1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free(struct inpcblbgroup *grp) 244 { 245 246 LIST_REMOVE(grp, il_list); 247 free(grp, M_TEMP); 248 } 249 250 static struct inpcblbgroup * 251 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 252 struct inpcblbgroup *old_grp, int size) 253 { 254 struct inpcblbgroup *grp; 255 int i; 256 257 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 258 old_grp->il_lport, &old_grp->il_dependladdr, size); 259 if (!grp) 260 return (NULL); 261 262 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 263 ("invalid new local group size %d and old local group count %d", 264 grp->il_inpsiz, old_grp->il_inpcnt)); 265 266 for (i = 0; i < old_grp->il_inpcnt; ++i) 267 grp->il_inp[i] = old_grp->il_inp[i]; 268 grp->il_inpcnt = old_grp->il_inpcnt; 269 in_pcblbgroup_free(old_grp); 270 return (grp); 271 } 272 273 /* 274 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 275 * and shrink group if possible. 276 */ 277 static void 278 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 279 int i) 280 { 281 struct inpcblbgroup *grp = *grpp; 282 283 for (; i + 1 < grp->il_inpcnt; ++i) 284 grp->il_inp[i] = grp->il_inp[i + 1]; 285 grp->il_inpcnt--; 286 287 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 288 grp->il_inpcnt <= (grp->il_inpsiz / 4)) { 289 /* Shrink this group. */ 290 struct inpcblbgroup *new_grp = 291 in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 292 if (new_grp) 293 *grpp = new_grp; 294 } 295 return; 296 } 297 298 /* 299 * Add PCB to load balance group for SO_REUSEPORT_LB option. 300 */ 301 static int 302 in_pcbinslbgrouphash(struct inpcb *inp) 303 { 304 struct inpcbinfo *pcbinfo; 305 struct inpcblbgrouphead *hdr; 306 struct inpcblbgroup *grp; 307 uint16_t hashmask, lport; 308 uint32_t group_index; 309 struct ucred *cred; 310 static int limit_logged = 0; 311 312 pcbinfo = inp->inp_pcbinfo; 313 314 INP_WLOCK_ASSERT(inp); 315 INP_HASH_WLOCK_ASSERT(pcbinfo); 316 317 if (pcbinfo->ipi_lbgrouphashbase == NULL) 318 return (0); 319 320 hashmask = pcbinfo->ipi_lbgrouphashmask; 321 lport = inp->inp_lport; 322 group_index = INP_PCBLBGROUP_PORTHASH(lport, hashmask); 323 hdr = &pcbinfo->ipi_lbgrouphashbase[group_index]; 324 325 /* 326 * Don't allow jailed socket to join local group. 327 */ 328 if (inp->inp_socket != NULL) 329 cred = inp->inp_socket->so_cred; 330 else 331 cred = NULL; 332 if (cred != NULL && jailed(cred)) 333 return (0); 334 335 #ifdef INET6 336 /* 337 * Don't allow IPv4 mapped INET6 wild socket. 338 */ 339 if ((inp->inp_vflag & INP_IPV4) && 340 inp->inp_laddr.s_addr == INADDR_ANY && 341 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 342 return (0); 343 } 344 #endif 345 346 hdr = &pcbinfo->ipi_lbgrouphashbase[ 347 INP_PCBLBGROUP_PORTHASH(inp->inp_lport, 348 pcbinfo->ipi_lbgrouphashmask)]; 349 LIST_FOREACH(grp, hdr, il_list) { 350 if (grp->il_vflag == inp->inp_vflag && 351 grp->il_lport == inp->inp_lport && 352 memcmp(&grp->il_dependladdr, 353 &inp->inp_inc.inc_ie.ie_dependladdr, 354 sizeof(grp->il_dependladdr)) == 0) { 355 break; 356 } 357 } 358 if (grp == NULL) { 359 /* Create new load balance group. */ 360 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 361 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 362 INPCBLBGROUP_SIZMIN); 363 if (!grp) 364 return (ENOBUFS); 365 } else if (grp->il_inpcnt == grp->il_inpsiz) { 366 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 367 if (!limit_logged) { 368 limit_logged = 1; 369 printf("lb group port %d, limit reached\n", 370 ntohs(grp->il_lport)); 371 } 372 return (0); 373 } 374 375 /* Expand this local group. */ 376 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 377 if (!grp) 378 return (ENOBUFS); 379 } 380 381 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 382 ("invalid local group size %d and count %d", 383 grp->il_inpsiz, grp->il_inpcnt)); 384 385 grp->il_inp[grp->il_inpcnt] = inp; 386 grp->il_inpcnt++; 387 return (0); 388 } 389 390 /* 391 * Remove PCB from load balance group. 392 */ 393 static void 394 in_pcbremlbgrouphash(struct inpcb *inp) 395 { 396 struct inpcbinfo *pcbinfo; 397 struct inpcblbgrouphead *hdr; 398 struct inpcblbgroup *grp; 399 int i; 400 401 pcbinfo = inp->inp_pcbinfo; 402 403 INP_WLOCK_ASSERT(inp); 404 INP_HASH_WLOCK_ASSERT(pcbinfo); 405 406 if (pcbinfo->ipi_lbgrouphashbase == NULL) 407 return; 408 409 hdr = &pcbinfo->ipi_lbgrouphashbase[ 410 INP_PCBLBGROUP_PORTHASH(inp->inp_lport, 411 pcbinfo->ipi_lbgrouphashmask)]; 412 413 LIST_FOREACH(grp, hdr, il_list) { 414 for (i = 0; i < grp->il_inpcnt; ++i) { 415 if (grp->il_inp[i] != inp) 416 continue; 417 418 if (grp->il_inpcnt == 1) { 419 /* We are the last, free this local group. */ 420 in_pcblbgroup_free(grp); 421 } else { 422 /* Pull up inpcbs, shrink group if possible. */ 423 in_pcblbgroup_reorder(hdr, &grp, i); 424 } 425 return; 426 } 427 } 428 } 429 430 /* 431 * Different protocols initialize their inpcbs differently - giving 432 * different name to the lock. But they all are disposed the same. 433 */ 434 static void 435 inpcb_fini(void *mem, int size) 436 { 437 struct inpcb *inp = mem; 438 439 INP_LOCK_DESTROY(inp); 440 } 441 442 /* 443 * Initialize an inpcbinfo -- we should be able to reduce the number of 444 * arguments in time. 445 */ 446 void 447 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 448 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 449 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 450 { 451 452 INP_INFO_LOCK_INIT(pcbinfo, name); 453 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 454 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 455 #ifdef VIMAGE 456 pcbinfo->ipi_vnet = curvnet; 457 #endif 458 pcbinfo->ipi_listhead = listhead; 459 CK_LIST_INIT(pcbinfo->ipi_listhead); 460 pcbinfo->ipi_count = 0; 461 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 462 &pcbinfo->ipi_hashmask); 463 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 464 &pcbinfo->ipi_porthashmask); 465 pcbinfo->ipi_lbgrouphashbase = hashinit(hash_nelements, M_PCB, 466 &pcbinfo->ipi_lbgrouphashmask); 467 #ifdef PCBGROUP 468 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 469 #endif 470 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 471 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 472 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 473 uma_zone_set_warning(pcbinfo->ipi_zone, 474 "kern.ipc.maxsockets limit reached"); 475 } 476 477 /* 478 * Destroy an inpcbinfo. 479 */ 480 void 481 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 482 { 483 484 KASSERT(pcbinfo->ipi_count == 0, 485 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 486 487 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 488 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 489 pcbinfo->ipi_porthashmask); 490 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 491 pcbinfo->ipi_lbgrouphashmask); 492 #ifdef PCBGROUP 493 in_pcbgroup_destroy(pcbinfo); 494 #endif 495 uma_zdestroy(pcbinfo->ipi_zone); 496 INP_LIST_LOCK_DESTROY(pcbinfo); 497 INP_HASH_LOCK_DESTROY(pcbinfo); 498 INP_INFO_LOCK_DESTROY(pcbinfo); 499 } 500 501 /* 502 * Allocate a PCB and associate it with the socket. 503 * On success return with the PCB locked. 504 */ 505 int 506 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 507 { 508 struct inpcb *inp; 509 int error; 510 511 #ifdef INVARIANTS 512 if (pcbinfo == &V_tcbinfo) { 513 INP_INFO_RLOCK_ASSERT(pcbinfo); 514 } else { 515 INP_INFO_WLOCK_ASSERT(pcbinfo); 516 } 517 #endif 518 519 error = 0; 520 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 521 if (inp == NULL) 522 return (ENOBUFS); 523 bzero(&inp->inp_start_zero, inp_zero_size); 524 inp->inp_pcbinfo = pcbinfo; 525 inp->inp_socket = so; 526 inp->inp_cred = crhold(so->so_cred); 527 inp->inp_inc.inc_fibnum = so->so_fibnum; 528 #ifdef MAC 529 error = mac_inpcb_init(inp, M_NOWAIT); 530 if (error != 0) 531 goto out; 532 mac_inpcb_create(so, inp); 533 #endif 534 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 535 error = ipsec_init_pcbpolicy(inp); 536 if (error != 0) { 537 #ifdef MAC 538 mac_inpcb_destroy(inp); 539 #endif 540 goto out; 541 } 542 #endif /*IPSEC*/ 543 #ifdef INET6 544 if (INP_SOCKAF(so) == AF_INET6) { 545 inp->inp_vflag |= INP_IPV6PROTO; 546 if (V_ip6_v6only) 547 inp->inp_flags |= IN6P_IPV6_V6ONLY; 548 } 549 #endif 550 INP_WLOCK(inp); 551 INP_LIST_WLOCK(pcbinfo); 552 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 553 pcbinfo->ipi_count++; 554 so->so_pcb = (caddr_t)inp; 555 #ifdef INET6 556 if (V_ip6_auto_flowlabel) 557 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 558 #endif 559 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 560 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 561 562 /* 563 * Routes in inpcb's can cache L2 as well; they are guaranteed 564 * to be cleaned up. 565 */ 566 inp->inp_route.ro_flags = RT_LLE_CACHE; 567 INP_LIST_WUNLOCK(pcbinfo); 568 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 569 out: 570 if (error != 0) { 571 crfree(inp->inp_cred); 572 uma_zfree(pcbinfo->ipi_zone, inp); 573 } 574 #endif 575 return (error); 576 } 577 578 #ifdef INET 579 int 580 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 581 { 582 int anonport, error; 583 584 INP_WLOCK_ASSERT(inp); 585 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 586 587 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 588 return (EINVAL); 589 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 590 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 591 &inp->inp_lport, cred); 592 if (error) 593 return (error); 594 if (in_pcbinshash(inp) != 0) { 595 inp->inp_laddr.s_addr = INADDR_ANY; 596 inp->inp_lport = 0; 597 return (EAGAIN); 598 } 599 if (anonport) 600 inp->inp_flags |= INP_ANONPORT; 601 return (0); 602 } 603 #endif 604 605 /* 606 * Select a local port (number) to use. 607 */ 608 #if defined(INET) || defined(INET6) 609 int 610 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 611 struct ucred *cred, int lookupflags) 612 { 613 struct inpcbinfo *pcbinfo; 614 struct inpcb *tmpinp; 615 unsigned short *lastport; 616 int count, dorandom, error; 617 u_short aux, first, last, lport; 618 #ifdef INET 619 struct in_addr laddr; 620 #endif 621 622 pcbinfo = inp->inp_pcbinfo; 623 624 /* 625 * Because no actual state changes occur here, a global write lock on 626 * the pcbinfo isn't required. 627 */ 628 INP_LOCK_ASSERT(inp); 629 INP_HASH_LOCK_ASSERT(pcbinfo); 630 631 if (inp->inp_flags & INP_HIGHPORT) { 632 first = V_ipport_hifirstauto; /* sysctl */ 633 last = V_ipport_hilastauto; 634 lastport = &pcbinfo->ipi_lasthi; 635 } else if (inp->inp_flags & INP_LOWPORT) { 636 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 637 if (error) 638 return (error); 639 first = V_ipport_lowfirstauto; /* 1023 */ 640 last = V_ipport_lowlastauto; /* 600 */ 641 lastport = &pcbinfo->ipi_lastlow; 642 } else { 643 first = V_ipport_firstauto; /* sysctl */ 644 last = V_ipport_lastauto; 645 lastport = &pcbinfo->ipi_lastport; 646 } 647 /* 648 * For UDP(-Lite), use random port allocation as long as the user 649 * allows it. For TCP (and as of yet unknown) connections, 650 * use random port allocation only if the user allows it AND 651 * ipport_tick() allows it. 652 */ 653 if (V_ipport_randomized && 654 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 655 pcbinfo == &V_ulitecbinfo)) 656 dorandom = 1; 657 else 658 dorandom = 0; 659 /* 660 * It makes no sense to do random port allocation if 661 * we have the only port available. 