1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 * $FreeBSD$ 33 */ 34 35 #include "opt_ddb.h" 36 #include "opt_ipsec.h" 37 #include "opt_inet6.h" 38 #include "opt_mac.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/domain.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/sysctl.h> 53 54 #ifdef DDB 55 #include <ddb/ddb.h> 56 #endif 57 58 #include <vm/uma.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/route.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip_var.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet/udp.h> 70 #include <netinet/udp_var.h> 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef IPSEC 77 #include <netinet6/ipsec.h> 78 #include <netkey/key.h> 79 #endif /* IPSEC */ 80 81 #ifdef FAST_IPSEC 82 #if defined(IPSEC) || defined(IPSEC_ESP) 83 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!" 84 #endif 85 86 #include <netipsec/ipsec.h> 87 #include <netipsec/key.h> 88 #endif /* FAST_IPSEC */ 89 90 #include <security/mac/mac_framework.h> 91 92 /* 93 * These configure the range of local port addresses assigned to 94 * "unspecified" outgoing connections/packets/whatever. 95 */ 96 int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ 97 int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ 98 int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 99 int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ 100 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 101 int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ 102 103 /* 104 * Reserved ports accessible only to root. There are significant 105 * security considerations that must be accounted for when changing these, 106 * but the security benefits can be great. Please be careful. 107 */ 108 int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ 109 int ipport_reservedlow = 0; 110 111 /* Variables dealing with random ephemeral port allocation. */ 112 int ipport_randomized = 1; /* user controlled via sysctl */ 113 int ipport_randomcps = 10; /* user controlled via sysctl */ 114 int ipport_randomtime = 45; /* user controlled via sysctl */ 115 int ipport_stoprandom = 0; /* toggled by ipport_tick */ 116 int ipport_tcpallocs; 117 int ipport_tcplastcount; 118 119 #define RANGECHK(var, min, max) \ 120 if ((var) < (min)) { (var) = (min); } \ 121 else if ((var) > (max)) { (var) = (max); } 122 123 static int 124 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 125 { 126 int error; 127 128 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 129 if (error == 0) { 130 RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 131 RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 132 RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 133 RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 134 RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 135 RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 136 } 137 return (error); 138 } 139 140 #undef RANGECHK 141 142 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 143 144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, 145 &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); 146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, 147 &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); 148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, 149 &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); 150 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, 151 &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); 152 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, 153 &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); 154 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, 155 &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); 156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 157 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, ""); 158 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 159 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, ""); 160 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 161 &ipport_randomized, 0, "Enable random port allocation"); 162 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 163 &ipport_randomcps, 0, "Maximum number of random port " 164 "allocations before switching to a sequental one"); 165 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 166 &ipport_randomtime, 0, "Minimum time to keep sequental port " 167 "allocation before switching to a random one"); 168 169 /* 170 * in_pcb.c: manage the Protocol Control Blocks. 