1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free(struct inpcblbgroup *grp) 244 { 245 246 LIST_REMOVE(grp, il_list); 247 free(grp, M_PCB); 248 } 249 250 static struct inpcblbgroup * 251 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 252 struct inpcblbgroup *old_grp, int size) 253 { 254 struct inpcblbgroup *grp; 255 int i; 256 257 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 258 old_grp->il_lport, &old_grp->il_dependladdr, size); 259 if (!grp) 260 return (NULL); 261 262 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 263 ("invalid new local group size %d and old local group count %d", 264 grp->il_inpsiz, old_grp->il_inpcnt)); 265 266 for (i = 0; i < old_grp->il_inpcnt; ++i) 267 grp->il_inp[i] = old_grp->il_inp[i]; 268 grp->il_inpcnt = old_grp->il_inpcnt; 269 in_pcblbgroup_free(old_grp); 270 return (grp); 271 } 272 273 /* 274 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 275 * and shrink group if possible. 276 */ 277 static void 278 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 279 int i) 280 { 281 struct inpcblbgroup *grp = *grpp; 282 283 for (; i + 1 < grp->il_inpcnt; ++i) 284 grp->il_inp[i] = grp->il_inp[i + 1]; 285 grp->il_inpcnt--; 286 287 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 288 grp->il_inpcnt <= (grp->il_inpsiz / 4)) { 289 /* Shrink this group. */ 290 struct inpcblbgroup *new_grp = 291 in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 292 if (new_grp) 293 *grpp = new_grp; 294 } 295 return; 296 } 297 298 /* 299 * Add PCB to load balance group for SO_REUSEPORT_LB option. 300 */ 301 static int 302 in_pcbinslbgrouphash(struct inpcb *inp) 303 { 304 const static struct timeval interval = { 60, 0 }; 305 static struct timeval lastprint; 306 struct inpcbinfo *pcbinfo; 307 struct inpcblbgrouphead *hdr; 308 struct inpcblbgroup *grp; 309 uint16_t hashmask, lport; 310 uint32_t group_index; 311 struct ucred *cred; 312 313 pcbinfo = inp->inp_pcbinfo; 314 315 INP_WLOCK_ASSERT(inp); 316 INP_HASH_WLOCK_ASSERT(pcbinfo); 317 318 if (pcbinfo->ipi_lbgrouphashbase == NULL) 319 return (0); 320 321 hashmask = pcbinfo->ipi_lbgrouphashmask; 322 lport = inp->inp_lport; 323 group_index = INP_PCBLBGROUP_PORTHASH(lport, hashmask); 324 hdr = &pcbinfo->ipi_lbgrouphashbase[group_index]; 325 326 /* 327 * Don't allow jailed socket to join local group. 328 */ 329 if (inp->inp_socket != NULL) 330 cred = inp->inp_socket->so_cred; 331 else 332 cred = NULL; 333 if (cred != NULL && jailed(cred)) 334 return (0); 335 336 #ifdef INET6 337 /* 338 * Don't allow IPv4 mapped INET6 wild socket. 339 */ 340 if ((inp->inp_vflag & INP_IPV4) && 341 inp->inp_laddr.s_addr == INADDR_ANY && 342 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 343 return (0); 344 } 345 #endif 346 347 hdr = &pcbinfo->ipi_lbgrouphashbase[ 348 INP_PCBLBGROUP_PORTHASH(inp->inp_lport, 349 pcbinfo->ipi_lbgrouphashmask)]; 350 LIST_FOREACH(grp, hdr, il_list) { 351 if (grp->il_vflag == inp->inp_vflag && 352 grp->il_lport == inp->inp_lport && 353 memcmp(&grp->il_dependladdr, 354 &inp->inp_inc.inc_ie.ie_dependladdr, 355 sizeof(grp->il_dependladdr)) == 0) { 356 break; 357 } 358 } 359 if (grp == NULL) { 360 /* Create new load balance group. */ 361 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 362 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 363 INPCBLBGROUP_SIZMIN); 364 if (!grp) 365 return (ENOBUFS); 366 } else if (grp->il_inpcnt == grp->il_inpsiz) { 367 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 368 if (ratecheck(&lastprint, &interval)) 369 printf("lb group port %d, limit reached\n", 370 ntohs(grp->il_lport)); 371 return (0); 372 } 373 374 /* Expand this local group. */ 375 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 376 if (!grp) 377 return (ENOBUFS); 378 } 379 380 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 381 ("invalid local group size %d and count %d", 382 grp->il_inpsiz, grp->il_inpcnt)); 383 384 grp->il_inp[grp->il_inpcnt] = inp; 385 grp->il_inpcnt++; 386 return (0); 387 } 388 389 /* 390 * Remove PCB from load balance group. 391 */ 392 static void 393 in_pcbremlbgrouphash(struct inpcb *inp) 394 { 395 struct inpcbinfo *pcbinfo; 396 struct inpcblbgrouphead *hdr; 397 struct inpcblbgroup *grp; 398 int i; 399 400 pcbinfo = inp->inp_pcbinfo; 401 402 INP_WLOCK_ASSERT(inp); 403 INP_HASH_WLOCK_ASSERT(pcbinfo); 404 405 if (pcbinfo->ipi_lbgrouphashbase == NULL) 406 return; 407 408 hdr = &pcbinfo->ipi_lbgrouphashbase[ 409 INP_PCBLBGROUP_PORTHASH(inp->inp_lport, 410 pcbinfo->ipi_lbgrouphashmask)]; 411 412 LIST_FOREACH(grp, hdr, il_list) { 413 for (i = 0; i < grp->il_inpcnt; ++i) { 414 if (grp->il_inp[i] != inp) 415 continue; 416 417 if (grp->il_inpcnt == 1) { 418 /* We are the last, free this local group. */ 419 in_pcblbgroup_free(grp); 420 } else { 421 /* Pull up inpcbs, shrink group if possible. */ 422 in_pcblbgroup_reorder(hdr, &grp, i); 423 } 424 return; 425 } 426 } 427 } 428 429 /* 430 * Different protocols initialize their inpcbs differently - giving 431 * different name to the lock. But they all are disposed the same. 432 */ 433 static void 434 inpcb_fini(void *mem, int size) 435 { 436 struct inpcb *inp = mem; 437 438 INP_LOCK_DESTROY(inp); 439 } 440 441 /* 442 * Initialize an inpcbinfo -- we should be able to reduce the number of 443 * arguments in time. 444 */ 445 void 446 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 447 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 448 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 449 { 450 451 INP_INFO_LOCK_INIT(pcbinfo, name); 452 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 453 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 454 #ifdef VIMAGE 455 pcbinfo->ipi_vnet = curvnet; 456 #endif 457 pcbinfo->ipi_listhead = listhead; 458 CK_LIST_INIT(pcbinfo->ipi_listhead); 459 pcbinfo->ipi_count = 0; 460 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 461 &pcbinfo->ipi_hashmask); 462 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 463 &pcbinfo->ipi_porthashmask); 464 pcbinfo->ipi_lbgrouphashbase = hashinit(hash_nelements, M_PCB, 465 &pcbinfo->ipi_lbgrouphashmask); 466 #ifdef PCBGROUP 467 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 468 #endif 469 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 470 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 471 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 472 uma_zone_set_warning(pcbinfo->ipi_zone, 473 "kern.ipc.maxsockets limit reached"); 474 } 475 476 /* 477 * Destroy an inpcbinfo. 478 */ 479 void 480 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 481 { 482 483 KASSERT(pcbinfo->ipi_count == 0, 484 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 485 486 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 487 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 488 pcbinfo->ipi_porthashmask); 489 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 490 pcbinfo->ipi_lbgrouphashmask); 491 #ifdef PCBGROUP 492 in_pcbgroup_destroy(pcbinfo); 493 #endif 494 uma_zdestroy(pcbinfo->ipi_zone); 495 INP_LIST_LOCK_DESTROY(pcbinfo); 496 INP_HASH_LOCK_DESTROY(pcbinfo); 497 INP_INFO_LOCK_DESTROY(pcbinfo); 498 } 499 500 /* 501 * Allocate a PCB and associate it with the socket. 502 * On success return with the PCB locked. 503 */ 504 int 505 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 506 { 507 struct inpcb *inp; 508 int error; 509 510 #ifdef INVARIANTS 511 if (pcbinfo == &V_tcbinfo) { 512 INP_INFO_RLOCK_ASSERT(pcbinfo); 513 } else { 514 INP_INFO_WLOCK_ASSERT(pcbinfo); 515 } 516 #endif 517 518 error = 0; 519 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 520 if (inp == NULL) 521 return (ENOBUFS); 522 bzero(&inp->inp_start_zero, inp_zero_size); 523 inp->inp_pcbinfo = pcbinfo; 524 inp->inp_socket = so; 525 inp->inp_cred = crhold(so->so_cred); 526 inp->inp_inc.inc_fibnum = so->so_fibnum; 527 #ifdef MAC 528 error = mac_inpcb_init(inp, M_NOWAIT); 529 if (error != 0) 530 goto out; 531 mac_inpcb_create(so, inp); 532 #endif 533 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 534 error = ipsec_init_pcbpolicy(inp); 535 if (error != 0) { 536 #ifdef MAC 537 mac_inpcb_destroy(inp); 538 #endif 539 goto out; 540 } 541 #endif /*IPSEC*/ 542 #ifdef INET6 543 if (INP_SOCKAF(so) == AF_INET6) { 544 inp->inp_vflag |= INP_IPV6PROTO; 545 if (V_ip6_v6only) 546 inp->inp_flags |= IN6P_IPV6_V6ONLY; 547 } 548 #endif 549 INP_WLOCK(inp); 550 INP_LIST_WLOCK(pcbinfo); 551 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 552 pcbinfo->ipi_count++; 553 so->so_pcb = (caddr_t)inp; 554 #ifdef INET6 555 if (V_ip6_auto_flowlabel) 556 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 557 #endif 558 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 559 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 560 561 /* 562 * Routes in inpcb's can cache L2 as well; they are guaranteed 563 * to be cleaned up. 564 */ 565 inp->inp_route.ro_flags = RT_LLE_CACHE; 566 INP_LIST_WUNLOCK(pcbinfo); 567 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 568 out: 569 if (error != 0) { 570 crfree(inp->inp_cred); 571 uma_zfree(pcbinfo->ipi_zone, inp); 572 } 573 #endif 574 return (error); 575 } 576 577 #ifdef INET 578 int 579 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 580 { 581 int anonport, error; 582 583 INP_WLOCK_ASSERT(inp); 584 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 585 586 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 587 return (EINVAL); 588 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 589 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 590 &inp->inp_lport, cred); 591 if (error) 592 return (error); 593 if (in_pcbinshash(inp) != 0) { 594 inp->inp_laddr.s_addr = INADDR_ANY; 595 inp->inp_lport = 0; 596 return (EAGAIN); 597 } 598 if (anonport) 599 inp->inp_flags |= INP_ANONPORT; 600 return (0); 601 } 602 #endif 603 604 /* 605 * Select a local port (number) to use. 606 */ 607 #if defined(INET) || defined(INET6) 608 int 609 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 610 struct ucred *cred, int lookupflags) 611 { 612 struct inpcbinfo *pcbinfo; 613 struct inpcb *tmpinp; 614 unsigned short *lastport; 615 int count, dorandom, error; 616 u_short aux, first, last, lport; 617 #ifdef INET 618 struct in_addr laddr; 619 #endif 620 621 pcbinfo = inp->inp_pcbinfo; 622 623 /* 624 * Because no actual state changes occur here, a global write lock on 625 * the pcbinfo isn't required. 626 */ 627 INP_LOCK_ASSERT(inp); 628 INP_HASH_LOCK_ASSERT(pcbinfo); 629 630 if (inp->inp_flags & INP_HIGHPORT) { 631 first = V_ipport_hifirstauto; /* sysctl */ 632 last = V_ipport_hilastauto; 633 lastport = &pcbinfo->ipi_lasthi; 634 } else if (inp->inp_flags & INP_LOWPORT) { 635 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 636 if (error) 637 return (error); 638 first = V_ipport_lowfirstauto; /* 1023 */ 639 last = V_ipport_lowlastauto; /* 600 */ 640 lastport = &pcbinfo->ipi_lastlow; 641 } else { 642 first = V_ipport_firstauto; /* sysctl */ 643 last = V_ipport_lastauto; 644 lastport = &pcbinfo->ipi_lastport; 645 } 646 /* 647 * For UDP(-Lite), use random port allocation as long as the user 648 * allows it. For TCP (and as of yet unknown) connections, 649 * use random port allocation only if the user allows it AND 650 * ipport_tick() allows it. 651 */ 652 if (V_ipport_randomized && 653 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 654 pcbinfo == &V_ulitecbinfo)) 655 dorandom = 1; 656 else 657 dorandom = 0; 658 /* 659 * It makes no sense to do random port allocation if 660 * we have the only port available. 