662 */ 663 if (first == last) 664 dorandom = 0; 665 /* Make sure to not include UDP(-Lite) packets in the count. */ 666 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 667 V_ipport_tcpallocs++; 668 /* 669 * Instead of having two loops further down counting up or down 670 * make sure that first is always <= last and go with only one 671 * code path implementing all logic. 672 */ 673 if (first > last) { 674 aux = first; 675 first = last; 676 last = aux; 677 } 678 679 #ifdef INET 680 /* Make the compiler happy. */ 681 laddr.s_addr = 0; 682 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 683 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 684 __func__, inp)); 685 laddr = *laddrp; 686 } 687 #endif 688 tmpinp = NULL; /* Make compiler happy. */ 689 lport = *lportp; 690 691 if (dorandom) 692 *lastport = first + (arc4random() % (last - first)); 693 694 count = last - first; 695 696 do { 697 if (count-- < 0) /* completely used? */ 698 return (EADDRNOTAVAIL); 699 ++*lastport; 700 if (*lastport < first || *lastport > last) 701 *lastport = first; 702 lport = htons(*lastport); 703 704 #ifdef INET6 705 if ((inp->inp_vflag & INP_IPV6) != 0) 706 tmpinp = in6_pcblookup_local(pcbinfo, 707 &inp->in6p_laddr, lport, lookupflags, cred); 708 #endif 709 #if defined(INET) && defined(INET6) 710 else 711 #endif 712 #ifdef INET 713 tmpinp = in_pcblookup_local(pcbinfo, laddr, 714 lport, lookupflags, cred); 715 #endif 716 } while (tmpinp != NULL); 717 718 #ifdef INET 719 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 720 laddrp->s_addr = laddr.s_addr; 721 #endif 722 *lportp = lport; 723 724 return (0); 725 } 726 727 /* 728 * Return cached socket options. 729 */ 730 int 731 inp_so_options(const struct inpcb *inp) 732 { 733 int so_options; 734 735 so_options = 0; 736 737 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 738 so_options |= SO_REUSEPORT_LB; 739 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 740 so_options |= SO_REUSEPORT; 741 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 742 so_options |= SO_REUSEADDR; 743 return (so_options); 744 } 745 #endif /* INET || INET6 */ 746 747 /* 748 * Check if a new BINDMULTI socket is allowed to be created. 749 * 750 * ni points to the new inp. 751 * oi points to the exisitng inp. 752 * 753 * This checks whether the existing inp also has BINDMULTI and 754 * whether the credentials match. 755 */ 756 int 757 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 758 { 759 /* Check permissions match */ 760 if ((ni->inp_flags2 & INP_BINDMULTI) && 761 (ni->inp_cred->cr_uid != 762 oi->inp_cred->cr_uid)) 763 return (0); 764 765 /* Check the existing inp has BINDMULTI set */ 766 if ((ni->inp_flags2 & INP_BINDMULTI) && 767 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 768 return (0); 769 770 /* 771 * We're okay - either INP_BINDMULTI isn't set on ni, or 772 * it is and it matches the checks. 773 */ 774 return (1); 775 } 776 777 #ifdef INET 778 /* 779 * Set up a bind operation on a PCB, performing port allocation 780 * as required, but do not actually modify the PCB. Callers can 781 * either complete the bind by setting inp_laddr/inp_lport and 782 * calling in_pcbinshash(), or they can just use the resulting 783 * port and address to authorise the sending of a once-off packet. 784 * 785 * On error, the values of *laddrp and *lportp are not changed. 786 */ 787 int 788 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 789 u_short *lportp, struct ucred *cred) 790 { 791 struct socket *so = inp->inp_socket; 792 struct sockaddr_in *sin; 793 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 794 struct in_addr laddr; 795 u_short lport = 0; 796 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 797 int error; 798 799 /* 800 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 801 * so that we don't have to add to the (already messy) code below. 802 */ 803 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 804 805 /* 806 * No state changes, so read locks are sufficient here. 807 */ 808 INP_LOCK_ASSERT(inp); 809 INP_HASH_LOCK_ASSERT(pcbinfo); 810 811 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 812 return (EADDRNOTAVAIL); 813 laddr.s_addr = *laddrp; 814 if (nam != NULL && laddr.s_addr != INADDR_ANY) 815 return (EINVAL); 816 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 817 lookupflags = INPLOOKUP_WILDCARD; 818 if (nam == NULL) { 819 if ((error = prison_local_ip4(cred, &laddr)) != 0) 820 return (error); 821 } else { 822 sin = (struct sockaddr_in *)nam; 823 if (nam->sa_len != sizeof (*sin)) 824 return (EINVAL); 825 #ifdef notdef 826 /* 827 * We should check the family, but old programs 828 * incorrectly fail to initialize it. 829 */ 830 if (sin->sin_family != AF_INET) 831 return (EAFNOSUPPORT); 832 #endif 833 error = prison_local_ip4(cred, &sin->sin_addr); 834 if (error) 835 return (error); 836 if (sin->sin_port != *lportp) { 837 /* Don't allow the port to change. */ 838 if (*lportp != 0) 839 return (EINVAL); 840 lport = sin->sin_port; 841 } 842 /* NB: lport is left as 0 if the port isn't being changed. */ 843 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 844 /* 845 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 846 * allow complete duplication of binding if 847 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 848 * and a multicast address is bound on both 849 * new and duplicated sockets. 850 */ 851 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 852 reuseport = SO_REUSEADDR|SO_REUSEPORT; 853 /* 854 * XXX: How to deal with SO_REUSEPORT_LB here? 855 * Treat same as SO_REUSEPORT for now. 856 */ 857 if ((so->so_options & 858 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 859 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 860 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 861 sin->sin_port = 0; /* yech... */ 862 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 863 /* 864 * Is the address a local IP address? 865 * If INP_BINDANY is set, then the socket may be bound 866 * to any endpoint address, local or not. 867 */ 868 if ((inp->inp_flags & INP_BINDANY) == 0 && 869 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 870 return (EADDRNOTAVAIL); 871 } 872 laddr = sin->sin_addr; 873 if (lport) { 874 struct inpcb *t; 875 struct tcptw *tw; 876 877 /* GROSS */ 878 if (ntohs(lport) <= V_ipport_reservedhigh && 879 ntohs(lport) >= V_ipport_reservedlow && 880 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 881 0)) 882 return (EACCES); 883 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 884 priv_check_cred(inp->inp_cred, 885 PRIV_NETINET_REUSEPORT, 0) != 0) { 886 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 887 lport, INPLOOKUP_WILDCARD, cred); 888 /* 889 * XXX 890 * This entire block sorely needs a rewrite. 891 */ 892 if (t && 893 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 894 ((t->inp_flags & INP_TIMEWAIT) == 0) && 895 (so->so_type != SOCK_STREAM || 896 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 897 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 898 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 899 (t->inp_flags2 & INP_REUSEPORT) || 900 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 901 (inp->inp_cred->cr_uid != 902 t->inp_cred->cr_uid)) 903 return (EADDRINUSE); 904 905 /* 906 * If the socket is a BINDMULTI socket, then 907 * the credentials need to match and the 908 * original socket also has to have been bound 909 * with BINDMULTI. 910 */ 911 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 912 return (EADDRINUSE); 913 } 914 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 915 lport, lookupflags, cred); 916 if (t && (t->inp_flags & INP_TIMEWAIT)) { 917 /* 918 * XXXRW: If an incpb has had its timewait 919 * state recycled, we treat the address as 920 * being in use (for now). This is better 921 * than a panic, but not desirable. 922 */ 923 tw = intotw(t); 924 if (tw == NULL || 925 ((reuseport & tw->tw_so_options) == 0 && 926 (reuseport_lb & 927 tw->tw_so_options) == 0)) { 928 return (EADDRINUSE); 929 } 930 } else if (t && 931 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 932 (reuseport & inp_so_options(t)) == 0 && 933 (reuseport_lb & inp_so_options(t)) == 0) { 934 #ifdef INET6 935 if (ntohl(sin->sin_addr.s_addr) != 936 INADDR_ANY || 937 ntohl(t->inp_laddr.s_addr) != 938 INADDR_ANY || 939 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 940 (t->inp_vflag & INP_IPV6PROTO) == 0) 941 #endif 942 return (EADDRINUSE); 943 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 944 return (EADDRINUSE); 945 } 946 } 947 } 948 if (*lportp != 0) 949 lport = *lportp; 950 if (lport == 0) { 951 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 952 if (error != 0) 953 return (error); 954 955 } 956 *laddrp = laddr.s_addr; 957 *lportp = lport; 958 return (0); 959 } 960 961 /* 962 * Connect from a socket to a specified address. 963 * Both address and port must be specified in argument sin. 964 * If don't have a local address for this socket yet, 965 * then pick one. 966 */ 967 int 968 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 969 struct ucred *cred, struct mbuf *m) 970 { 971 u_short lport, fport; 972 in_addr_t laddr, faddr; 973 int anonport, error; 974 975 INP_WLOCK_ASSERT(inp); 976 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 977 978 lport = inp->inp_lport; 979 laddr = inp->inp_laddr.s_addr; 980 anonport = (lport == 0); 981 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 982 NULL, cred); 983 if (error) 984 return (error); 985 986 /* Do the initial binding of the local address if required. */ 987 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 988 inp->inp_lport = lport; 989 inp->inp_laddr.s_addr = laddr; 990 if (in_pcbinshash(inp) != 0) { 991 inp->inp_laddr.s_addr = INADDR_ANY; 992 inp->inp_lport = 0; 993 return (EAGAIN); 994 } 995 } 996 997 /* Commit the remaining changes. */ 998 inp->inp_lport = lport; 999 inp->inp_laddr.s_addr = laddr; 1000 inp->inp_faddr.s_addr = faddr; 1001 inp->inp_fport = fport; 1002 in_pcbrehash_mbuf(inp, m); 1003 1004 if (anonport) 1005 inp->inp_flags |= INP_ANONPORT; 1006 return (0); 1007 } 1008 1009 int 1010 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1011 { 1012 1013 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1014 } 1015 1016 /* 1017 * Do proper source address selection on an unbound socket in case 1018 * of connect. Take jails into account as well. 1019 */ 1020 int 1021 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1022 struct ucred *cred) 1023 { 1024 struct ifaddr *ifa; 1025 struct sockaddr *sa; 1026 struct sockaddr_in *sin; 1027 struct route sro; 1028 int error; 1029 1030 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1031 /* 1032 * Bypass source address selection and use the primary jail IP 1033 * if requested. 