171 * 172 * NOTE: It is assumed that most of these functions will be called with 173 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 174 * functions often modify hash chains or addresses in pcbs. 175 */ 176 177 /* 178 * Allocate a PCB and associate it with the socket. 179 * On success return with the PCB locked. 180 */ 181 int 182 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 183 { 184 struct inpcb *inp; 185 int error; 186 187 INP_INFO_WLOCK_ASSERT(pcbinfo); 188 error = 0; 189 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 190 if (inp == NULL) 191 return (ENOBUFS); 192 bzero(inp, inp_zero_size); 193 inp->inp_pcbinfo = pcbinfo; 194 inp->inp_socket = so; 195 #ifdef MAC 196 error = mac_init_inpcb(inp, M_NOWAIT); 197 if (error != 0) 198 goto out; 199 SOCK_LOCK(so); 200 mac_create_inpcb_from_socket(so, inp); 201 SOCK_UNLOCK(so); 202 #endif 203 #if defined(IPSEC) || defined(FAST_IPSEC) 204 #ifdef FAST_IPSEC 205 error = ipsec_init_policy(so, &inp->inp_sp); 206 #else 207 error = ipsec_init_pcbpolicy(so, &inp->inp_sp); 208 #endif 209 if (error != 0) 210 goto out; 211 #endif /*IPSEC*/ 212 #ifdef INET6 213 if (INP_SOCKAF(so) == AF_INET6) { 214 inp->inp_vflag |= INP_IPV6PROTO; 215 if (ip6_v6only) 216 inp->inp_flags |= IN6P_IPV6_V6ONLY; 217 } 218 #endif 219 LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list); 220 pcbinfo->ipi_count++; 221 so->so_pcb = (caddr_t)inp; 222 #ifdef INET6 223 if (ip6_auto_flowlabel) 224 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 225 #endif 226 INP_LOCK(inp); 227 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 228 229 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC) 230 out: 231 if (error != 0) 232 uma_zfree(pcbinfo->ipi_zone, inp); 233 #endif 234 return (error); 235 } 236 237 int 238 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 239 { 240 int anonport, error; 241 242 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 243 INP_LOCK_ASSERT(inp); 244 245 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 246 return (EINVAL); 247 anonport = inp->inp_lport == 0 && (nam == NULL || 248 ((struct sockaddr_in *)nam)->sin_port == 0); 249 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 250 &inp->inp_lport, cred); 251 if (error) 252 return (error); 253 if (in_pcbinshash(inp) != 0) { 254 inp->inp_laddr.s_addr = INADDR_ANY; 255 inp->inp_lport = 0; 256 return (EAGAIN); 257 } 258 if (anonport) 259 inp->inp_flags |= INP_ANONPORT; 260 return (0); 261 } 262 263 /* 264 * Set up a bind operation on a PCB, performing port allocation 265 * as required, but do not actually modify the PCB. Callers can 266 * either complete the bind by setting inp_laddr/inp_lport and 267 * calling in_pcbinshash(), or they can just use the resulting 268 * port and address to authorise the sending of a once-off packet. 269 * 270 * On error, the values of *laddrp and *lportp are not changed. 271 */ 272 int 273 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 274 u_short *lportp, struct ucred *cred) 275 { 276 struct socket *so = inp->inp_socket; 277 unsigned short *lastport; 278 struct sockaddr_in *sin; 279 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 280 struct in_addr laddr; 281 u_short lport = 0; 282 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 283 int error, prison = 0; 284 int dorandom; 285 286 INP_INFO_WLOCK_ASSERT(pcbinfo); 287 INP_LOCK_ASSERT(inp); 288 289 if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ 290 return (EADDRNOTAVAIL); 291 laddr.s_addr = *laddrp; 292 if (nam != NULL && laddr.s_addr != INADDR_ANY) 293 return (EINVAL); 294 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 295 wild = INPLOOKUP_WILDCARD; 296 if (nam) { 297 sin = (struct sockaddr_in *)nam; 298 if (nam->sa_len != sizeof (*sin)) 299 return (EINVAL); 300 #ifdef notdef 301 /* 302 * We should check the family, but old programs 303 * incorrectly fail to initialize it. 304 */ 305 if (sin->sin_family != AF_INET) 306 return (EAFNOSUPPORT); 307 #endif 308 if (sin->sin_addr.s_addr != INADDR_ANY) 309 if (prison_ip(cred, 0, &sin->sin_addr.s_addr)) 310 return(EINVAL); 311 if (sin->sin_port != *lportp) { 312 /* Don't allow the port to change. */ 313 if (*lportp != 0) 314 return (EINVAL); 315 lport = sin->sin_port; 316 } 317 /* NB: lport is left as 0 if the port isn't being changed. */ 318 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 319 /* 320 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 321 * allow complete duplication of binding if 322 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 323 * and a multicast address is bound on both 324 * new and duplicated sockets. 325 */ 326 if (so->so_options & SO_REUSEADDR) 327 reuseport = SO_REUSEADDR|SO_REUSEPORT; 328 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 329 sin->sin_port = 0; /* yech... */ 330 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 331 if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) 332 return (EADDRNOTAVAIL); 333 } 334 laddr = sin->sin_addr; 335 if (lport) { 336 struct inpcb *t; 337 struct tcptw *tw; 338 339 /* GROSS */ 340 if (ntohs(lport) <= ipport_reservedhigh && 341 ntohs(lport) >= ipport_reservedlow && 342 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 343 SUSER_ALLOWJAIL)) 344 return (EACCES); 345 if (jailed(cred)) 346 prison = 1; 347 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 348 priv_check_cred(so->so_cred, 349 PRIV_NETINET_REUSEPORT, SUSER_ALLOWJAIL) != 0) { 350 t = in_pcblookup_local(inp->inp_pcbinfo, 351 sin->sin_addr, lport, 352 prison ? 0 : INPLOOKUP_WILDCARD); 353 /* 354 * XXX 355 * This entire block sorely needs a rewrite. 356 */ 357 if (t && 358 ((t->inp_vflag & INP_TIMEWAIT) == 0) && 359 (so->so_type != SOCK_STREAM || 360 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 361 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 362 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 363 (t->inp_socket->so_options & 364 SO_REUSEPORT) == 0) && 365 (so->so_cred->cr_uid != 366 t->inp_socket->so_cred->cr_uid)) 367 return (EADDRINUSE); 368 } 369 if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr)) 370 return (EADDRNOTAVAIL); 371 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 372 lport, prison ? 0 : wild); 373 if (t && (t->inp_vflag & INP_TIMEWAIT)) { 374 /* 375 * XXXRW: If an incpb has had its timewait 376 * state recycled, we treat the address as 377 * being in use (for now). This is better 378 * than a panic, but not desirable. 379 */ 380 tw = intotw(inp); 381 if (tw == NULL || 382 (reuseport & tw->tw_so_options) == 0) 383 return (EADDRINUSE); 384 } else if (t && 385 (reuseport & t->inp_socket->so_options) == 0) { 386 #ifdef INET6 387 if (ntohl(sin->sin_addr.s_addr) != 388 INADDR_ANY || 389 ntohl(t->inp_laddr.s_addr) != 390 INADDR_ANY || 391 INP_SOCKAF(so) == 392 INP_SOCKAF(t->inp_socket)) 393 #endif 394 return (EADDRINUSE); 395 } 396 } 397 } 398 if (*lportp != 0) 399 lport = *lportp; 400 if (lport == 0) { 401 u_short first, last; 402 int count; 403 404 if (laddr.s_addr != INADDR_ANY) 405 if (prison_ip(cred, 0, &laddr.s_addr)) 406 return (EINVAL); 407 408 if (inp->inp_flags & INP_HIGHPORT) { 409 first = ipport_hifirstauto; /* sysctl */ 410 last = ipport_hilastauto; 411 lastport = &pcbinfo->lasthi; 412 } else if (inp->inp_flags & INP_LOWPORT) { 413 error = priv_check_cred(cred, 414 PRIV_NETINET_RESERVEDPORT, SUSER_ALLOWJAIL); 415 if (error) 416 return error; 417 first = ipport_lowfirstauto; /* 1023 */ 418 last = ipport_lowlastauto; /* 600 */ 419 lastport = &pcbinfo->lastlow; 420 } else { 421 first = ipport_firstauto; /* sysctl */ 422 last = ipport_lastauto; 423 lastport = &pcbinfo->lastport; 424 } 425 /* 426 * For UDP, use random port allocation as long as the user 427 * allows it. For TCP (and as of yet unknown) connections, 428 * use random port allocation only if the user allows it AND 429 * ipport_tick() allows it. 430 */ 431 if (ipport_randomized && 432 (!ipport_stoprandom || pcbinfo == &udbinfo)) 433 dorandom = 1; 434 else 435 dorandom = 0; 436 /* 437 * It makes no sense to do random port allocation if 438 * we have the only port available. 