addr;
462 #endif
463 	*lportp = lport;
464 
465 	return (0);
466 }
467 
468 /*
469  * Return cached socket options.
470  */
471 short
472 inp_so_options(const struct inpcb *inp)
473 {
474    short so_options;
475 
476    so_options = 0;
477 
478    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
479 	   so_options |= SO_REUSEPORT;
480    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
481 	   so_options |= SO_REUSEADDR;
482    return (so_options);
483 }
484 #endif /* INET || INET6 */
485 
486 #ifdef INET
487 /*
488  * Set up a bind operation on a PCB, performing port allocation
489  * as required, but do not actually modify the PCB. Callers can
490  * either complete the bind by setting inp_laddr/inp_lport and
491  * calling in_pcbinshash(), or they can just use the resulting
492  * port and address to authorise the sending of a once-off packet.
493  *
494  * On error, the values of *laddrp and *lportp are not changed.
495  */
496 int
497 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
498     u_short *lportp, struct ucred *cred)
499 {
500 	struct socket *so = inp->inp_socket;
501 	struct sockaddr_in *sin;
502 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
503 	struct in_addr laddr;
504 	u_short lport = 0;
505 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
506 	int error;
507 
508 	/*
509 	 * No state changes, so read locks are sufficient here.
510 	 */
511 	INP_LOCK_ASSERT(inp);
512 	INP_HASH_LOCK_ASSERT(pcbinfo);
513 
514 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
515 		return (EADDRNOTAVAIL);
516 	laddr.s_addr = *laddrp;
517 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
518 		return (EINVAL);
519 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
520 		lookupflags = INPLOOKUP_WILDCARD;
521 	if (nam == NULL) {
522 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
523 			return (error);
524 	} else {
525 		sin = (struct sockaddr_in *)nam;
526 		if (nam->sa_len != sizeof (*sin))
527 			return (EINVAL);
528 #ifdef notdef
529 		/*
530 		 * We should check the family, but old programs
531 		 * incorrectly fail to initialize it.
532 		 */
533 		if (sin->sin_family != AF_INET)
534 			return (EAFNOSUPPORT);
535 #endif
536 		error = prison_local_ip4(cred, &sin->sin_addr);
537 		if (error)
538 			return (error);
539 		if (sin->sin_port != *lportp) {
540 			/* Don't allow the port to change. */
541 			if (*lportp != 0)
542 				return (EINVAL);
543 			lport = sin->sin_port;
544 		}
545 		/* NB: lport is left as 0 if the port isn't being changed. */
546 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
547 			/*
548 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
549 			 * allow complete duplication of binding if
550 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
551 			 * and a multicast address is bound on both
552 			 * new and duplicated sockets.
553 			 */
554 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
555 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
556 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
557 			sin->sin_port = 0;		/* yech... */
558 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
559 			/*
560 			 * Is the address a local IP address?
561 			 * If INP_BINDANY is set, then the socket may be bound
562 			 * to any endpoint address, local or not.
563 			 */
564 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
565 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
566 				return (EADDRNOTAVAIL);
567 		}
568 		laddr = sin->sin_addr;
569 		if (lport) {
570 			struct inpcb *t;
571 			struct tcptw *tw;
572 
573 			/* GROSS */
574 			if (ntohs(lport) <= V_ipport_reservedhigh &&
575 			    ntohs(lport) >= V_ipport_reservedlow &&
576 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
577 			    0))
578 				return (EACCES);
579 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
580 			    priv_check_cred(inp->inp_cred,
581 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
582 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
583 				    lport, INPLOOKUP_WILDCARD, cred);
584 	/*
585 	 * XXX
586 	 * This entire block sorely needs a rewrite.
587 	 */
588 				if (t &&
589 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
590 				    (so->so_type != SOCK_STREAM ||
591 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
592 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
593 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
594 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
595 				    (inp->inp_cred->cr_uid !=
596 				     t->inp_cred->cr_uid))
597 					return (EADDRINUSE);
598 			}
599 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
600 			    lport, lookupflags, cred);
601 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
602 				/*
603 				 * XXXRW: If an incpb has had its timewait
604 				 * state recycled, we treat the address as
605 				 * being in use (for now).  This is better
606 				 * than a panic, but not desirable.
607 				 */
608 				tw = intotw(t);
609 				if (tw == NULL ||
610 				    (reuseport & tw->tw_so_options) == 0)
611 					return (EADDRINUSE);
612 			} else if (t && (reuseport & inp_so_options(t)) == 0) {
613 #ifdef INET6
614 				if (ntohl(sin->sin_addr.s_addr) !=
615 				    INADDR_ANY ||
616 				    ntohl(t->inp_laddr.s_addr) !=
617 				    INADDR_ANY ||
618 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
619 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
620 #endif
621 				return (EADDRINUSE);
622 			}
623 		}
624 	}
625 	if (*lportp != 0)
626 		lport = *lportp;
627 	if (lport == 0) {
628 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
629 		if (error != 0)
630 			return (error);
631 
632 	}
633 	*laddrp = laddr.s_addr;
634 	*lportp = lport;
635 	return (0);
636 }
637 
638 /*
639  * Connect from a socket to a specified address.
640  * Both address and port must be specified in argument sin.
641  * If don't have a local address for this socket yet,
642  * then pick one.
643  */
644 int
645 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
646     struct ucred *cred, struct mbuf *m)
647 {
648 	u_short lport, fport;
649 	in_addr_t laddr, faddr;
650 	int anonport, error;
651 
652 	INP_WLOCK_ASSERT(inp);
653 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
654 
655 	lport = inp->inp_lport;
656 	laddr = inp->inp_laddr.s_addr;
657 	anonport = (lport == 0);
658 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
659 	    NULL, cred);
660 	if (error)
661 		return (error);
662 
663 	/* Do the initial binding of the local address if required. */
664 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
665 		inp->inp_lport = lport;
666 		inp->inp_laddr.s_addr = laddr;
667 		if (in_pcbinshash(inp) != 0) {
668 			inp->inp_laddr.s_addr = INADDR_ANY;
669 			inp->inp_lport = 0;
670 			return (EAGAIN);
671 		}
672 	}
673 
674 	/* Commit the remaining changes. */
675 	inp->inp_lport = lport;
676 	inp->inp_laddr.s_addr = laddr;
677 	inp->inp_faddr.s_addr = faddr;
678 	inp->inp_fport = fport;
679 	in_pcbrehash_mbuf(inp, m);
680 
681 	if (anonport)
682 		inp->inp_flags |= INP_ANONPORT;
683 	return (0);
684 }
685 
686 int
687 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
688 {
689 
690 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
691 }
692 
693 /*
694  * Do proper source address selection on an unbound socket in case
695  * of connect. Take jails into account as well.
696  */
697 static int
698 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
699     struct ucred *cred)
700 {
701 	struct ifaddr *ifa;
702 	struct sockaddr *sa;
703 	struct sockaddr_in *sin;
704 	struct route sro;
705 	int error;
706 
707 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
708 
709 	/*
710 	 * Bypass source address selection and use the primary jail IP
711 	 * if requested.
712 	 */
713 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
714 		return (0);
715 
716 	error = 0;
717 	bzero(&sro, sizeof(sro));
718 
719 	sin = (struct sockaddr_in *)&sro.ro_dst;
720 	sin->sin_family = AF_INET;
721 	sin->sin_len = sizeof(struct sockaddr_in);
722 	sin->sin_addr.s_addr = faddr->s_addr;
723 
724 	/*
725 	 * If route is known our src addr is taken from the i/f,
726 	 * else punt.