1034 */ 1035 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1036 return (0); 1037 1038 error = 0; 1039 bzero(&sro, sizeof(sro)); 1040 1041 sin = (struct sockaddr_in *)&sro.ro_dst; 1042 sin->sin_family = AF_INET; 1043 sin->sin_len = sizeof(struct sockaddr_in); 1044 sin->sin_addr.s_addr = faddr->s_addr; 1045 1046 /* 1047 * If route is known our src addr is taken from the i/f, 1048 * else punt. 1049 * 1050 * Find out route to destination. 1051 */ 1052 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1053 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1054 1055 /* 1056 * If we found a route, use the address corresponding to 1057 * the outgoing interface. 1058 * 1059 * Otherwise assume faddr is reachable on a directly connected 1060 * network and try to find a corresponding interface to take 1061 * the source address from. 1062 */ 1063 NET_EPOCH_ENTER(); 1064 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1065 struct in_ifaddr *ia; 1066 struct ifnet *ifp; 1067 1068 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1069 inp->inp_socket->so_fibnum)); 1070 if (ia == NULL) { 1071 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1072 inp->inp_socket->so_fibnum)); 1073 1074 } 1075 if (ia == NULL) { 1076 error = ENETUNREACH; 1077 goto done; 1078 } 1079 1080 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1081 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1082 goto done; 1083 } 1084 1085 ifp = ia->ia_ifp; 1086 ia = NULL; 1087 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1088 1089 sa = ifa->ifa_addr; 1090 if (sa->sa_family != AF_INET) 1091 continue; 1092 sin = (struct sockaddr_in *)sa; 1093 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1094 ia = (struct in_ifaddr *)ifa; 1095 break; 1096 } 1097 } 1098 if (ia != NULL) { 1099 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1100 goto done; 1101 } 1102 1103 /* 3. As a last resort return the 'default' jail address. */ 1104 error = prison_get_ip4(cred, laddr); 1105 goto done; 1106 } 1107 1108 /* 1109 * If the outgoing interface on the route found is not 1110 * a loopback interface, use the address from that interface. 1111 * In case of jails do those three steps: 1112 * 1. check if the interface address belongs to the jail. If so use it. 1113 * 2. check if we have any address on the outgoing interface 1114 * belonging to this jail. If so use it. 1115 * 3. as a last resort return the 'default' jail address. 1116 */ 1117 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1118 struct in_ifaddr *ia; 1119 struct ifnet *ifp; 1120 1121 /* If not jailed, use the default returned. */ 1122 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1123 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1124 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1125 goto done; 1126 } 1127 1128 /* Jailed. */ 1129 /* 1. Check if the iface address belongs to the jail. */ 1130 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1131 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1132 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1133 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1134 goto done; 1135 } 1136 1137 /* 1138 * 2. Check if we have any address on the outgoing interface 1139 * belonging to this jail. 1140 */ 1141 ia = NULL; 1142 ifp = sro.ro_rt->rt_ifp; 1143 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1144 sa = ifa->ifa_addr; 1145 if (sa->sa_family != AF_INET) 1146 continue; 1147 sin = (struct sockaddr_in *)sa; 1148 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1149 ia = (struct in_ifaddr *)ifa; 1150 break; 1151 } 1152 } 1153 if (ia != NULL) { 1154 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1155 goto done; 1156 } 1157 1158 /* 3. As a last resort return the 'default' jail address. */ 1159 error = prison_get_ip4(cred, laddr); 1160 goto done; 1161 } 1162 1163 /* 1164 * The outgoing interface is marked with 'loopback net', so a route 1165 * to ourselves is here. 1166 * Try to find the interface of the destination address and then 1167 * take the address from there. That interface is not necessarily 1168 * a loopback interface. 1169 * In case of jails, check that it is an address of the jail 1170 * and if we cannot find, fall back to the 'default' jail address. 1171 */ 1172 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1173 struct sockaddr_in sain; 1174 struct in_ifaddr *ia; 1175 1176 bzero(&sain, sizeof(struct sockaddr_in)); 1177 sain.sin_family = AF_INET; 1178 sain.sin_len = sizeof(struct sockaddr_in); 1179 sain.sin_addr.s_addr = faddr->s_addr; 1180 1181 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1182 inp->inp_socket->so_fibnum)); 1183 if (ia == NULL) 1184 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1185 inp->inp_socket->so_fibnum)); 1186 if (ia == NULL) 1187 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1188 1189 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1190 if (ia == NULL) { 1191 error = ENETUNREACH; 1192 goto done; 1193 } 1194 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1195 goto done; 1196 } 1197 1198 /* Jailed. */ 1199 if (ia != NULL) { 1200 struct ifnet *ifp; 1201 1202 ifp = ia->ia_ifp; 1203 ia = NULL; 1204 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1205 sa = ifa->ifa_addr; 1206 if (sa->sa_family != AF_INET) 1207 continue; 1208 sin = (struct sockaddr_in *)sa; 1209 if (prison_check_ip4(cred, 1210 &sin->sin_addr) == 0) { 1211 ia = (struct in_ifaddr *)ifa; 1212 break; 1213 } 1214 } 1215 if (ia != NULL) { 1216 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1217 goto done; 1218 } 1219 } 1220 1221 /* 3. As a last resort return the 'default' jail address. */ 1222 error = prison_get_ip4(cred, laddr); 1223 goto done; 1224 } 1225 1226 done: 1227 NET_EPOCH_EXIT(); 1228 if (sro.ro_rt != NULL) 1229 RTFREE(sro.ro_rt); 1230 return (error); 1231 } 1232 1233 /* 1234 * Set up for a connect from a socket to the specified address. 1235 * On entry, *laddrp and *lportp should contain the current local 1236 * address and port for the PCB; these are updated to the values 1237 * that should be placed in inp_laddr and inp_lport to complete 1238 * the connect. 1239 * 1240 * On success, *faddrp and *fportp will be set to the remote address 1241 * and port. These are not updated in the error case. 1242 * 1243 * If the operation fails because the connection already exists, 1244 * *oinpp will be set to the PCB of that connection so that the 1245 * caller can decide to override it. In all other cases, *oinpp 1246 * is set to NULL. 1247 */ 1248 int 1249 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1250 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1251 struct inpcb **oinpp, struct ucred *cred) 1252 { 1253 struct rm_priotracker in_ifa_tracker; 1254 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1255 struct in_ifaddr *ia; 1256 struct inpcb *oinp; 1257 struct in_addr laddr, faddr; 1258 u_short lport, fport; 1259 int error; 1260 1261 /* 1262 * Because a global state change doesn't actually occur here, a read 1263 * lock is sufficient. 1264 */ 1265 INP_LOCK_ASSERT(inp); 1266 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1267 1268 if (oinpp != NULL) 1269 *oinpp = NULL; 1270 if (nam->sa_len != sizeof (*sin)) 1271 return (EINVAL); 1272 if (sin->sin_family != AF_INET) 1273 return (EAFNOSUPPORT); 1274 if (sin->sin_port == 0) 1275 return (EADDRNOTAVAIL); 1276 laddr.s_addr = *laddrp; 1277 lport = *lportp; 1278 faddr = sin->sin_addr; 1279 fport = sin->sin_port; 1280 1281 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1282 /* 1283 * If the destination address is INADDR_ANY, 1284 * use the primary local address. 1285 * If the supplied address is INADDR_BROADCAST, 1286 * and the primary interface supports broadcast, 1287 * choose the broadcast address for that interface. 1288 */ 1289 if (faddr.s_addr == INADDR_ANY) { 1290 IN_IFADDR_RLOCK(&in_ifa_tracker); 1291 faddr = 1292 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1293 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1294 if (cred != NULL && 1295 (error = prison_get_ip4(cred, &faddr)) != 0) 1296 return (error); 1297 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1298 IN_IFADDR_RLOCK(&in_ifa_tracker); 1299 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1300 IFF_BROADCAST) 1301 faddr = satosin(&CK_STAILQ_FIRST( 1302 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1303 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1304 } 1305 } 1306 if (laddr.s_addr == INADDR_ANY) { 1307 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1308 /* 1309 * If the destination address is multicast and an outgoing 1310 * interface has been set as a multicast option, prefer the 1311 * address of that interface as our source address. 1312 */ 1313 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1314 inp->inp_moptions != NULL) { 1315 struct ip_moptions *imo; 1316 struct ifnet *ifp; 1317 1318 imo = inp->inp_moptions; 1319 if (imo->imo_multicast_ifp != NULL) { 1320 ifp = imo->imo_multicast_ifp; 1321 IN_IFADDR_RLOCK(&in_ifa_tracker); 1322 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1323 if ((ia->ia_ifp == ifp) && 1324 (cred == NULL || 1325 prison_check_ip4(cred, 1326 &ia->ia_addr.sin_addr) == 0)) 1327 break; 1328 } 1329 if (ia == NULL) 1330 error = EADDRNOTAVAIL; 1331 else { 1332 laddr = ia->ia_addr.sin_addr; 1333 error = 0; 1334 } 1335 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1336 } 1337 } 1338 if (error) 1339 return (error); 1340 } 1341 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1342 laddr, lport, 0, NULL); 1343 if (oinp != NULL) { 1344 if (oinpp != NULL) 1345 *oinpp = oinp; 1346 return (EADDRINUSE); 1347 } 1348 if (lport == 0) { 1349 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1350 cred); 1351 if (error) 1352 return (error); 1353 } 1354 *laddrp = laddr.s_addr; 1355 *lportp = lport; 1356 *faddrp = faddr.s_addr; 1357 *fportp = fport; 1358 return (0); 1359 } 1360 1361 void 1362 in_pcbdisconnect(struct inpcb *inp) 1363 { 1364 1365 INP_WLOCK_ASSERT(inp); 1366 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1367 1368 inp->inp_faddr.s_addr = INADDR_ANY; 1369 inp->inp_fport = 0; 1370 in_pcbrehash(inp); 1371 } 1372 #endif /* INET */ 1373 1374 /* 1375 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1376 * For most protocols, this will be invoked immediately prior to calling 1377 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1378 * socket, in which case in_pcbfree() is deferred. 1379 */ 1380 void 1381 in_pcbdetach(struct inpcb *inp) 1382 { 1383 1384 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1385 1386 #ifdef RATELIMIT 1387 if (inp->inp_snd_tag != NULL) 1388 in_pcbdetach_txrtlmt(inp); 1389 #endif 1390 inp->inp_socket->so_pcb = NULL; 1391 inp->inp_socket = NULL; 1392 } 1393 1394 /* 1395 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1396 * stability of an inpcb pointer despite the inpcb lock being released. This 1397 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1398 * but where the inpcb lock may already held, or when acquiring a reference 1399 * via a pcbgroup. 