439 */ 440 if (first == last) 441 dorandom = 0; 442 /* Make sure to not include UDP packets in the count. */ 443 if (pcbinfo != &udbinfo) 444 ipport_tcpallocs++; 445 /* 446 * Simple check to ensure all ports are not used up causing 447 * a deadlock here. 448 * 449 * We split the two cases (up and down) so that the direction 450 * is not being tested on each round of the loop. 451 */ 452 if (first > last) { 453 /* 454 * counting down 455 */ 456 if (dorandom) 457 *lastport = first - 458 (arc4random() % (first - last)); 459 count = first - last; 460 461 do { 462 if (count-- < 0) /* completely used? */ 463 return (EADDRNOTAVAIL); 464 --*lastport; 465 if (*lastport > first || *lastport < last) 466 *lastport = first; 467 lport = htons(*lastport); 468 } while (in_pcblookup_local(pcbinfo, laddr, lport, 469 wild)); 470 } else { 471 /* 472 * counting up 473 */ 474 if (dorandom) 475 *lastport = first + 476 (arc4random() % (last - first)); 477 count = last - first; 478 479 do { 480 if (count-- < 0) /* completely used? */ 481 return (EADDRNOTAVAIL); 482 ++*lastport; 483 if (*lastport < first || *lastport > last) 484 *lastport = first; 485 lport = htons(*lastport); 486 } while (in_pcblookup_local(pcbinfo, laddr, lport, 487 wild)); 488 } 489 } 490 if (prison_ip(cred, 0, &laddr.s_addr)) 491 return (EINVAL); 492 *laddrp = laddr.s_addr; 493 *lportp = lport; 494 return (0); 495 } 496 497 /* 498 * Connect from a socket to a specified address. 499 * Both address and port must be specified in argument sin. 500 * If don't have a local address for this socket yet, 501 * then pick one. 502 */ 503 int 504 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 505 { 506 u_short lport, fport; 507 in_addr_t laddr, faddr; 508 int anonport, error; 509 510 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 511 INP_LOCK_ASSERT(inp); 512 513 lport = inp->inp_lport; 514 laddr = inp->inp_laddr.s_addr; 515 anonport = (lport == 0); 516 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 517 NULL, cred); 518 if (error) 519 return (error); 520 521 /* Do the initial binding of the local address if required. */ 522 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 523 inp->inp_lport = lport; 524 inp->inp_laddr.s_addr = laddr; 525 if (in_pcbinshash(inp) != 0) { 526 inp->inp_laddr.s_addr = INADDR_ANY; 527 inp->inp_lport = 0; 528 return (EAGAIN); 529 } 530 } 531 532 /* Commit the remaining changes. */ 533 inp->inp_lport = lport; 534 inp->inp_laddr.s_addr = laddr; 535 inp->inp_faddr.s_addr = faddr; 536 inp->inp_fport = fport; 537 in_pcbrehash(inp); 538 #ifdef IPSEC 539 if (inp->inp_socket->so_type == SOCK_STREAM) 540 ipsec_pcbconn(inp->inp_sp); 541 #endif 542 if (anonport) 543 inp->inp_flags |= INP_ANONPORT; 544 return (0); 545 } 546 547 /* 548 * Set up for a connect from a socket to the specified address. 549 * On entry, *laddrp and *lportp should contain the current local 550 * address and port for the PCB; these are updated to the values 551 * that should be placed in inp_laddr and inp_lport to complete 552 * the connect. 553 * 554 * On success, *faddrp and *fportp will be set to the remote address 555 * and port. These are not updated in the error case. 556 * 557 * If the operation fails because the connection already exists, 558 * *oinpp will be set to the PCB of that connection so that the 559 * caller can decide to override it. In all other cases, *oinpp 560 * is set to NULL. 561 */ 562 int 563 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 564 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 565 struct inpcb **oinpp, struct ucred *cred) 566 { 567 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 568 struct in_ifaddr *ia; 569 struct sockaddr_in sa; 570 struct ucred *socred; 571 struct inpcb *oinp; 572 struct in_addr laddr, faddr; 573 u_short