xref: /freebsd/sys/netinet/in_pcb.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ipsec.h"
39 #include "opt_inet6.h"
40 #include "opt_mac.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/sysctl.h>
55 #include <sys/vimage.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #endif
60 
61 #include <vm/uma.h>
62 
63 #include <net/if.h>
64 #include <net/if_types.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/tcp_var.h>
72 #include <netinet/udp.h>
73 #include <netinet/udp_var.h>
74 #include <netinet/vinet.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/vinet6.h>
79 #endif /* INET6 */
80 
81 
82 #ifdef IPSEC
83 #include <netipsec/ipsec.h>
84 #include <netipsec/key.h>
85 #endif /* IPSEC */
86 
87 #include <security/mac/mac_framework.h>
88 
89 #ifdef VIMAGE_GLOBALS
90 /*
91  * These configure the range of local port addresses assigned to
92  * "unspecified" outgoing connections/packets/whatever.
93  */
94 int	ipport_lowfirstauto;
95 int	ipport_lowlastauto;
96 int	ipport_firstauto;
97 int	ipport_lastauto;
98 int	ipport_hifirstauto;
99 int	ipport_hilastauto;
100 
101 /*
102  * Reserved ports accessible only to root. There are significant
103  * security considerations that must be accounted for when changing these,
104  * but the security benefits can be great. Please be careful.
105  */
106 int	ipport_reservedhigh;
107 int	ipport_reservedlow;
108 
109 /* Variables dealing with random ephemeral port allocation. */
110 int	ipport_randomized;
111 int	ipport_randomcps;
112 int	ipport_randomtime;
113 int	ipport_stoprandom;
114 int	ipport_tcpallocs;
115 int	ipport_tcplastcount;
116 #endif
117 
118 #define RANGECHK(var, min, max) \
119 	if ((var) < (min)) { (var) = (min); } \
120 	else if ((var) > (max)) { (var) = (max); }
121 
122 static void	in_pcbremlists(struct inpcb *inp);
123 
124 static int
125 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
126 {
127 	INIT_VNET_INET(curvnet);
128 	int error;
129 
130 	SYSCTL_RESOLVE_V_ARG1();
131 
132 	error = sysctl_handle_int(oidp, arg1, arg2, req);
133 	if (error == 0) {
134 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
135 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
136 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
137 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
138 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
139 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
140 	}
141 	return (error);
142 }
143 
144 #undef RANGECHK
145 
146 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
147 
148 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
149 	lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
150 	&sysctl_net_ipport_check, "I", "");
151 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
152 	lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
153 	&sysctl_net_ipport_check, "I", "");
154 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
155 	first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
156 	&sysctl_net_ipport_check, "I", "");
157 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
158 	last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
159 	&sysctl_net_ipport_check, "I", "");
160 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
161 	hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
162 	&sysctl_net_ipport_check, "I", "");
163 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
164 	hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
165 	&sysctl_net_ipport_check, "I", "");
166 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
167 	reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
168 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
169 	CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
170 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
171 	CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
172 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
173 	CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
174 	"allocations before switching to a sequental one");
175 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
176 	CTLFLAG_RW, ipport_randomtime, 0,
177 	"Minimum time to keep sequental port "
178 	"allocation before switching to a random one");
179 
180 /*
181  * in_pcb.c: manage the Protocol Control Blocks.
182  *
183  * NOTE: It is assumed that most of these functions will be called with
184  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
185  * functions often modify hash chains or addresses in pcbs.
186  */
187 
188 /*
189  * Allocate a PCB and associate it with the socket.
190  * On success return with the PCB locked.
191  */
192 int
193 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
194 {
195 #ifdef INET6
196 	INIT_VNET_INET6(curvnet);
197 #endif
198 	struct inpcb *inp;
199 	int error;
200 
201 	INP_INFO_WLOCK_ASSERT(pcbinfo);
202 	error = 0;
203 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
204 	if (inp == NULL)
205 		return (ENOBUFS);
206 	bzero(inp, inp_zero_size);
207 	inp->inp_pcbinfo = pcbinfo;
208 	inp->inp_socket = so;
209 	inp->inp_cred = crhold(so->so_cred);
210 	inp->inp_inc.inc_fibnum = so->so_fibnum;
211 #ifdef MAC
212 	error = mac_inpcb_init(inp, M_NOWAIT);
213 	if (error != 0)
214 		goto out;
215 	SOCK_LOCK(so);
216 	mac_inpcb_create(so, inp);
217 	SOCK_UNLOCK(so);
218 #endif
219 #ifdef IPSEC
220 	error = ipsec_init_policy(so, &inp->inp_sp);
221 	if (error != 0) {
222 #ifdef MAC
223 		mac_inpcb_destroy(inp);
224 #endif
225 		goto out;
226 	}
227 #endif /*IPSEC*/
228 #ifdef INET6
229 	if (INP_SOCKAF(so) == AF_INET6) {
230 		inp->inp_vflag |= INP_IPV6PROTO;
231 		if (V_ip6_v6only)
232 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
233 	}
234 #endif
235 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
236 	pcbinfo->ipi_count++;
237 	so->so_pcb = (caddr_t)inp;
238 #ifdef INET6
239 	if (V_ip6_auto_flowlabel)
240 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
241 #endif
242 	INP_WLOCK(inp);
243 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
244 	inp->inp_refcount = 1;	/* Reference from the inpcbinfo */
245 #if defined(IPSEC) || defined(MAC)
246 out:
247 	if (error != 0) {
248 		crfree(inp->inp_cred);
249 		uma_zfree(pcbinfo->ipi_zone, inp);
250 	}
251 #endif
252 	return (error);
253 }
254 
255 int
256 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
257 {
258 	int anonport, error;
259 
260 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
261 	INP_WLOCK_ASSERT(inp);
262 
263 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
264 		return (EINVAL);
265 	anonport = inp->inp_lport == 0 && (nam == NULL ||
266 	    ((struct sockaddr_in *)nam)->sin_port == 0);
267 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
268 	    &inp->inp_lport, cred);
269 	if (error)
270 		return (error);
271 	if (in_pcbinshash(inp) != 0) {
272 		inp->inp_laddr.s_addr = INADDR_ANY;
273 		inp->inp_lport = 0;
274 		return (EAGAIN);
275 	}
276 	if (anonport)
277 		inp->inp_flags |= INP_ANONPORT;
278 	return (0);
279 }
280 
281 /*
282  * Set up a bind operation on a PCB, performing port allocation
283  * as required, but do not actually modify the PCB. Callers can
284  * either complete the bind by setting inp_laddr/inp_lport and
285  * calling in_pcbinshash(), or they can just use the resulting
286  * port and address to authorise the sending of a once-off packet.
287  *
288  * On error, the values of *laddrp and *lportp are not changed.
289  */
290 int
291 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
292     u_short *lportp, struct ucred *cred)
293 {
294 	INIT_VNET_INET(inp->inp_vnet);
295 	struct socket *so = inp->inp_socket;
296 	unsigned short *lastport;
297 	struct sockaddr_in *sin;
298 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
299 	struct in_addr laddr;
300 	u_short lport = 0;
301 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
302 	int error;
303 	int dorandom;
304 
305 	/*
306 	 * Because no actual state changes occur here, a global write lock on
307 	 * the pcbinfo isn't required.