1400 * 1401 * in_pcbref() should be used only to provide brief memory stability, and 1402 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1403 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1404 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1405 * lock and rele are the *only* safe operations that may be performed on the 1406 * inpcb. 1407 * 1408 * While the inpcb will not be freed, releasing the inpcb lock means that the 1409 * connection's state may change, so the caller should be careful to 1410 * revalidate any cached state on reacquiring the lock. Drop the reference 1411 * using in_pcbrele(). 1412 */ 1413 void 1414 in_pcbref(struct inpcb *inp) 1415 { 1416 1417 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1418 1419 refcount_acquire(&inp->inp_refcount); 1420 } 1421 1422 /* 1423 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1424 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1425 * return a flag indicating whether or not the inpcb remains valid. If it is 1426 * valid, we return with the inpcb lock held. 1427 * 1428 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1429 * reference on an inpcb. Historically more work was done here (actually, in 1430 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1431 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1432 * about memory stability (and continued use of the write lock). 1433 */ 1434 int 1435 in_pcbrele_rlocked(struct inpcb *inp) 1436 { 1437 struct inpcbinfo *pcbinfo; 1438 1439 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1440 1441 INP_RLOCK_ASSERT(inp); 1442 1443 if (refcount_release(&inp->inp_refcount) == 0) { 1444 /* 1445 * If the inpcb has been freed, let the caller know, even if 1446 * this isn't the last reference. 1447 */ 1448 if (inp->inp_flags2 & INP_FREED) { 1449 INP_RUNLOCK(inp); 1450 return (1); 1451 } 1452 return (0); 1453 } 1454 1455 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1456 #ifdef TCPHPTS 1457 if (inp->inp_in_hpts || inp->inp_in_input) { 1458 struct tcp_hpts_entry *hpts; 1459 /* 1460 * We should not be on the hpts at 1461 * this point in any form. we must 1462 * get the lock to be sure. 1463 */ 1464 hpts = tcp_hpts_lock(inp); 1465 if (inp->inp_in_hpts) 1466 panic("Hpts:%p inp:%p at free still on hpts", 1467 hpts, inp); 1468 mtx_unlock(&hpts->p_mtx); 1469 hpts = tcp_input_lock(inp); 1470 if (inp->inp_in_input) 1471 panic("Hpts:%p inp:%p at free still on input hpts", 1472 hpts, inp); 1473 mtx_unlock(&hpts->p_mtx); 1474 } 1475 #endif 1476 INP_RUNLOCK(inp); 1477 pcbinfo = inp->inp_pcbinfo; 1478 uma_zfree(pcbinfo->ipi_zone, inp); 1479 return (1); 1480 } 1481 1482 int 1483 in_pcbrele_wlocked(struct inpcb *inp) 1484 { 1485 struct inpcbinfo *pcbinfo; 1486 1487 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1488 1489 INP_WLOCK_ASSERT(inp); 1490 1491 if (refcount_release(&inp->inp_refcount) == 0) { 1492 /* 1493 * If the inpcb has been freed, let the caller know, even if 1494 * this isn't the last reference. 1495 */ 1496 if (inp->inp_flags2 & INP_FREED) { 1497 INP_WUNLOCK(inp); 1498 return (1); 1499 } 1500 return (0); 1501 } 1502 1503 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1504 #ifdef TCPHPTS 1505 if (inp->inp_in_hpts || inp->inp_in_input) { 1506 struct tcp_hpts_entry *hpts; 1507 /* 1508 * We should not be on the hpts at 1509 * this point in any form. we must 1510 * get the lock to be sure. 1511 */ 1512 hpts = tcp_hpts_lock(inp); 1513 if (inp->inp_in_hpts) 1514 panic("Hpts:%p inp:%p at free still on hpts", 1515 hpts, inp); 1516 mtx_unlock(&hpts->p_mtx); 1517 hpts = tcp_input_lock(inp); 1518 if (inp->inp_in_input) 1519 panic("Hpts:%p inp:%p at free still on input hpts", 1520 hpts, inp); 1521 mtx_unlock(&hpts->p_mtx); 1522 } 1523 #endif 1524 INP_WUNLOCK(inp); 1525 pcbinfo = inp->inp_pcbinfo; 1526 uma_zfree(pcbinfo->ipi_zone, inp); 1527 return (1); 1528 } 1529 1530 /* 1531 * Temporary wrapper. 1532 */ 1533 int 1534 in_pcbrele(struct inpcb *inp) 1535 { 1536 1537 return (in_pcbrele_wlocked(inp)); 1538 } 1539 1540 void 1541 in_pcblist_rele_rlocked(epoch_context_t ctx) 1542 { 1543 struct in_pcblist *il; 1544 struct inpcb *inp; 1545 struct inpcbinfo *pcbinfo; 1546 int i, n; 1547 1548 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1549 pcbinfo = il->il_pcbinfo; 1550 n = il->il_count; 1551 INP_INFO_WLOCK(pcbinfo); 1552 for (i = 0; i < n; i++) { 1553 inp = il->il_inp_list[i]; 1554 INP_RLOCK(inp); 1555 if (!in_pcbrele_rlocked(inp)) 1556 INP_RUNLOCK(inp); 1557 } 1558 INP_INFO_WUNLOCK(pcbinfo); 1559 free(il, M_TEMP); 1560 } 1561 1562 static void 1563 inpcbport_free(epoch_context_t ctx) 1564 { 1565 struct inpcbport *phd; 1566 1567 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1568 free(phd, M_PCB); 1569 } 1570 1571 static void 1572 in_pcbfree_deferred(epoch_context_t ctx) 1573 { 1574 struct inpcb *inp; 1575 int released __unused; 1576 1577 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1578 1579 INP_WLOCK(inp); 1580 #ifdef INET 1581 struct ip_moptions *imo = inp->inp_moptions; 1582 inp->inp_moptions = NULL; 1583 #endif 1584 /* XXXRW: Do as much as possible here. */ 1585 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1586 if (inp->inp_sp != NULL) 1587 ipsec_delete_pcbpolicy(inp); 1588 #endif 1589 #ifdef INET6 1590 struct ip6_moptions *im6o = NULL; 1591 if (inp->inp_vflag & INP_IPV6PROTO) { 1592 ip6_freepcbopts(inp->in6p_outputopts); 1593 im6o = inp->in6p_moptions; 1594 inp->in6p_moptions = NULL; 1595 } 1596 #endif 1597 if (inp->inp_options) 1598 (void)m_free(inp->inp_options); 1599 inp->inp_vflag = 0; 1600 crfree(inp->inp_cred); 1601 #ifdef MAC 1602 mac_inpcb_destroy(inp); 1603 #endif 1604 released = in_pcbrele_wlocked(inp); 1605 MPASS(released); 1606 #ifdef INET6 1607 ip6_freemoptions(im6o); 1608 #endif 1609 #ifdef INET 1610 inp_freemoptions(imo); 1611 #endif 1612 } 1613 1614 /* 1615 * Unconditionally schedule an inpcb to be freed by decrementing its 1616 * reference count, which should occur only after the inpcb has been detached 1617 * from its socket. If another thread holds a temporary reference (acquired 1618 * using in_pcbref()) then the free is deferred until that reference is 1619 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1620 * work, including removal from global lists, is done in this context, where 1621 * the pcbinfo lock is held. 1622 */ 1623 void 1624 in_pcbfree(struct inpcb *inp) 1625 { 1626 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1627 1628 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1629 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1630 ("%s: called twice for pcb %p", __func__, inp)); 1631 if (inp->inp_flags2 & INP_FREED) { 1632 INP_WUNLOCK(inp); 1633 return; 1634 } 1635 1636 #ifdef INVARIANTS 1637 if (pcbinfo == &V_tcbinfo) { 1638 INP_INFO_LOCK_ASSERT(pcbinfo); 1639 } else { 1640 INP_INFO_WLOCK_ASSERT(pcbinfo); 1641 } 1642 #endif 1643 INP_WLOCK_ASSERT(inp); 1644 INP_LIST_WLOCK(pcbinfo); 1645 in_pcbremlists(inp); 1646 INP_LIST_WUNLOCK(pcbinfo); 1647 RO_INVALIDATE_CACHE(&inp->inp_route); 1648 /* mark as destruction in progress */ 1649 inp->inp_flags2 |= INP_FREED; 1650 INP_WUNLOCK(inp); 1651 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1652 } 1653 1654 /* 1655 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1656 * port reservation, and preventing it from being returned by inpcb lookups. 1657 * 1658 * It is used by TCP to mark an inpcb as unused and avoid future packet 1659 * delivery or event notification when a socket remains open but TCP has 1660 * closed. This might occur as a result of a shutdown()-initiated TCP close 1661 * or a RST on the wire, and allows the port binding to be reused while still 1662 * maintaining the invariant that so_pcb always points to a valid inpcb until 1663 * in_pcbdetach(). 1664 * 1665 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1666 * in_pcbnotifyall() and in_pcbpurgeif0()? 1667 */ 1668 void 1669 in_pcbdrop(struct inpcb *inp) 1670 { 1671 1672 INP_WLOCK_ASSERT(inp); 1673 #ifdef INVARIANTS 1674 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1675 MPASS(inp->inp_refcount > 1); 1676 #endif 1677 1678 /* 1679 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1680 * the hash lock...? 1681 */ 1682 inp->inp_flags |= INP_DROPPED; 1683 if (inp->inp_flags & INP_INHASHLIST) { 1684 struct inpcbport *phd = inp->inp_phd; 1685 1686 INP_HASH_WLOCK(inp->inp_pcbinfo); 1687 in_pcbremlbgrouphash(inp); 1688 CK_LIST_REMOVE(inp, inp_hash); 1689 CK_LIST_REMOVE(inp, inp_portlist); 1690 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1691 CK_LIST_REMOVE(phd, phd_hash); 1692 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1693 } 1694 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1695 inp->inp_flags &= ~INP_INHASHLIST; 1696 #ifdef PCBGROUP 1697 in_pcbgroup_remove(inp); 1698 #endif 1699 } 1700 } 1701 1702 #ifdef INET 1703 /* 1704 * Common routines to return the socket addresses associated with inpcbs. 1705 */ 1706 struct sockaddr * 1707 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1708 { 1709 struct sockaddr_in *sin; 1710 1711 sin = malloc(sizeof *sin, M_SONAME, 1712 M_WAITOK | M_ZERO); 1713 sin->sin_family = AF_INET; 1714 sin->sin_len = sizeof(*sin); 1715 sin->sin_addr = *addr_p; 1716 sin->sin_port = port; 1717 1718 return (struct sockaddr *)sin; 1719 } 1720 1721 int 1722 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1723 { 1724 struct inpcb *inp; 1725 struct in_addr addr; 1726 in_port_t port; 1727 1728 inp = sotoinpcb(so); 1729 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1730 1731 INP_RLOCK(inp); 1732 port = inp->inp_lport; 1733 addr = inp->inp_laddr; 1734 INP_RUNLOCK(inp); 1735 1736 *nam = in_sockaddr(port, &addr); 1737 return 0; 1738 } 1739 1740 int 1741 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1742 { 1743 struct inpcb *inp; 1744 struct in_addr addr; 1745 in_port_t port; 1746 1747 inp = sotoinpcb(so); 1748 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1749 1750 INP_RLOCK(inp); 1751 port = inp->inp_fport; 1752 addr = inp->inp_faddr; 1753 INP_RUNLOCK(inp); 1754 1755 *nam = in_sockaddr(port, &addr); 1756 return 0; 1757 } 1758 1759 void 1760 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1761 struct inpcb *(*notify)(struct inpcb *, int)) 1762 { 1763 struct inpcb *inp, *inp_temp; 1764 1765 INP_INFO_WLOCK(pcbinfo); 1766 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1767 INP_WLOCK(inp); 1768 #ifdef INET6 1769 if ((inp->inp_vflag & INP_IPV4) == 0) { 1770 INP_WUNLOCK(inp); 1771 continue; 1772 } 1773 #endif 1774 if (inp->inp_faddr.s_addr != faddr.s_addr || 1775 inp->inp_socket == NULL) { 1776 INP_WUNLOCK(inp); 1777 continue; 1778 } 1779 if ((*notify)(inp, errno)) 1780 INP_WUNLOCK(inp); 1781 } 1782 INP_INFO_WUNLOCK(pcbinfo); 1783 } 1784 1785 void 1786 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1787 { 1788 struct inpcb *inp; 1789 struct ip_moptions *imo; 1790 int i, gap; 1791 1792 INP_INFO_WLOCK(pcbinfo); 1793 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1794 INP_WLOCK(inp); 1795 imo = inp->inp_moptions; 1796 if ((inp->inp_vflag & INP_IPV4) && 1797 imo != NULL) { 1798 /* 1799 * Unselect the outgoing interface if it is being 1800 * detached. 1801 */ 1802 if (imo->imo_multicast_ifp == ifp) 1803 imo->imo_multicast_ifp = NULL; 1804 1805 /* 1806 * Drop multicast group membership if we joined 1807 * through the interface being detached. 