lport, fport; 574 int error; 575 576 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 577 INP_LOCK_ASSERT(inp); 578 579 if (oinpp != NULL) 580 *oinpp = NULL; 581 if (nam->sa_len != sizeof (*sin)) 582 return (EINVAL); 583 if (sin->sin_family != AF_INET) 584 return (EAFNOSUPPORT); 585 if (sin->sin_port == 0) 586 return (EADDRNOTAVAIL); 587 laddr.s_addr = *laddrp; 588 lport = *lportp; 589 faddr = sin->sin_addr; 590 fport = sin->sin_port; 591 socred = inp->inp_socket->so_cred; 592 if (laddr.s_addr == INADDR_ANY && jailed(socred)) { 593 bzero(&sa, sizeof(sa)); 594 sa.sin_addr.s_addr = htonl(prison_getip(socred)); 595 sa.sin_len = sizeof(sa); 596 sa.sin_family = AF_INET; 597 error = in_pcbbind_setup(inp, (struct sockaddr *)&sa, 598 &laddr.s_addr, &lport, cred); 599 if (error) 600 return (error); 601 } 602 if (!TAILQ_EMPTY(&in_ifaddrhead)) { 603 /* 604 * If the destination address is INADDR_ANY, 605 * use the primary local address. 606 * If the supplied address is INADDR_BROADCAST, 607 * and the primary interface supports broadcast, 608 * choose the broadcast address for that interface. 609 */ 610 if (faddr.s_addr == INADDR_ANY) 611 faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; 612 else if (faddr.s_addr == (u_long)INADDR_BROADCAST && 613 (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & 614 IFF_BROADCAST)) 615 faddr = satosin(&TAILQ_FIRST( 616 &in_ifaddrhead)->ia_broadaddr)->sin_addr; 617 } 618 if (laddr.s_addr == INADDR_ANY) { 619 ia = (struct in_ifaddr *)0; 620 /* 621 * If route is known our src addr is taken from the i/f, 622 * else punt. 623 * 624 * Find out route to destination 625 */ 626 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 627 ia = ip_rtaddr(faddr); 628 /* 629 * If we found a route, use the address corresponding to 630 * the outgoing interface. 631 * 632 * Otherwise assume faddr is reachable on a directly connected 633 * network and try to find a corresponding interface to take 634 * the source address from. 635 */ 636 if (ia == 0) { 637 bzero(&sa, sizeof(sa)); 638 sa.sin_addr = faddr; 639 sa.sin_len = sizeof(sa); 640 sa.sin_family = AF_INET; 641 642 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa))); 643 if (ia == 0) 644 ia = ifatoia(ifa_ifwithnet(sintosa(&sa))); 645 if (ia == 0) 646 return (ENETUNREACH); 647 } 648 /* 649 * If the destination address is multicast and an outgoing 650 * interface has been set as a multicast option, use the 651 * address of that interface as our source address. 652 */ 653 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 654 inp->inp_moptions != NULL) { 655 struct ip_moptions *imo; 656 struct ifnet *ifp; 657 658 imo = inp->inp_moptions; 659 if (imo->imo_multicast_ifp != NULL) { 660 ifp = imo->imo_multicast_ifp; 661 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) 662 if (ia->ia_ifp == ifp) 663 break; 664 if (ia == 0) 665 return (EADDRNOTAVAIL); 666 } 667 } 668 laddr = ia->ia_addr.sin_addr; 669 } 670 671 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 672 0, NULL); 673 if (oinp != NULL) { 674 if (oinpp != NULL) 675 *oinpp = oinp; 676 return (EADDRINUSE); 677 } 678 if (lport == 0) { 679 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 680 cred); 681 if (error) 682 return (error); 683 } 684 *laddrp = laddr.s_addr; 685 *lportp = lport; 686 *faddrp = faddr.s_addr; 687 *fportp = fport; 688 return (0); 689 } 690 691 void 692 in_pcbdisconnect(struct inpcb *inp) 693 { 694 695 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 696 INP_LOCK_ASSERT(inp); 697 698 inp->inp_faddr.s_addr = INADDR_ANY; 699 inp->inp_fport = 0; 700 in_pcbrehash(inp); 701 #ifdef IPSEC 702 ipsec_pcbdisconn(inp->inp_sp); 703 #endif 704 } 705 706 /* 707 * In the old world order, in_pcbdetach() served two functions: to detach the 708 * pcb from the socket/potentially free the socket, and to free the pcb 709 * itself. In the new world order, the protocol code is responsible for 710 * managing the relationship with the socket, and this code simply frees the 711 * pcb. 712 */ 713 void 714 in_pcbdetach(struct inpcb *inp) 715 { 716 717 KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL")); 718 inp->inp_socket->so_pcb = NULL; 719 inp->inp_socket = NULL; 720 } 721 722 void 723 in_pcbfree(struct inpcb *inp) 724 { 725 struct inpcbinfo *ipi = inp->inp_pcbinfo; 726 727 KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL")); 728 INP_INFO_WLOCK_ASSERT(ipi); 729 INP_LOCK_ASSERT(inp); 730 731 #if defined(IPSEC) || defined(FAST_IPSEC) 732 ipsec4_delete_pcbpolicy(inp); 733 #endif /*IPSEC*/ 734 inp->inp_gencnt = ++ipi->ipi_gencnt; 735 in_pcbremlists(inp); 736 if (inp->inp_options) 737 (void)m_free(inp->inp_options); 738 ip_freemoptions(inp->inp_moptions); 739 inp->inp_vflag = 0; 740 741 #ifdef MAC 742 mac_destroy_inpcb(inp); 743 #endif 744 INP_UNLOCK(inp); 745 uma_zfree(ipi->ipi_zone, inp); 746 } 747 748 /* 749 * TCP needs to maintain its inpcb structure after the TCP connection has 750 * been torn down. However, it must be disconnected from the inpcb hashes as 751 * it must not prevent binding of future connections to the same port/ip 752 * combination by other inpcbs. 753 */ 754 void 755 in_pcbdrop(struct inpcb *inp) 756 { 757 758 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 759 INP_LOCK_ASSERT(inp); 760 761 inp->inp_vflag |= INP_DROPPED; 762 if (inp->inp_lport) { 763 struct inpcbport *phd = inp->inp_phd; 764 765 LIST_REMOVE(inp, inp_hash); 766 LIST_REMOVE(inp, inp_portlist); 767 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 768 LIST_REMOVE(phd, phd_hash); 769 free(phd, M_PCB); 770 } 771 inp->inp_lport = 0; 772 } 773 } 774 775 struct sockaddr * 776 in_sockaddr(in_port_t port, struct in_addr *addr_p) 777 { 778 struct sockaddr_in *sin; 779 780 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, 781 M_WAITOK | M_ZERO); 782 sin->sin_family = AF_INET; 783 sin->sin_len = sizeof(*sin); 784 sin->sin_addr = *addr_p; 785 sin->sin_port = port; 786 787 return (struct sockaddr *)sin; 788 } 789 790 /* 791 * The wrapper function will pass down the pcbinfo for this function to lock. 792 * The socket must have a valid 793 * (i.e., non-nil) PCB, but it should be impossible to get an invalid one 794 * except through a kernel programming error, so it is acceptable to panic 795 * (or in this case trap) if the PCB is invalid. (Actually, we don't trap 796 * because there actually /is/ a programming error somewhere... XXX) 797 */ 798 int 799 in_setsockaddr(struct socket *so, struct sockaddr **nam, 800 struct inpcbinfo *pcbinfo) 801 { 802 struct inpcb *inp; 803 struct in_addr addr; 804 in_port_t port; 805 806 inp = sotoinpcb(so); 807 KASSERT(inp != NULL, ("in_setsockaddr: inp == NULL")); 808 809 INP_LOCK(inp); 810 port = inp->inp_lport; 811 addr = inp->inp_laddr; 812 INP_UNLOCK(inp); 813 814 *nam = in_sockaddr(port, &addr); 815 return 0; 816 } 817 818 /* 819 * The wrapper function will pass down the pcbinfo for this function to lock. 820 */ 821 int 822 in_setpeeraddr(struct socket *so, struct sockaddr **nam, 823 struct inpcbinfo *pcbinfo) 824 { 825 struct inpcb *inp; 826 struct in_addr addr; 827 in_port_t port; 828 829 inp = sotoinpcb(so); 830 KASSERT(inp != NULL, ("in_setpeeraddr: inp == NULL")); 831 832 INP_LOCK(inp); 833 port = inp->inp_fport; 834 addr = inp->inp_faddr; 835 INP_UNLOCK(inp); 836 837 *nam = in_sockaddr(port, &addr); 838 return 0; 839 } 840 841 void 842 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 843 struct inpcb *(*notify)(struct inpcb *, int)) 844 { 845 struct inpcb *inp, *ninp; 846 struct inpcbhead *head; 847 848 INP_INFO_WLOCK(pcbinfo); 849 head = pcbinfo->listhead; 850 for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { 851 INP_LOCK(inp); 852 ninp = LIST_NEXT(inp, inp_list); 853 #ifdef INET6 854 if ((inp->inp_vflag & INP_IPV4) == 0) { 855 INP_UNLOCK(inp); 856 continue; 857 } 858 #endif 859 if (inp->inp_faddr.s_addr != faddr.s_addr || 860 inp->inp_socket == NULL) { 861 INP_UNLOCK(inp); 862 continue; 863 } 864 if ((*notify)(inp, errno)) 865 INP_UNLOCK(inp); 866 } 867 INP_INFO_WUNLOCK(pcbinfo); 868 } 869 870 void 871 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 872 { 873 struct inpcb *inp; 874 struct ip_moptions *imo; 875 int i, gap; 876 877 INP_INFO_RLOCK(pcbinfo); 878 LIST_FOREACH(inp, pcbinfo->listhead, inp_list) { 879 INP_LOCK(inp); 880 imo = inp->inp_moptions; 881 if ((inp->inp_vflag & INP_IPV4) && 882 imo != NULL) { 883 /* 884 * Unselect the outgoing interface if it is being 885 * detached. 