308 	 */
309 	INP_INFO_LOCK_ASSERT(pcbinfo);
310 	INP_LOCK_ASSERT(inp);
311 
312 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
313 		return (EADDRNOTAVAIL);
314 	laddr.s_addr = *laddrp;
315 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
316 		return (EINVAL);
317 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
318 		wild = INPLOOKUP_WILDCARD;
319 	if (nam == NULL) {
320 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
321 			return (error);
322 	} else {
323 		sin = (struct sockaddr_in *)nam;
324 		if (nam->sa_len != sizeof (*sin))
325 			return (EINVAL);
326 #ifdef notdef
327 		/*
328 		 * We should check the family, but old programs
329 		 * incorrectly fail to initialize it.
330 		 */
331 		if (sin->sin_family != AF_INET)
332 			return (EAFNOSUPPORT);
333 #endif
334 		error = prison_local_ip4(cred, &sin->sin_addr);
335 		if (error)
336 			return (error);
337 		if (sin->sin_port != *lportp) {
338 			/* Don't allow the port to change. */
339 			if (*lportp != 0)
340 				return (EINVAL);
341 			lport = sin->sin_port;
342 		}
343 		/* NB: lport is left as 0 if the port isn't being changed. */
344 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
345 			/*
346 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
347 			 * allow complete duplication of binding if
348 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
349 			 * and a multicast address is bound on both
350 			 * new and duplicated sockets.
351 			 */
352 			if (so->so_options & SO_REUSEADDR)
353 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
354 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
355 			sin->sin_port = 0;		/* yech... */
356 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
357 			/*
358 			 * Is the address a local IP address?
359 			 * If INP_BINDANY is set, then the socket may be bound
360 			 * to any endpoint address, local or not.
361 			 */
362 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
363 			    ifa_ifwithaddr((struct sockaddr *)sin) == NULL)
364 				return (EADDRNOTAVAIL);
365 		}
366 		laddr = sin->sin_addr;
367 		if (lport) {
368 			struct inpcb *t;
369 			struct tcptw *tw;
370 
371 			/* GROSS */
372 			if (ntohs(lport) <= V_ipport_reservedhigh &&
373 			    ntohs(lport) >= V_ipport_reservedlow &&
374 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
375 			    0))
376 				return (EACCES);
377 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
378 			    priv_check_cred(inp->inp_cred,
379 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
380 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
381 				    lport, INPLOOKUP_WILDCARD, cred);
382 	/*
383 	 * XXX
384 	 * This entire block sorely needs a rewrite.
385 	 */
386 				if (t &&
387 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
388 				    (so->so_type != SOCK_STREAM ||
389 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
390 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
391 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
392 				     (t->inp_socket->so_options &
393 					 SO_REUSEPORT) == 0) &&
394 				    (inp->inp_cred->cr_uid !=
395 				     t->inp_cred->cr_uid))
396 					return (EADDRINUSE);
397 			}
398 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
399 			    lport, wild, cred);
400 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
401 				/*
402 				 * XXXRW: If an incpb has had its timewait
403 				 * state recycled, we treat the address as
404 				 * being in use (for now).  This is better
405 				 * than a panic, but not desirable.
406 				 */
407 				tw = intotw(inp);
408 				if (tw == NULL ||
409 				    (reuseport & tw->tw_so_options) == 0)
410 					return (EADDRINUSE);
411 			} else if (t &&
412 			    (reuseport & t->inp_socket->so_options) == 0) {
413 #ifdef INET6
414 				if (ntohl(sin->sin_addr.s_addr) !=
415 				    INADDR_ANY ||
416 				    ntohl(t->inp_laddr.s_addr) !=
417 				    INADDR_ANY ||
418 				    INP_SOCKAF(so) ==
419 				    INP_SOCKAF(t->inp_socket))
420 #endif
421 				return (EADDRINUSE);
422 			}
423 		}
424 	}
425 	if (*lportp != 0)
426 		lport = *lportp;
427 	if (lport == 0) {
428 		u_short first, last, aux;
429 		int count;
430 
431 		if (inp->inp_flags & INP_HIGHPORT) {
432 			first = V_ipport_hifirstauto;	/* sysctl */
433 			last  = V_ipport_hilastauto;
434 			lastport = &pcbinfo->ipi_lasthi;
435 		} else if (inp->inp_flags & INP_LOWPORT) {
436 			error = priv_check_cred(cred,
437 			    PRIV_NETINET_RESERVEDPORT, 0);
438 			if (error)
439 				return error;
440 			first = V_ipport_lowfirstauto;	/* 1023 */
441 			last  = V_ipport_lowlastauto;	/* 600 */
442 			lastport = &pcbinfo->ipi_lastlow;
443 		} else {
444 			first = V_ipport_firstauto;	/* sysctl */
445 			last  = V_ipport_lastauto;
446 			lastport = &pcbinfo->ipi_lastport;
447 		}
448 		/*
449 		 * For UDP, use random port allocation as long as the user
450 		 * allows it.  For TCP (and as of yet unknown) connections,
451 		 * use random port allocation only if the user allows it AND
452 		 * ipport_tick() allows it.
453 		 */
454 		if (V_ipport_randomized &&
455 			(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
456 			dorandom = 1;
457 		else
458 			dorandom = 0;
459 		/*
460 		 * It makes no sense to do random port allocation if
461 		 * we have the only port available.
462 		 */
463 		if (first == last)
464 			dorandom = 0;
465 		/* Make sure to not include UDP packets in the count. */
466 		if (pcbinfo != &V_udbinfo)
467 			V_ipport_tcpallocs++;
468 		/*
469 		 * Instead of having two loops further down counting up or down
470 		 * make sure that first is always <= last and go with only one
471 		 * code path implementing all logic.
472 		 */
473 		if (first > last) {
474 			aux = first;
475 			first = last;
476 			last = aux;
477 		}
478 
479 		if (dorandom)
480 			*lastport = first +
481 				    (arc4random() % (last - first));
482 
483 		count = last - first;
484 
485 		do {
486 			if (count-- < 0)	/* completely used? */
487 				return (EADDRNOTAVAIL);
488 			++*lastport;
489 			if (*lastport < first || *lastport > last)
490 				*lastport = first;
491 			lport = htons(*lastport);
492 		} while (in_pcblookup_local(pcbinfo, laddr,
493 		    lport, wild, cred));
494 	}
495 	*laddrp = laddr.s_addr;
496 	*lportp = lport;
497 	return (0);
498 }
499 
500 /*
501  * Connect from a socket to a specified address.
502  * Both address and port must be specified in argument sin.
503  * If don't have a local address for this socket yet,
504  * then pick one.