1808 * 1809 * XXX This can all be deferred to an epoch_call 1810 */ 1811 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1812 i++) { 1813 if (imo->imo_membership[i]->inm_ifp == ifp) { 1814 IN_MULTI_LOCK_ASSERT(); 1815 in_leavegroup_locked(imo->imo_membership[i], NULL); 1816 gap++; 1817 } else if (gap != 0) 1818 imo->imo_membership[i - gap] = 1819 imo->imo_membership[i]; 1820 } 1821 imo->imo_num_memberships -= gap; 1822 } 1823 INP_WUNLOCK(inp); 1824 } 1825 INP_INFO_WUNLOCK(pcbinfo); 1826 } 1827 1828 /* 1829 * Lookup a PCB based on the local address and port. Caller must hold the 1830 * hash lock. No inpcb locks or references are acquired. 1831 */ 1832 #define INP_LOOKUP_MAPPED_PCB_COST 3 1833 struct inpcb * 1834 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1835 u_short lport, int lookupflags, struct ucred *cred) 1836 { 1837 struct inpcb *inp; 1838 #ifdef INET6 1839 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1840 #else 1841 int matchwild = 3; 1842 #endif 1843 int wildcard; 1844 1845 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1846 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1847 1848 INP_HASH_LOCK_ASSERT(pcbinfo); 1849 1850 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1851 struct inpcbhead *head; 1852 /* 1853 * Look for an unconnected (wildcard foreign addr) PCB that 1854 * matches the local address and port we're looking for. 1855 */ 1856 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1857 0, pcbinfo->ipi_hashmask)]; 1858 CK_LIST_FOREACH(inp, head, inp_hash) { 1859 #ifdef INET6 1860 /* XXX inp locking */ 1861 if ((inp->inp_vflag & INP_IPV4) == 0) 1862 continue; 1863 #endif 1864 if (inp->inp_faddr.s_addr == INADDR_ANY && 1865 inp->inp_laddr.s_addr == laddr.s_addr && 1866 inp->inp_lport == lport) { 1867 /* 1868 * Found? 1869 */ 1870 if (cred == NULL || 1871 prison_equal_ip4(cred->cr_prison, 1872 inp->inp_cred->cr_prison)) 1873 return (inp); 1874 } 1875 } 1876 /* 1877 * Not found. 1878 */ 1879 return (NULL); 1880 } else { 1881 struct inpcbporthead *porthash; 1882 struct inpcbport *phd; 1883 struct inpcb *match = NULL; 1884 /* 1885 * Best fit PCB lookup. 1886 * 1887 * First see if this local port is in use by looking on the 1888 * port hash list. 1889 */ 1890 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1891 pcbinfo->ipi_porthashmask)]; 1892 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1893 if (phd->phd_port == lport) 1894 break; 1895 } 1896 if (phd != NULL) { 1897 /* 1898 * Port is in use by one or more PCBs. Look for best 1899 * fit. 1900 */ 1901 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1902 wildcard = 0; 1903 if (cred != NULL && 1904 !prison_equal_ip4(inp->inp_cred->cr_prison, 1905 cred->cr_prison)) 1906 continue; 1907 #ifdef INET6 1908 /* XXX inp locking */ 1909 if ((inp->inp_vflag & INP_IPV4) == 0) 1910 continue; 1911 /* 1912 * We never select the PCB that has 1913 * INP_IPV6 flag and is bound to :: if 1914 * we have another PCB which is bound 1915 * to 0.0.0.0. If a PCB has the 1916 * INP_IPV6 flag, then we set its cost 1917 * higher than IPv4 only PCBs. 1918 * 1919 * Note that the case only happens 1920 * when a socket is bound to ::, under 1921 * the condition that the use of the 1922 * mapped address is allowed. 1923 */ 1924 if ((inp->inp_vflag & INP_IPV6) != 0) 1925 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1926 #endif 1927 if (inp->inp_faddr.s_addr != INADDR_ANY) 1928 wildcard++; 1929 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1930 if (laddr.s_addr == INADDR_ANY) 1931 wildcard++; 1932 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1933 continue; 1934 } else { 1935 if (laddr.s_addr != INADDR_ANY) 1936 wildcard++; 1937 } 1938 if (wildcard < matchwild) { 1939 match = inp; 1940 matchwild = wildcard; 1941 if (matchwild == 0) 1942 break; 1943 } 1944 } 1945 } 1946 return (match); 1947 } 1948 } 1949 #undef INP_LOOKUP_MAPPED_PCB_COST 1950 1951 static struct inpcb * 1952 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1953 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1954 uint16_t fport, int lookupflags) 1955 { 1956 struct inpcb *local_wild = NULL; 1957 const struct inpcblbgrouphead *hdr; 1958 struct inpcblbgroup *grp; 1959 struct inpcblbgroup *grp_local_wild; 1960 1961 INP_HASH_LOCK_ASSERT(pcbinfo); 1962 1963 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1964 INP_PCBLBGROUP_PORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1965 1966 /* 1967 * Order of socket selection: 1968 * 1. non-wild. 1969 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1970 * 1971 * NOTE: 1972 * - Load balanced group does not contain jailed sockets 1973 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1974 */ 1975 LIST_FOREACH(grp, hdr, il_list) { 1976 #ifdef INET6 1977 if (!(grp->il_vflag & INP_IPV4)) 1978 continue; 1979 #endif 1980 1981 if (grp->il_lport == lport) { 1982 1983 uint32_t idx = 0; 1984 int pkt_hash = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, 1985 lport, fport); 1986 1987 idx = pkt_hash % grp->il_inpcnt; 1988 1989 if (grp->il_laddr.s_addr == laddr->s_addr) { 1990 return (grp->il_inp[idx]); 1991 } else { 1992 if (grp->il_laddr.s_addr == INADDR_ANY && 1993 (lookupflags & INPLOOKUP_WILDCARD)) { 1994 local_wild = grp->il_inp[idx]; 1995 grp_local_wild = grp; 1996 } 1997 } 1998 } 1999 } 2000 if (local_wild != NULL) { 2001 return (local_wild); 2002 } 2003 return (NULL); 2004 } 2005 2006 #ifdef PCBGROUP 2007 /* 2008 * Lookup PCB in hash list, using pcbgroup tables. 2009 */ 2010 static struct inpcb * 2011 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2012 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2013 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2014 { 2015 struct inpcbhead *head; 2016 struct inpcb *inp, *tmpinp; 2017 u_short fport = fport_arg, lport = lport_arg; 2018 bool locked; 2019 2020 /* 2021 * First look for an exact match. 2022 */ 2023 tmpinp = NULL; 2024 INP_GROUP_LOCK(pcbgroup); 2025 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2026 pcbgroup->ipg_hashmask)]; 2027 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2028 #ifdef INET6 2029 /* XXX inp locking */ 2030 if ((inp->inp_vflag & INP_IPV4) == 0) 2031 continue; 2032 #endif 2033 if (inp->inp_faddr.s_addr == faddr.s_addr && 2034 inp->inp_laddr.s_addr == laddr.s_addr && 2035 inp->inp_fport == fport && 2036 inp->inp_lport == lport) { 2037 /* 2038 * XXX We should be able to directly return 2039 * the inp here, without any checks. 2040 * Well unless both bound with SO_REUSEPORT? 2041 */ 2042 if (prison_flag(inp->inp_cred, PR_IP4)) 2043 goto found; 2044 if (tmpinp == NULL) 2045 tmpinp = inp; 2046 } 2047 } 2048 if (tmpinp != NULL) { 2049 inp = tmpinp; 2050 goto found; 2051 } 2052 2053 #ifdef RSS 2054 /* 2055 * For incoming connections, we may wish to do a wildcard 2056 * match for an RSS-local socket. 2057 */ 2058 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2059 struct inpcb *local_wild = NULL, *local_exact = NULL; 2060 #ifdef INET6 2061 struct inpcb *local_wild_mapped = NULL; 2062 #endif 2063 struct inpcb *jail_wild = NULL; 2064 struct inpcbhead *head; 2065 int injail; 2066 2067 /* 2068 * Order of socket selection - we always prefer jails. 2069 * 1. jailed, non-wild. 2070 * 2. jailed, wild. 2071 * 3. non-jailed, non-wild. 2072 * 4. non-jailed, wild. 2073 */ 2074 2075 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2076 lport, 0, pcbgroup->ipg_hashmask)]; 2077 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2078 #ifdef INET6 2079 /* XXX inp locking */ 2080 if ((inp->inp_vflag & INP_IPV4) == 0) 2081 continue; 2082 #endif 2083 if (inp->inp_faddr.s_addr != INADDR_ANY || 2084 inp->inp_lport != lport) 2085 continue; 2086 2087 injail = prison_flag(inp->inp_cred, PR_IP4); 2088 if (injail) { 2089 if (prison_check_ip4(inp->inp_cred, 2090 &laddr) != 0) 2091 continue; 2092 } else { 2093 if (local_exact != NULL) 2094 continue; 2095 } 2096 2097 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2098 if (injail) 2099 goto found; 2100 else 2101 local_exact = inp; 2102 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2103 #ifdef INET6 2104 /* XXX inp locking, NULL check */ 2105 if (inp->inp_vflag & INP_IPV6PROTO) 2106 local_wild_mapped = inp; 2107 else 2108 #endif 2109 if (injail) 2110 jail_wild = inp; 2111 else 2112 local_wild = inp; 2113 } 2114 } /* LIST_FOREACH */ 2115 2116 inp = jail_wild; 2117 if (inp == NULL) 2118 inp = local_exact; 2119 if (inp == NULL) 2120 inp = local_wild; 2121 #ifdef INET6 2122 if (inp == NULL) 2123 inp = local_wild_mapped; 2124 #endif 2125 if (inp != NULL) 2126 goto found; 2127 } 2128 #endif 2129 2130 /* 2131 * Then look for a wildcard match, if requested. 2132 */ 2133 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2134 struct inpcb *local_wild = NULL, *local_exact = NULL; 2135 #ifdef INET6 2136 struct inpcb *local_wild_mapped = NULL; 2137 #endif 2138 struct inpcb *jail_wild = NULL; 2139 struct inpcbhead *head; 2140 int injail; 2141 2142 /* 2143 * Order of socket selection - we always prefer jails. 2144 * 1. jailed, non-wild. 2145 * 2. jailed, wild. 2146 * 3. non-jailed, non-wild. 2147 * 4. non-jailed, wild. 2148 */ 2149 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2150 0, pcbinfo->ipi_wildmask)]; 2151 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2152 #ifdef INET6 2153 /* XXX inp locking */ 2154 if ((inp->inp_vflag & INP_IPV4) == 0) 2155 continue; 2156 #endif 2157 if (inp->inp_faddr.s_addr != INADDR_ANY || 2158 inp->inp_lport != lport) 2159 continue; 2160 2161 injail = prison_flag(inp->inp_cred, PR_IP4); 2162 if (injail) { 2163 if (prison_check_ip4(inp->inp_cred, 2164 &laddr) != 0) 2165 continue; 2166 } else { 2167 if (local_exact != NULL) 2168 continue; 2169 } 2170 2171 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2172 if (injail) 2173 goto found; 2174 else 2175 local_exact = inp; 2176 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2177 #ifdef INET6 2178 /* XXX inp locking, NULL check */ 2179 if (inp->inp_vflag & INP_IPV6PROTO) 2180 local_wild_mapped = inp; 2181 else 2182 #endif 2183 if (injail) 2184 jail_wild = inp; 2185 else 2186 local_wild = inp; 2187 } 2188 } /* LIST_FOREACH */ 2189 inp = jail_wild; 2190 if (inp == NULL) 2191 inp = local_exact; 2192 if (inp == NULL) 2193 inp = local_wild; 2194 #ifdef INET6 2195 if (inp == NULL) 2196 inp = local_wild_mapped; 2197 #endif 2198 if (inp != NULL) 2199 goto found; 2200 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2201 INP_GROUP_UNLOCK(pcbgroup); 2202 return (NULL); 2203 2204 found: 2205 if (lookupflags & INPLOOKUP_WLOCKPCB) 2206 locked = INP_TRY_WLOCK(inp); 2207 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2208 locked = INP_TRY_RLOCK(inp); 2209 else 2210 panic("%s: locking bug", __func__); 2211 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2212 if (lookupflags & INPLOOKUP_WLOCKPCB) 2213 INP_WUNLOCK(inp); 2214 else 2215 INP_RUNLOCK(inp); 2216 return (NULL); 2217 } else if (!locked) 2218 in_pcbref(inp); 2219 INP_GROUP_UNLOCK(pcbgroup); 2220 if (!locked) { 2221 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2222 INP_WLOCK(inp); 2223 if (in_pcbrele_wlocked(inp)) 2224 return (NULL); 2225 } else { 2226 INP_RLOCK(inp); 2227 if (in_pcbrele_rlocked(inp)) 2228 return (NULL); 2229 } 2230 } 2231 #ifdef INVARIANTS 2232 if (lookupflags & INPLOOKUP_WLOCKPCB) 2233 INP_WLOCK_ASSERT(inp); 2234 else 2235 INP_RLOCK_ASSERT(inp); 2236 #endif 2237 return (inp); 2238 } 2239 #endif /* PCBGROUP */ 2240 2241 /* 2242 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2243 * that the caller has locked the hash list, and will not perform any further 2244 * locking or reference operations on either the hash list or the connection. 