886 */ 887 if (imo->imo_multicast_ifp == ifp) 888 imo->imo_multicast_ifp = NULL; 889 890 /* 891 * Drop multicast group membership if we joined 892 * through the interface being detached. 893 */ 894 for (i = 0, gap = 0; i < imo->imo_num_memberships; 895 i++) { 896 if (imo->imo_membership[i]->inm_ifp == ifp) { 897 in_delmulti(imo->imo_membership[i]); 898 gap++; 899 } else if (gap != 0) 900 imo->imo_membership[i - gap] = 901 imo->imo_membership[i]; 902 } 903 imo->imo_num_memberships -= gap; 904 } 905 INP_UNLOCK(inp); 906 } 907 INP_INFO_RUNLOCK(pcbinfo); 908 } 909 910 /* 911 * Lookup a PCB based on the local address and port. 912 */ 913 #define INP_LOOKUP_MAPPED_PCB_COST 3 914 struct inpcb * 915 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 916 u_int lport_arg, int wild_okay) 917 { 918 struct inpcb *inp; 919 #ifdef INET6 920 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 921 #else 922 int matchwild = 3; 923 #endif 924 int wildcard; 925 u_short lport = lport_arg; 926 927 INP_INFO_WLOCK_ASSERT(pcbinfo); 928 929 if (!wild_okay) { 930 struct inpcbhead *head; 931 /* 932 * Look for an unconnected (wildcard foreign addr) PCB that 933 * matches the local address and port we're looking for. 934 */ 935 head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; 936 LIST_FOREACH(inp, head, inp_hash) { 937 #ifdef INET6 938 if ((inp->inp_vflag & INP_IPV4) == 0) 939 continue; 940 #endif 941 if (inp->inp_faddr.s_addr == INADDR_ANY && 942 inp->inp_laddr.s_addr == laddr.s_addr && 943 inp->inp_lport == lport) { 944 /* 945 * Found. 946 */ 947 return (inp); 948 } 949 } 950 /* 951 * Not found. 952 */ 953 return (NULL); 954 } else { 955 struct inpcbporthead *porthash; 956 struct inpcbport *phd; 957 struct inpcb *match = NULL; 958 /* 959 * Best fit PCB lookup. 960 * 961 * First see if this local port is in use by looking on the 962 * port hash list. 963 */ 964 porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, 965 pcbinfo->porthashmask)]; 966 LIST_FOREACH(phd, porthash, phd_hash) { 967 if (phd->phd_port == lport) 968 break; 969 } 970 if (phd != NULL) { 971 /* 972 * Port is in use by one or more PCBs. Look for best 973 * fit. 974 */ 975 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 976 wildcard = 0; 977 #ifdef INET6 978 if ((inp->inp_vflag & INP_IPV4) == 0) 979 continue; 980 /* 981 * We never select the PCB that has 982 * INP_IPV6 flag and is bound to :: if 983 * we have another PCB which is bound 984 * to 0.0.0.0. If a PCB has the 985 * INP_IPV6 flag, then we set its cost 986 * higher than IPv4 only PCBs. 987 * 988 * Note that the case only happens 989 * when a socket is bound to ::, under 990 * the condition that the use of the 991 * mapped address is allowed. 992 */ 993 if ((inp->inp_vflag & INP_IPV6) != 0) 994 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 995 #endif 996 if (inp->inp_faddr.s_addr != INADDR_ANY) 997 wildcard++; 998 if (inp->inp_laddr.s_addr != INADDR_ANY) { 999 if (laddr.s_addr == INADDR_ANY) 1000 wildcard++; 1001 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1002 continue; 1003 } else { 1004 if (laddr.s_addr != INADDR_ANY) 1005 wildcard++; 1006 } 1007 if (wildcard < matchwild) { 1008 match = inp; 1009 matchwild = wildcard; 1010 if (matchwild == 0) { 1011 break; 1012 } 1013 } 1014 } 1015 } 1016 return (match); 1017 } 1018 } 1019 #undef INP_LOOKUP_MAPPED_PCB_COST 1020 1021 /* 1022 * Lookup PCB in hash list. 1023 */ 1024 struct inpcb * 1025 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1026 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1027 struct ifnet *ifp) 1028 { 1029 struct inpcbhead *head; 1030 struct inpcb *inp; 1031 u_short fport = fport_arg, lport = lport_arg; 1032 1033 INP_INFO_RLOCK_ASSERT(pcbinfo); 1034 1035 /* 1036 * First look for an exact match. 