505  */
506 int
507 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
508 {
509 	u_short lport, fport;
510 	in_addr_t laddr, faddr;
511 	int anonport, error;
512 
513 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
514 	INP_WLOCK_ASSERT(inp);
515 
516 	lport = inp->inp_lport;
517 	laddr = inp->inp_laddr.s_addr;
518 	anonport = (lport == 0);
519 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
520 	    NULL, cred);
521 	if (error)
522 		return (error);
523 
524 	/* Do the initial binding of the local address if required. */
525 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
526 		inp->inp_lport = lport;
527 		inp->inp_laddr.s_addr = laddr;
528 		if (in_pcbinshash(inp) != 0) {
529 			inp->inp_laddr.s_addr = INADDR_ANY;
530 			inp->inp_lport = 0;
531 			return (EAGAIN);
532 		}
533 	}
534 
535 	/* Commit the remaining changes. */
536 	inp->inp_lport = lport;
537 	inp->inp_laddr.s_addr = laddr;
538 	inp->inp_faddr.s_addr = faddr;
539 	inp->inp_fport = fport;
540 	in_pcbrehash(inp);
541 
542 	if (anonport)
543 		inp->inp_flags |= INP_ANONPORT;
544 	return (0);
545 }
546 
547 /*
548  * Do proper source address selection on an unbound socket in case
549  * of connect. Take jails into account as well.
550  */
551 static int
552 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
553     struct ucred *cred)
554 {
555 	struct in_ifaddr *ia;
556 	struct ifaddr *ifa;
557 	struct sockaddr *sa;
558 	struct sockaddr_in *sin;
559 	struct route sro;
560 	int error;
561 
562 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
563 
564 	error = 0;
565 	ia = NULL;
566 	bzero(&sro, sizeof(sro));
567 
568 	sin = (struct sockaddr_in *)&sro.ro_dst;
569 	sin->sin_family = AF_INET;
570 	sin->sin_len = sizeof(struct sockaddr_in);
571 	sin->sin_addr.s_addr = faddr->s_addr;
572 
573 	/*
574 	 * If route is known our src addr is taken from the i/f,
575 	 * else punt.
576 	 *
577 	 * Find out route to destination.
578 	 */
579 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
580 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
581 
582 	/*
583 	 * If we found a route, use the address corresponding to
584 	 * the outgoing interface.
585 	 *
586 	 * Otherwise assume faddr is reachable on a directly connected
587 	 * network and try to find a corresponding interface to take
588 	 * the source address from.
589 	 */
590 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
591 		struct ifnet *ifp;
592 
593 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
594 		if (ia == NULL)
595 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
596 		if (ia == NULL) {
597 			error = ENETUNREACH;
598 			goto done;
599 		}
600 
601 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
602 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
603 			goto done;
604 		}
605 
606 		ifp = ia->ia_ifp;
607 		ia = NULL;
608 		IF_ADDR_LOCK(ifp);
609 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
610 
611 			sa = ifa->ifa_addr;
612 			if (sa->sa_family != AF_INET)
613 				continue;
614 			sin = (struct sockaddr_in *)sa;
615 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
616 				ia = (struct in_ifaddr *)ifa;
617 				break;
618 			}
619 		}
620 		if (ia != NULL) {
621 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
622 			IF_ADDR_UNLOCK(ifp);
623 			goto done;
624 		}
625 		IF_ADDR_UNLOCK(ifp);
626 
627 		/* 3. As a last resort return the 'default' jail address. */
628 		error = prison_get_ip4(cred, laddr);
629 		goto done;
630 	}
631 
632 	/*
633 	 * If the outgoing interface on the route found is not
634 	 * a loopback interface, use the address from that interface.
635 	 * In case of jails do those three steps:
636 	 * 1. check if the interface address belongs to the jail. If so use it.
637 	 * 2. check if we have any address on the outgoing interface
638 	 *    belonging to this jail. If so use it.
639 	 * 3. as a last resort return the 'default' jail address.
640 	 */
641 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
642 		struct ifnet *ifp;
643 
644 		/* If not jailed, use the default returned. */
645 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
646 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
647 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
648 			goto done;
649 		}
650 
651 		/* Jailed. */
652 		/* 1. Check if the iface address belongs to the jail. */
653 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
654 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
655 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
656 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
657 			goto done;
658 		}
659 
660 		/*
661 		 * 2. Check if we have any address on the outgoing interface
662 		 *    belonging to this jail.
663 		 */
664 		ifp = sro.ro_rt->rt_ifp;
665 		IF_ADDR_LOCK(ifp);
666 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
667 
668 			sa = ifa->ifa_addr;
669 			if (sa->sa_family != AF_INET)
670 				continue;
671 			sin = (struct sockaddr_in *)sa;
672 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
673 				ia = (struct in_ifaddr *)ifa;
674 				break;
675 			}
676 		}
677 		if (ia != NULL) {
678 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
679 			IF_ADDR_UNLOCK(ifp);
680 			goto done;
681 		}
682 		IF_ADDR_UNLOCK(ifp);
683 
684 		/* 3. As a last resort return the 'default' jail address. */
685 		error = prison_get_ip4(cred, laddr);
686 		goto done;
687 	}
688 
689 	/*
690 	 * The outgoing interface is marked with 'loopback net', so a route
691 	 * to ourselves is here.
692 	 * Try to find the interface of the destination address and then
693 	 * take the address from there. That interface is not necessarily
694 	 * a loopback interface.
695 	 * In case of jails, check that it is an address of the jail
696 	 * and if we cannot find, fall back to the 'default' jail address.
697 	 */
698 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
699 		struct sockaddr_in sain;
700 
701 		bzero(&sain, sizeof(struct sockaddr_in));
702 		sain.sin_family = AF_INET;
703 		sain.sin_len = sizeof(struct sockaddr_in);
704 		sain.sin_addr.s_addr = faddr->s_addr;
705 
706 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
707 		if (ia == NULL)
708 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
709 
710 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
711 #if __FreeBSD_version < 800000
712 			if (ia == NULL)
713 				ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
714 #endif
715 			if (ia == NULL) {
716 				error = ENETUNREACH;
717 				goto done;
718 			}
719 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
720 			goto done;
721 		}
722 
723 		/* Jailed. */
724 		if (ia != NULL) {
725 			struct ifnet *ifp;
726 
727 			ifp = ia->ia_ifp;
728 			ia = NULL;
729 			IF_ADDR_LOCK(ifp);
730 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
731 
732 				sa = ifa->ifa_addr;
733 				if (sa->sa_family != AF_INET)
734 					continue;
735 				sin = (struct sockaddr_in *)sa;
736 				if (prison_check_ip4(cred,
737 				    &sin->sin_addr) == 0) {
738 					ia = (struct in_ifaddr *)ifa;
739 					break;
740 				}
741 			}
742 			if (ia != NULL) {
743 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
744 				IF_ADDR_UNLOCK(ifp);
745 				goto done;
746 			}
747 			IF_ADDR_UNLOCK(ifp);
748 		}
749 
750 		/* 3. As a last resort return the 'default' jail address. */
751 		error = prison_get_ip4(cred, laddr);
752 		goto done;
753 	}
754 
755 done:
756 	if (sro.ro_rt != NULL)
757 		RTFREE(sro.ro_rt);
758 	return (error);
759 }
760 
761 /*
762  * Set up for a connect from a socket to the specified address.
763  * On entry, *laddrp and *lportp should contain the current local
764  * address and port for the PCB; these are updated to the values
765  * that should be placed in inp_laddr and inp_lport to complete
766  * the connect.
767  *
768  * On success, *faddrp and *fportp will be set to the remote address
769  * and port. These are not updated in the error case.