661 */ 662 if (first == last) 663 dorandom = 0; 664 /* Make sure to not include UDP(-Lite) packets in the count. */ 665 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 666 V_ipport_tcpallocs++; 667 /* 668 * Instead of having two loops further down counting up or down 669 * make sure that first is always <= last and go with only one 670 * code path implementing all logic. 671 */ 672 if (first > last) { 673 aux = first; 674 first = last; 675 last = aux; 676 } 677 678 #ifdef INET 679 /* Make the compiler happy. */ 680 laddr.s_addr = 0; 681 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 682 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 683 __func__, inp)); 684 laddr = *laddrp; 685 } 686 #endif 687 tmpinp = NULL; /* Make compiler happy. */ 688 lport = *lportp; 689 690 if (dorandom) 691 *lastport = first + (arc4random() % (last - first)); 692 693 count = last - first; 694 695 do { 696 if (count-- < 0) /* completely used? */ 697 return (EADDRNOTAVAIL); 698 ++*lastport; 699 if (*lastport < first || *lastport > last) 700 *lastport = first; 701 lport = htons(*lastport); 702 703 #ifdef INET6 704 if ((inp->inp_vflag & INP_IPV6) != 0) 705 tmpinp = in6_pcblookup_local(pcbinfo, 706 &inp->in6p_laddr, lport, lookupflags, cred); 707 #endif 708 #if defined(INET) && defined(INET6) 709 else 710 #endif 711 #ifdef INET 712 tmpinp = in_pcblookup_local(pcbinfo, laddr, 713 lport, lookupflags, cred); 714 #endif 715 } while (tmpinp != NULL); 716 717 #ifdef INET 718 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 719 laddrp->s_addr = laddr.s_addr; 720 #endif 721 *lportp = lport; 722 723 return (0); 724 } 725 726 /* 727 * Return cached socket options. 728 */ 729 int 730 inp_so_options(const struct inpcb *inp) 731 { 732 int so_options; 733 734 so_options = 0; 735 736 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 737 so_options |= SO_REUSEPORT_LB; 738 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 739 so_options |= SO_REUSEPORT; 740 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 741 so_options |= SO_REUSEADDR; 742 return (so_options); 743 } 744 #endif /* INET || INET6 */ 745 746 /* 747 * Check if a new BINDMULTI socket is allowed to be created. 748 * 749 * ni points to the new inp. 750 * oi points to the exisitng inp. 751 * 752 * This checks whether the existing inp also has BINDMULTI and 753 * whether the credentials match. 754 */ 755 int 756 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 757 { 758 /* Check permissions match */ 759 if ((ni->inp_flags2 & INP_BINDMULTI) && 760 (ni->inp_cred->cr_uid != 761 oi->inp_cred->cr_uid)) 762 return (0); 763 764 /* Check the existing inp has BINDMULTI set */ 765 if ((ni->inp_flags2 & INP_BINDMULTI) && 766 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 767 return (0); 768 769 /* 770 * We're okay - either INP_BINDMULTI isn't set on ni, or 771 * it is and it matches the checks. 772 */ 773 return (1); 774 } 775 776 #ifdef INET 777 /* 778 * Set up a bind operation on a PCB, performing port allocation 779 * as required, but do not actually modify the PCB. Callers can 780 * either complete the bind by setting inp_laddr/inp_lport and 781 * calling in_pcbinshash(), or they can just use the resulting 782 * port and address to authorise the sending of a once-off packet. 783 * 784 * On error, the values of *laddrp and *lportp are not changed. 785 */ 786 int 787 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 788 u_short *lportp, struct ucred *cred) 789 { 790 struct socket *so = inp->inp_socket; 791 struct sockaddr_in *sin; 792 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 793 struct in_addr laddr; 794 u_short lport = 0; 795 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 796 int error; 797 798 /* 799 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 800 * so that we don't have to add to the (already messy) code below. 801 */ 802 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 803 804 /* 805 * No state changes, so read locks are sufficient here. 806 */ 807 INP_LOCK_ASSERT(inp); 808 INP_HASH_LOCK_ASSERT(pcbinfo); 809 810 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 811 return (EADDRNOTAVAIL); 812 laddr.s_addr = *laddrp; 813 if (nam != NULL && laddr.s_addr != INADDR_ANY) 814 return (EINVAL); 815 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 816 lookupflags = INPLOOKUP_WILDCARD; 817 if (nam == NULL) { 818 if ((error = prison_local_ip4(cred, &laddr)) != 0) 819 return (error); 820 } else { 821 sin = (struct sockaddr_in *)nam; 822 if (nam->sa_len != sizeof (*sin)) 823 return (EINVAL); 824 #ifdef notdef 825 /* 826 * We should check the family, but old programs 827 * incorrectly fail to initialize it. 828 */ 829 if (sin->sin_family != AF_INET) 830 return (EAFNOSUPPORT); 831 #endif 832 error = prison_local_ip4(cred, &sin->sin_addr); 833 if (error) 834 return (error); 835 if (sin->sin_port != *lportp) { 836 /* Don't allow the port to change. */ 837 if (*lportp != 0) 838 return (EINVAL); 839 lport = sin->sin_port; 840 } 841 /* NB: lport is left as 0 if the port isn't being changed. */ 842 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 843 /* 844 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 845 * allow complete duplication of binding if 846 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 847 * and a multicast address is bound on both 848 * new and duplicated sockets. 849 */ 850 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 851 reuseport = SO_REUSEADDR|SO_REUSEPORT; 852 /* 853 * XXX: How to deal with SO_REUSEPORT_LB here? 854 * Treat same as SO_REUSEPORT for now. 855 */ 856 if ((so->so_options & 857 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 858 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 859 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 860 sin->sin_port = 0; /* yech... */ 861 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 862 /* 863 * Is the address a local IP address? 864 * If INP_BINDANY is set, then the socket may be bound 865 * to any endpoint address, local or not. 866 */ 867 if ((inp->inp_flags & INP_BINDANY) == 0 && 868 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 869 return (EADDRNOTAVAIL); 870 } 871 laddr = sin->sin_addr; 872 if (lport) { 873 struct inpcb *t; 874 struct tcptw *tw; 875 876 /* GROSS */ 877 if (ntohs(lport) <= V_ipport_reservedhigh && 878 ntohs(lport) >= V_ipport_reservedlow && 879 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 880 0)) 881 return (EACCES); 882 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 883 priv_check_cred(inp->inp_cred, 884 PRIV_NETINET_REUSEPORT, 0) != 0) { 885 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 886 lport, INPLOOKUP_WILDCARD, cred); 887 /* 888 * XXX 889 * This entire block sorely needs a rewrite. 890 */ 891 if (t && 892 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 893 ((t->inp_flags & INP_TIMEWAIT) == 0) && 894 (so->so_type != SOCK_STREAM || 895 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 896 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 897 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 898 (t->inp_flags2 & INP_REUSEPORT) || 899 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 900 (inp->inp_cred->cr_uid != 901 t->inp_cred->cr_uid)) 902 return (EADDRINUSE); 903 904 /* 905 * If the socket is a BINDMULTI socket, then 906 * the credentials need to match and the 907 * original socket also has to have been bound 908 * with BINDMULTI. 909 */ 910 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 911 return (EADDRINUSE); 912 } 913 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 914 lport, lookupflags, cred); 915 if (t && (t->inp_flags & INP_TIMEWAIT)) { 916 /* 917 * XXXRW: If an incpb has had its timewait 918 * state recycled, we treat the address as 919 * being in use (for now). This is better 920 * than a panic, but not desirable. 921 */ 922 tw = intotw(t); 923 if (tw == NULL || 924 ((reuseport & tw->tw_so_options) == 0 && 925 (reuseport_lb & 926 tw->tw_so_options) == 0)) { 927 return (EADDRINUSE); 928 } 929 } else if (t && 930 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 931 (reuseport & inp_so_options(t)) == 0 && 932 (reuseport_lb & inp_so_options(t)) == 0) { 933 #ifdef INET6 934 if (ntohl(sin->sin_addr.s_addr) != 935 INADDR_ANY || 936 ntohl(t->inp_laddr.s_addr) != 937 INADDR_ANY || 938 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 939 (t->inp_vflag & INP_IPV6PROTO) == 0) 940 #endif 941 return (EADDRINUSE); 942 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 943 return (EADDRINUSE); 944 } 945 } 946 } 947 if (*lportp != 0) 948 lport = *lportp; 949 if (lport == 0) { 950 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 951 if (error != 0) 952 return (error); 953 954 } 955 *laddrp = laddr.s_addr; 956 *lportp = lport; 957 return (0); 958 } 959 960 /* 961 * Connect from a socket to a specified address. 962 * Both address and port must be specified in argument sin. 963 * If don't have a local address for this socket yet, 964 * then pick one. 965 */ 966 int 967 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 968 struct ucred *cred, struct mbuf *m) 969 { 970 u_short lport, fport; 971 in_addr_t laddr, faddr; 972 int anonport, error; 973 974 INP_WLOCK_ASSERT(inp); 975 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 976 977 lport = inp->inp_lport; 978 laddr = inp->inp_laddr.s_addr; 979 anonport = (lport == 0); 980 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 981 NULL, cred); 982 if (error) 983 return (error); 984 985 /* Do the initial binding of the local address if required. */ 986 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 987 inp->inp_lport = lport; 988 inp->inp_laddr.s_addr = laddr; 989 if (in_pcbinshash(inp) != 0) { 990 inp->inp_laddr.s_addr = INADDR_ANY; 991 inp->inp_lport = 0; 992 return (EAGAIN); 993 } 994 } 995 996 /* Commit the remaining changes. */ 997 inp->inp_lport = lport; 998 inp->inp_laddr.s_addr = laddr; 999 inp->inp_faddr.s_addr = faddr; 1000 inp->inp_fport = fport; 1001 in_pcbrehash_mbuf(inp, m); 1002 1003 if (anonport) 1004 inp->inp_flags |= INP_ANONPORT; 1005 return (0); 1006 } 1007 1008 int 1009 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1010 { 1011 1012 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1013 } 1014 1015 /* 1016 * Do proper source address selection on an unbound socket in case 1017 * of connect. Take jails into account as well. 1018 */ 1019 int 1020 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1021 struct ucred *cred) 1022 { 1023 struct ifaddr *ifa; 1024 struct sockaddr *sa; 1025 struct sockaddr_in *sin; 1026 struct route sro; 1027 int error; 1028 1029 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1030 /* 1031 * Bypass source address selection and use the primary jail IP 1032 * if requested. 