727 	 *
728 	 * Find out route to destination.
729 	 */
730 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
731 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
732 
733 	/*
734 	 * If we found a route, use the address corresponding to
735 	 * the outgoing interface.
736 	 *
737 	 * Otherwise assume faddr is reachable on a directly connected
738 	 * network and try to find a corresponding interface to take
739 	 * the source address from.
740 	 */
741 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
742 		struct in_ifaddr *ia;
743 		struct ifnet *ifp;
744 
745 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
746 		if (ia == NULL)
747 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
748 		if (ia == NULL) {
749 			error = ENETUNREACH;
750 			goto done;
751 		}
752 
753 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
754 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
755 			ifa_free(&ia->ia_ifa);
756 			goto done;
757 		}
758 
759 		ifp = ia->ia_ifp;
760 		ifa_free(&ia->ia_ifa);
761 		ia = NULL;
762 		IF_ADDR_RLOCK(ifp);
763 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
764 
765 			sa = ifa->ifa_addr;
766 			if (sa->sa_family != AF_INET)
767 				continue;
768 			sin = (struct sockaddr_in *)sa;
769 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
770 				ia = (struct in_ifaddr *)ifa;
771 				break;
772 			}
773 		}
774 		if (ia != NULL) {
775 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
776 			IF_ADDR_RUNLOCK(ifp);
777 			goto done;
778 		}
779 		IF_ADDR_RUNLOCK(ifp);
780 
781 		/* 3. As a last resort return the 'default' jail address. */
782 		error = prison_get_ip4(cred, laddr);
783 		goto done;
784 	}
785 
786 	/*
787 	 * If the outgoing interface on the route found is not
788 	 * a loopback interface, use the address from that interface.
789 	 * In case of jails do those three steps:
790 	 * 1. check if the interface address belongs to the jail. If so use it.
791 	 * 2. check if we have any address on the outgoing interface
792 	 *    belonging to this jail. If so use it.
793 	 * 3. as a last resort return the 'default' jail address.
794 	 */
795 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
796 		struct in_ifaddr *ia;
797 		struct ifnet *ifp;
798 
799 		/* If not jailed, use the default returned. */
800 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
801 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
802 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
803 			goto done;
804 		}
805 
806 		/* Jailed. */
807 		/* 1. Check if the iface address belongs to the jail. */
808 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
809 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
810 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
811 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
812 			goto done;
813 		}
814 
815 		/*
816 		 * 2. Check if we have any address on the outgoing interface
817 		 *    belonging to this jail.
818 		 */
819 		ia = NULL;
820 		ifp = sro.ro_rt->rt_ifp;
821 		IF_ADDR_RLOCK(ifp);
822 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
823 			sa = ifa->ifa_addr;
824 			if (sa->sa_family != AF_INET)
825 				continue;
826 			sin = (struct sockaddr_in *)sa;
827 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
828 				ia = (struct in_ifaddr *)ifa;
829 				break;
830 			}
831 		}
832 		if (ia != NULL) {
833 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
834 			IF_ADDR_RUNLOCK(ifp);
835 			goto done;
836 		}
837 		IF_ADDR_RUNLOCK(ifp);
838 
839 		/* 3. As a last resort return the 'default' jail address. */
840 		error = prison_get_ip4(cred, laddr);
841 		goto done;
842 	}
843 
844 	/*
845 	 * The outgoing interface is marked with 'loopback net', so a route
846 	 * to ourselves is here.
847 	 * Try to find the interface of the destination address and then
848 	 * take the address from there. That interface is not necessarily
849 	 * a loopback interface.
850 	 * In case of jails, check that it is an address of the jail
851 	 * and if we cannot find, fall back to the 'default' jail address.
852 	 */
853 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
854 		struct sockaddr_in sain;
855 		struct in_ifaddr *ia;
856 
857 		bzero(&sain, sizeof(struct sockaddr_in));
858 		sain.sin_family = AF_INET;
859 		sain.sin_len = sizeof(struct sockaddr_in);
860 		sain.sin_addr.s_addr = faddr->s_addr;
861 
862 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
863 		if (ia == NULL)
864 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
865 		if (ia == NULL)
866 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
867 
868 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
869 			if (ia == NULL) {
870 				error = ENETUNREACH;
871 				goto done;
872 			}
873 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
874 			ifa_free(&ia->ia_ifa);
875 			goto done;
876 		}
877 
878 		/* Jailed. */
879 		if (ia != NULL) {
880 			struct ifnet *ifp;
881 
882 			ifp = ia->ia_ifp;
883 			ifa_free(&ia->ia_ifa);
884 			ia = NULL;
885 			IF_ADDR_RLOCK(ifp);
886 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
887 
888 				sa = ifa->ifa_addr;
889 				if (sa->sa_family != AF_INET)
890 					continue;
891 				sin = (struct sockaddr_in *)sa;
892 				if (prison_check_ip4(cred,
893 				    &sin->sin_addr) == 0) {
894 					ia = (struct in_ifaddr *)ifa;
895 					break;
896 				}
897 			}
898 			if (ia != NULL) {
899 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
900 				IF_ADDR_RUNLOCK(ifp);
901 				goto done;
902 			}
903 			IF_ADDR_RUNLOCK(ifp);
904 		}
905 
906 		/* 3. As a last resort return the 'default' jail address. */
907 		error = prison_get_ip4(cred, laddr);
908 		goto done;
909 	}
910 
911 done:
912 	if (sro.ro_rt != NULL)
913 		RTFREE(sro.ro_rt);
914 	return (error);
915 }
916 
917 /*
918  * Set up for a connect from a socket to the specified address.
919  * On entry, *laddrp and *lportp should contain the current local
920  * address and port for the PCB; these are updated to the values
921  * that should be placed in inp_laddr and inp_lport to complete
922  * the connect.
923  *
924  * On success, *faddrp and *fportp will be set to the remote address
925  * and port. These are not updated in the error case.
926  *
927  * If the operation fails because the connection already exists,
928  * *oinpp will be set to the PCB of that connection so that the
929  * caller can decide to override it. In all other cases, *oinpp
930  * is set to NULL.
931  */
932 int
933 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
934     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
935     struct inpcb **oinpp, struct ucred *cred)
936 {
937 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
938 	struct in_ifaddr *ia;
939 	struct inpcb *oinp;
940 	struct in_addr laddr, faddr;
941 	u_short lport, fport;
942 	int error;
943 
944 	/*
945 	 * Because a global state change doesn't actually occur here, a read
946 	 * lock is sufficient.
947 	 */
948 	INP_LOCK_ASSERT(inp);
949 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
950 
951 	if (oinpp != NULL)
952 		*oinpp = NULL;
953 	if (nam->sa_len != sizeof (*sin))
954 		return (EINVAL);
955 	if (sin->sin_family != AF_INET)
956 		return (EAFNOSUPPORT);
957 	if (sin->sin_port == 0)
958 		return (EADDRNOTAVAIL);
959 	laddr.s_addr = *laddrp;
960 	lport = *lportp;
961 	faddr = sin->sin_addr;
962 	fport = sin->sin_port;
963 
964 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
965 		/*
966 		 * If the destination address is INADDR_ANY,
967 		 * use the primary local address.
968 		 * If the supplied address is INADDR_BROADCAST,
969 		 * and the primary interface supports broadcast,
970 		 * choose the broadcast address for that interface.