770  *
771  * If the operation fails because the connection already exists,
772  * *oinpp will be set to the PCB of that connection so that the
773  * caller can decide to override it. In all other cases, *oinpp
774  * is set to NULL.
775  */
776 int
777 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
778     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
779     struct inpcb **oinpp, struct ucred *cred)
780 {
781 	INIT_VNET_INET(inp->inp_vnet);
782 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
783 	struct in_ifaddr *ia;
784 	struct inpcb *oinp;
785 	struct in_addr laddr, faddr;
786 	u_short lport, fport;
787 	int error;
788 
789 	/*
790 	 * Because a global state change doesn't actually occur here, a read
791 	 * lock is sufficient.
792 	 */
793 	INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
794 	INP_LOCK_ASSERT(inp);
795 
796 	if (oinpp != NULL)
797 		*oinpp = NULL;
798 	if (nam->sa_len != sizeof (*sin))
799 		return (EINVAL);
800 	if (sin->sin_family != AF_INET)
801 		return (EAFNOSUPPORT);
802 	if (sin->sin_port == 0)
803 		return (EADDRNOTAVAIL);
804 	laddr.s_addr = *laddrp;
805 	lport = *lportp;
806 	faddr = sin->sin_addr;
807 	fport = sin->sin_port;
808 
809 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
810 		/*
811 		 * If the destination address is INADDR_ANY,
812 		 * use the primary local address.
813 		 * If the supplied address is INADDR_BROADCAST,
814 		 * and the primary interface supports broadcast,
815 		 * choose the broadcast address for that interface.
816 		 */
817 		if (faddr.s_addr == INADDR_ANY) {
818 			faddr =
819 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
820 			if (cred != NULL &&
821 			    (error = prison_get_ip4(cred, &faddr)) != 0)
822 				return (error);
823 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
824 		    (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
825 		    IFF_BROADCAST))
826 			faddr = satosin(&TAILQ_FIRST(
827 			    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
828 	}
829 	if (laddr.s_addr == INADDR_ANY) {
830 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
831 		if (error)
832 			return (error);
833 
834 		/*
835 		 * If the destination address is multicast and an outgoing
836 		 * interface has been set as a multicast option, use the
837 		 * address of that interface as our source address.
838 		 */
839 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
840 		    inp->inp_moptions != NULL) {
841 			struct ip_moptions *imo;
842 			struct ifnet *ifp;
843 
844 			imo = inp->inp_moptions;
845 			if (imo->imo_multicast_ifp != NULL) {
846 				ifp = imo->imo_multicast_ifp;
847 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
848 					if (ia->ia_ifp == ifp)
849 						break;
850 				if (ia == NULL)
851 					return (EADDRNOTAVAIL);
852 				laddr = ia->ia_addr.sin_addr;
853 			}
854 		}
855 	}
856 
857 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
858 	    0, NULL);
859 	if (oinp != NULL) {
860 		if (oinpp != NULL)
861 			*oinpp = oinp;
862 		return (EADDRINUSE);
863 	}
864 	if (lport == 0) {
865 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
866 		    cred);
867 		if (error)
868 			return (error);
869 	}
870 	*laddrp = laddr.s_addr;
871 	*lportp = lport;
872 	*faddrp = faddr.s_addr;
873 	*fportp = fport;
874 	return (0);
875 }
876 
877 void
878 in_pcbdisconnect(struct inpcb *inp)
879 {
880 
881 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
882 	INP_WLOCK_ASSERT(inp);
883 
884 	inp->inp_faddr.s_addr = INADDR_ANY;
885 	inp->inp_fport = 0;
886 	in_pcbrehash(inp);
887 }
888 
889 /*
890  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
891  * For most protocols, this will be invoked immediately prior to calling
892  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
893  * socket, in which case in_pcbfree() is deferred.
894  */
895 void
896 in_pcbdetach(struct inpcb *inp)
897 {
898 
899 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
900 
901 	inp->inp_socket->so_pcb = NULL;
902 	inp->inp_socket = NULL;
903 }
904 
905 /*
906  * in_pcbfree_internal() frees an inpcb that has been detached from its
907  * socket, and whose reference count has reached 0.  It will also remove the
908  * inpcb from any global lists it might remain on.
909  */
910 static void
911 in_pcbfree_internal(struct inpcb *inp)
912 {
913 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
914 
915 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
916 	KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
917 
918 	INP_INFO_WLOCK_ASSERT(ipi);
919 	INP_WLOCK_ASSERT(inp);
920 
921 #ifdef IPSEC
922 	if (inp->inp_sp != NULL)
923 		ipsec_delete_pcbpolicy(inp);
924 #endif /* IPSEC */
925 	inp->inp_gencnt = ++ipi->ipi_gencnt;
926 	in_pcbremlists(inp);
927 #ifdef INET6
928 	if (inp->inp_vflag & INP_IPV6PROTO) {
929 		ip6_freepcbopts(inp->in6p_outputopts);
930 		if (inp->in6p_moptions != NULL)
931 			ip6_freemoptions(inp->in6p_moptions);
932 	}
933 #endif
934 	if (inp->inp_options)
935 		(void)m_free(inp->inp_options);
936 	if (inp->inp_moptions != NULL)
937 		inp_freemoptions(inp->inp_moptions);
938 	inp->inp_vflag = 0;
939 	crfree(inp->inp_cred);
940 
941 #ifdef MAC
942 	mac_inpcb_destroy(inp);
943 #endif
944 	INP_WUNLOCK(inp);
945 	uma_zfree(ipi->ipi_zone, inp);
946 }
947 
948 /*
949  * in_pcbref() bumps the reference count on an inpcb in order to maintain
950  * stability of an inpcb pointer despite the inpcb lock being released.  This
951  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
952  * but where the inpcb lock is already held.
953  *
954  * While the inpcb will not be freed, releasing the inpcb lock means that the
955  * connection's state may change, so the caller should be careful to
956  * revalidate any cached state on reacquiring the lock.  Drop the reference
957  * using in_pcbrele().
958  */
959 void
960 in_pcbref(struct inpcb *inp)
961 {
962 
963 	INP_WLOCK_ASSERT(inp);
964 
965 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
966 
967 	inp->inp_refcount++;
968 }
969 
970 /*
971  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
972  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
973  * return a flag indicating whether or not the inpcb remains valid.  If it is
974  * valid, we return with the inpcb lock held.
975  */
976 int
977 in_pcbrele(struct inpcb *inp)
978 {
979 #ifdef INVARIANTS
980 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
981 #endif
982 
983 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
984 
985 	INP_INFO_WLOCK_ASSERT(ipi);
986 	INP_WLOCK_ASSERT(inp);
987 
988 	inp->inp_refcount--;
989 	if (inp->inp_refcount > 0)
990 		return (0);
991 	in_pcbfree_internal(inp);
992 	return (1);
993 }
994 
995 /*
996  * Unconditionally schedule an inpcb to be freed by decrementing its
997  * reference count, which should occur only after the inpcb has been detached
998  * from its socket.  If another thread holds a temporary reference (acquired
999  * using in_pcbref()) then the free is deferred until that reference is
1000  * released using in_pcbrele(), but the inpcb is still unlocked.