1033 */ 1034 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1035 return (0); 1036 1037 error = 0; 1038 bzero(&sro, sizeof(sro)); 1039 1040 sin = (struct sockaddr_in *)&sro.ro_dst; 1041 sin->sin_family = AF_INET; 1042 sin->sin_len = sizeof(struct sockaddr_in); 1043 sin->sin_addr.s_addr = faddr->s_addr; 1044 1045 /* 1046 * If route is known our src addr is taken from the i/f, 1047 * else punt. 1048 * 1049 * Find out route to destination. 1050 */ 1051 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1052 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1053 1054 /* 1055 * If we found a route, use the address corresponding to 1056 * the outgoing interface. 1057 * 1058 * Otherwise assume faddr is reachable on a directly connected 1059 * network and try to find a corresponding interface to take 1060 * the source address from. 1061 */ 1062 NET_EPOCH_ENTER(); 1063 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1064 struct in_ifaddr *ia; 1065 struct ifnet *ifp; 1066 1067 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1068 inp->inp_socket->so_fibnum)); 1069 if (ia == NULL) { 1070 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1071 inp->inp_socket->so_fibnum)); 1072 1073 } 1074 if (ia == NULL) { 1075 error = ENETUNREACH; 1076 goto done; 1077 } 1078 1079 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1080 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1081 goto done; 1082 } 1083 1084 ifp = ia->ia_ifp; 1085 ia = NULL; 1086 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1087 1088 sa = ifa->ifa_addr; 1089 if (sa->sa_family != AF_INET) 1090 continue; 1091 sin = (struct sockaddr_in *)sa; 1092 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1093 ia = (struct in_ifaddr *)ifa; 1094 break; 1095 } 1096 } 1097 if (ia != NULL) { 1098 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1099 goto done; 1100 } 1101 1102 /* 3. As a last resort return the 'default' jail address. */ 1103 error = prison_get_ip4(cred, laddr); 1104 goto done; 1105 } 1106 1107 /* 1108 * If the outgoing interface on the route found is not 1109 * a loopback interface, use the address from that interface. 1110 * In case of jails do those three steps: 1111 * 1. check if the interface address belongs to the jail. If so use it. 1112 * 2. check if we have any address on the outgoing interface 1113 * belonging to this jail. If so use it. 1114 * 3. as a last resort return the 'default' jail address. 1115 */ 1116 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1117 struct in_ifaddr *ia; 1118 struct ifnet *ifp; 1119 1120 /* If not jailed, use the default returned. */ 1121 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1122 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1123 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1124 goto done; 1125 } 1126 1127 /* Jailed. */ 1128 /* 1. Check if the iface address belongs to the jail. */ 1129 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1130 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1131 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1132 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1133 goto done; 1134 } 1135 1136 /* 1137 * 2. Check if we have any address on the outgoing interface 1138 * belonging to this jail. 1139 */ 1140 ia = NULL; 1141 ifp = sro.ro_rt->rt_ifp; 1142 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1143 sa = ifa->ifa_addr; 1144 if (sa->sa_family != AF_INET) 1145 continue; 1146 sin = (struct sockaddr_in *)sa; 1147 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1148 ia = (struct in_ifaddr *)ifa; 1149 break; 1150 } 1151 } 1152 if (ia != NULL) { 1153 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1154 goto done; 1155 } 1156 1157 /* 3. As a last resort return the 'default' jail address. */ 1158 error = prison_get_ip4(cred, laddr); 1159 goto done; 1160 } 1161 1162 /* 1163 * The outgoing interface is marked with 'loopback net', so a route 1164 * to ourselves is here. 1165 * Try to find the interface of the destination address and then 1166 * take the address from there. That interface is not necessarily 1167 * a loopback interface. 1168 * In case of jails, check that it is an address of the jail 1169 * and if we cannot find, fall back to the 'default' jail address. 1170 */ 1171 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1172 struct sockaddr_in sain; 1173 struct in_ifaddr *ia; 1174 1175 bzero(&sain, sizeof(struct sockaddr_in)); 1176 sain.sin_family = AF_INET; 1177 sain.sin_len = sizeof(struct sockaddr_in); 1178 sain.sin_addr.s_addr = faddr->s_addr; 1179 1180 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1181 inp->inp_socket->so_fibnum)); 1182 if (ia == NULL) 1183 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1184 inp->inp_socket->so_fibnum)); 1185 if (ia == NULL) 1186 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1187 1188 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1189 if (ia == NULL) { 1190 error = ENETUNREACH; 1191 goto done; 1192 } 1193 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1194 goto done; 1195 } 1196 1197 /* Jailed. */ 1198 if (ia != NULL) { 1199 struct ifnet *ifp; 1200 1201 ifp = ia->ia_ifp; 1202 ia = NULL; 1203 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1204 sa = ifa->ifa_addr; 1205 if (sa->sa_family != AF_INET) 1206 continue; 1207 sin = (struct sockaddr_in *)sa; 1208 if (prison_check_ip4(cred, 1209 &sin->sin_addr) == 0) { 1210 ia = (struct in_ifaddr *)ifa; 1211 break; 1212 } 1213 } 1214 if (ia != NULL) { 1215 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1216 goto done; 1217 } 1218 } 1219 1220 /* 3. As a last resort return the 'default' jail address. */ 1221 error = prison_get_ip4(cred, laddr); 1222 goto done; 1223 } 1224 1225 done: 1226 NET_EPOCH_EXIT(); 1227 if (sro.ro_rt != NULL) 1228 RTFREE(sro.ro_rt); 1229 return (error); 1230 } 1231 1232 /* 1233 * Set up for a connect from a socket to the specified address. 1234 * On entry, *laddrp and *lportp should contain the current local 1235 * address and port for the PCB; these are updated to the values 1236 * that should be placed in inp_laddr and inp_lport to complete 1237 * the connect. 1238 * 1239 * On success, *faddrp and *fportp will be set to the remote address 1240 * and port. These are not updated in the error case. 1241 * 1242 * If the operation fails because the connection already exists, 1243 * *oinpp will be set to the PCB of that connection so that the 1244 * caller can decide to override it. In all other cases, *oinpp 1245 * is set to NULL. 1246 */ 1247 int 1248 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1249 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1250 struct inpcb **oinpp, struct ucred *cred) 1251 { 1252 struct rm_priotracker in_ifa_tracker; 1253 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1254 struct in_ifaddr *ia; 1255 struct inpcb *oinp; 1256 struct in_addr laddr, faddr; 1257 u_short lport, fport; 1258 int error; 1259 1260 /* 1261 * Because a global state change doesn't actually occur here, a read 1262 * lock is sufficient. 1263 */ 1264 INP_LOCK_ASSERT(inp); 1265 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1266 1267 if (oinpp != NULL) 1268 *oinpp = NULL; 1269 if (nam->sa_len != sizeof (*sin)) 1270 return (EINVAL); 1271 if (sin->sin_family != AF_INET) 1272 return (EAFNOSUPPORT); 1273 if (sin->sin_port == 0) 1274 return (EADDRNOTAVAIL); 1275 laddr.s_addr = *laddrp; 1276 lport = *lportp; 1277 faddr = sin->sin_addr; 1278 fport = sin->sin_port; 1279 1280 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1281 /* 1282 * If the destination address is INADDR_ANY, 1283 * use the primary local address. 1284 * If the supplied address is INADDR_BROADCAST, 1285 * and the primary interface supports broadcast, 1286 * choose the broadcast address for that interface. 1287 */ 1288 if (faddr.s_addr == INADDR_ANY) { 1289 IN_IFADDR_RLOCK(&in_ifa_tracker); 1290 faddr = 1291 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1292 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1293 if (cred != NULL && 1294 (error = prison_get_ip4(cred, &faddr)) != 0) 1295 return (error); 1296 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1297 IN_IFADDR_RLOCK(&in_ifa_tracker); 1298 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1299 IFF_BROADCAST) 1300 faddr = satosin(&CK_STAILQ_FIRST( 1301 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1302 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1303 } 1304 } 1305 if (laddr.s_addr == INADDR_ANY) { 1306 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1307 /* 1308 * If the destination address is multicast and an outgoing 1309 * interface has been set as a multicast option, prefer the 1310 * address of that interface as our source address. 1311 */ 1312 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1313 inp->inp_moptions != NULL) { 1314 struct ip_moptions *imo; 1315 struct ifnet *ifp; 1316 1317 imo = inp->inp_moptions; 1318 if (imo->imo_multicast_ifp != NULL) { 1319 ifp = imo->imo_multicast_ifp; 1320 IN_IFADDR_RLOCK(&in_ifa_tracker); 1321 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1322 if ((ia->ia_ifp == ifp) && 1323 (cred == NULL || 1324 prison_check_ip4(cred, 1325 &ia->ia_addr.sin_addr) == 0)) 1326 break; 1327 } 1328 if (ia == NULL) 1329 error = EADDRNOTAVAIL; 1330 else { 1331 laddr = ia->ia_addr.sin_addr; 1332 error = 0; 1333 } 1334 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1335 } 1336 } 1337 if (error) 1338 return (error); 1339 } 1340 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1341 laddr, lport, 0, NULL); 1342 if (oinp != NULL) { 1343 if (oinpp != NULL) 1344 *oinpp = oinp; 1345 return (EADDRINUSE); 1346 } 1347 if (lport == 0) { 1348 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1349 cred); 1350 if (error) 1351 return (error); 1352 } 1353 *laddrp = laddr.s_addr; 1354 *lportp = lport; 1355 *faddrp = faddr.s_addr; 1356 *fportp = fport; 1357 return (0); 1358 } 1359 1360 void 1361 in_pcbdisconnect(struct inpcb *inp) 1362 { 1363 1364 INP_WLOCK_ASSERT(inp); 1365 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1366 1367 inp->inp_faddr.s_addr = INADDR_ANY; 1368 inp->inp_fport = 0; 1369 in_pcbrehash(inp); 1370 } 1371 #endif /* INET */ 1372 1373 /* 1374 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1375 * For most protocols, this will be invoked immediately prior to calling 1376 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1377 * socket, in which case in_pcbfree() is deferred. 1378 */ 1379 void 1380 in_pcbdetach(struct inpcb *inp) 1381 { 1382 1383 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1384 1385 #ifdef RATELIMIT 1386 if (inp->inp_snd_tag != NULL) 1387 in_pcbdetach_txrtlmt(inp); 1388 #endif 1389 inp->inp_socket->so_pcb = NULL; 1390 inp->inp_socket = NULL; 1391 } 1392 1393 /* 1394 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1395 * stability of an inpcb pointer despite the inpcb lock being released. This 1396 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1397 * but where the inpcb lock may already held, or when acquiring a reference 1398 * via a pcbgroup. 