971 		 */
972 		if (faddr.s_addr == INADDR_ANY) {
973 			IN_IFADDR_RLOCK();
974 			faddr =
975 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
976 			IN_IFADDR_RUNLOCK();
977 			if (cred != NULL &&
978 			    (error = prison_get_ip4(cred, &faddr)) != 0)
979 				return (error);
980 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
981 			IN_IFADDR_RLOCK();
982 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
983 			    IFF_BROADCAST)
984 				faddr = satosin(&TAILQ_FIRST(
985 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
986 			IN_IFADDR_RUNLOCK();
987 		}
988 	}
989 	if (laddr.s_addr == INADDR_ANY) {
990 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
991 		/*
992 		 * If the destination address is multicast and an outgoing
993 		 * interface has been set as a multicast option, prefer the
994 		 * address of that interface as our source address.
995 		 */
996 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
997 		    inp->inp_moptions != NULL) {
998 			struct ip_moptions *imo;
999 			struct ifnet *ifp;
1000 
1001 			imo = inp->inp_moptions;
1002 			if (imo->imo_multicast_ifp != NULL) {
1003 				ifp = imo->imo_multicast_ifp;
1004 				IN_IFADDR_RLOCK();
1005 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1006 					if ((ia->ia_ifp == ifp) &&
1007 					    (cred == NULL ||
1008 					    prison_check_ip4(cred,
1009 					    &ia->ia_addr.sin_addr) == 0))
1010 						break;
1011 				}
1012 				if (ia == NULL)
1013 					error = EADDRNOTAVAIL;
1014 				else {
1015 					laddr = ia->ia_addr.sin_addr;
1016 					error = 0;
1017 				}
1018 				IN_IFADDR_RUNLOCK();
1019 			}
1020 		}
1021 		if (error)
1022 			return (error);
1023 	}
1024 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1025 	    laddr, lport, 0, NULL);
1026 	if (oinp != NULL) {
1027 		if (oinpp != NULL)
1028 			*oinpp = oinp;
1029 		return (EADDRINUSE);
1030 	}
1031 	if (lport == 0) {
1032 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1033 		    cred);
1034 		if (error)
1035 			return (error);
1036 	}
1037 	*laddrp = laddr.s_addr;
1038 	*lportp = lport;
1039 	*faddrp = faddr.s_addr;
1040 	*fportp = fport;
1041 	return (0);
1042 }
1043 
1044 void
1045 in_pcbdisconnect(struct inpcb *inp)
1046 {
1047 
1048 	INP_WLOCK_ASSERT(inp);
1049 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1050 
1051 	inp->inp_faddr.s_addr = INADDR_ANY;
1052 	inp->inp_fport = 0;
1053 	in_pcbrehash(inp);
1054 }
1055 #endif /* INET */
1056 
1057 /*
1058  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1059  * For most protocols, this will be invoked immediately prior to calling
1060  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1061  * socket, in which case in_pcbfree() is deferred.
1062  */
1063 void
1064 in_pcbdetach(struct inpcb *inp)
1065 {
1066 
1067 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1068 
1069 	inp->inp_socket->so_pcb = NULL;
1070 	inp->inp_socket = NULL;
1071 }
1072 
1073 /*
1074  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1075  * stability of an inpcb pointer despite the inpcb lock being released.  This
1076  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1077  * but where the inpcb lock may already held, or when acquiring a reference
1078  * via a pcbgroup.
1079  *
1080  * in_pcbref() should be used only to provide brief memory stability, and
1081  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1082  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1083  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1084  * lock and rele are the *only* safe operations that may be performed on the
1085  * inpcb.
1086  *
1087  * While the inpcb will not be freed, releasing the inpcb lock means that the
1088  * connection's state may change, so the caller should be careful to
1089  * revalidate any cached state on reacquiring the lock.  Drop the reference
1090  * using in_pcbrele().
1091  */
1092 void
1093 in_pcbref(struct inpcb *inp)
1094 {
1095 
1096 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1097 
1098 	refcount_acquire(&inp->inp_refcount);
1099 }
1100 
1101 /*
1102  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1103  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1104  * return a flag indicating whether or not the inpcb remains valid.  If it is
1105  * valid, we return with the inpcb lock held.
1106  *
1107  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1108  * reference on an inpcb.  Historically more work was done here (actually, in
1109  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1110  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1111  * about memory stability (and continued use of the write lock).
1112  */
1113 int
1114 in_pcbrele_rlocked(struct inpcb *inp)
1115 {
1116 	struct inpcbinfo *pcbinfo;
1117 
1118 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1119 
1120 	INP_RLOCK_ASSERT(inp);
1121 
1122 	if (refcount_release(&inp->inp_refcount) == 0) {
1123 		/*
1124 		 * If the inpcb has been freed, let the caller know, even if
1125 		 * this isn't the last reference.
1126 		 */
1127 		if (inp->inp_flags2 & INP_FREED) {
1128 			INP_RUNLOCK(inp);
1129 			return (1);
1130 		}
1131 		return (0);
1132 	}
1133 
1134 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1135 
1136 	INP_RUNLOCK(inp);
1137 	pcbinfo = inp->inp_pcbinfo;
1138 	uma_zfree(pcbinfo->ipi_zone, inp);
1139 	return (1);
1140 }
1141 
1142 int
1143 in_pcbrele_wlocked(struct inpcb *inp)
1144 {
1145 	struct inpcbinfo *pcbinfo;
1146 
1147 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1148 
1149 	INP_WLOCK_ASSERT(inp);
1150 
1151 	if (refcount_release(&inp->inp_refcount) == 0)
1152 		return (0);
1153 
1154 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1155 
1156 	INP_WUNLOCK(inp);
1157 	pcbinfo = inp->inp_pcbinfo;
1158 	uma_zfree(pcbinfo->ipi_zone, inp);
1159 	return (1);
1160 }
1161 
1162 /*
1163  * Temporary wrapper.
1164  */
1165 int
1166 in_pcbrele(struct inpcb *inp)
1167 {
1168 
1169 	return (in_pcbrele_wlocked(inp));
1170 }
1171 
1172 /*
1173  * Unconditionally schedule an inpcb to be freed by decrementing its
1174  * reference count, which should occur only after the inpcb has been detached
1175  * from its socket.  If another thread holds a temporary reference (acquired
1176  * using in_pcbref()) then the free is deferred until that reference is
1177  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1178  * work, including removal from global lists, is done in this context, where
1179  * the pcbinfo lock is held.
1180  */
1181 void
1182 in_pcbfree(struct inpcb *inp)
1183 {
1184 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1185 
1186 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1187 
1188 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1189 	INP_WLOCK_ASSERT(inp);
1190 
1191 	/* XXXRW: Do as much as possible here. */
1192 #ifdef IPSEC
1193 	if (inp->inp_sp != NULL)
1194 		ipsec_delete_pcbpolicy(inp);
1195 #endif
1196 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1197 	in_pcbremlists(inp);
1198 #ifdef INET6
1199 	if (inp->inp_vflag & INP_IPV6PROTO) {
1200 		ip6_freepcbopts(inp->in6p_outputopts);
1201 		if (inp->in6p_moptions != NULL)
1202 			ip6_freemoptions(inp->in6p_moptions);
1203 	}
1204 #endif
1205 	if (inp->inp_options)
1206 		(void)m_free(inp->inp_options);
1207 #ifdef INET
1208 	if (inp->inp_moptions != NULL)
1209 		inp_freemoptions(inp->inp_moptions);
1210 #endif
1211 	inp->inp_vflag = 0;
1212 	inp->inp_flags2 |= INP_FREED;
1213 	crfree(inp->inp_cred);
1214 #ifdef MAC
1215 	mac_inpcb_destroy(inp);
1216 #endif
1217 	if (!in_pcbrele_wlocked(inp))
1218 		INP_WUNLOCK(inp);
1219 }
1220 
1221 /*
1222  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1223  * port reservation, and preventing it from being returned by inpcb lookups.