2245 */ 2246 static struct inpcb * 2247 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2248 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2249 struct ifnet *ifp) 2250 { 2251 struct inpcbhead *head; 2252 struct inpcb *inp, *tmpinp; 2253 u_short fport = fport_arg, lport = lport_arg; 2254 2255 #ifdef INVARIANTS 2256 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2257 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2258 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2259 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2260 #endif 2261 /* 2262 * First look for an exact match. 2263 */ 2264 tmpinp = NULL; 2265 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2266 pcbinfo->ipi_hashmask)]; 2267 CK_LIST_FOREACH(inp, head, inp_hash) { 2268 #ifdef INET6 2269 /* XXX inp locking */ 2270 if ((inp->inp_vflag & INP_IPV4) == 0) 2271 continue; 2272 #endif 2273 if (inp->inp_faddr.s_addr == faddr.s_addr && 2274 inp->inp_laddr.s_addr == laddr.s_addr && 2275 inp->inp_fport == fport && 2276 inp->inp_lport == lport) { 2277 /* 2278 * XXX We should be able to directly return 2279 * the inp here, without any checks. 2280 * Well unless both bound with SO_REUSEPORT? 2281 */ 2282 if (prison_flag(inp->inp_cred, PR_IP4)) 2283 return (inp); 2284 if (tmpinp == NULL) 2285 tmpinp = inp; 2286 } 2287 } 2288 if (tmpinp != NULL) 2289 return (tmpinp); 2290 2291 /* 2292 * Then look in lb group (for wildcard match). 2293 */ 2294 if (pcbinfo->ipi_lbgrouphashbase != NULL && 2295 (lookupflags & INPLOOKUP_WILDCARD)) { 2296 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2297 fport, lookupflags); 2298 if (inp != NULL) { 2299 return (inp); 2300 } 2301 } 2302 2303 /* 2304 * Then look for a wildcard match, if requested. 2305 */ 2306 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2307 struct inpcb *local_wild = NULL, *local_exact = NULL; 2308 #ifdef INET6 2309 struct inpcb *local_wild_mapped = NULL; 2310 #endif 2311 struct inpcb *jail_wild = NULL; 2312 int injail; 2313 2314 /* 2315 * Order of socket selection - we always prefer jails. 2316 * 1. jailed, non-wild. 2317 * 2. jailed, wild. 2318 * 3. non-jailed, non-wild. 2319 * 4. non-jailed, wild. 2320 */ 2321 2322 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2323 0, pcbinfo->ipi_hashmask)]; 2324 CK_LIST_FOREACH(inp, head, inp_hash) { 2325 #ifdef INET6 2326 /* XXX inp locking */ 2327 if ((inp->inp_vflag & INP_IPV4) == 0) 2328 continue; 2329 #endif 2330 if (inp->inp_faddr.s_addr != INADDR_ANY || 2331 inp->inp_lport != lport) 2332 continue; 2333 2334 injail = prison_flag(inp->inp_cred, PR_IP4); 2335 if (injail) { 2336 if (prison_check_ip4(inp->inp_cred, 2337 &laddr) != 0) 2338 continue; 2339 } else { 2340 if (local_exact != NULL) 2341 continue; 2342 } 2343 2344 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2345 if (injail) 2346 return (inp); 2347 else 2348 local_exact = inp; 2349 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2350 #ifdef INET6 2351 /* XXX inp locking, NULL check */ 2352 if (inp->inp_vflag & INP_IPV6PROTO) 2353 local_wild_mapped = inp; 2354 else 2355 #endif 2356 if (injail) 2357 jail_wild = inp; 2358 else 2359 local_wild = inp; 2360 } 2361 } /* LIST_FOREACH */ 2362 if (jail_wild != NULL) 2363 return (jail_wild); 2364 if (local_exact != NULL) 2365 return (local_exact); 2366 if (local_wild != NULL) 2367 return (local_wild); 2368 #ifdef INET6 2369 if (local_wild_mapped != NULL) 2370 return (local_wild_mapped); 2371 #endif 2372 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2373 2374 return (NULL); 2375 } 2376 2377 /* 2378 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2379 * hash list lock, and will return the inpcb locked (i.e., requires 2380 * INPLOOKUP_LOCKPCB). 2381 */ 2382 static struct inpcb * 2383 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2384 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2385 struct ifnet *ifp) 2386 { 2387 struct inpcb *inp; 2388 2389 INP_HASH_RLOCK(pcbinfo); 2390 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2391 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2392 if (inp != NULL) { 2393 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2394 INP_WLOCK(inp); 2395 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2396 INP_WUNLOCK(inp); 2397 inp = NULL; 2398 } 2399 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2400 INP_RLOCK(inp); 2401 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2402 INP_RUNLOCK(inp); 2403 inp = NULL; 2404 } 2405 } else 2406 panic("%s: locking bug", __func__); 2407 #ifdef INVARIANTS 2408 if (inp != NULL) { 2409 if (lookupflags & INPLOOKUP_WLOCKPCB) 2410 INP_WLOCK_ASSERT(inp); 2411 else 2412 INP_RLOCK_ASSERT(inp); 2413 } 2414 #endif 2415 } 2416 INP_HASH_RUNLOCK(pcbinfo); 2417 return (inp); 2418 } 2419 2420 /* 2421 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2422 * from which a pre-calculated hash value may be extracted. 2423 * 2424 * Possibly more of this logic should be in in_pcbgroup.c. 2425 */ 2426 struct inpcb * 2427 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2428 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2429 { 2430 #if defined(PCBGROUP) && !defined(RSS) 2431 struct inpcbgroup *pcbgroup; 2432 #endif 2433 2434 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2435 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2436 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2437 ("%s: LOCKPCB not set", __func__)); 2438 2439 /* 2440 * When not using RSS, use connection groups in preference to the 2441 * reservation table when looking up 4-tuples. When using RSS, just 2442 * use the reservation table, due to the cost of the Toeplitz hash 2443 * in software. 2444 * 2445 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2446 * we could be doing RSS with a non-Toeplitz hash that is affordable 2447 * in software. 2448 */ 2449 #if defined(PCBGROUP) && !defined(RSS) 2450 if (in_pcbgroup_enabled(pcbinfo)) { 2451 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2452 fport); 2453 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2454 laddr, lport, lookupflags, ifp)); 2455 } 2456 #endif 2457 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2458 lookupflags, ifp)); 2459 } 2460 2461 struct inpcb * 2462 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2463 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2464 struct ifnet *ifp, struct mbuf *m) 2465 { 2466 #ifdef PCBGROUP 2467 struct inpcbgroup *pcbgroup; 2468 #endif 2469 2470 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2471 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2472 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2473 ("%s: LOCKPCB not set", __func__)); 2474 2475 #ifdef PCBGROUP 2476 /* 2477 * If we can use a hardware-generated hash to look up the connection 2478 * group, use that connection group to find the inpcb. Otherwise 2479 * fall back on a software hash -- or the reservation table if we're 2480 * using RSS. 2481 * 2482 * XXXRW: As above, that policy belongs in the pcbgroup code. 2483 */ 2484 if (in_pcbgroup_enabled(pcbinfo) && 2485 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2486 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2487 m->m_pkthdr.flowid); 2488 if (pcbgroup != NULL) 2489 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2490 fport, laddr, lport, lookupflags, ifp)); 2491 #ifndef RSS 2492 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2493 fport); 2494 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2495 laddr, lport, lookupflags, ifp)); 2496 #endif 2497 } 2498 #endif 2499 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2500 lookupflags, ifp)); 2501 } 2502 #endif /* INET */ 2503 2504 /* 2505 * Insert PCB onto various hash lists. 2506 */ 2507 static int 2508 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2509 { 2510 struct inpcbhead *pcbhash; 2511 struct inpcbporthead *pcbporthash; 2512 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2513 struct inpcbport *phd; 2514 u_int32_t hashkey_faddr; 2515 int so_options; 2516 2517 INP_WLOCK_ASSERT(inp); 2518 INP_HASH_WLOCK_ASSERT(pcbinfo); 2519 2520 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2521 ("in_pcbinshash: INP_INHASHLIST")); 2522 2523 #ifdef INET6 2524 if (inp->inp_vflag & INP_IPV6) 2525 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2526 else 2527 #endif 2528 hashkey_faddr = inp->inp_faddr.s_addr; 2529 2530 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2531 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2532 2533 pcbporthash = &pcbinfo->ipi_porthashbase[ 2534 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2535 2536 /* 2537 * Add entry to load balance group. 2538 * Only do this if SO_REUSEPORT_LB is set. 2539 */ 2540 so_options = inp_so_options(inp); 2541 if (so_options & SO_REUSEPORT_LB) { 2542 int ret = in_pcbinslbgrouphash(inp); 2543 if (ret) { 2544 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2545 return (ret); 2546 } 2547 } 2548 2549 /* 2550 * Go through port list and look for a head for this lport. 2551 */ 2552 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2553 if (phd->phd_port == inp->inp_lport) 2554 break; 2555 } 2556 /* 2557 * If none exists, malloc one and tack it on. 2558 */ 2559 if (phd == NULL) { 2560 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2561 if (phd == NULL) { 2562 return (ENOBUFS); /* XXX */ 2563 } 2564 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2565 phd->phd_port = inp->inp_lport; 2566 CK_LIST_INIT(&phd->phd_pcblist); 2567 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2568 } 2569 inp->inp_phd = phd; 2570 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2571 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2572 inp->inp_flags |= INP_INHASHLIST; 2573 #ifdef PCBGROUP 2574 if (do_pcbgroup_update) 2575 in_pcbgroup_update(inp); 2576 #endif 2577 return (0); 2578 } 2579 2580 /* 2581 * For now, there are two public interfaces to insert an inpcb into the hash 2582 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2583 * is used only in the TCP syncache, where in_pcbinshash is called before the 2584 * full 4-tuple is set for the inpcb, and we don't want to install in the 2585 * pcbgroup until later. 2586 * 2587 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2588 * connection groups, and partially initialised inpcbs should not be exposed 2589 * to either reservation hash tables or pcbgroups. 