1399 * 1400 * in_pcbref() should be used only to provide brief memory stability, and 1401 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1402 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1403 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1404 * lock and rele are the *only* safe operations that may be performed on the 1405 * inpcb. 1406 * 1407 * While the inpcb will not be freed, releasing the inpcb lock means that the 1408 * connection's state may change, so the caller should be careful to 1409 * revalidate any cached state on reacquiring the lock. Drop the reference 1410 * using in_pcbrele(). 1411 */ 1412 void 1413 in_pcbref(struct inpcb *inp) 1414 { 1415 1416 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1417 1418 refcount_acquire(&inp->inp_refcount); 1419 } 1420 1421 /* 1422 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1423 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1424 * return a flag indicating whether or not the inpcb remains valid. If it is 1425 * valid, we return with the inpcb lock held. 1426 * 1427 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1428 * reference on an inpcb. Historically more work was done here (actually, in 1429 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1430 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1431 * about memory stability (and continued use of the write lock). 1432 */ 1433 int 1434 in_pcbrele_rlocked(struct inpcb *inp) 1435 { 1436 struct inpcbinfo *pcbinfo; 1437 1438 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1439 1440 INP_RLOCK_ASSERT(inp); 1441 1442 if (refcount_release(&inp->inp_refcount) == 0) { 1443 /* 1444 * If the inpcb has been freed, let the caller know, even if 1445 * this isn't the last reference. 1446 */ 1447 if (inp->inp_flags2 & INP_FREED) { 1448 INP_RUNLOCK(inp); 1449 return (1); 1450 } 1451 return (0); 1452 } 1453 1454 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1455 #ifdef TCPHPTS 1456 if (inp->inp_in_hpts || inp->inp_in_input) { 1457 struct tcp_hpts_entry *hpts; 1458 /* 1459 * We should not be on the hpts at 1460 * this point in any form. we must 1461 * get the lock to be sure. 1462 */ 1463 hpts = tcp_hpts_lock(inp); 1464 if (inp->inp_in_hpts) 1465 panic("Hpts:%p inp:%p at free still on hpts", 1466 hpts, inp); 1467 mtx_unlock(&hpts->p_mtx); 1468 hpts = tcp_input_lock(inp); 1469 if (inp->inp_in_input) 1470 panic("Hpts:%p inp:%p at free still on input hpts", 1471 hpts, inp); 1472 mtx_unlock(&hpts->p_mtx); 1473 } 1474 #endif 1475 INP_RUNLOCK(inp); 1476 pcbinfo = inp->inp_pcbinfo; 1477 uma_zfree(pcbinfo->ipi_zone, inp); 1478 return (1); 1479 } 1480 1481 int 1482 in_pcbrele_wlocked(struct inpcb *inp) 1483 { 1484 struct inpcbinfo *pcbinfo; 1485 1486 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1487 1488 INP_WLOCK_ASSERT(inp); 1489 1490 if (refcount_release(&inp->inp_refcount) == 0) { 1491 /* 1492 * If the inpcb has been freed, let the caller know, even if 1493 * this isn't the last reference. 1494 */ 1495 if (inp->inp_flags2 & INP_FREED) { 1496 INP_WUNLOCK(inp); 1497 return (1); 1498 } 1499 return (0); 1500 } 1501 1502 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1503 #ifdef TCPHPTS 1504 if (inp->inp_in_hpts || inp->inp_in_input) { 1505 struct tcp_hpts_entry *hpts; 1506 /* 1507 * We should not be on the hpts at 1508 * this point in any form. we must 1509 * get the lock to be sure. 1510 */ 1511 hpts = tcp_hpts_lock(inp); 1512 if (inp->inp_in_hpts) 1513 panic("Hpts:%p inp:%p at free still on hpts", 1514 hpts, inp); 1515 mtx_unlock(&hpts->p_mtx); 1516 hpts = tcp_input_lock(inp); 1517 if (inp->inp_in_input) 1518 panic("Hpts:%p inp:%p at free still on input hpts", 1519 hpts, inp); 1520 mtx_unlock(&hpts->p_mtx); 1521 } 1522 #endif 1523 INP_WUNLOCK(inp); 1524 pcbinfo = inp->inp_pcbinfo; 1525 uma_zfree(pcbinfo->ipi_zone, inp); 1526 return (1); 1527 } 1528 1529 /* 1530 * Temporary wrapper. 1531 */ 1532 int 1533 in_pcbrele(struct inpcb *inp) 1534 { 1535 1536 return (in_pcbrele_wlocked(inp)); 1537 } 1538 1539 void 1540 in_pcblist_rele_rlocked(epoch_context_t ctx) 1541 { 1542 struct in_pcblist *il; 1543 struct inpcb *inp; 1544 struct inpcbinfo *pcbinfo; 1545 int i, n; 1546 1547 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1548 pcbinfo = il->il_pcbinfo; 1549 n = il->il_count; 1550 INP_INFO_WLOCK(pcbinfo); 1551 for (i = 0; i < n; i++) { 1552 inp = il->il_inp_list[i]; 1553 INP_RLOCK(inp); 1554 if (!in_pcbrele_rlocked(inp)) 1555 INP_RUNLOCK(inp); 1556 } 1557 INP_INFO_WUNLOCK(pcbinfo); 1558 free(il, M_TEMP); 1559 } 1560 1561 static void 1562 inpcbport_free(epoch_context_t ctx) 1563 { 1564 struct inpcbport *phd; 1565 1566 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1567 free(phd, M_PCB); 1568 } 1569 1570 static void 1571 in_pcbfree_deferred(epoch_context_t ctx) 1572 { 1573 struct inpcb *inp; 1574 int released __unused; 1575 1576 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1577 1578 INP_WLOCK(inp); 1579 #ifdef INET 1580 struct ip_moptions *imo = inp->inp_moptions; 1581 inp->inp_moptions = NULL; 1582 #endif 1583 /* XXXRW: Do as much as possible here. */ 1584 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1585 if (inp->inp_sp != NULL) 1586 ipsec_delete_pcbpolicy(inp); 1587 #endif 1588 #ifdef INET6 1589 struct ip6_moptions *im6o = NULL; 1590 if (inp->inp_vflag & INP_IPV6PROTO) { 1591 ip6_freepcbopts(inp->in6p_outputopts); 1592 im6o = inp->in6p_moptions; 1593 inp->in6p_moptions = NULL; 1594 } 1595 #endif 1596 if (inp->inp_options) 1597 (void)m_free(inp->inp_options); 1598 inp->inp_vflag = 0; 1599 crfree(inp->inp_cred); 1600 #ifdef MAC 1601 mac_inpcb_destroy(inp); 1602 #endif 1603 released = in_pcbrele_wlocked(inp); 1604 MPASS(released); 1605 #ifdef INET6 1606 ip6_freemoptions(im6o); 1607 #endif 1608 #ifdef INET 1609 inp_freemoptions(imo); 1610 #endif 1611 } 1612 1613 /* 1614 * Unconditionally schedule an inpcb to be freed by decrementing its 1615 * reference count, which should occur only after the inpcb has been detached 1616 * from its socket. If another thread holds a temporary reference (acquired 1617 * using in_pcbref()) then the free is deferred until that reference is 1618 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1619 * work, including removal from global lists, is done in this context, where 1620 * the pcbinfo lock is held. 1621 */ 1622 void 1623 in_pcbfree(struct inpcb *inp) 1624 { 1625 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1626 1627 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1628 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1629 ("%s: called twice for pcb %p", __func__, inp)); 1630 if (inp->inp_flags2 & INP_FREED) { 1631 INP_WUNLOCK(inp); 1632 return; 1633 } 1634 1635 #ifdef INVARIANTS 1636 if (pcbinfo == &V_tcbinfo) { 1637 INP_INFO_LOCK_ASSERT(pcbinfo); 1638 } else { 1639 INP_INFO_WLOCK_ASSERT(pcbinfo); 1640 } 1641 #endif 1642 INP_WLOCK_ASSERT(inp); 1643 INP_LIST_WLOCK(pcbinfo); 1644 in_pcbremlists(inp); 1645 INP_LIST_WUNLOCK(pcbinfo); 1646 RO_INVALIDATE_CACHE(&inp->inp_route); 1647 /* mark as destruction in progress */ 1648 inp->inp_flags2 |= INP_FREED; 1649 INP_WUNLOCK(inp); 1650 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1651 } 1652 1653 /* 1654 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1655 * port reservation, and preventing it from being returned by inpcb lookups. 1656 * 1657 * It is used by TCP to mark an inpcb as unused and avoid future packet 1658 * delivery or event notification when a socket remains open but TCP has 1659 * closed. This might occur as a result of a shutdown()-initiated TCP close 1660 * or a RST on the wire, and allows the port binding to be reused while still 1661 * maintaining the invariant that so_pcb always points to a valid inpcb until 1662 * in_pcbdetach(). 1663 * 1664 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1665 * in_pcbnotifyall() and in_pcbpurgeif0()? 1666 */ 1667 void 1668 in_pcbdrop(struct inpcb *inp) 1669 { 1670 1671 INP_WLOCK_ASSERT(inp); 1672 #ifdef INVARIANTS 1673 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1674 MPASS(inp->inp_refcount > 1); 1675 #endif 1676 1677 /* 1678 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1679 * the hash lock...? 1680 */ 1681 inp->inp_flags |= INP_DROPPED; 1682 if (inp->inp_flags & INP_INHASHLIST) { 1683 struct inpcbport *phd = inp->inp_phd; 1684 1685 INP_HASH_WLOCK(inp->inp_pcbinfo); 1686 in_pcbremlbgrouphash(inp); 1687 CK_LIST_REMOVE(inp, inp_hash); 1688 CK_LIST_REMOVE(inp, inp_portlist); 1689 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1690 CK_LIST_REMOVE(phd, phd_hash); 1691 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1692 } 1693 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1694 inp->inp_flags &= ~INP_INHASHLIST; 1695 #ifdef PCBGROUP 1696 in_pcbgroup_remove(inp); 1697 #endif 1698 } 1699 } 1700 1701 #ifdef INET 1702 /* 1703 * Common routines to return the socket addresses associated with inpcbs. 1704 */ 1705 struct sockaddr * 1706 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1707 { 1708 struct sockaddr_in *sin; 1709 1710 sin = malloc(sizeof *sin, M_SONAME, 1711 M_WAITOK | M_ZERO); 1712 sin->sin_family = AF_INET; 1713 sin->sin_len = sizeof(*sin); 1714 sin->sin_addr = *addr_p; 1715 sin->sin_port = port; 1716 1717 return (struct sockaddr *)sin; 1718 } 1719 1720 int 1721 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1722 { 1723 struct inpcb *inp; 1724 struct in_addr addr; 1725 in_port_t port; 1726 1727 inp = sotoinpcb(so); 1728 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1729 1730 INP_RLOCK(inp); 1731 port = inp->inp_lport; 1732 addr = inp->inp_laddr; 1733 INP_RUNLOCK(inp); 1734 1735 *nam = in_sockaddr(port, &addr); 1736 return 0; 1737 } 1738 1739 int 1740 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1741 { 1742 struct inpcb *inp; 1743 struct in_addr addr; 1744 in_port_t port; 1745 1746 inp = sotoinpcb(so); 1747 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1748 1749 INP_RLOCK(inp); 1750 port = inp->inp_fport; 1751 addr = inp->inp_faddr; 1752 INP_RUNLOCK(inp); 1753 1754 *nam = in_sockaddr(port, &addr); 1755 return 0; 1756 } 1757 1758 void 1759 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1760 struct inpcb *(*notify)(struct inpcb *, int)) 1761 { 1762 struct inpcb *inp, *inp_temp; 1763 1764 INP_INFO_WLOCK(pcbinfo); 1765 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1766 INP_WLOCK(inp); 1767 #ifdef INET6 1768 if ((inp->inp_vflag & INP_IPV4) == 0) { 1769 INP_WUNLOCK(inp); 1770 continue; 1771 } 1772 #endif 1773 if (inp->inp_faddr.s_addr != faddr.s_addr || 1774 inp->inp_socket == NULL) { 1775 INP_WUNLOCK(inp); 1776 continue; 1777 } 1778 if ((*notify)(inp, errno)) 1779 INP_WUNLOCK(inp); 1780 } 1781 INP_INFO_WUNLOCK(pcbinfo); 1782 } 1783 1784 void 1785 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1786 { 1787 struct inpcb *inp; 1788 struct ip_moptions *imo; 1789 int i, gap; 1790 1791 INP_INFO_WLOCK(pcbinfo); 1792 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1793 INP_WLOCK(inp); 1794 imo = inp->inp_moptions; 1795 if ((inp->inp_vflag & INP_IPV4) && 1796 imo != NULL) { 1797 /* 1798 * Unselect the outgoing interface if it is being 1799 * detached. 