1224  *
1225  * It is used by TCP to mark an inpcb as unused and avoid future packet
1226  * delivery or event notification when a socket remains open but TCP has
1227  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1228  * or a RST on the wire, and allows the port binding to be reused while still
1229  * maintaining the invariant that so_pcb always points to a valid inpcb until
1230  * in_pcbdetach().
1231  *
1232  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1233  * in_pcbnotifyall() and in_pcbpurgeif0()?
1234  */
1235 void
1236 in_pcbdrop(struct inpcb *inp)
1237 {
1238 
1239 	INP_WLOCK_ASSERT(inp);
1240 
1241 	/*
1242 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1243 	 * the hash lock...?
1244 	 */
1245 	inp->inp_flags |= INP_DROPPED;
1246 	if (inp->inp_flags & INP_INHASHLIST) {
1247 		struct inpcbport *phd = inp->inp_phd;
1248 
1249 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1250 		LIST_REMOVE(inp, inp_hash);
1251 		LIST_REMOVE(inp, inp_portlist);
1252 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1253 			LIST_REMOVE(phd, phd_hash);
1254 			free(phd, M_PCB);
1255 		}
1256 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1257 		inp->inp_flags &= ~INP_INHASHLIST;
1258 #ifdef PCBGROUP
1259 		in_pcbgroup_remove(inp);
1260 #endif
1261 	}
1262 }
1263 
1264 #ifdef INET
1265 /*
1266  * Common routines to return the socket addresses associated with inpcbs.
1267  */
1268 struct sockaddr *
1269 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1270 {
1271 	struct sockaddr_in *sin;
1272 
1273 	sin = malloc(sizeof *sin, M_SONAME,
1274 		M_WAITOK | M_ZERO);
1275 	sin->sin_family = AF_INET;
1276 	sin->sin_len = sizeof(*sin);
1277 	sin->sin_addr = *addr_p;
1278 	sin->sin_port = port;
1279 
1280 	return (struct sockaddr *)sin;
1281 }
1282 
1283 int
1284 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1285 {
1286 	struct inpcb *inp;
1287 	struct in_addr addr;
1288 	in_port_t port;
1289 
1290 	inp = sotoinpcb(so);
1291 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1292 
1293 	INP_RLOCK(inp);
1294 	port = inp->inp_lport;
1295 	addr = inp->inp_laddr;
1296 	INP_RUNLOCK(inp);
1297 
1298 	*nam = in_sockaddr(port, &addr);
1299 	return 0;
1300 }
1301 
1302 int
1303 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1304 {
1305 	struct inpcb *inp;
1306 	struct in_addr addr;
1307 	in_port_t port;
1308 
1309 	inp = sotoinpcb(so);
1310 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1311 
1312 	INP_RLOCK(inp);
1313 	port = inp->inp_fport;
1314 	addr = inp->inp_faddr;
1315 	INP_RUNLOCK(inp);
1316 
1317 	*nam = in_sockaddr(port, &addr);
1318 	return 0;
1319 }
1320 
1321 void
1322 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1323     struct inpcb *(*notify)(struct inpcb *, int))
1324 {
1325 	struct inpcb *inp, *inp_temp;
1326 
1327 	INP_INFO_WLOCK(pcbinfo);
1328 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1329 		INP_WLOCK(inp);
1330 #ifdef INET6
1331 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1332 			INP_WUNLOCK(inp);
1333 			continue;
1334 		}
1335 #endif
1336 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1337 		    inp->inp_socket == NULL) {
1338 			INP_WUNLOCK(inp);
1339 			continue;
1340 		}
1341 		if ((*notify)(inp, errno))
1342 			INP_WUNLOCK(inp);
1343 	}
1344 	INP_INFO_WUNLOCK(pcbinfo);
1345 }
1346 
1347 void
1348 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1349 {
1350 	struct inpcb *inp;
1351 	struct ip_moptions *imo;
1352 	int i, gap;
1353 
1354 	INP_INFO_RLOCK(pcbinfo);
1355 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1356 		INP_WLOCK(inp);
1357 		imo = inp->inp_moptions;
1358 		if ((inp->inp_vflag & INP_IPV4) &&
1359 		    imo != NULL) {
1360 			/*
1361 			 * Unselect the outgoing interface if it is being
1362 			 * detached.
1363 			 */
1364 			if (imo->imo_multicast_ifp == ifp)
1365 				imo->imo_multicast_ifp = NULL;
1366 
1367 			/*
1368 			 * Drop multicast group membership if we joined
1369 			 * through the interface being detached.
1370 			 */
1371 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1372 			    i++) {
1373 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1374 					in_delmulti(imo->imo_membership[i]);
1375 					gap++;
1376 				} else if (gap != 0)
1377 					imo->imo_membership[i - gap] =
1378 					    imo->imo_membership[i];
1379 			}
1380 			imo->imo_num_memberships -= gap;
1381 		}
1382 		INP_WUNLOCK(inp);
1383 	}
1384 	INP_INFO_RUNLOCK(pcbinfo);
1385 }
1386 
1387 /*
1388  * Lookup a PCB based on the local address and port.  Caller must hold the
1389  * hash lock.  No inpcb locks or references are acquired.
1390  */
1391 #define INP_LOOKUP_MAPPED_PCB_COST	3
1392 struct inpcb *
1393 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1394     u_short lport, int lookupflags, struct ucred *cred)
1395 {
1396 	struct inpcb *inp;
1397 #ifdef INET6
1398 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1399 #else
1400 	int matchwild = 3;
1401 #endif
1402 	int wildcard;
1403 
1404 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1405 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1406 
1407 	INP_HASH_LOCK_ASSERT(pcbinfo);
1408 
1409 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1410 		struct inpcbhead *head;
1411 		/*
1412 		 * Look for an unconnected (wildcard foreign addr) PCB that
1413 		 * matches the local address and port we're looking for.
1414 		 */
1415 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1416 		    0, pcbinfo->ipi_hashmask)];
1417 		LIST_FOREACH(inp, head, inp_hash) {
1418 #ifdef INET6
1419 			/* XXX inp locking */
1420 			if ((inp->inp_vflag & INP_IPV4) == 0)
1421 				continue;
1422 #endif
1423 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1424 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1425 			    inp->inp_lport == lport) {
1426 				/*
1427 				 * Found?
1428 				 */
1429 				if (cred == NULL ||
1430 				    prison_equal_ip4(cred->cr_prison,
1431 					inp->inp_cred->cr_prison))
1432 					return (inp);
1433 			}
1434 		}
1435 		/*
1436 		 * Not found.
1437 		 */
1438 		return (NULL);
1439 	} else {
1440 		struct inpcbporthead *porthash;
1441 		struct inpcbport *phd;
1442 		struct inpcb *match = NULL;
1443 		/*
1444 		 * Best fit PCB lookup.
1445 		 *
1446 		 * First see if this local port is in use by looking on the
1447 		 * port hash list.