1001  */
1002 void
1003 in_pcbfree(struct inpcb *inp)
1004 {
1005 #ifdef INVARIANTS
1006 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
1007 #endif
1008 
1009 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
1010 	    __func__));
1011 
1012 	INP_INFO_WLOCK_ASSERT(ipi);
1013 	INP_WLOCK_ASSERT(inp);
1014 
1015 	if (!in_pcbrele(inp))
1016 		INP_WUNLOCK(inp);
1017 }
1018 
1019 /*
1020  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1021  * port reservation, and preventing it from being returned by inpcb lookups.
1022  *
1023  * It is used by TCP to mark an inpcb as unused and avoid future packet
1024  * delivery or event notification when a socket remains open but TCP has
1025  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1026  * or a RST on the wire, and allows the port binding to be reused while still
1027  * maintaining the invariant that so_pcb always points to a valid inpcb until
1028  * in_pcbdetach().
1029  *
1030  * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
1031  * lists, but can lead to confusing netstat output, as open sockets with
1032  * closed TCP connections will no longer appear to have their bound port
1033  * number.  An explicit flag would be better, as it would allow us to leave
1034  * the port number intact after the connection is dropped.
1035  *
1036  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1037  * in_pcbnotifyall() and in_pcbpurgeif0()?
1038  */
1039 void
1040 in_pcbdrop(struct inpcb *inp)
1041 {
1042 
1043 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
1044 	INP_WLOCK_ASSERT(inp);
1045 
1046 	inp->inp_flags |= INP_DROPPED;
1047 	if (inp->inp_flags & INP_INHASHLIST) {
1048 		struct inpcbport *phd = inp->inp_phd;
1049 
1050 		LIST_REMOVE(inp, inp_hash);
1051 		LIST_REMOVE(inp, inp_portlist);
1052 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1053 			LIST_REMOVE(phd, phd_hash);
1054 			free(phd, M_PCB);
1055 		}
1056 		inp->inp_flags &= ~INP_INHASHLIST;
1057 	}
1058 }
1059 
1060 /*
1061  * Common routines to return the socket addresses associated with inpcbs.
1062  */
1063 struct sockaddr *
1064 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1065 {
1066 	struct sockaddr_in *sin;
1067 
1068 	sin = malloc(sizeof *sin, M_SONAME,
1069 		M_WAITOK | M_ZERO);
1070 	sin->sin_family = AF_INET;
1071 	sin->sin_len = sizeof(*sin);
1072 	sin->sin_addr = *addr_p;
1073 	sin->sin_port = port;
1074 
1075 	return (struct sockaddr *)sin;
1076 }
1077 
1078 int
1079 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1080 {
1081 	struct inpcb *inp;
1082 	struct in_addr addr;
1083 	in_port_t port;
1084 
1085 	inp = sotoinpcb(so);
1086 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1087 
1088 	INP_RLOCK(inp);
1089 	port = inp->inp_lport;
1090 	addr = inp->inp_laddr;
1091 	INP_RUNLOCK(inp);
1092 
1093 	*nam = in_sockaddr(port, &addr);
1094 	return 0;
1095 }
1096 
1097 int
1098 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1099 {
1100 	struct inpcb *inp;
1101 	struct in_addr addr;
1102 	in_port_t port;
1103 
1104 	inp = sotoinpcb(so);
1105 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1106 
1107 	INP_RLOCK(inp);
1108 	port = inp->inp_fport;
1109 	addr = inp->inp_faddr;
1110 	INP_RUNLOCK(inp);
1111 
1112 	*nam = in_sockaddr(port, &addr);
1113 	return 0;
1114 }
1115 
1116 void
1117 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1118     struct inpcb *(*notify)(struct inpcb *, int))
1119 {
1120 	struct inpcb *inp, *inp_temp;
1121 
1122 	INP_INFO_WLOCK(pcbinfo);
1123 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1124 		INP_WLOCK(inp);
1125 #ifdef INET6
1126 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1127 			INP_WUNLOCK(inp);
1128 			continue;
1129 		}
1130 #endif
1131 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1132 		    inp->inp_socket == NULL) {
1133 			INP_WUNLOCK(inp);
1134 			continue;
1135 		}
1136 		if ((*notify)(inp, errno))
1137 			INP_WUNLOCK(inp);
1138 	}
1139 	INP_INFO_WUNLOCK(pcbinfo);
1140 }
1141 
1142 void
1143 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1144 {
1145 	struct inpcb *inp;
1146 	struct ip_moptions *imo;
1147 	int i, gap;
1148 
1149 	INP_INFO_RLOCK(pcbinfo);
1150 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1151 		INP_WLOCK(inp);
1152 		imo = inp->inp_moptions;
1153 		if ((inp->inp_vflag & INP_IPV4) &&
1154 		    imo != NULL) {
1155 			/*
1156 			 * Unselect the outgoing interface if it is being
1157 			 * detached.
1158 			 */
1159 			if (imo->imo_multicast_ifp == ifp)
1160 				imo->imo_multicast_ifp = NULL;
1161 
1162 			/*
1163 			 * Drop multicast group membership if we joined
1164 			 * through the interface being detached.
1165 			 */
1166 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1167 			    i++) {
1168 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1169 					in_delmulti(imo->imo_membership[i]);
1170 					gap++;
1171 				} else if (gap != 0)
1172 					imo->imo_membership[i - gap] =
1173 					    imo->imo_membership[i];
1174 			}
1175 			imo->imo_num_memberships -= gap;
1176 		}
1177 		INP_WUNLOCK(inp);
1178 	}
1179 	INP_INFO_RUNLOCK(pcbinfo);
1180 }
1181 
1182 /*
1183  * Lookup a PCB based on the local address and port.
1184  */
1185 #define INP_LOOKUP_MAPPED_PCB_COST	3
1186 struct inpcb *
1187 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1188     u_short lport, int wild_okay, struct ucred *cred)
1189 {
1190 	struct inpcb *inp;
1191 #ifdef INET6
1192 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1193 #else
1194 	int matchwild = 3;
1195 #endif
1196 	int wildcard;
1197 
1198 	INP_INFO_LOCK_ASSERT(pcbinfo);
1199 
1200 	if (!wild_okay) {
1201 		struct inpcbhead *head;
1202 		/*
1203 		 * Look for an unconnected (wildcard foreign addr) PCB that
1204 		 * matches the local address and port we're looking for.
1205 		 */
1206 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1207 		    0, pcbinfo->ipi_hashmask)];
1208 		LIST_FOREACH(inp, head, inp_hash) {
1209 #ifdef INET6
1210 			/* XXX inp locking */
1211 			if ((inp->inp_vflag & INP_IPV4) == 0)
1212 				continue;
1213 #endif
1214 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1215 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1216 			    inp->inp_lport == lport) {
1217 				/*
1218 				 * Found?
1219 				 */
1220 				if (cred == NULL ||
1221 				    prison_equal_ip4(cred->cr_prison,
1222 					inp->inp_cred->cr_prison))
1223 					return (inp);
1224 			}
1225 		}
1226 		/*
1227 		 * Not found.
1228 		 */
1229 		return (NULL);
1230 	} else {
1231 		struct inpcbporthead *porthash;
1232 		struct inpcbport *phd;
1233 		struct inpcb *match = NULL;
1234 		/*
1235 		 * Best fit PCB lookup.