2590 */ 2591 int 2592 in_pcbinshash(struct inpcb *inp) 2593 { 2594 2595 return (in_pcbinshash_internal(inp, 1)); 2596 } 2597 2598 int 2599 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2600 { 2601 2602 return (in_pcbinshash_internal(inp, 0)); 2603 } 2604 2605 /* 2606 * Move PCB to the proper hash bucket when { faddr, fport } have been 2607 * changed. NOTE: This does not handle the case of the lport changing (the 2608 * hashed port list would have to be updated as well), so the lport must 2609 * not change after in_pcbinshash() has been called. 2610 */ 2611 void 2612 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2613 { 2614 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2615 struct inpcbhead *head; 2616 u_int32_t hashkey_faddr; 2617 2618 INP_WLOCK_ASSERT(inp); 2619 INP_HASH_WLOCK_ASSERT(pcbinfo); 2620 2621 KASSERT(inp->inp_flags & INP_INHASHLIST, 2622 ("in_pcbrehash: !INP_INHASHLIST")); 2623 2624 #ifdef INET6 2625 if (inp->inp_vflag & INP_IPV6) 2626 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2627 else 2628 #endif 2629 hashkey_faddr = inp->inp_faddr.s_addr; 2630 2631 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2632 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2633 2634 CK_LIST_REMOVE(inp, inp_hash); 2635 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2636 2637 #ifdef PCBGROUP 2638 if (m != NULL) 2639 in_pcbgroup_update_mbuf(inp, m); 2640 else 2641 in_pcbgroup_update(inp); 2642 #endif 2643 } 2644 2645 void 2646 in_pcbrehash(struct inpcb *inp) 2647 { 2648 2649 in_pcbrehash_mbuf(inp, NULL); 2650 } 2651 2652 /* 2653 * Remove PCB from various lists. 2654 */ 2655 static void 2656 in_pcbremlists(struct inpcb *inp) 2657 { 2658 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2659 2660 #ifdef INVARIANTS 2661 if (pcbinfo == &V_tcbinfo) { 2662 INP_INFO_RLOCK_ASSERT(pcbinfo); 2663 } else { 2664 INP_INFO_WLOCK_ASSERT(pcbinfo); 2665 } 2666 #endif 2667 2668 INP_WLOCK_ASSERT(inp); 2669 INP_LIST_WLOCK_ASSERT(pcbinfo); 2670 2671 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2672 if (inp->inp_flags & INP_INHASHLIST) { 2673 struct inpcbport *phd = inp->inp_phd; 2674 2675 INP_HASH_WLOCK(pcbinfo); 2676 2677 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2678 in_pcbremlbgrouphash(inp); 2679 2680 CK_LIST_REMOVE(inp, inp_hash); 2681 CK_LIST_REMOVE(inp, inp_portlist); 2682 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2683 CK_LIST_REMOVE(phd, phd_hash); 2684 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2685 } 2686 INP_HASH_WUNLOCK(pcbinfo); 2687 inp->inp_flags &= ~INP_INHASHLIST; 2688 } 2689 CK_LIST_REMOVE(inp, inp_list); 2690 pcbinfo->ipi_count--; 2691 #ifdef PCBGROUP 2692 in_pcbgroup_remove(inp); 2693 #endif 2694 } 2695 2696 /* 2697 * Check for alternatives when higher level complains 2698 * about service problems. For now, invalidate cached 2699 * routing information. If the route was created dynamically 2700 * (by a redirect), time to try a default gateway again. 2701 */ 2702 void 2703 in_losing(struct inpcb *inp) 2704 { 2705 2706 RO_INVALIDATE_CACHE(&inp->inp_route); 2707 return; 2708 } 2709 2710 /* 2711 * A set label operation has occurred at the socket layer, propagate the 2712 * label change into the in_pcb for the socket. 2713 */ 2714 void 2715 in_pcbsosetlabel(struct socket *so) 2716 { 2717 #ifdef MAC 2718 struct inpcb *inp; 2719 2720 inp = sotoinpcb(so); 2721 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2722 2723 INP_WLOCK(inp); 2724 SOCK_LOCK(so); 2725 mac_inpcb_sosetlabel(so, inp); 2726 SOCK_UNLOCK(so); 2727 INP_WUNLOCK(inp); 2728 #endif 2729 } 2730 2731 /* 2732 * ipport_tick runs once per second, determining if random port allocation 2733 * should be continued. If more than ipport_randomcps ports have been 2734 * allocated in the last second, then we return to sequential port 2735 * allocation. We return to random allocation only once we drop below 2736 * ipport_randomcps for at least ipport_randomtime seconds. 2737 */ 2738 static void 2739 ipport_tick(void *xtp) 2740 { 2741 VNET_ITERATOR_DECL(vnet_iter); 2742 2743 VNET_LIST_RLOCK_NOSLEEP(); 2744 VNET_FOREACH(vnet_iter) { 2745 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2746 if (V_ipport_tcpallocs <= 2747 V_ipport_tcplastcount + V_ipport_randomcps) { 2748 if (V_ipport_stoprandom > 0) 2749 V_ipport_stoprandom--; 2750 } else 2751 V_ipport_stoprandom = V_ipport_randomtime; 2752 V_ipport_tcplastcount = V_ipport_tcpallocs; 2753 CURVNET_RESTORE(); 2754 } 2755 VNET_LIST_RUNLOCK_NOSLEEP(); 2756 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2757 } 2758 2759 static void 2760 ip_fini(void *xtp) 2761 { 2762 2763 callout_stop(&ipport_tick_callout); 2764 } 2765 2766 /* 2767 * The ipport_callout should start running at about the time we attach the 2768 * inet or inet6 domains. 2769 */ 2770 static void 2771 ipport_tick_init(const void *unused __unused) 2772 { 2773 2774 /* Start ipport_tick. */ 2775 callout_init(&ipport_tick_callout, 1); 2776 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2777 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2778 SHUTDOWN_PRI_DEFAULT); 2779 } 2780 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2781 ipport_tick_init, NULL); 2782 2783 void 2784 inp_wlock(struct inpcb *inp) 2785 { 2786 2787 INP_WLOCK(inp); 2788 } 2789 2790 void 2791 inp_wunlock(struct inpcb *inp) 2792 { 2793 2794 INP_WUNLOCK(inp); 2795 } 2796 2797 void 2798 inp_rlock(struct inpcb *inp) 2799 { 2800 2801 INP_RLOCK(inp); 2802 } 2803 2804 void 2805 inp_runlock(struct inpcb *inp) 2806 { 2807 2808 INP_RUNLOCK(inp); 2809 } 2810 2811 #ifdef INVARIANT_SUPPORT 2812 void 2813 inp_lock_assert(struct inpcb *inp) 2814 { 2815 2816 INP_WLOCK_ASSERT(inp); 2817 } 2818 2819 void 2820 inp_unlock_assert(struct inpcb *inp) 2821 { 2822 2823 INP_UNLOCK_ASSERT(inp); 2824 } 2825 #endif 2826 2827 void 2828 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2829 { 2830 struct inpcb *inp; 2831 2832 INP_INFO_WLOCK(&V_tcbinfo); 2833 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2834 INP_WLOCK(inp); 2835 func(inp, arg); 2836 INP_WUNLOCK(inp); 2837 } 2838 INP_INFO_WUNLOCK(&V_tcbinfo); 2839 } 2840 2841 struct socket * 2842 inp_inpcbtosocket(struct inpcb *inp) 2843 { 2844 2845 INP_WLOCK_ASSERT(inp); 2846 return (inp->inp_socket); 2847 } 2848 2849 struct tcpcb * 2850 inp_inpcbtotcpcb(struct inpcb *inp) 2851 { 2852 2853 INP_WLOCK_ASSERT(inp); 2854 return ((struct tcpcb *)inp->inp_ppcb); 2855 } 2856 2857 int 2858 inp_ip_tos_get(const struct inpcb *inp) 2859 { 2860 2861 return (inp->inp_ip_tos); 2862 } 2863 2864 void 2865 inp_ip_tos_set(struct inpcb *inp, int val) 2866 { 2867 2868 inp->inp_ip_tos = val; 2869 } 2870 2871 void 2872 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2873 uint32_t *faddr, uint16_t *fp) 2874 { 2875 2876 INP_LOCK_ASSERT(inp); 2877 *laddr = inp->inp_laddr.s_addr; 2878 *faddr = inp->inp_faddr.s_addr; 2879 *lp = inp->inp_lport; 2880 *fp = inp->inp_fport; 2881 } 2882 2883 struct inpcb * 2884 so_sotoinpcb(struct socket *so) 2885 { 2886 2887 return (sotoinpcb(so)); 2888 } 2889 2890 struct tcpcb * 2891 so_sototcpcb(struct socket *so) 2892 { 2893 2894 return (sototcpcb(so)); 2895 } 2896 2897 /* 2898 * Create an external-format (``xinpcb'') structure using the information in 2899 * the kernel-format in_pcb structure pointed to by inp. This is done to 2900 * reduce the spew of irrelevant information over this interface, to isolate 2901 * user code from changes in the kernel structure, and potentially to provide 2902 * information-hiding if we decide that some of this information should be 2903 * hidden from users. 2904 */ 2905 void 2906 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2907 { 2908 2909 xi->xi_len = sizeof(struct xinpcb); 2910 if (inp->inp_socket) 2911 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2912 else 2913 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2914 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2915 xi->inp_gencnt = inp->inp_gencnt; 2916 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2917 xi->inp_flow = inp->inp_flow; 2918 xi->inp_flowid = inp->inp_flowid; 2919 xi->inp_flowtype = inp->inp_flowtype; 2920 xi->inp_flags = inp->inp_flags; 2921 xi->inp_flags2 = inp->inp_flags2; 2922 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2923 xi->in6p_cksum = inp->in6p_cksum; 2924 xi->in6p_hops = inp->in6p_hops; 2925 xi->inp_ip_tos = inp->inp_ip_tos; 2926 xi->inp_vflag = inp->inp_vflag; 2927 xi->inp_ip_ttl = inp->inp_ip_ttl; 2928 xi->inp_ip_p = inp->inp_ip_p; 2929 xi->inp_ip_minttl = inp->inp_ip_minttl; 2930 } 2931 2932 #ifdef DDB 2933 static void 2934 db_print_indent(int indent) 2935 { 2936 int i; 2937 2938 for (i = 0; i < indent; i++) 2939 db_printf(" "); 2940 } 2941 2942 static void 2943 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2944 { 2945 char faddr_str[48], laddr_str[48]; 2946 2947 db_print_indent(indent); 2948 db_printf("%s at %p\n", name, inc); 2949 2950 indent += 2; 2951 2952 #ifdef INET6 2953 if (inc->inc_flags & INC_ISIPV6) { 2954 /* IPv6. */ 2955 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2956 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2957 } else 2958 #endif 2959 { 2960 /* IPv4. */ 2961 inet_ntoa_r(inc->inc_laddr, laddr_str); 2962 inet_ntoa_r(inc->inc_faddr, faddr_str); 2963 } 2964 db_print_indent(indent); 2965 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2966 ntohs(inc->inc_lport)); 2967 db_print_indent(indent); 2968 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2969 ntohs(inc->inc_fport)); 2970 } 2971 2972 static void 2973 db_print_inpflags(int inp_flags) 2974 { 2975 int comma; 2976 2977 comma = 0; 2978 if (inp_flags & INP_RECVOPTS) { 2979 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2980 comma = 1; 2981 } 2982 if (inp_flags & INP_RECVRETOPTS) { 2983 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2984 comma = 1; 2985 } 2986 if (inp_flags & INP_RECVDSTADDR) { 2987 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2988 comma = 1; 2989 } 2990 if (inp_flags & INP_ORIGDSTADDR) { 2991 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2992 comma = 1; 2993 } 2994 if (inp_flags & INP_HDRINCL) { 2995 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2996 comma = 1; 2997 } 2998 if (inp_flags & INP_HIGHPORT) { 2999 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3000 comma = 1; 3001 } 3002 if (inp_flags & INP_LOWPORT) { 3003 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3004 comma = 1; 3005 } 3006 if (inp_flags & INP_ANONPORT) { 3007 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3008 comma = 1; 3009 } 3010 if (inp_flags & INP_RECVIF) { 3011 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3012 comma = 1; 3013 } 3014 if (inp_flags & INP_MTUDISC) { 3015 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3016 comma = 1; 3017 } 3018 if (inp_flags & INP_RECVTTL) { 3019 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3020 comma = 1; 3021 } 3022 if (inp_flags & INP_DONTFRAG) { 3023 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3024 comma = 1; 3025 } 3026 if (inp_flags & INP_RECVTOS) { 3027 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3028 comma = 1; 3029 } 3030 if (inp_flags & IN6P_IPV6_V6ONLY) { 3031 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3032 comma = 1; 3033 } 3034 if (inp_flags & IN6P_PKTINFO) { 3035 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3036 comma = 1; 