1448 		 */
1449 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1450 		    pcbinfo->ipi_porthashmask)];
1451 		LIST_FOREACH(phd, porthash, phd_hash) {
1452 			if (phd->phd_port == lport)
1453 				break;
1454 		}
1455 		if (phd != NULL) {
1456 			/*
1457 			 * Port is in use by one or more PCBs. Look for best
1458 			 * fit.
1459 			 */
1460 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1461 				wildcard = 0;
1462 				if (cred != NULL &&
1463 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1464 					cred->cr_prison))
1465 					continue;
1466 #ifdef INET6
1467 				/* XXX inp locking */
1468 				if ((inp->inp_vflag & INP_IPV4) == 0)
1469 					continue;
1470 				/*
1471 				 * We never select the PCB that has
1472 				 * INP_IPV6 flag and is bound to :: if
1473 				 * we have another PCB which is bound
1474 				 * to 0.0.0.0.  If a PCB has the
1475 				 * INP_IPV6 flag, then we set its cost
1476 				 * higher than IPv4 only PCBs.
1477 				 *
1478 				 * Note that the case only happens
1479 				 * when a socket is bound to ::, under
1480 				 * the condition that the use of the
1481 				 * mapped address is allowed.
1482 				 */
1483 				if ((inp->inp_vflag & INP_IPV6) != 0)
1484 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1485 #endif
1486 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1487 					wildcard++;
1488 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1489 					if (laddr.s_addr == INADDR_ANY)
1490 						wildcard++;
1491 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1492 						continue;
1493 				} else {
1494 					if (laddr.s_addr != INADDR_ANY)
1495 						wildcard++;
1496 				}
1497 				if (wildcard < matchwild) {
1498 					match = inp;
1499 					matchwild = wildcard;
1500 					if (matchwild == 0)
1501 						break;
1502 				}
1503 			}
1504 		}
1505 		return (match);
1506 	}
1507 }
1508 #undef INP_LOOKUP_MAPPED_PCB_COST
1509 
1510 #ifdef PCBGROUP
1511 /*
1512  * Lookup PCB in hash list, using pcbgroup tables.
1513  */
1514 static struct inpcb *
1515 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1516     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1517     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1518 {
1519 	struct inpcbhead *head;
1520 	struct inpcb *inp, *tmpinp;
1521 	u_short fport = fport_arg, lport = lport_arg;
1522 
1523 	/*
1524 	 * First look for an exact match.
1525 	 */
1526 	tmpinp = NULL;
1527 	INP_GROUP_LOCK(pcbgroup);
1528 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1529 	    pcbgroup->ipg_hashmask)];
1530 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1531 #ifdef INET6
1532 		/* XXX inp locking */
1533 		if ((inp->inp_vflag & INP_IPV4) == 0)
1534 			continue;
1535 #endif
1536 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1537 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1538 		    inp->inp_fport == fport &&
1539 		    inp->inp_lport == lport) {
1540 			/*
1541 			 * XXX We should be able to directly return
1542 			 * the inp here, without any checks.
1543 			 * Well unless both bound with SO_REUSEPORT?
1544 			 */
1545 			if (prison_flag(inp->inp_cred, PR_IP4))
1546 				goto found;
1547 			if (tmpinp == NULL)
1548 				tmpinp = inp;
1549 		}
1550 	}
1551 	if (tmpinp != NULL) {
1552 		inp = tmpinp;
1553 		goto found;
1554 	}
1555 
1556 	/*
1557 	 * Then look for a wildcard match, if requested.
1558 	 */
1559 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1560 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1561 #ifdef INET6
1562 		struct inpcb *local_wild_mapped = NULL;
1563 #endif
1564 		struct inpcb *jail_wild = NULL;
1565 		struct inpcbhead *head;
1566 		int injail;
1567 
1568 		/*
1569 		 * Order of socket selection - we always prefer jails.
1570 		 *      1. jailed, non-wild.
1571 		 *      2. jailed, wild.
1572 		 *      3. non-jailed, non-wild.
1573 		 *      4. non-jailed, wild.
1574 		 */
1575 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1576 		    0, pcbinfo->ipi_wildmask)];
1577 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1578 #ifdef INET6
1579 			/* XXX inp locking */
1580 			if ((inp->inp_vflag & INP_IPV4) == 0)
1581 				continue;
1582 #endif
1583 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1584 			    inp->inp_lport != lport)
1585 				continue;
1586 
1587 			/* XXX inp locking */
1588 			if (ifp && ifp->if_type == IFT_FAITH &&
1589 			    (inp->inp_flags & INP_FAITH) == 0)
1590 				continue;
1591 
1592 			injail = prison_flag(inp->inp_cred, PR_IP4);
1593 			if (injail) {
1594 				if (prison_check_ip4(inp->inp_cred,
1595 				    &laddr) != 0)
1596 					continue;
1597 			} else {
1598 				if (local_exact != NULL)
1599 					continue;
1600 			}
1601 
1602 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1603 				if (injail)
1604 					goto found;
1605 				else
1606 					local_exact = inp;
1607 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1608 #ifdef INET6
1609 				/* XXX inp locking, NULL check */
1610 				if (inp->inp_vflag & INP_IPV6PROTO)
1611 					local_wild_mapped = inp;
1612 				else
1613 #endif
1614 					if (injail)
1615 						jail_wild = inp;
1616 					else
1617 						local_wild = inp;
1618 			}
1619 		} /* LIST_FOREACH */
1620 		inp = jail_wild;
1621 		if (inp == NULL)
1622 			inp = local_exact;
1623 		if (inp == NULL)
1624 			inp = local_wild;
1625 #ifdef INET6
1626 		if (inp == NULL)
1627 			inp = local_wild_mapped;
1628 #endif
1629 		if (inp != NULL)
1630 			goto found;
1631 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1632 	INP_GROUP_UNLOCK(pcbgroup);
1633 	return (NULL);
1634 
1635 found:
1636 	in_pcbref(inp);
1637 	INP_GROUP_UNLOCK(pcbgroup);
1638 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1639 		INP_WLOCK(inp);
1640 		if (in_pcbrele_wlocked(inp))
1641 			return (NULL);
1642 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1643 		INP_RLOCK(inp);
1644 		if (in_pcbrele_rlocked(inp))
1645 			return (NULL);
1646 	} else
1647 		panic("%s: locking bug", __func__);
1648 	return (inp);
1649 }
1650 #endif /* PCBGROUP */
1651 
1652 /*
1653  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1654  * that the caller has locked the hash list, and will not perform any further
1655  * locking or reference operations on either the hash list or the connection.
1656  */
1657 static struct inpcb *
1658 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1659     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1660     struct ifnet *ifp)
1661 {
1662 	struct inpcbhead *head;
1663 	struct inpcb *inp, *tmpinp;
1664 	u_short fport = fport_arg, lport = lport_arg;
1665 
1666 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1667 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1668 
1669 	INP_HASH_LOCK_ASSERT(pcbinfo);
1670 
1671 	/*
1672 	 * First look for an exact match.
1673 	 */
1674 	tmpinp = NULL;
1675 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1676 	    pcbinfo->ipi_hashmask)];
1677 	LIST_FOREACH(inp, head, inp_hash) {
1678 #ifdef INET6
1679 		/* XXX inp locking */
1680 		if ((inp->inp_vflag & INP_IPV4) == 0)
1681 			continue;
1682 #endif
1683 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1684 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1685 		    inp->inp_fport == fport &&
1686 		    inp->inp_lport == lport) {
1687 			/*
1688 			 * XXX We should be able to directly return
1689 			 * the inp here, without any checks.