1236 		 *
1237 		 * First see if this local port is in use by looking on the
1238 		 * port hash list.
1239 		 */
1240 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1241 		    pcbinfo->ipi_porthashmask)];
1242 		LIST_FOREACH(phd, porthash, phd_hash) {
1243 			if (phd->phd_port == lport)
1244 				break;
1245 		}
1246 		if (phd != NULL) {
1247 			/*
1248 			 * Port is in use by one or more PCBs. Look for best
1249 			 * fit.
1250 			 */
1251 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1252 				wildcard = 0;
1253 				if (cred != NULL &&
1254 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1255 					cred->cr_prison))
1256 					continue;
1257 #ifdef INET6
1258 				/* XXX inp locking */
1259 				if ((inp->inp_vflag & INP_IPV4) == 0)
1260 					continue;
1261 				/*
1262 				 * We never select the PCB that has
1263 				 * INP_IPV6 flag and is bound to :: if
1264 				 * we have another PCB which is bound
1265 				 * to 0.0.0.0.  If a PCB has the
1266 				 * INP_IPV6 flag, then we set its cost
1267 				 * higher than IPv4 only PCBs.
1268 				 *
1269 				 * Note that the case only happens
1270 				 * when a socket is bound to ::, under
1271 				 * the condition that the use of the
1272 				 * mapped address is allowed.
1273 				 */
1274 				if ((inp->inp_vflag & INP_IPV6) != 0)
1275 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1276 #endif
1277 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1278 					wildcard++;
1279 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1280 					if (laddr.s_addr == INADDR_ANY)
1281 						wildcard++;
1282 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1283 						continue;
1284 				} else {
1285 					if (laddr.s_addr != INADDR_ANY)
1286 						wildcard++;
1287 				}
1288 				if (wildcard < matchwild) {
1289 					match = inp;
1290 					matchwild = wildcard;
1291 					if (matchwild == 0)
1292 						break;
1293 				}
1294 			}
1295 		}
1296 		return (match);
1297 	}
1298 }
1299 #undef INP_LOOKUP_MAPPED_PCB_COST
1300 
1301 /*
1302  * Lookup PCB in hash list.
1303  */
1304 struct inpcb *
1305 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1306     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1307     struct ifnet *ifp)
1308 {
1309 	struct inpcbhead *head;
1310 	struct inpcb *inp, *tmpinp;
1311 	u_short fport = fport_arg, lport = lport_arg;
1312 
1313 	INP_INFO_LOCK_ASSERT(pcbinfo);
1314 
1315 	/*
1316 	 * First look for an exact match.
1317 	 */
1318 	tmpinp = NULL;
1319 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1320 	    pcbinfo->ipi_hashmask)];
1321 	LIST_FOREACH(inp, head, inp_hash) {
1322 #ifdef INET6
1323 		/* XXX inp locking */
1324 		if ((inp->inp_vflag & INP_IPV4) == 0)
1325 			continue;
1326 #endif
1327 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1328 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1329 		    inp->inp_fport == fport &&
1330 		    inp->inp_lport == lport) {
1331 			/*
1332 			 * XXX We should be able to directly return
1333 			 * the inp here, without any checks.
1334 			 * Well unless both bound with SO_REUSEPORT?
1335 			 */
1336 			if (prison_flag(inp->inp_cred, PR_IP4))
1337 				return (inp);
1338 			if (tmpinp == NULL)
1339 				tmpinp = inp;
1340 		}
1341 	}
1342 	if (tmpinp != NULL)
1343 		return (tmpinp);
1344 
1345 	/*
1346 	 * Then look for a wildcard match, if requested.
1347 	 */
1348 	if (wildcard == INPLOOKUP_WILDCARD) {
1349 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1350 #ifdef INET6
1351 		struct inpcb *local_wild_mapped = NULL;
1352 #endif
1353 		struct inpcb *jail_wild = NULL;
1354 		int injail;
1355 
1356 		/*
1357 		 * Order of socket selection - we always prefer jails.
1358 		 *      1. jailed, non-wild.
1359 		 *      2. jailed, wild.
1360 		 *      3. non-jailed, non-wild.
1361 		 *      4. non-jailed, wild.
1362 		 */
1363 
1364 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1365 		    0, pcbinfo->ipi_hashmask)];
1366 		LIST_FOREACH(inp, head, inp_hash) {
1367 #ifdef INET6
1368 			/* XXX inp locking */
1369 			if ((inp->inp_vflag & INP_IPV4) == 0)
1370 				continue;
1371 #endif
1372 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1373 			    inp->inp_lport != lport)
1374 				continue;
1375 
1376 			/* XXX inp locking */
1377 			if (ifp && ifp->if_type == IFT_FAITH &&
1378 			    (inp->inp_flags & INP_FAITH) == 0)
1379 				continue;
1380 
1381 			injail = prison_flag(inp->inp_cred, PR_IP4);
1382 			if (injail) {
1383 				if (prison_check_ip4(inp->inp_cred,
1384 				    &laddr) != 0)
1385 					continue;
1386 			} else {
1387 				if (local_exact != NULL)
1388 					continue;
1389 			}
1390 
1391 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1392 				if (injail)
1393 					return (inp);
1394 				else
1395 					local_exact = inp;
1396 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1397 #ifdef INET6
1398 				/* XXX inp locking, NULL check */
1399 				if (inp->inp_vflag & INP_IPV6PROTO)
1400 					local_wild_mapped = inp;
1401 				else
1402 #endif /* INET6 */
1403 					if (injail)
1404 						jail_wild = inp;
1405 					else
1406 						local_wild = inp;
1407 			}
1408 		} /* LIST_FOREACH */
1409 		if (jail_wild != NULL)
1410 			return (jail_wild);
1411 		if (local_exact != NULL)
1412 			return (local_exact);
1413 		if (local_wild != NULL)
1414 			return (local_wild);
1415 #ifdef INET6
1416 		if (local_wild_mapped != NULL)
1417 			return (local_wild_mapped);
1418 #endif /* defined(INET6) */
1419 	} /* if (wildcard == INPLOOKUP_WILDCARD) */
1420 
1421 	return (NULL);
1422 }
1423 
1424 /*
1425  * Insert PCB onto various hash lists.
1426  */
1427 int
1428 in_pcbinshash(struct inpcb *inp)
1429 {
1430 	struct inpcbhead *pcbhash;
1431 	struct inpcbporthead *pcbporthash;
1432 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1433 	struct inpcbport *phd;
1434 	u_int32_t hashkey_faddr;
1435 
1436 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1437 	INP_WLOCK_ASSERT(inp);
1438 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1439 	    ("in_pcbinshash: INP_INHASHLIST"));
1440 
1441 #ifdef INET6
1442 	if (inp->inp_vflag & INP_IPV6)
1443 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1444 	else
1445 #endif /* INET6 */
1446 	hashkey_faddr = inp->inp_faddr.s_addr;
1447 
1448 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1449 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1450 
1451 	pcbporthash = &pcbinfo->ipi_porthashbase[
1452 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1453 
1454 	/*
1455 	 * Go through port list and look for a head for this lport.
1456 	 */
1457 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1458 		if (phd->phd_port == inp->inp_lport)
1459 			break;
1460 	}
1461 	/*
1462 	 * If none exists, malloc one and tack it on.