1800 */ 1801 if (imo->imo_multicast_ifp == ifp) 1802 imo->imo_multicast_ifp = NULL; 1803 1804 /* 1805 * Drop multicast group membership if we joined 1806 * through the interface being detached. 1807 * 1808 * XXX This can all be deferred to an epoch_call 1809 */ 1810 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1811 i++) { 1812 if (imo->imo_membership[i]->inm_ifp == ifp) { 1813 IN_MULTI_LOCK_ASSERT(); 1814 in_leavegroup_locked(imo->imo_membership[i], NULL); 1815 gap++; 1816 } else if (gap != 0) 1817 imo->imo_membership[i - gap] = 1818 imo->imo_membership[i]; 1819 } 1820 imo->imo_num_memberships -= gap; 1821 } 1822 INP_WUNLOCK(inp); 1823 } 1824 INP_INFO_WUNLOCK(pcbinfo); 1825 } 1826 1827 /* 1828 * Lookup a PCB based on the local address and port. Caller must hold the 1829 * hash lock. No inpcb locks or references are acquired. 1830 */ 1831 #define INP_LOOKUP_MAPPED_PCB_COST 3 1832 struct inpcb * 1833 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1834 u_short lport, int lookupflags, struct ucred *cred) 1835 { 1836 struct inpcb *inp; 1837 #ifdef INET6 1838 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1839 #else 1840 int matchwild = 3; 1841 #endif 1842 int wildcard; 1843 1844 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1845 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1846 1847 INP_HASH_LOCK_ASSERT(pcbinfo); 1848 1849 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1850 struct inpcbhead *head; 1851 /* 1852 * Look for an unconnected (wildcard foreign addr) PCB that 1853 * matches the local address and port we're looking for. 1854 */ 1855 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1856 0, pcbinfo->ipi_hashmask)]; 1857 CK_LIST_FOREACH(inp, head, inp_hash) { 1858 #ifdef INET6 1859 /* XXX inp locking */ 1860 if ((inp->inp_vflag & INP_IPV4) == 0) 1861 continue; 1862 #endif 1863 if (inp->inp_faddr.s_addr == INADDR_ANY && 1864 inp->inp_laddr.s_addr == laddr.s_addr && 1865 inp->inp_lport == lport) { 1866 /* 1867 * Found? 1868 */ 1869 if (cred == NULL || 1870 prison_equal_ip4(cred->cr_prison, 1871 inp->inp_cred->cr_prison)) 1872 return (inp); 1873 } 1874 } 1875 /* 1876 * Not found. 1877 */ 1878 return (NULL); 1879 } else { 1880 struct inpcbporthead *porthash; 1881 struct inpcbport *phd; 1882 struct inpcb *match = NULL; 1883 /* 1884 * Best fit PCB lookup. 1885 * 1886 * First see if this local port is in use by looking on the 1887 * port hash list. 1888 */ 1889 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1890 pcbinfo->ipi_porthashmask)]; 1891 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1892 if (phd->phd_port == lport) 1893 break; 1894 } 1895 if (phd != NULL) { 1896 /* 1897 * Port is in use by one or more PCBs. Look for best 1898 * fit. 1899 */ 1900 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1901 wildcard = 0; 1902 if (cred != NULL && 1903 !prison_equal_ip4(inp->inp_cred->cr_prison, 1904 cred->cr_prison)) 1905 continue; 1906 #ifdef INET6 1907 /* XXX inp locking */ 1908 if ((inp->inp_vflag & INP_IPV4) == 0) 1909 continue; 1910 /* 1911 * We never select the PCB that has 1912 * INP_IPV6 flag and is bound to :: if 1913 * we have another PCB which is bound 1914 * to 0.0.0.0. If a PCB has the 1915 * INP_IPV6 flag, then we set its cost 1916 * higher than IPv4 only PCBs. 1917 * 1918 * Note that the case only happens 1919 * when a socket is bound to ::, under 1920 * the condition that the use of the 1921 * mapped address is allowed. 1922 */ 1923 if ((inp->inp_vflag & INP_IPV6) != 0) 1924 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1925 #endif 1926 if (inp->inp_faddr.s_addr != INADDR_ANY) 1927 wildcard++; 1928 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1929 if (laddr.s_addr == INADDR_ANY) 1930 wildcard++; 1931 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1932 continue; 1933 } else { 1934 if (laddr.s_addr != INADDR_ANY) 1935 wildcard++; 1936 } 1937 if (wildcard < matchwild) { 1938 match = inp; 1939 matchwild = wildcard; 1940 if (matchwild == 0) 1941 break; 1942 } 1943 } 1944 } 1945 return (match); 1946 } 1947 } 1948 #undef INP_LOOKUP_MAPPED_PCB_COST 1949 1950 static struct inpcb * 1951 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1952 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1953 uint16_t fport, int lookupflags) 1954 { 1955 struct inpcb *local_wild; 1956 const struct inpcblbgrouphead *hdr; 1957 struct inpcblbgroup *grp; 1958 uint32_t idx; 1959 1960 INP_HASH_LOCK_ASSERT(pcbinfo); 1961 1962 hdr = &pcbinfo->ipi_lbgrouphashbase[INP_PCBLBGROUP_PORTHASH(lport, 1963 pcbinfo->ipi_lbgrouphashmask)]; 1964 1965 /* 1966 * Order of socket selection: 1967 * 1. non-wild. 1968 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1969 * 1970 * NOTE: 1971 * - Load balanced group does not contain jailed sockets 1972 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1973 */ 1974 local_wild = NULL; 1975 LIST_FOREACH(grp, hdr, il_list) { 1976 #ifdef INET6 1977 if (!(grp->il_vflag & INP_IPV4)) 1978 continue; 1979 #endif 1980 if (grp->il_lport != lport) 1981 continue; 1982 1983 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1984 grp->il_inpcnt; 1985 if (grp->il_laddr.s_addr == laddr->s_addr) 1986 return (grp->il_inp[idx]); 1987 if (grp->il_laddr.s_addr == INADDR_ANY && 1988 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1989 local_wild = grp->il_inp[idx]; 1990 } 1991 return (local_wild); 1992 } 1993 1994 #ifdef PCBGROUP 1995 /* 1996 * Lookup PCB in hash list, using pcbgroup tables. 1997 */ 1998 static struct inpcb * 1999 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2000 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2001 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2002 { 2003 struct inpcbhead *head; 2004 struct inpcb *inp, *tmpinp; 2005 u_short fport = fport_arg, lport = lport_arg; 2006 bool locked; 2007 2008 /* 2009 * First look for an exact match. 2010 */ 2011 tmpinp = NULL; 2012 INP_GROUP_LOCK(pcbgroup); 2013 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2014 pcbgroup->ipg_hashmask)]; 2015 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2016 #ifdef INET6 2017 /* XXX inp locking */ 2018 if ((inp->inp_vflag & INP_IPV4) == 0) 2019 continue; 2020 #endif 2021 if (inp->inp_faddr.s_addr == faddr.s_addr && 2022 inp->inp_laddr.s_addr == laddr.s_addr && 2023 inp->inp_fport == fport && 2024 inp->inp_lport == lport) { 2025 /* 2026 * XXX We should be able to directly return 2027 * the inp here, without any checks. 2028 * Well unless both bound with SO_REUSEPORT? 2029 */ 2030 if (prison_flag(inp->inp_cred, PR_IP4)) 2031 goto found; 2032 if (tmpinp == NULL) 2033 tmpinp = inp; 2034 } 2035 } 2036 if (tmpinp != NULL) { 2037 inp = tmpinp; 2038 goto found; 2039 } 2040 2041 #ifdef RSS 2042 /* 2043 * For incoming connections, we may wish to do a wildcard 2044 * match for an RSS-local socket. 2045 */ 2046 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2047 struct inpcb *local_wild = NULL, *local_exact = NULL; 2048 #ifdef INET6 2049 struct inpcb *local_wild_mapped = NULL; 2050 #endif 2051 struct inpcb *jail_wild = NULL; 2052 struct inpcbhead *head; 2053 int injail; 2054 2055 /* 2056 * Order of socket selection - we always prefer jails. 2057 * 1. jailed, non-wild. 2058 * 2. jailed, wild. 2059 * 3. non-jailed, non-wild. 2060 * 4. non-jailed, wild. 2061 */ 2062 2063 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2064 lport, 0, pcbgroup->ipg_hashmask)]; 2065 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2066 #ifdef INET6 2067 /* XXX inp locking */ 2068 if ((inp->inp_vflag & INP_IPV4) == 0) 2069 continue; 2070 #endif 2071 if (inp->inp_faddr.s_addr != INADDR_ANY || 2072 inp->inp_lport != lport) 2073 continue; 2074 2075 injail = prison_flag(inp->inp_cred, PR_IP4); 2076 if (injail) { 2077 if (prison_check_ip4(inp->inp_cred, 2078 &laddr) != 0) 2079 continue; 2080 } else { 2081 if (local_exact != NULL) 2082 continue; 2083 } 2084 2085 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2086 if (injail) 2087 goto found; 2088 else 2089 local_exact = inp; 2090 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2091 #ifdef INET6 2092 /* XXX inp locking, NULL check */ 2093 if (inp->inp_vflag & INP_IPV6PROTO) 2094 local_wild_mapped = inp; 2095 else 2096 #endif 2097 if (injail) 2098 jail_wild = inp; 2099 else 2100 local_wild = inp; 2101 } 2102 } /* LIST_FOREACH */ 2103 2104 inp = jail_wild; 2105 if (inp == NULL) 2106 inp = local_exact; 2107 if (inp == NULL) 2108 inp = local_wild; 2109 #ifdef INET6 2110 if (inp == NULL) 2111 inp = local_wild_mapped; 2112 #endif 2113 if (inp != NULL) 2114 goto found; 2115 } 2116 #endif 2117 2118 /* 2119 * Then look for a wildcard match, if requested. 2120 */ 2121 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2122 struct inpcb *local_wild = NULL, *local_exact = NULL; 2123 #ifdef INET6 2124 struct inpcb *local_wild_mapped = NULL; 2125 #endif 2126 struct inpcb *jail_wild = NULL; 2127 struct inpcbhead *head; 2128 int injail; 2129 2130 /* 2131 * Order of socket selection - we always prefer jails. 2132 * 1. jailed, non-wild. 2133 * 2. jailed, wild. 2134 * 3. non-jailed, non-wild. 2135 * 4. non-jailed, wild. 2136 */ 2137 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2138 0, pcbinfo->ipi_wildmask)]; 2139 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2140 #ifdef INET6 2141 /* XXX inp locking */ 2142 if ((inp->inp_vflag & INP_IPV4) == 0) 2143 continue; 2144 #endif 2145 if (inp->inp_faddr.s_addr != INADDR_ANY || 2146 inp->inp_lport != lport) 2147 continue; 2148 2149 injail = prison_flag(inp->inp_cred, PR_IP4); 2150 if (injail) { 2151 if (prison_check_ip4(inp->inp_cred, 2152 &laddr) != 0) 2153 continue; 2154 } else { 2155 if (local_exact != NULL) 2156 continue; 2157 } 2158 2159 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2160 if (injail) 2161 goto found; 2162 else 2163 local_exact = inp; 2164 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2165 #ifdef INET6 2166 /* XXX inp locking, NULL check */ 2167 if (inp->inp_vflag & INP_IPV6PROTO) 2168 local_wild_mapped = inp; 2169 else 2170 #endif 2171 if (injail) 2172 jail_wild = inp; 2173 else 2174 local_wild = inp; 2175 } 2176 } /* LIST_FOREACH */ 2177 inp = jail_wild; 2178 if (inp == NULL) 2179 inp = local_exact; 2180 if (inp == NULL) 2181 inp = local_wild; 2182 #ifdef INET6 2183 if (inp == NULL) 2184 inp = local_wild_mapped; 2185 #endif 2186 if (inp != NULL) 2187 goto found; 2188 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2189 INP_GROUP_UNLOCK(pcbgroup); 2190 return (NULL); 2191 2192 found: 2193 if (lookupflags & INPLOOKUP_WLOCKPCB) 2194 locked = INP_TRY_WLOCK(inp); 2195 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2196 locked = INP_TRY_RLOCK(inp); 2197 else 2198 panic("%s: locking bug", __func__); 2199 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2200 if (lookupflags & INPLOOKUP_WLOCKPCB) 2201 INP_WUNLOCK(inp); 2202 else 2203 INP_RUNLOCK(inp); 2204 return (NULL); 2205 } else if (!locked) 2206 in_pcbref(inp); 2207 INP_GROUP_UNLOCK(pcbgroup); 2208 if (!locked) { 2209 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2210 INP_WLOCK(inp); 2211 if (in_pcbrele_wlocked(inp)) 2212 return (NULL); 2213 } else { 2214 INP_RLOCK(inp); 2215 if (in_pcbrele_rlocked(inp)) 2216 return (NULL); 2217 } 2218 } 2219 #ifdef INVARIANTS 2220 if (lookupflags & INPLOOKUP_WLOCKPCB) 2221 INP_WLOCK_ASSERT(inp); 2222 else 2223 INP_RLOCK_ASSERT(inp); 2224 #endif 2225 return (inp); 2226 } 2227 #endif /* PCBGROUP */ 2228 2229 /* 2230 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2231 * that the caller has locked the hash list, and will not perform any further 2232 * locking or reference operations on either the hash list or the connection. 