1690 			 * Well unless both bound with SO_REUSEPORT?
1691 			 */
1692 			if (prison_flag(inp->inp_cred, PR_IP4))
1693 				return (inp);
1694 			if (tmpinp == NULL)
1695 				tmpinp = inp;
1696 		}
1697 	}
1698 	if (tmpinp != NULL)
1699 		return (tmpinp);
1700 
1701 	/*
1702 	 * Then look for a wildcard match, if requested.
1703 	 */
1704 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1705 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1706 #ifdef INET6
1707 		struct inpcb *local_wild_mapped = NULL;
1708 #endif
1709 		struct inpcb *jail_wild = NULL;
1710 		int injail;
1711 
1712 		/*
1713 		 * Order of socket selection - we always prefer jails.
1714 		 *      1. jailed, non-wild.
1715 		 *      2. jailed, wild.
1716 		 *      3. non-jailed, non-wild.
1717 		 *      4. non-jailed, wild.
1718 		 */
1719 
1720 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1721 		    0, pcbinfo->ipi_hashmask)];
1722 		LIST_FOREACH(inp, head, inp_hash) {
1723 #ifdef INET6
1724 			/* XXX inp locking */
1725 			if ((inp->inp_vflag & INP_IPV4) == 0)
1726 				continue;
1727 #endif
1728 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1729 			    inp->inp_lport != lport)
1730 				continue;
1731 
1732 			/* XXX inp locking */
1733 			if (ifp && ifp->if_type == IFT_FAITH &&
1734 			    (inp->inp_flags & INP_FAITH) == 0)
1735 				continue;
1736 
1737 			injail = prison_flag(inp->inp_cred, PR_IP4);
1738 			if (injail) {
1739 				if (prison_check_ip4(inp->inp_cred,
1740 				    &laddr) != 0)
1741 					continue;
1742 			} else {
1743 				if (local_exact != NULL)
1744 					continue;
1745 			}
1746 
1747 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1748 				if (injail)
1749 					return (inp);
1750 				else
1751 					local_exact = inp;
1752 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1753 #ifdef INET6
1754 				/* XXX inp locking, NULL check */
1755 				if (inp->inp_vflag & INP_IPV6PROTO)
1756 					local_wild_mapped = inp;
1757 				else
1758 #endif
1759 					if (injail)
1760 						jail_wild = inp;
1761 					else
1762 						local_wild = inp;
1763 			}
1764 		} /* LIST_FOREACH */
1765 		if (jail_wild != NULL)
1766 			return (jail_wild);
1767 		if (local_exact != NULL)
1768 			return (local_exact);
1769 		if (local_wild != NULL)
1770 			return (local_wild);
1771 #ifdef INET6
1772 		if (local_wild_mapped != NULL)
1773 			return (local_wild_mapped);
1774 #endif
1775 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1776 
1777 	return (NULL);
1778 }
1779 
1780 /*
1781  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1782  * hash list lock, and will return the inpcb locked (i.e., requires
1783  * INPLOOKUP_LOCKPCB).
1784  */
1785 static struct inpcb *
1786 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1787     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1788     struct ifnet *ifp)
1789 {
1790 	struct inpcb *inp;
1791 
1792 	INP_HASH_RLOCK(pcbinfo);
1793 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1794 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1795 	if (inp != NULL) {
1796 		in_pcbref(inp);
1797 		INP_HASH_RUNLOCK(pcbinfo);
1798 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1799 			INP_WLOCK(inp);
1800 			if (in_pcbrele_wlocked(inp))
1801 				return (NULL);
1802 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1803 			INP_RLOCK(inp);
1804 			if (in_pcbrele_rlocked(inp))
1805 				return (NULL);
1806 		} else
1807 			panic("%s: locking bug", __func__);
1808 	} else
1809 		INP_HASH_RUNLOCK(pcbinfo);
1810 	return (inp);
1811 }
1812 
1813 /*
1814  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1815  * from which a pre-calculated hash value may be extracted.
1816  *
1817  * Possibly more of this logic should be in in_pcbgroup.c.
1818  */
1819 struct inpcb *
1820 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1821     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1822 {
1823 #if defined(PCBGROUP)
1824 	struct inpcbgroup *pcbgroup;
1825 #endif
1826 
1827 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1828 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1829 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1830 	    ("%s: LOCKPCB not set", __func__));
1831 
1832 #if defined(PCBGROUP)
1833 	if (in_pcbgroup_enabled(pcbinfo)) {
1834 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1835 		    fport);
1836 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1837 		    laddr, lport, lookupflags, ifp));
1838 	}
1839 #endif
1840 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1841 	    lookupflags, ifp));
1842 }
1843 
1844 struct inpcb *
1845 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1846     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1847     struct ifnet *ifp, struct mbuf *m)
1848 {
1849 #ifdef PCBGROUP
1850 	struct inpcbgroup *pcbgroup;
1851 #endif
1852 
1853 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1854 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1855 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1856 	    ("%s: LOCKPCB not set", __func__));
1857 
1858 #ifdef PCBGROUP
1859 	if (in_pcbgroup_enabled(pcbinfo)) {
1860 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1861 		    m->m_pkthdr.flowid);
1862 		if (pcbgroup != NULL)
1863 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1864 			    fport, laddr, lport, lookupflags, ifp));
1865 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1866 		    fport);
1867 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1868 		    laddr, lport, lookupflags, ifp));
1869 	}
1870 #endif
1871 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1872 	    lookupflags, ifp));
1873 }
1874 #endif /* INET */
1875 
1876 /*
1877  * Insert PCB onto various hash lists.
1878  */
1879 static int
1880 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1881 {
1882 	struct inpcbhead *pcbhash;
1883 	struct inpcbporthead *pcbporthash;
1884 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1885 	struct inpcbport *phd;
1886 	u_int32_t hashkey_faddr;
1887 
1888 	INP_WLOCK_ASSERT(inp);
1889 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1890 
1891 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1892 	    ("in_pcbinshash: INP_INHASHLIST"));
1893 
1894 #ifdef INET6
1895 	if (inp->inp_vflag & INP_IPV6)
1896 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1897 	else
1898 #endif
1899 	hashkey_faddr = inp->inp_faddr.s_addr;
1900 
1901 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1902 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1903 
1904 	pcbporthash = &pcbinfo->ipi_porthashbase[
1905 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1906 
1907 	/*
1908 	 * Go through port list and look for a head for this lport.
1909 	 */
1910 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1911 		if (phd->phd_port == inp->inp_lport)
1912 			break;
1913 	}
1914 	/*
1915 	 * If none exists, malloc one and tack it on.
1916 	 */
1917 	if (phd == NULL) {
1918 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1919 		if (phd == NULL) {
1920 			return (ENOBUFS); /* XXX */
1921 		}
1922 		phd->phd_port = inp->inp_lport;
1923 		LIST_INIT(&phd->phd_pcblist);
1924 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1925 	}
1926 	inp->inp_phd = phd;
1927 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1928 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1929 	inp->inp_flags |= INP_INHASHLIST;
1930 #ifdef PCBGROUP
1931 	if (do_pcbgroup_update)
1932 		in_pcbgroup_update(inp);
1933 #endif
1934 	return (0);
1935 }
1936 
1937 /*
1938  * For now, there are two public interfaces to insert an inpcb into the hash
1939  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1940  * is used only in the TCP syncache, where in_pcbinshash is called before the
1941  * full 4-tuple is set for the inpcb, and we don't want to install in the
1942  * pcbgroup until later.