1463 	 */
1464 	if (phd == NULL) {
1465 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1466 		if (phd == NULL) {
1467 			return (ENOBUFS); /* XXX */
1468 		}
1469 		phd->phd_port = inp->inp_lport;
1470 		LIST_INIT(&phd->phd_pcblist);
1471 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1472 	}
1473 	inp->inp_phd = phd;
1474 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1475 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1476 	inp->inp_flags |= INP_INHASHLIST;
1477 	return (0);
1478 }
1479 
1480 /*
1481  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1482  * changed. NOTE: This does not handle the case of the lport changing (the
1483  * hashed port list would have to be updated as well), so the lport must
1484  * not change after in_pcbinshash() has been called.
1485  */
1486 void
1487 in_pcbrehash(struct inpcb *inp)
1488 {
1489 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1490 	struct inpcbhead *head;
1491 	u_int32_t hashkey_faddr;
1492 
1493 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1494 	INP_WLOCK_ASSERT(inp);
1495 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1496 	    ("in_pcbrehash: !INP_INHASHLIST"));
1497 
1498 #ifdef INET6
1499 	if (inp->inp_vflag & INP_IPV6)
1500 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1501 	else
1502 #endif /* INET6 */
1503 	hashkey_faddr = inp->inp_faddr.s_addr;
1504 
1505 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1506 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1507 
1508 	LIST_REMOVE(inp, inp_hash);
1509 	LIST_INSERT_HEAD(head, inp, inp_hash);
1510 }
1511 
1512 /*
1513  * Remove PCB from various lists.
1514  */
1515 static void
1516 in_pcbremlists(struct inpcb *inp)
1517 {
1518 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1519 
1520 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1521 	INP_WLOCK_ASSERT(inp);
1522 
1523 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1524 	if (inp->inp_flags & INP_INHASHLIST) {
1525 		struct inpcbport *phd = inp->inp_phd;
1526 
1527 		LIST_REMOVE(inp, inp_hash);
1528 		LIST_REMOVE(inp, inp_portlist);
1529 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1530 			LIST_REMOVE(phd, phd_hash);
1531 			free(phd, M_PCB);
1532 		}
1533 		inp->inp_flags &= ~INP_INHASHLIST;
1534 	}
1535 	LIST_REMOVE(inp, inp_list);
1536 	pcbinfo->ipi_count--;
1537 }
1538 
1539 /*
1540  * A set label operation has occurred at the socket layer, propagate the
1541  * label change into the in_pcb for the socket.
1542  */
1543 void
1544 in_pcbsosetlabel(struct socket *so)
1545 {
1546 #ifdef MAC
1547 	struct inpcb *inp;
1548 
1549 	inp = sotoinpcb(so);
1550 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1551 
1552 	INP_WLOCK(inp);
1553 	SOCK_LOCK(so);
1554 	mac_inpcb_sosetlabel(so, inp);
1555 	SOCK_UNLOCK(so);
1556 	INP_WUNLOCK(inp);
1557 #endif
1558 }
1559 
1560 /*
1561  * ipport_tick runs once per second, determining if random port allocation
1562  * should be continued.  If more than ipport_randomcps ports have been
1563  * allocated in the last second, then we return to sequential port
1564  * allocation. We return to random allocation only once we drop below
1565  * ipport_randomcps for at least ipport_randomtime seconds.
1566  */
1567 void
1568 ipport_tick(void *xtp)
1569 {
1570 	VNET_ITERATOR_DECL(vnet_iter);
1571 
1572 	VNET_LIST_RLOCK();
1573 	VNET_FOREACH(vnet_iter) {
1574 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
1575 		INIT_VNET_INET(vnet_iter);
1576 		if (V_ipport_tcpallocs <=
1577 		    V_ipport_tcplastcount + V_ipport_randomcps) {
1578 			if (V_ipport_stoprandom > 0)
1579 				V_ipport_stoprandom--;
1580 		} else
1581 			V_ipport_stoprandom = V_ipport_randomtime;
1582 		V_ipport_tcplastcount = V_ipport_tcpallocs;
1583 		CURVNET_RESTORE();
1584 	}
1585 	VNET_LIST_RUNLOCK();
1586 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1587 }
1588 
1589 void
1590 inp_wlock(struct inpcb *inp)
1591 {
1592 
1593 	INP_WLOCK(inp);
1594 }
1595 
1596 void
1597 inp_wunlock(struct inpcb *inp)
1598 {
1599 
1600 	INP_WUNLOCK(inp);
1601 }
1602 
1603 void
1604 inp_rlock(struct inpcb *inp)
1605 {
1606 
1607 	INP_RLOCK(inp);
1608 }
1609 
1610 void
1611 inp_runlock(struct inpcb *inp)
1612 {
1613 
1614 	INP_RUNLOCK(inp);
1615 }
1616 
1617 #ifdef INVARIANTS
1618 void
1619 inp_lock_assert(struct inpcb *inp)
1620 {
1621 
1622 	INP_WLOCK_ASSERT(inp);
1623 }
1624 
1625 void
1626 inp_unlock_assert(struct inpcb *inp)
1627 {
1628 
1629 	INP_UNLOCK_ASSERT(inp);
1630 }
1631 #endif
1632 
1633 void
1634 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
1635 {
1636 	INIT_VNET_INET(curvnet);
1637 	struct inpcb *inp;
1638 
1639 	INP_INFO_RLOCK(&V_tcbinfo);
1640 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
1641 		INP_WLOCK(inp);
1642 		func(inp, arg);
1643 		INP_WUNLOCK(inp);
1644 	}
1645 	INP_INFO_RUNLOCK(&V_tcbinfo);
1646 }
1647 
1648 struct socket *
1649 inp_inpcbtosocket(struct inpcb *inp)
1650 {
1651 
1652 	INP_WLOCK_ASSERT(inp);
1653 	return (inp->inp_socket);
1654 }
1655 
1656 struct tcpcb *
1657 inp_inpcbtotcpcb(struct inpcb *inp)
1658 {
1659 
1660 	INP_WLOCK_ASSERT(inp);
1661 	return ((struct tcpcb *)inp->inp_ppcb);
1662 }
1663 
1664 int
1665 inp_ip_tos_get(const struct inpcb *inp)
1666 {
1667 
1668 	return (inp->inp_ip_tos);
1669 }
1670 
1671 void
1672 inp_ip_tos_set(struct inpcb *inp, int val)
1673 {
1674 
1675 	inp->inp_ip_tos = val;
1676 }
1677 
1678 void
1679 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
1680     uint32_t *faddr, uint16_t *fp)
1681 {
1682 
1683 	INP_LOCK_ASSERT(inp);
1684 	*laddr = inp->inp_laddr.s_addr;
1685 	*faddr = inp->inp_faddr.s_addr;
1686 	*lp = inp->inp_lport;
1687 	*fp = inp->inp_fport;
1688 }
1689 
1690 struct inpcb *
1691 so_sotoinpcb(struct socket *so)
1692 {
1693 
1694 	return (sotoinpcb(so));
1695 }
1696 
1697 struct tcpcb *
1698 so_sototcpcb(struct socket *so)
1699 {
1700 
1701 	return (sototcpcb(so));
1702 }
1703 
1704 #ifdef DDB
1705 static void
1706 db_print_indent(int indent)
1707 {
1708 	int i;
1709 
1710 	for (i = 0; i < indent; i++)
1711 		db_printf(" ");
1712 }
1713 
1714 static void
1715 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
1716 {
1717 	char faddr_str[48], laddr_str[48];
1718 
1719 	db_print_indent(indent);
1720 	db_printf("%s at %p\n", name, inc);
1721 
1722 	indent += 2;
1723 
1724 #ifdef INET6
1725 	if (inc->inc_flags & INC_ISIPV6) {
1726 		/* IPv6. */
1727 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