2233 */ 2234 static struct inpcb * 2235 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2236 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2237 struct ifnet *ifp) 2238 { 2239 struct inpcbhead *head; 2240 struct inpcb *inp, *tmpinp; 2241 u_short fport = fport_arg, lport = lport_arg; 2242 2243 #ifdef INVARIANTS 2244 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2245 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2246 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2247 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2248 #endif 2249 /* 2250 * First look for an exact match. 2251 */ 2252 tmpinp = NULL; 2253 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2254 pcbinfo->ipi_hashmask)]; 2255 CK_LIST_FOREACH(inp, head, inp_hash) { 2256 #ifdef INET6 2257 /* XXX inp locking */ 2258 if ((inp->inp_vflag & INP_IPV4) == 0) 2259 continue; 2260 #endif 2261 if (inp->inp_faddr.s_addr == faddr.s_addr && 2262 inp->inp_laddr.s_addr == laddr.s_addr && 2263 inp->inp_fport == fport && 2264 inp->inp_lport == lport) { 2265 /* 2266 * XXX We should be able to directly return 2267 * the inp here, without any checks. 2268 * Well unless both bound with SO_REUSEPORT? 2269 */ 2270 if (prison_flag(inp->inp_cred, PR_IP4)) 2271 return (inp); 2272 if (tmpinp == NULL) 2273 tmpinp = inp; 2274 } 2275 } 2276 if (tmpinp != NULL) 2277 return (tmpinp); 2278 2279 /* 2280 * Then look in lb group (for wildcard match). 2281 */ 2282 if (pcbinfo->ipi_lbgrouphashbase != NULL && 2283 (lookupflags & INPLOOKUP_WILDCARD)) { 2284 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2285 fport, lookupflags); 2286 if (inp != NULL) { 2287 return (inp); 2288 } 2289 } 2290 2291 /* 2292 * Then look for a wildcard match, if requested. 2293 */ 2294 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2295 struct inpcb *local_wild = NULL, *local_exact = NULL; 2296 #ifdef INET6 2297 struct inpcb *local_wild_mapped = NULL; 2298 #endif 2299 struct inpcb *jail_wild = NULL; 2300 int injail; 2301 2302 /* 2303 * Order of socket selection - we always prefer jails. 2304 * 1. jailed, non-wild. 2305 * 2. jailed, wild. 2306 * 3. non-jailed, non-wild. 2307 * 4. non-jailed, wild. 2308 */ 2309 2310 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2311 0, pcbinfo->ipi_hashmask)]; 2312 CK_LIST_FOREACH(inp, head, inp_hash) { 2313 #ifdef INET6 2314 /* XXX inp locking */ 2315 if ((inp->inp_vflag & INP_IPV4) == 0) 2316 continue; 2317 #endif 2318 if (inp->inp_faddr.s_addr != INADDR_ANY || 2319 inp->inp_lport != lport) 2320 continue; 2321 2322 injail = prison_flag(inp->inp_cred, PR_IP4); 2323 if (injail) { 2324 if (prison_check_ip4(inp->inp_cred, 2325 &laddr) != 0) 2326 continue; 2327 } else { 2328 if (local_exact != NULL) 2329 continue; 2330 } 2331 2332 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2333 if (injail) 2334 return (inp); 2335 else 2336 local_exact = inp; 2337 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2338 #ifdef INET6 2339 /* XXX inp locking, NULL check */ 2340 if (inp->inp_vflag & INP_IPV6PROTO) 2341 local_wild_mapped = inp; 2342 else 2343 #endif 2344 if (injail) 2345 jail_wild = inp; 2346 else 2347 local_wild = inp; 2348 } 2349 } /* LIST_FOREACH */ 2350 if (jail_wild != NULL) 2351 return (jail_wild); 2352 if (local_exact != NULL) 2353 return (local_exact); 2354 if (local_wild != NULL) 2355 return (local_wild); 2356 #ifdef INET6 2357 if (local_wild_mapped != NULL) 2358 return (local_wild_mapped); 2359 #endif 2360 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2361 2362 return (NULL); 2363 } 2364 2365 /* 2366 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2367 * hash list lock, and will return the inpcb locked (i.e., requires 2368 * INPLOOKUP_LOCKPCB). 2369 */ 2370 static struct inpcb * 2371 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2372 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2373 struct ifnet *ifp) 2374 { 2375 struct inpcb *inp; 2376 2377 INP_HASH_RLOCK(pcbinfo); 2378 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2379 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2380 if (inp != NULL) { 2381 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2382 INP_WLOCK(inp); 2383 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2384 INP_WUNLOCK(inp); 2385 inp = NULL; 2386 } 2387 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2388 INP_RLOCK(inp); 2389 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2390 INP_RUNLOCK(inp); 2391 inp = NULL; 2392 } 2393 } else 2394 panic("%s: locking bug", __func__); 2395 #ifdef INVARIANTS 2396 if (inp != NULL) { 2397 if (lookupflags & INPLOOKUP_WLOCKPCB) 2398 INP_WLOCK_ASSERT(inp); 2399 else 2400 INP_RLOCK_ASSERT(inp); 2401 } 2402 #endif 2403 } 2404 INP_HASH_RUNLOCK(pcbinfo); 2405 return (inp); 2406 } 2407 2408 /* 2409 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2410 * from which a pre-calculated hash value may be extracted. 2411 * 2412 * Possibly more of this logic should be in in_pcbgroup.c. 2413 */ 2414 struct inpcb * 2415 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2416 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2417 { 2418 #if defined(PCBGROUP) && !defined(RSS) 2419 struct inpcbgroup *pcbgroup; 2420 #endif 2421 2422 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2423 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2424 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2425 ("%s: LOCKPCB not set", __func__)); 2426 2427 /* 2428 * When not using RSS, use connection groups in preference to the 2429 * reservation table when looking up 4-tuples. When using RSS, just 2430 * use the reservation table, due to the cost of the Toeplitz hash 2431 * in software. 2432 * 2433 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2434 * we could be doing RSS with a non-Toeplitz hash that is affordable 2435 * in software. 2436 */ 2437 #if defined(PCBGROUP) && !defined(RSS) 2438 if (in_pcbgroup_enabled(pcbinfo)) { 2439 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2440 fport); 2441 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2442 laddr, lport, lookupflags, ifp)); 2443 } 2444 #endif 2445 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2446 lookupflags, ifp)); 2447 } 2448 2449 struct inpcb * 2450 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2451 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2452 struct ifnet *ifp, struct mbuf *m) 2453 { 2454 #ifdef PCBGROUP 2455 struct inpcbgroup *pcbgroup; 2456 #endif 2457 2458 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2459 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2460 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2461 ("%s: LOCKPCB not set", __func__)); 2462 2463 #ifdef PCBGROUP 2464 /* 2465 * If we can use a hardware-generated hash to look up the connection 2466 * group, use that connection group to find the inpcb. Otherwise 2467 * fall back on a software hash -- or the reservation table if we're 2468 * using RSS. 2469 * 2470 * XXXRW: As above, that policy belongs in the pcbgroup code. 2471 */ 2472 if (in_pcbgroup_enabled(pcbinfo) && 2473 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2474 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2475 m->m_pkthdr.flowid); 2476 if (pcbgroup != NULL) 2477 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2478 fport, laddr, lport, lookupflags, ifp)); 2479 #ifndef RSS 2480 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2481 fport); 2482 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2483 laddr, lport, lookupflags, ifp)); 2484 #endif 2485 } 2486 #endif 2487 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2488 lookupflags, ifp)); 2489 } 2490 #endif /* INET */ 2491 2492 /* 2493 * Insert PCB onto various hash lists. 2494 */ 2495 static int 2496 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2497 { 2498 struct inpcbhead *pcbhash; 2499 struct inpcbporthead *pcbporthash; 2500 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2501 struct inpcbport *phd; 2502 u_int32_t hashkey_faddr; 2503 int so_options; 2504 2505 INP_WLOCK_ASSERT(inp); 2506 INP_HASH_WLOCK_ASSERT(pcbinfo); 2507 2508 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2509 ("in_pcbinshash: INP_INHASHLIST")); 2510 2511 #ifdef INET6 2512 if (inp->inp_vflag & INP_IPV6) 2513 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2514 else 2515 #endif 2516 hashkey_faddr = inp->inp_faddr.s_addr; 2517 2518 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2519 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2520 2521 pcbporthash = &pcbinfo->ipi_porthashbase[ 2522 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2523 2524 /* 2525 * Add entry to load balance group. 2526 * Only do this if SO_REUSEPORT_LB is set. 2527 */ 2528 so_options = inp_so_options(inp); 2529 if (so_options & SO_REUSEPORT_LB) { 2530 int ret = in_pcbinslbgrouphash(inp); 2531 if (ret) { 2532 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2533 return (ret); 2534 } 2535 } 2536 2537 /* 2538 * Go through port list and look for a head for this lport. 2539 */ 2540 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2541 if (phd->phd_port == inp->inp_lport) 2542 break; 2543 } 2544 /* 2545 * If none exists, malloc one and tack it on. 2546 */ 2547 if (phd == NULL) { 2548 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2549 if (phd == NULL) { 2550 return (ENOBUFS); /* XXX */ 2551 } 2552 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2553 phd->phd_port = inp->inp_lport; 2554 CK_LIST_INIT(&phd->phd_pcblist); 2555 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2556 } 2557 inp->inp_phd = phd; 2558 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2559 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2560 inp->inp_flags |= INP_INHASHLIST; 2561 #ifdef PCBGROUP 2562 if (do_pcbgroup_update) 2563 in_pcbgroup_update(inp); 2564 #endif 2565 return (0); 2566 } 2567 2568 /* 2569 * For now, there are two public interfaces to insert an inpcb into the hash 2570 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2571 * is used only in the TCP syncache, where in_pcbinshash is called before the 2572 * full 4-tuple is set for the inpcb, and we don't want to install in the 2573 * pcbgroup until later. 2574 * 2575 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2576 * connection groups, and partially initialised inpcbs should not be exposed 2577 * to either reservation hash tables or pcbgroups. 