1943  *
1944  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1945  * connection groups, and partially initialised inpcbs should not be exposed
1946  * to either reservation hash tables or pcbgroups.
1947  */
1948 int
1949 in_pcbinshash(struct inpcb *inp)
1950 {
1951 
1952 	return (in_pcbinshash_internal(inp, 1));
1953 }
1954 
1955 int
1956 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1957 {
1958 
1959 	return (in_pcbinshash_internal(inp, 0));
1960 }
1961 
1962 /*
1963  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1964  * changed. NOTE: This does not handle the case of the lport changing (the
1965  * hashed port list would have to be updated as well), so the lport must
1966  * not change after in_pcbinshash() has been called.
1967  */
1968 void
1969 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1970 {
1971 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1972 	struct inpcbhead *head;
1973 	u_int32_t hashkey_faddr;
1974 
1975 	INP_WLOCK_ASSERT(inp);
1976 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1977 
1978 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1979 	    ("in_pcbrehash: !INP_INHASHLIST"));
1980 
1981 #ifdef INET6
1982 	if (inp->inp_vflag & INP_IPV6)
1983 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1984 	else
1985 #endif
1986 	hashkey_faddr = inp->inp_faddr.s_addr;
1987 
1988 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1989 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1990 
1991 	LIST_REMOVE(inp, inp_hash);
1992 	LIST_INSERT_HEAD(head, inp, inp_hash);
1993 
1994 #ifdef PCBGROUP
1995 	if (m != NULL)
1996 		in_pcbgroup_update_mbuf(inp, m);
1997 	else
1998 		in_pcbgroup_update(inp);
1999 #endif
2000 }
2001 
2002 void
2003 in_pcbrehash(struct inpcb *inp)
2004 {
2005 
2006 	in_pcbrehash_mbuf(inp, NULL);
2007 }
2008 
2009 /*
2010  * Remove PCB from various lists.
2011  */
2012 static void
2013 in_pcbremlists(struct inpcb *inp)
2014 {
2015 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2016 
2017 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2018 	INP_WLOCK_ASSERT(inp);
2019 
2020 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2021 	if (inp->inp_flags & INP_INHASHLIST) {
2022 		struct inpcbport *phd = inp->inp_phd;
2023 
2024 		INP_HASH_WLOCK(pcbinfo);
2025 		LIST_REMOVE(inp, inp_hash);
2026 		LIST_REMOVE(inp, inp_portlist);
2027 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2028 			LIST_REMOVE(phd, phd_hash);
2029 			free(phd, M_PCB);
2030 		}
2031 		INP_HASH_WUNLOCK(pcbinfo);
2032 		inp->inp_flags &= ~INP_INHASHLIST;
2033 	}
2034 	LIST_REMOVE(inp, inp_list);
2035 	pcbinfo->ipi_count--;
2036 #ifdef PCBGROUP
2037 	in_pcbgroup_remove(inp);
2038 #endif
2039 }
2040 
2041 /*
2042  * A set label operation has occurred at the socket layer, propagate the
2043  * label change into the in_pcb for the socket.
2044  */
2045 void
2046 in_pcbsosetlabel(struct socket *so)
2047 {
2048 #ifdef MAC
2049 	struct inpcb *inp;
2050 
2051 	inp = sotoinpcb(so);
2052 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2053 
2054 	INP_WLOCK(inp);
2055 	SOCK_LOCK(so);
2056 	mac_inpcb_sosetlabel(so, inp);
2057 	SOCK_UNLOCK(so);
2058 	INP_WUNLOCK(inp);
2059 #endif
2060 }
2061 
2062 /*
2063  * ipport_tick runs once per second, determining if random port allocation
2064  * should be continued.  If more than ipport_randomcps ports have been
2065  * allocated in the last second, then we return to sequential port
2066  * allocation. We return to random allocation only once we drop below
2067  * ipport_randomcps for at least ipport_randomtime seconds.
2068  */
2069 static void
2070 ipport_tick(void *xtp)
2071 {
2072 	VNET_ITERATOR_DECL(vnet_iter);
2073 
2074 	VNET_LIST_RLOCK_NOSLEEP();
2075 	VNET_FOREACH(vnet_iter) {
2076 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2077 		if (V_ipport_tcpallocs <=
2078 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2079 			if (V_ipport_stoprandom > 0)
2080 				V_ipport_stoprandom--;
2081 		} else
2082 			V_ipport_stoprandom = V_ipport_randomtime;
2083 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2084 		CURVNET_RESTORE();
2085 	}
2086 	VNET_LIST_RUNLOCK_NOSLEEP();
2087 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2088 }
2089 
2090 static void
2091 ip_fini(void *xtp)
2092 {
2093 
2094 	callout_stop(&ipport_tick_callout);
2095 }
2096 
2097 /*
2098  * The ipport_callout should start running at about the time we attach the
2099  * inet or inet6 domains.
2100  */
2101 static void
2102 ipport_tick_init(const void *unused __unused)
2103 {
2104 
2105 	/* Start ipport_tick. */
2106 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2107 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2108 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2109 		SHUTDOWN_PRI_DEFAULT);
2110 }
2111 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2112     ipport_tick_init, NULL);
2113 
2114 void
2115 inp_wlock(struct inpcb *inp)
2116 {
2117 
2118 	INP_WLOCK(inp);
2119 }
2120 
2121 void
2122 inp_wunlock(struct inpcb *inp)
2123 {
2124 
2125 	INP_WUNLOCK(inp);
2126 }
2127 
2128 void
2129 inp_rlock(struct inpcb *inp)
2130 {
2131 
2132 	INP_RLOCK(inp);
2133 }
2134 
2135 void
2136 inp_runlock(struct inpcb *inp)
2137 {
2138 
2139 	INP_RUNLOCK(inp);
2140 }
2141 
2142 #ifdef INVARIANTS
2143 void
2144 inp_lock_assert(struct inpcb *inp)
2145 {
2146 
2147 	INP_WLOCK_ASSERT(inp);
2148 }
2149 
2150 void
2151 inp_unlock_assert(struct inpcb *inp)
2152 {
2153 
2154 	INP_UNLOCK_ASSERT(inp);
2155 }
2156 #endif
2157 
2158 void
2159 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2160 {
2161 	struct inpcb *inp;
2162 
2163 	INP_INFO_RLOCK(&V_tcbinfo);
2164 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2165 		INP_WLOCK(inp);
2166 		func(inp, arg);
2167 		INP_WUNLOCK(inp);
2168 	}
2169 	INP_INFO_RUNLOCK(&V_tcbinfo);
2170 }
2171 
2172 struct socket *
2173 inp_inpcbtosocket(struct inpcb *inp)
2174 {
2175 
2176 	INP_WLOCK_ASSERT(inp);
2177 	return (inp->inp_socket);
2178 }
2179 
2180 struct tcpcb *
2181 inp_inpcbtotcpcb(struct inpcb *inp)
2182 {
2183 
2184 	INP_WLOCK_ASSERT(inp);
2185 	return ((struct tcpcb *)inp->inp_ppcb);
2186 }
2187 
2188 int
2189 inp_ip_tos_get(const struct inpcb *inp)
2190 {
2191 
2192 	return (inp->inp_ip_tos);
2193 }
2194 
2195 void
2196 inp_ip_tos_set(struct inpcb *inp, int val)
2197 {
2198 
2199 	inp->inp_ip_tos = val;
2200 }
2201 
2202 void
2203 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2204     uint32_t *faddr, uint16_t *fp)
2205 {
2206 
2207 	INP_LOCK_ASSERT(inp);
2208 	*laddr = inp->inp_laddr.s_addr;
2209 	*faddr = inp->inp_faddr.s_addr;
2210 	*lp = inp->inp_lport;
2211 	*fp = inp->inp_fport;
2212 }
2213 
2214 struct inpcb *
2215 so_sotoinpcb(struct socket *so)
2216 {
2217 
2218 	return (sotoinpcb(so));
2219 }
2220 
2221 struct tcpcb *
2222 so_sototcpcb(struct socket *so)
2223 {
2224 
2225 	return (sototcpcb(so));
2226 }
2227 
2228 #ifdef DDB
2229 static void
2230 db_print_indent(int indent)
2231 {
2232 	int i;
2233 
2234 	for (i = 0; i < indent; i++)