1728 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
1729 	} else {
1730 #endif
1731 		/* IPv4. */
1732 		inet_ntoa_r(inc->inc_laddr, laddr_str);
1733 		inet_ntoa_r(inc->inc_faddr, faddr_str);
1734 #ifdef INET6
1735 	}
1736 #endif
1737 	db_print_indent(indent);
1738 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
1739 	    ntohs(inc->inc_lport));
1740 	db_print_indent(indent);
1741 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
1742 	    ntohs(inc->inc_fport));
1743 }
1744 
1745 static void
1746 db_print_inpflags(int inp_flags)
1747 {
1748 	int comma;
1749 
1750 	comma = 0;
1751 	if (inp_flags & INP_RECVOPTS) {
1752 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
1753 		comma = 1;
1754 	}
1755 	if (inp_flags & INP_RECVRETOPTS) {
1756 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
1757 		comma = 1;
1758 	}
1759 	if (inp_flags & INP_RECVDSTADDR) {
1760 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
1761 		comma = 1;
1762 	}
1763 	if (inp_flags & INP_HDRINCL) {
1764 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
1765 		comma = 1;
1766 	}
1767 	if (inp_flags & INP_HIGHPORT) {
1768 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
1769 		comma = 1;
1770 	}
1771 	if (inp_flags & INP_LOWPORT) {
1772 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
1773 		comma = 1;
1774 	}
1775 	if (inp_flags & INP_ANONPORT) {
1776 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
1777 		comma = 1;
1778 	}
1779 	if (inp_flags & INP_RECVIF) {
1780 		db_printf("%sINP_RECVIF", comma ? ", " : "");
1781 		comma = 1;
1782 	}
1783 	if (inp_flags & INP_MTUDISC) {
1784 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
1785 		comma = 1;
1786 	}
1787 	if (inp_flags & INP_FAITH) {
1788 		db_printf("%sINP_FAITH", comma ? ", " : "");
1789 		comma = 1;
1790 	}
1791 	if (inp_flags & INP_RECVTTL) {
1792 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
1793 		comma = 1;
1794 	}
1795 	if (inp_flags & INP_DONTFRAG) {
1796 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
1797 		comma = 1;
1798 	}
1799 	if (inp_flags & IN6P_IPV6_V6ONLY) {
1800 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
1801 		comma = 1;
1802 	}
1803 	if (inp_flags & IN6P_PKTINFO) {
1804 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
1805 		comma = 1;
1806 	}
1807 	if (inp_flags & IN6P_HOPLIMIT) {
1808 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
1809 		comma = 1;
1810 	}
1811 	if (inp_flags & IN6P_HOPOPTS) {
1812 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
1813 		comma = 1;
1814 	}
1815 	if (inp_flags & IN6P_DSTOPTS) {
1816 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
1817 		comma = 1;
1818 	}
1819 	if (inp_flags & IN6P_RTHDR) {
1820 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
1821 		comma = 1;
1822 	}
1823 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
1824 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
1825 		comma = 1;
1826 	}
1827 	if (inp_flags & IN6P_TCLASS) {
1828 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
1829 		comma = 1;
1830 	}
1831 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
1832 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
1833 		comma = 1;
1834 	}
1835 	if (inp_flags & INP_TIMEWAIT) {
1836 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
1837 		comma  = 1;
1838 	}
1839 	if (inp_flags & INP_ONESBCAST) {
1840 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
1841 		comma  = 1;
1842 	}
1843 	if (inp_flags & INP_DROPPED) {
1844 		db_printf("%sINP_DROPPED", comma ? ", " : "");
1845 		comma  = 1;
1846 	}
1847 	if (inp_flags & INP_SOCKREF) {
1848 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
1849 		comma  = 1;
1850 	}
1851 	if (inp_flags & IN6P_RFC2292) {
1852 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
1853 		comma = 1;
1854 	}
1855 	if (inp_flags & IN6P_MTU) {
1856 		db_printf("IN6P_MTU%s", comma ? ", " : "");
1857 		comma = 1;
1858 	}
1859 }
1860 
1861 static void
1862 db_print_inpvflag(u_char inp_vflag)
1863 {
1864 	int comma;
1865 
1866 	comma = 0;
1867 	if (inp_vflag & INP_IPV4) {
1868 		db_printf("%sINP_IPV4", comma ? ", " : "");
1869 		comma  = 1;
1870 	}
1871 	if (inp_vflag & INP_IPV6) {
1872 		db_printf("%sINP_IPV6", comma ? ", " : "");
1873 		comma  = 1;
1874 	}
1875 	if (inp_vflag & INP_IPV6PROTO) {
1876 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
1877 		comma  = 1;
1878 	}
1879 }
1880 
1881 static void
1882 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
1883 {
1884 
1885 	db_print_indent(indent);
1886 	db_printf("%s at %p\n", name, inp);
1887 
1888 	indent += 2;
1889 
1890 	db_print_indent(indent);
1891 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
1892 
1893 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
1894 
1895 	db_print_indent(indent);
1896 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
1897 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
1898 
1899 	db_print_indent(indent);
1900 	db_printf("inp_label: %p   inp_flags: 0x%x (",
1901 	   inp->inp_label, inp->inp_flags);
1902 	db_print_inpflags(inp->inp_flags);
1903 	db_printf(")\n");
1904 
1905 	db_print_indent(indent);
1906 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
1907 	    inp->inp_vflag);
1908 	db_print_inpvflag(inp->inp_vflag);
1909 	db_printf(")\n");
1910 
1911 	db_print_indent(indent);
1912 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
1913 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
1914 
1915 	db_print_indent(indent);
1916 #ifdef INET6
1917 	if (inp->inp_vflag & INP_IPV6) {
1918 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
1919 		    "in6p_moptions: %p\n", inp->in6p_options,
1920 		    inp->in6p_outputopts, inp->in6p_moptions);
1921 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
1922 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
1923 		    inp->in6p_hops);
1924 	} else
1925 #endif
1926 	{
1927 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
1928 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
1929 		    inp->inp_options, inp->inp_moptions);
1930 	}
1931 
1932 	db_print_indent(indent);
1933 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
1934 	    (uintmax_t)inp->inp_gencnt);
1935 }
1936 
1937 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
1938 {
1939 	struct inpcb *inp;
1940 
1941 	if (!have_addr) {
1942 		db_printf("usage: show inpcb <addr>\n");
1943 		return;
1944 	}
1945 	inp = (struct inpcb *)addr;
1946 
1947 	db_print_inpcb(inp, "inpcb", 0);
1948 }
1949 #endif
1950