2578 */ 2579 int 2580 in_pcbinshash(struct inpcb *inp) 2581 { 2582 2583 return (in_pcbinshash_internal(inp, 1)); 2584 } 2585 2586 int 2587 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2588 { 2589 2590 return (in_pcbinshash_internal(inp, 0)); 2591 } 2592 2593 /* 2594 * Move PCB to the proper hash bucket when { faddr, fport } have been 2595 * changed. NOTE: This does not handle the case of the lport changing (the 2596 * hashed port list would have to be updated as well), so the lport must 2597 * not change after in_pcbinshash() has been called. 2598 */ 2599 void 2600 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2601 { 2602 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2603 struct inpcbhead *head; 2604 u_int32_t hashkey_faddr; 2605 2606 INP_WLOCK_ASSERT(inp); 2607 INP_HASH_WLOCK_ASSERT(pcbinfo); 2608 2609 KASSERT(inp->inp_flags & INP_INHASHLIST, 2610 ("in_pcbrehash: !INP_INHASHLIST")); 2611 2612 #ifdef INET6 2613 if (inp->inp_vflag & INP_IPV6) 2614 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2615 else 2616 #endif 2617 hashkey_faddr = inp->inp_faddr.s_addr; 2618 2619 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2620 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2621 2622 CK_LIST_REMOVE(inp, inp_hash); 2623 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2624 2625 #ifdef PCBGROUP 2626 if (m != NULL) 2627 in_pcbgroup_update_mbuf(inp, m); 2628 else 2629 in_pcbgroup_update(inp); 2630 #endif 2631 } 2632 2633 void 2634 in_pcbrehash(struct inpcb *inp) 2635 { 2636 2637 in_pcbrehash_mbuf(inp, NULL); 2638 } 2639 2640 /* 2641 * Remove PCB from various lists. 2642 */ 2643 static void 2644 in_pcbremlists(struct inpcb *inp) 2645 { 2646 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2647 2648 #ifdef INVARIANTS 2649 if (pcbinfo == &V_tcbinfo) { 2650 INP_INFO_RLOCK_ASSERT(pcbinfo); 2651 } else { 2652 INP_INFO_WLOCK_ASSERT(pcbinfo); 2653 } 2654 #endif 2655 2656 INP_WLOCK_ASSERT(inp); 2657 INP_LIST_WLOCK_ASSERT(pcbinfo); 2658 2659 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2660 if (inp->inp_flags & INP_INHASHLIST) { 2661 struct inpcbport *phd = inp->inp_phd; 2662 2663 INP_HASH_WLOCK(pcbinfo); 2664 2665 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2666 in_pcbremlbgrouphash(inp); 2667 2668 CK_LIST_REMOVE(inp, inp_hash); 2669 CK_LIST_REMOVE(inp, inp_portlist); 2670 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2671 CK_LIST_REMOVE(phd, phd_hash); 2672 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2673 } 2674 INP_HASH_WUNLOCK(pcbinfo); 2675 inp->inp_flags &= ~INP_INHASHLIST; 2676 } 2677 CK_LIST_REMOVE(inp, inp_list); 2678 pcbinfo->ipi_count--; 2679 #ifdef PCBGROUP 2680 in_pcbgroup_remove(inp); 2681 #endif 2682 } 2683 2684 /* 2685 * Check for alternatives when higher level complains 2686 * about service problems. For now, invalidate cached 2687 * routing information. If the route was created dynamically 2688 * (by a redirect), time to try a default gateway again. 2689 */ 2690 void 2691 in_losing(struct inpcb *inp) 2692 { 2693 2694 RO_INVALIDATE_CACHE(&inp->inp_route); 2695 return; 2696 } 2697 2698 /* 2699 * A set label operation has occurred at the socket layer, propagate the 2700 * label change into the in_pcb for the socket. 2701 */ 2702 void 2703 in_pcbsosetlabel(struct socket *so) 2704 { 2705 #ifdef MAC 2706 struct inpcb *inp; 2707 2708 inp = sotoinpcb(so); 2709 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2710 2711 INP_WLOCK(inp); 2712 SOCK_LOCK(so); 2713 mac_inpcb_sosetlabel(so, inp); 2714 SOCK_UNLOCK(so); 2715 INP_WUNLOCK(inp); 2716 #endif 2717 } 2718 2719 /* 2720 * ipport_tick runs once per second, determining if random port allocation 2721 * should be continued. If more than ipport_randomcps ports have been 2722 * allocated in the last second, then we return to sequential port 2723 * allocation. We return to random allocation only once we drop below 2724 * ipport_randomcps for at least ipport_randomtime seconds. 2725 */ 2726 static void 2727 ipport_tick(void *xtp) 2728 { 2729 VNET_ITERATOR_DECL(vnet_iter); 2730 2731 VNET_LIST_RLOCK_NOSLEEP(); 2732 VNET_FOREACH(vnet_iter) { 2733 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2734 if (V_ipport_tcpallocs <= 2735 V_ipport_tcplastcount + V_ipport_randomcps) { 2736 if (V_ipport_stoprandom > 0) 2737 V_ipport_stoprandom--; 2738 } else 2739 V_ipport_stoprandom = V_ipport_randomtime; 2740 V_ipport_tcplastcount = V_ipport_tcpallocs; 2741 CURVNET_RESTORE(); 2742 } 2743 VNET_LIST_RUNLOCK_NOSLEEP(); 2744 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2745 } 2746 2747 static void 2748 ip_fini(void *xtp) 2749 { 2750 2751 callout_stop(&ipport_tick_callout); 2752 } 2753 2754 /* 2755 * The ipport_callout should start running at about the time we attach the 2756 * inet or inet6 domains. 2757 */ 2758 static void 2759 ipport_tick_init(const void *unused __unused) 2760 { 2761 2762 /* Start ipport_tick. */ 2763 callout_init(&ipport_tick_callout, 1); 2764 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2765 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2766 SHUTDOWN_PRI_DEFAULT); 2767 } 2768 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2769 ipport_tick_init, NULL); 2770 2771 void 2772 inp_wlock(struct inpcb *inp) 2773 { 2774 2775 INP_WLOCK(inp); 2776 } 2777 2778 void 2779 inp_wunlock(struct inpcb *inp) 2780 { 2781 2782 INP_WUNLOCK(inp); 2783 } 2784 2785 void 2786 inp_rlock(struct inpcb *inp) 2787 { 2788 2789 INP_RLOCK(inp); 2790 } 2791 2792 void 2793 inp_runlock(struct inpcb *inp) 2794 { 2795 2796 INP_RUNLOCK(inp); 2797 } 2798 2799 #ifdef INVARIANT_SUPPORT 2800 void 2801 inp_lock_assert(struct inpcb *inp) 2802 { 2803 2804 INP_WLOCK_ASSERT(inp); 2805 } 2806 2807 void 2808 inp_unlock_assert(struct inpcb *inp) 2809 { 2810 2811 INP_UNLOCK_ASSERT(inp); 2812 } 2813 #endif 2814 2815 void 2816 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2817 { 2818 struct inpcb *inp; 2819 2820 INP_INFO_WLOCK(&V_tcbinfo); 2821 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2822 INP_WLOCK(inp); 2823 func(inp, arg); 2824 INP_WUNLOCK(inp); 2825 } 2826 INP_INFO_WUNLOCK(&V_tcbinfo); 2827 } 2828 2829 struct socket * 2830 inp_inpcbtosocket(struct inpcb *inp) 2831 { 2832 2833 INP_WLOCK_ASSERT(inp); 2834 return (inp->inp_socket); 2835 } 2836 2837 struct tcpcb * 2838 inp_inpcbtotcpcb(struct inpcb *inp) 2839 { 2840 2841 INP_WLOCK_ASSERT(inp); 2842 return ((struct tcpcb *)inp->inp_ppcb); 2843 } 2844 2845 int 2846 inp_ip_tos_get(const struct inpcb *inp) 2847 { 2848 2849 return (inp->inp_ip_tos); 2850 } 2851 2852 void 2853 inp_ip_tos_set(struct inpcb *inp, int val) 2854 { 2855 2856 inp->inp_ip_tos = val; 2857 } 2858 2859 void 2860 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2861 uint32_t *faddr, uint16_t *fp) 2862 { 2863 2864 INP_LOCK_ASSERT(inp); 2865 *laddr = inp->inp_laddr.s_addr; 2866 *faddr = inp->inp_faddr.s_addr; 2867 *lp = inp->inp_lport; 2868 *fp = inp->inp_fport; 2869 } 2870 2871 struct inpcb * 2872 so_sotoinpcb(struct socket *so) 2873 { 2874 2875 return (sotoinpcb(so)); 2876 } 2877 2878 struct tcpcb * 2879 so_sototcpcb(struct socket *so) 2880 { 2881 2882 return (sototcpcb(so)); 2883 } 2884 2885 /* 2886 * Create an external-format (``xinpcb'') structure using the information in 2887 * the kernel-format in_pcb structure pointed to by inp. This is done to 2888 * reduce the spew of irrelevant information over this interface, to isolate 2889 * user code from changes in the kernel structure, and potentially to provide 2890 * information-hiding if we decide that some of this information should be 2891 * hidden from users. 2892 */ 2893 void 2894 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2895 { 2896 2897 xi->xi_len = sizeof(struct xinpcb); 2898 if (inp->inp_socket) 2899 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2900 else 2901 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2902 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2903 xi->inp_gencnt = inp->inp_gencnt; 2904 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2905 xi->inp_flow = inp->inp_flow; 2906 xi->inp_flowid = inp->inp_flowid; 2907 xi->inp_flowtype = inp->inp_flowtype; 2908 xi->inp_flags = inp->inp_flags; 2909 xi->inp_flags2 = inp->inp_flags2; 2910 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2911 xi->in6p_cksum = inp->in6p_cksum; 2912 xi->in6p_hops = inp->in6p_hops; 2913 xi->inp_ip_tos = inp->inp_ip_tos; 2914 xi->inp_vflag = inp->inp_vflag; 2915 xi->inp_ip_ttl = inp->inp_ip_ttl; 2916 xi->inp_ip_p = inp->inp_ip_p; 2917 xi->inp_ip_minttl = inp->inp_ip_minttl; 2918 } 2919 2920 #ifdef DDB 2921 static void 2922 db_print_indent(int indent) 2923 { 2924 int i; 2925 2926 for (i = 0; i < indent; i++) 2927 db_printf(" "); 2928 } 2929 2930 static void 2931 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2932 { 2933 char faddr_str[48], laddr_str[48]; 2934 2935 db_print_indent(indent); 2936 db_printf("%s at %p\n", name, inc); 2937 2938 indent += 2; 2939 2940 #ifdef INET6 2941 if (inc->inc_flags & INC_ISIPV6) { 2942 /* IPv6. */ 2943 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2944 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2945 } else 2946 #endif 2947 { 2948 /* IPv4. */ 2949 inet_ntoa_r(inc->inc_laddr, laddr_str); 2950 inet_ntoa_r(inc->inc_faddr, faddr_str); 2951 } 2952 db_print_indent(indent); 2953 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2954 ntohs(inc->inc_lport)); 2955 db_print_indent(indent); 2956 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2957 ntohs(inc->inc_fport)); 2958 } 2959 2960 static void 2961 db_print_inpflags(int inp_flags) 2962 { 2963 int comma; 2964 2965 comma = 0; 2966 if (inp_flags & INP_RECVOPTS) { 2967 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2968 comma = 1; 2969 } 2970 if (inp_flags & INP_RECVRETOPTS) { 2971 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2972 comma = 1; 2973 } 2974 if (inp_flags & INP_RECVDSTADDR) { 2975 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2976 comma = 1; 2977 } 2978 if (inp_flags & INP_ORIGDSTADDR) { 2979 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2980 comma = 1; 2981 } 2982 if (inp_flags & INP_HDRINCL) { 2983 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2984 comma = 1; 2985 } 2986 if (inp_flags & INP_HIGHPORT) { 2987 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2988 comma = 1; 2989 } 2990 if (inp_flags & INP_LOWPORT) { 2991 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2992 comma = 1; 2993 } 2994 if (inp_flags & INP_ANONPORT) { 2995 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2996 comma = 1; 2997 } 2998 if (inp_flags & INP_RECVIF) { 2999 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3000 comma = 1; 3001 } 3002 if (inp_flags & INP_MTUDISC) { 3003 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3004 comma = 1; 3005 } 3006 if (inp_flags & INP_RECVTTL) { 3007 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3008 comma = 1; 3009 } 3010 if (inp_flags & INP_DONTFRAG) { 3011 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3012 comma = 1; 3013 } 3014 if (inp_flags & INP_RECVTOS) { 3015 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3016 comma = 1; 3017 } 3018 if (inp_flags & IN6P_IPV6_V6ONLY) { 3019 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3020 comma = 1; 3021 } 3022 if (inp_flags & IN6P_PKTINFO) { 3023 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3024 comma = 1; 3025 } 3026 if (inp_flags & IN6P_HOPLIMIT) { 3027 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3028 comma = 1; 3029 } 3030 if (inp_flags & IN6P_HOPOPTS) { 3031 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3032 comma = 1; 3033 } 3034 if (inp_flags & IN6P_DSTOPTS) { 3035 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3036 comma = 1; 3037 } 3038 if (inp_flags & IN6P_RTHDR) { 3039 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3040 comma = 1; 3041 } 3042 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3043 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3044 comma = 1; 3045 } 3046 if (inp_flags & IN6P_TCLASS) { 3047 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3048 comma = 1; 3049 } 3050 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3051 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3052 comma = 1; 3053 } 3054 if (inp_flags & INP_TIMEWAIT) { 3055 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3056 comma = 1; 3057 } 3058 if (inp_flags & INP_ONESBCAST) { 3059 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3060 comma = 1; 3061 } 3062 if (inp_flags & INP_DROPPED) { 3063 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3064 comma = 1; 3065 } 3066 if (inp_flags & INP_SOCKREF) { 3067 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3068 comma = 1; 3069 } 3070 if (inp_flags & IN6P_RFC2292) { 3071 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3072 comma = 1; 3073 } 3074 if (inp_flags & IN6P_MTU) { 3075 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3076 comma = 1; 3077 } 3078 } 3079 3080 static void 3081 db_print_inpvflag(u_char inp_vflag) 3082 { 3083 int comma; 3084 3085 comma = 0; 3086 if (inp_vflag & INP_IPV4) { 3087 db_printf("%sINP_IPV4", comma ? ", " : ""); 3088 comma = 1; 3089 } 3090 if (inp_vflag & INP_IPV6) { 3091 db_printf("%sINP_IPV6", comma ? ", " : ""); 3092 comma = 1; 3093 } 3094 if (inp_vflag & INP_IPV6PROTO) { 3095 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3096 comma = 1; 3097 } 3098 } 3099 3100 static void 3101 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3102 { 3103 3104 db_print_indent(indent); 3105 db_printf("%s at %p\n", name, inp); 3106 3107 indent += 2; 3108 3109 db_print_indent(indent); 3110 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3111 3112 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3113 3114 db_print_indent(indent); 3115 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3116 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3117 3118 db_print_indent(indent); 3119 db_printf("inp_label: %p inp_flags: 0x%x (", 3120 inp->inp_label, inp->inp_flags); 3121 db_print_inpflags(inp->inp_flags); 3122 db_printf(")\n"); 3123 3124 db_print_indent(indent); 3125 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3126 inp->inp_vflag); 3127 db_print_inpvflag(inp->inp_vflag); 3128 db_printf(")\n"); 3129 3130 db_print_indent(indent); 3131 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3132 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3133 3134 db_print_indent(indent); 3135 #ifdef INET6 3136 if (inp->inp_vflag & INP_IPV6) { 3137 db_printf("in6p_options: %p in6p_outputopts: %p " 3138 "in6p_moptions: %p\n", inp->in6p_options, 3139 inp->in6p_outputopts, inp->in6p_moptions); 3140 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3141 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3142 inp->in6p_hops); 3143 } else 3144 #endif 3145 { 3146 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3147 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3148 inp->inp_options, inp->inp_moptions); 3149 } 3150 3151 db_print_indent(indent); 3152 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3153 (uintmax_t)inp->inp_gencnt); 3154 } 3155 3156 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3157 { 3158 struct inpcb *inp; 3159 3160 if (!have_addr) { 3161 db_printf("usage: show inpcb <addr>\n"); 3162 return; 3163 } 3164 inp = (struct inpcb *)addr; 3165 3166 db_print_inpcb(inp, "inpcb", 0); 3167 } 3168 #endif /* DDB */ 3169 3170 #ifdef RATELIMIT 3171 /* 3172 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3173 * if any. 3174 */ 3175 int 3176 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3177 { 3178 union if_snd_tag_modify_params params = { 3179 .rate_limit.max_rate = max_pacing_rate, 3180 }; 3181 struct m_snd_tag *mst; 3182 struct ifnet *ifp; 3183 int error; 3184 3185 mst = inp->inp_snd_tag; 3186 if (mst == NULL) 3187 return (EINVAL); 3188 3189 ifp = mst->ifp; 3190 if (ifp == NULL) 3191 return (EINVAL); 3192 3193 if (ifp->if_snd_tag_modify == NULL) { 3194 error = EOPNOTSUPP; 3195 } else { 3196 error = ifp->if_snd_tag_modify(mst, ¶ms); 3197 } 3198 return (error); 3199 } 3200 3201 /* 3202 * Query existing TX rate limit based on the existing 3203 * "inp->inp_snd_tag", if any. 3204 */ 3205 int 3206 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3207 { 3208 union if_snd_tag_query_params params = { }; 3209 struct m_snd_tag *mst; 3210 struct ifnet *ifp; 3211 int error; 3212 3213 mst = inp->inp_snd_tag; 3214 if (mst == NULL) 3215 return (EINVAL); 3216 3217 ifp = mst->ifp; 3218 if (ifp == NULL) 3219 return (EINVAL); 3220 3221 if (ifp->if_snd_tag_query == NULL) { 3222 error = EOPNOTSUPP; 3223 } else { 3224 error = ifp->if_snd_tag_query(mst, ¶ms); 3225 if (error == 0 && p_max_pacing_rate != NULL) 3226 *p_max_pacing_rate = params.rate_limit.max_rate; 3227 } 3228 return (error); 3229 } 3230 3231 /* 3232 * Query existing TX queue level based on the existing 3233 * "inp->inp_snd_tag", if any. 3234 */ 3235 int 3236 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3237 { 3238 union if_snd_tag_query_params params = { }; 3239 struct m_snd_tag *mst; 3240 struct ifnet *ifp; 3241 int error; 3242 3243 mst = inp->inp_snd_tag; 3244 if (mst == NULL) 3245 return (EINVAL); 3246 3247 ifp = mst->ifp; 3248 if (ifp == NULL) 3249 return (EINVAL); 3250 3251 if (ifp->if_snd_tag_query == NULL) 3252 return (EOPNOTSUPP); 3253 3254 error = ifp->if_snd_tag_query(mst, ¶ms); 3255 if (error == 0 && p_txqueue_level != NULL) 3256 *p_txqueue_level = params.rate_limit.queue_level; 3257 return (error); 3258 } 3259 3260 /* 3261 * Allocate a new TX rate limit send tag from the network interface 3262 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3263 */ 3264 int 3265 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3266 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3267 { 3268 union if_snd_tag_alloc_params params = { 3269 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3270 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3271 .rate_limit.hdr.flowid = flowid, 3272 .rate_limit.hdr.flowtype = flowtype, 3273 .rate_limit.max_rate = max_pacing_rate, 3274 }; 3275 int error; 3276 3277 INP_WLOCK_ASSERT(inp); 3278 3279 if (inp->inp_snd_tag != NULL) 3280 return (EINVAL); 3281 3282 if (ifp->if_snd_tag_alloc == NULL) { 3283 error = EOPNOTSUPP; 3284 } else { 3285 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3286 3287 /* 3288 * At success increment the refcount on 3289 * the send tag's network interface: 3290 */ 3291 if (error == 0) 3292 if_ref(inp->inp_snd_tag->ifp); 3293 } 3294 return (error); 3295 } 3296 3297 /* 3298 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3299 * if any: 3300 */ 3301 void 3302 in_pcbdetach_txrtlmt(struct inpcb *inp) 3303 { 3304 struct m_snd_tag *mst; 3305 struct ifnet *ifp; 3306 3307 INP_WLOCK_ASSERT(inp); 3308 3309 mst = inp->inp_snd_tag; 3310 inp->inp_snd_tag = NULL; 3311 3312 if (mst == NULL) 3313 return; 3314 3315 ifp = mst->ifp; 3316 if (ifp == NULL) 3317 return; 3318 3319 /* 3320 * If the device was detached while we still had reference(s) 3321 * on the ifp, we assume if_snd_tag_free() was replaced with 3322 * stubs. 3323 */ 3324 ifp->if_snd_tag_free(mst); 3325 3326 /* release reference count on network interface */ 3327 if_rele(ifp); 3328 } 3329 3330 /* 3331 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3332 * is set in the fast path and will attach/detach/modify the TX rate 3333 * limit send tag based on the socket's so_max_pacing_rate value. 3334 */ 3335 void 3336 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3337 { 3338 struct socket *socket; 3339 uint32_t max_pacing_rate; 3340 bool did_upgrade; 3341 int error; 3342 3343 if (inp == NULL) 3344 return; 3345 3346 socket = inp->inp_socket; 3347 if (socket == NULL) 3348 return; 3349 3350 if (!INP_WLOCKED(inp)) { 3351 /* 3352 * NOTE: If the write locking fails, we need to bail 3353 * out and use the non-ratelimited ring for the 3354 * transmit until there is a new chance to get the 3355 * write lock. 3356 */ 3357 if (!INP_TRY_UPGRADE(inp)) 3358 return; 3359 did_upgrade = 1; 3360 } else { 3361 did_upgrade = 0; 3362 } 3363 3364 /* 3365 * NOTE: The so_max_pacing_rate value is read unlocked, 3366 * because atomic updates are not required since the variable 3367 * is checked at every mbuf we send. It is assumed that the 3368 * variable read itself will be atomic. 3369 */ 3370 max_pacing_rate = socket->so_max_pacing_rate; 3371 3372 /* 3373 * NOTE: When attaching to a network interface a reference is 3374 * made to ensure the network interface doesn't go away until 3375 * all ratelimit connections are gone. The network interface 3376 * pointers compared below represent valid network interfaces, 3377 * except when comparing towards NULL. 3378 */ 3379 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3380 error = 0; 3381 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3382 if (inp->inp_snd_tag != NULL) 3383 in_pcbdetach_txrtlmt(inp); 3384 error = 0; 3385 } else if (inp->inp_snd_tag == NULL) { 3386 /* 3387 * In order to utilize packet pacing with RSS, we need 3388 * to wait until there is a valid RSS hash before we 3389 * can proceed: 3390 */ 3391 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3392 error = EAGAIN; 3393 } else { 3394 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3395 mb->m_pkthdr.flowid, max_pacing_rate); 3396 } 3397 } else { 3398 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3399 } 3400 if (error == 0 || error == EOPNOTSUPP) 3401 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3402 if (did_upgrade) 3403 INP_DOWNGRADE(inp); 3404 } 3405 3406 /* 3407 * Track route changes for TX rate limiting. 3408 */ 3409 void 3410 in_pcboutput_eagain(struct inpcb *inp) 3411 { 3412 struct socket *socket; 3413 bool did_upgrade; 3414 3415 if (inp == NULL) 3416 return; 3417 3418 socket = inp->inp_socket; 3419 if (socket == NULL) 3420 return; 3421 3422 if (inp->inp_snd_tag == NULL) 3423 return; 3424 3425 if (!INP_WLOCKED(inp)) { 3426 /* 3427 * NOTE: If the write locking fails, we need to bail 3428 * out and use the non-ratelimited ring for the 3429 * transmit until there is a new chance to get the 3430 * write lock. 3431 */ 3432 if (!INP_TRY_UPGRADE(inp)) 3433 return; 3434 did_upgrade = 1; 3435 } else { 3436 did_upgrade = 0; 3437 } 3438 3439 /* detach rate limiting */ 3440 in_pcbdetach_txrtlmt(inp); 3441 3442 /* make sure new mbuf send tag allocation is made */ 3443 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3444 3445 if (did_upgrade) 3446 INP_DOWNGRADE(inp); 3447 } 3448 #endif /* RATELIMIT */ 3449