3037 } 3038 if (inp_flags & IN6P_HOPLIMIT) { 3039 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3040 comma = 1; 3041 } 3042 if (inp_flags & IN6P_HOPOPTS) { 3043 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3044 comma = 1; 3045 } 3046 if (inp_flags & IN6P_DSTOPTS) { 3047 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3048 comma = 1; 3049 } 3050 if (inp_flags & IN6P_RTHDR) { 3051 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3052 comma = 1; 3053 } 3054 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3055 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3056 comma = 1; 3057 } 3058 if (inp_flags & IN6P_TCLASS) { 3059 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3060 comma = 1; 3061 } 3062 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3063 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3064 comma = 1; 3065 } 3066 if (inp_flags & INP_TIMEWAIT) { 3067 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3068 comma = 1; 3069 } 3070 if (inp_flags & INP_ONESBCAST) { 3071 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3072 comma = 1; 3073 } 3074 if (inp_flags & INP_DROPPED) { 3075 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3076 comma = 1; 3077 } 3078 if (inp_flags & INP_SOCKREF) { 3079 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3080 comma = 1; 3081 } 3082 if (inp_flags & IN6P_RFC2292) { 3083 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3084 comma = 1; 3085 } 3086 if (inp_flags & IN6P_MTU) { 3087 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3088 comma = 1; 3089 } 3090 } 3091 3092 static void 3093 db_print_inpvflag(u_char inp_vflag) 3094 { 3095 int comma; 3096 3097 comma = 0; 3098 if (inp_vflag & INP_IPV4) { 3099 db_printf("%sINP_IPV4", comma ? ", " : ""); 3100 comma = 1; 3101 } 3102 if (inp_vflag & INP_IPV6) { 3103 db_printf("%sINP_IPV6", comma ? ", " : ""); 3104 comma = 1; 3105 } 3106 if (inp_vflag & INP_IPV6PROTO) { 3107 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3108 comma = 1; 3109 } 3110 } 3111 3112 static void 3113 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3114 { 3115 3116 db_print_indent(indent); 3117 db_printf("%s at %p\n", name, inp); 3118 3119 indent += 2; 3120 3121 db_print_indent(indent); 3122 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3123 3124 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3125 3126 db_print_indent(indent); 3127 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3128 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3129 3130 db_print_indent(indent); 3131 db_printf("inp_label: %p inp_flags: 0x%x (", 3132 inp->inp_label, inp->inp_flags); 3133 db_print_inpflags(inp->inp_flags); 3134 db_printf(")\n"); 3135 3136 db_print_indent(indent); 3137 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3138 inp->inp_vflag); 3139 db_print_inpvflag(inp->inp_vflag); 3140 db_printf(")\n"); 3141 3142 db_print_indent(indent); 3143 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3144 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3145 3146 db_print_indent(indent); 3147 #ifdef INET6 3148 if (inp->inp_vflag & INP_IPV6) { 3149 db_printf("in6p_options: %p in6p_outputopts: %p " 3150 "in6p_moptions: %p\n", inp->in6p_options, 3151 inp->in6p_outputopts, inp->in6p_moptions); 3152 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3153 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3154 inp->in6p_hops); 3155 } else 3156 #endif 3157 { 3158 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3159 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3160 inp->inp_options, inp->inp_moptions); 3161 } 3162 3163 db_print_indent(indent); 3164 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3165 (uintmax_t)inp->inp_gencnt); 3166 } 3167 3168 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3169 { 3170 struct inpcb *inp; 3171 3172 if (!have_addr) { 3173 db_printf("usage: show inpcb <addr>\n"); 3174 return; 3175 } 3176 inp = (struct inpcb *)addr; 3177 3178 db_print_inpcb(inp, "inpcb", 0); 3179 } 3180 #endif /* DDB */ 3181 3182 #ifdef RATELIMIT 3183 /* 3184 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3185 * if any. 3186 */ 3187 int 3188 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3189 { 3190 union if_snd_tag_modify_params params = { 3191 .rate_limit.max_rate = max_pacing_rate, 3192 }; 3193 struct m_snd_tag *mst; 3194 struct ifnet *ifp; 3195 int error; 3196 3197 mst = inp->inp_snd_tag; 3198 if (mst == NULL) 3199 return (EINVAL); 3200 3201 ifp = mst->ifp; 3202 if (ifp == NULL) 3203 return (EINVAL); 3204 3205 if (ifp->if_snd_tag_modify == NULL) { 3206 error = EOPNOTSUPP; 3207 } else { 3208 error = ifp->if_snd_tag_modify(mst, ¶ms); 3209 } 3210 return (error); 3211 } 3212 3213 /* 3214 * Query existing TX rate limit based on the existing 3215 * "inp->inp_snd_tag", if any. 3216 */ 3217 int 3218 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3219 { 3220 union if_snd_tag_query_params params = { }; 3221 struct m_snd_tag *mst; 3222 struct ifnet *ifp; 3223 int error; 3224 3225 mst = inp->inp_snd_tag; 3226 if (mst == NULL) 3227 return (EINVAL); 3228 3229 ifp = mst->ifp; 3230 if (ifp == NULL) 3231 return (EINVAL); 3232 3233 if (ifp->if_snd_tag_query == NULL) { 3234 error = EOPNOTSUPP; 3235 } else { 3236 error = ifp->if_snd_tag_query(mst, ¶ms); 3237 if (error == 0 && p_max_pacing_rate != NULL) 3238 *p_max_pacing_rate = params.rate_limit.max_rate; 3239 } 3240 return (error); 3241 } 3242 3243 /* 3244 * Query existing TX queue level based on the existing 3245 * "inp->inp_snd_tag", if any. 3246 */ 3247 int 3248 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3249 { 3250 union if_snd_tag_query_params params = { }; 3251 struct m_snd_tag *mst; 3252 struct ifnet *ifp; 3253 int error; 3254 3255 mst = inp->inp_snd_tag; 3256 if (mst == NULL) 3257 return (EINVAL); 3258 3259 ifp = mst->ifp; 3260 if (ifp == NULL) 3261 return (EINVAL); 3262 3263 if (ifp->if_snd_tag_query == NULL) 3264 return (EOPNOTSUPP); 3265 3266 error = ifp->if_snd_tag_query(mst, ¶ms); 3267 if (error == 0 && p_txqueue_level != NULL) 3268 *p_txqueue_level = params.rate_limit.queue_level; 3269 return (error); 3270 } 3271 3272 /* 3273 * Allocate a new TX rate limit send tag from the network interface 3274 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3275 */ 3276 int 3277 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3278 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3279 { 3280 union if_snd_tag_alloc_params params = { 3281 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3282 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3283 .rate_limit.hdr.flowid = flowid, 3284 .rate_limit.hdr.flowtype = flowtype, 3285 .rate_limit.max_rate = max_pacing_rate, 3286 }; 3287 int error; 3288 3289 INP_WLOCK_ASSERT(inp); 3290 3291 if (inp->inp_snd_tag != NULL) 3292 return (EINVAL); 3293 3294 if (ifp->if_snd_tag_alloc == NULL) { 3295 error = EOPNOTSUPP; 3296 } else { 3297 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3298 3299 /* 3300 * At success increment the refcount on 3301 * the send tag's network interface: 3302 */ 3303 if (error == 0) 3304 if_ref(inp->inp_snd_tag->ifp); 3305 } 3306 return (error); 3307 } 3308 3309 /* 3310 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3311 * if any: 3312 */ 3313 void 3314 in_pcbdetach_txrtlmt(struct inpcb *inp) 3315 { 3316 struct m_snd_tag *mst; 3317 struct ifnet *ifp; 3318 3319 INP_WLOCK_ASSERT(inp); 3320 3321 mst = inp->inp_snd_tag; 3322 inp->inp_snd_tag = NULL; 3323 3324 if (mst == NULL) 3325 return; 3326 3327 ifp = mst->ifp; 3328 if (ifp == NULL) 3329 return; 3330 3331 /* 3332 * If the device was detached while we still had reference(s) 3333 * on the ifp, we assume if_snd_tag_free() was replaced with 3334 * stubs. 3335 */ 3336 ifp->if_snd_tag_free(mst); 3337 3338 /* release reference count on network interface */ 3339 if_rele(ifp); 3340 } 3341 3342 /* 3343 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3344 * is set in the fast path and will attach/detach/modify the TX rate 3345 * limit send tag based on the socket's so_max_pacing_rate value. 3346 */ 3347 void 3348 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3349 { 3350 struct socket *socket; 3351 uint32_t max_pacing_rate; 3352 bool did_upgrade; 3353 int error; 3354 3355 if (inp == NULL) 3356 return; 3357 3358 socket = inp->inp_socket; 3359 if (socket == NULL) 3360 return; 3361 3362 if (!INP_WLOCKED(inp)) { 3363 /* 3364 * NOTE: If the write locking fails, we need to bail 3365 * out and use the non-ratelimited ring for the 3366 * transmit until there is a new chance to get the 3367 * write lock. 3368 */ 3369 if (!INP_TRY_UPGRADE(inp)) 3370 return; 3371 did_upgrade = 1; 3372 } else { 3373 did_upgrade = 0; 3374 } 3375 3376 /* 3377 * NOTE: The so_max_pacing_rate value is read unlocked, 3378 * because atomic updates are not required since the variable 3379 * is checked at every mbuf we send. It is assumed that the 3380 * variable read itself will be atomic. 3381 */ 3382 max_pacing_rate = socket->so_max_pacing_rate; 3383 3384 /* 3385 * NOTE: When attaching to a network interface a reference is 3386 * made to ensure the network interface doesn't go away until 3387 * all ratelimit connections are gone. The network interface 3388 * pointers compared below represent valid network interfaces, 3389 * except when comparing towards NULL. 3390 */ 3391 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3392 error = 0; 3393 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3394 if (inp->inp_snd_tag != NULL) 3395 in_pcbdetach_txrtlmt(inp); 3396 error = 0; 3397 } else if (inp->inp_snd_tag == NULL) { 3398 /* 3399 * In order to utilize packet pacing with RSS, we need 3400 * to wait until there is a valid RSS hash before we 3401 * can proceed: 3402 */ 3403 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3404 error = EAGAIN; 3405 } else { 3406 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3407 mb->m_pkthdr.flowid, max_pacing_rate); 3408 } 3409 } else { 3410 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3411 } 3412 if (error == 0 || error == EOPNOTSUPP) 3413 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3414 if (did_upgrade) 3415 INP_DOWNGRADE(inp); 3416 } 3417 3418 /* 3419 * Track route changes for TX rate limiting. 3420 */ 3421 void 3422 in_pcboutput_eagain(struct inpcb *inp) 3423 { 3424 struct socket *socket; 3425 bool did_upgrade; 3426 3427 if (inp == NULL) 3428 return; 3429 3430 socket = inp->inp_socket; 3431 if (socket == NULL) 3432 return; 3433 3434 if (inp->inp_snd_tag == NULL) 3435 return; 3436 3437 if (!INP_WLOCKED(inp)) { 3438 /* 3439 * NOTE: If the write locking fails, we need to bail 3440 * out and use the non-ratelimited ring for the 3441 * transmit until there is a new chance to get the 3442 * write lock. 3443 */ 3444 if (!INP_TRY_UPGRADE(inp)) 3445 return; 3446 did_upgrade = 1; 3447 } else { 3448 did_upgrade = 0; 3449 } 3450 3451 /* detach rate limiting */ 3452 in_pcbdetach_txrtlmt(inp); 3453 3454 /* make sure new mbuf send tag allocation is made */ 3455 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3456 3457 if (did_upgrade) 3458 INP_DOWNGRADE(inp); 3459 } 3460 #endif /* RATELIMIT */ 3461