2235 		db_printf(" ");
2236 }
2237 
2238 static void
2239 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2240 {
2241 	char faddr_str[48], laddr_str[48];
2242 
2243 	db_print_indent(indent);
2244 	db_printf("%s at %p\n", name, inc);
2245 
2246 	indent += 2;
2247 
2248 #ifdef INET6
2249 	if (inc->inc_flags & INC_ISIPV6) {
2250 		/* IPv6. */
2251 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2252 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2253 	} else
2254 #endif
2255 	{
2256 		/* IPv4. */
2257 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2258 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2259 	}
2260 	db_print_indent(indent);
2261 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2262 	    ntohs(inc->inc_lport));
2263 	db_print_indent(indent);
2264 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2265 	    ntohs(inc->inc_fport));
2266 }
2267 
2268 static void
2269 db_print_inpflags(int inp_flags)
2270 {
2271 	int comma;
2272 
2273 	comma = 0;
2274 	if (inp_flags & INP_RECVOPTS) {
2275 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2276 		comma = 1;
2277 	}
2278 	if (inp_flags & INP_RECVRETOPTS) {
2279 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2280 		comma = 1;
2281 	}
2282 	if (inp_flags & INP_RECVDSTADDR) {
2283 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2284 		comma = 1;
2285 	}
2286 	if (inp_flags & INP_HDRINCL) {
2287 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2288 		comma = 1;
2289 	}
2290 	if (inp_flags & INP_HIGHPORT) {
2291 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2292 		comma = 1;
2293 	}
2294 	if (inp_flags & INP_LOWPORT) {
2295 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2296 		comma = 1;
2297 	}
2298 	if (inp_flags & INP_ANONPORT) {
2299 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2300 		comma = 1;
2301 	}
2302 	if (inp_flags & INP_RECVIF) {
2303 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2304 		comma = 1;
2305 	}
2306 	if (inp_flags & INP_MTUDISC) {
2307 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2308 		comma = 1;
2309 	}
2310 	if (inp_flags & INP_FAITH) {
2311 		db_printf("%sINP_FAITH", comma ? ", " : "");
2312 		comma = 1;
2313 	}
2314 	if (inp_flags & INP_RECVTTL) {
2315 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2316 		comma = 1;
2317 	}
2318 	if (inp_flags & INP_DONTFRAG) {
2319 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2320 		comma = 1;
2321 	}
2322 	if (inp_flags & INP_RECVTOS) {
2323 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2324 		comma = 1;
2325 	}
2326 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2327 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2328 		comma = 1;
2329 	}
2330 	if (inp_flags & IN6P_PKTINFO) {
2331 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2332 		comma = 1;
2333 	}
2334 	if (inp_flags & IN6P_HOPLIMIT) {
2335 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2336 		comma = 1;
2337 	}
2338 	if (inp_flags & IN6P_HOPOPTS) {
2339 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2340 		comma = 1;
2341 	}
2342 	if (inp_flags & IN6P_DSTOPTS) {
2343 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2344 		comma = 1;
2345 	}
2346 	if (inp_flags & IN6P_RTHDR) {
2347 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2348 		comma = 1;
2349 	}
2350 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2351 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2352 		comma = 1;
2353 	}
2354 	if (inp_flags & IN6P_TCLASS) {
2355 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2356 		comma = 1;
2357 	}
2358 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2359 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2360 		comma = 1;
2361 	}
2362 	if (inp_flags & INP_TIMEWAIT) {
2363 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2364 		comma  = 1;
2365 	}
2366 	if (inp_flags & INP_ONESBCAST) {
2367 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2368 		comma  = 1;
2369 	}
2370 	if (inp_flags & INP_DROPPED) {
2371 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2372 		comma  = 1;
2373 	}
2374 	if (inp_flags & INP_SOCKREF) {
2375 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2376 		comma  = 1;
2377 	}
2378 	if (inp_flags & IN6P_RFC2292) {
2379 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2380 		comma = 1;
2381 	}
2382 	if (inp_flags & IN6P_MTU) {
2383 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2384 		comma = 1;
2385 	}
2386 }
2387 
2388 static void
2389 db_print_inpvflag(u_char inp_vflag)
2390 {
2391 	int comma;
2392 
2393 	comma = 0;
2394 	if (inp_vflag & INP_IPV4) {
2395 		db_printf("%sINP_IPV4", comma ? ", " : "");
2396 		comma  = 1;
2397 	}
2398 	if (inp_vflag & INP_IPV6) {
2399 		db_printf("%sINP_IPV6", comma ? ", " : "");
2400 		comma  = 1;
2401 	}
2402 	if (inp_vflag & INP_IPV6PROTO) {
2403 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2404 		comma  = 1;
2405 	}
2406 }
2407 
2408 static void
2409 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2410 {
2411 
2412 	db_print_indent(indent);
2413 	db_printf("%s at %p\n", name, inp);
2414 
2415 	indent += 2;
2416 
2417 	db_print_indent(indent);
2418 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2419 
2420 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2421 
2422 	db_print_indent(indent);
2423 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2424 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2425 
2426 	db_print_indent(indent);
2427 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2428 	   inp->inp_label, inp->inp_flags);
2429 	db_print_inpflags(inp->inp_flags);
2430 	db_printf(")\n");
2431 
2432 	db_print_indent(indent);
2433 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2434 	    inp->inp_vflag);
2435 	db_print_inpvflag(inp->inp_vflag);
2436 	db_printf(")\n");
2437 
2438 	db_print_indent(indent);
2439 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2440 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2441 
2442 	db_print_indent(indent);
2443 #ifdef INET6
2444 	if (inp->inp_vflag & INP_IPV6) {
2445 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2446 		    "in6p_moptions: %p\n", inp->in6p_options,
2447 		    inp->in6p_outputopts, inp->in6p_moptions);
2448 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2449 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2450 		    inp->in6p_hops);
2451 	} else
2452 #endif
2453 	{
2454 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2455 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2456 		    inp->inp_options, inp->inp_moptions);
2457 	}
2458 
2459 	db_print_indent(indent);
2460 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2461 	    (uintmax_t)inp->inp_gencnt);
2462 }
2463 
2464 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2465 {
2466 	struct inpcb *inp;
2467 
2468 	if (!have_addr) {
2469 		db_printf("usage: show inpcb <addr>\n");
2470 		return;
2471 	}
2472 	inp = (struct inpcb *)addr;
2473 
2474 	db_print_inpcb(inp, "inpcb", 0);
2475 }
2476 #endif /* DDB */
2477