1037 */ 1038 head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1039 pcbinfo->hashmask)]; 1040 LIST_FOREACH(inp, head, inp_hash) { 1041 #ifdef INET6 1042 if ((inp->inp_vflag & INP_IPV4) == 0) 1043 continue; 1044 #endif 1045 if (inp->inp_faddr.s_addr == faddr.s_addr && 1046 inp->inp_laddr.s_addr == laddr.s_addr && 1047 inp->inp_fport == fport && 1048 inp->inp_lport == lport) 1049 return (inp); 1050 } 1051 1052 /* 1053 * Then look for a wildcard match, if requested. 1054 */ 1055 if (wildcard) { 1056 struct inpcb *local_wild = NULL; 1057 #ifdef INET6 1058 struct inpcb *local_wild_mapped = NULL; 1059 #endif 1060 1061 head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, 1062 pcbinfo->hashmask)]; 1063 LIST_FOREACH(inp, head, inp_hash) { 1064 #ifdef INET6 1065 if ((inp->inp_vflag & INP_IPV4) == 0) 1066 continue; 1067 #endif 1068 if (inp->inp_faddr.s_addr == INADDR_ANY && 1069 inp->inp_lport == lport) { 1070 if (ifp && ifp->if_type == IFT_FAITH && 1071 (inp->inp_flags & INP_FAITH) == 0) 1072 continue; 1073 if (inp->inp_laddr.s_addr == laddr.s_addr) 1074 return (inp); 1075 else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1076 #ifdef INET6 1077 if (INP_CHECK_SOCKAF(inp->inp_socket, 1078 AF_INET6)) 1079 local_wild_mapped = inp; 1080 else 1081 #endif 1082 local_wild = inp; 1083 } 1084 } 1085 } 1086 #ifdef INET6 1087 if (local_wild == NULL) 1088 return (local_wild_mapped); 1089 #endif 1090 return (local_wild); 1091 } 1092 return (NULL); 1093 } 1094 1095 /* 1096 * Insert PCB onto various hash lists. 1097 */ 1098 int 1099 in_pcbinshash(struct inpcb *inp) 1100 { 1101 struct inpcbhead *pcbhash; 1102 struct inpcbporthead *pcbporthash; 1103 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1104 struct inpcbport *phd; 1105 u_int32_t hashkey_faddr; 1106 1107 INP_INFO_WLOCK_ASSERT(pcbinfo); 1108 INP_LOCK_ASSERT(inp); 1109 1110 #ifdef INET6 1111 if (inp->inp_vflag & INP_IPV6) 1112 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1113 else 1114 #endif /* INET6 */ 1115 hashkey_faddr = inp->inp_faddr.s_addr; 1116 1117 pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, 1118 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; 1119 1120 pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport, 1121 pcbinfo->porthashmask)]; 1122 1123 /* 1124 * Go through port list and look for a head for this lport. 1125 */ 1126 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1127 if (phd->phd_port == inp->inp_lport) 1128 break; 1129 } 1130 /* 1131 * If none exists, malloc one and tack it on. 1132 */ 1133 if (phd == NULL) { 1134 MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1135 if (phd == NULL) { 1136 return (ENOBUFS); /* XXX */ 1137 } 1138 phd->phd_port = inp->inp_lport; 1139 LIST_INIT(&phd->phd_pcblist); 1140 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1141 } 1142 inp->inp_phd = phd; 1143 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1144 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1145 return (0); 1146 } 1147 1148 /* 1149 * Move PCB to the proper hash bucket when { faddr, fport } have been 1150 * changed. NOTE: This does not handle the case of the lport changing (the 1151 * hashed port list would have to be updated as well), so the lport must 1152 * not change after in_pcbinshash() has been called. 1153 */ 1154 void 1155 in_pcbrehash(struct inpcb *inp) 1156 { 1157 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1158 struct inpcbhead *head; 1159 u_int32_t hashkey_faddr; 1160 1161 INP_INFO_WLOCK_ASSERT(pcbinfo); 1162 INP_LOCK_ASSERT(inp); 1163 1164 #ifdef INET6 1165 if (inp->inp_vflag & INP_IPV6) 1166 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1167 else 1168 #endif /* INET6 */ 1169 hashkey_faddr = inp->inp_faddr.s_addr; 1170 1171 head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, 1172 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; 1173 1174 LIST_REMOVE(inp, inp_hash); 1175 LIST_INSERT_HEAD(head, inp, inp_hash); 1176 } 1177 1178 /* 1179 * Remove PCB from various lists. 1180 */ 1181 void 1182 in_pcbremlists(struct inpcb *inp) 1183 { 1184 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1185 1186 INP_INFO_WLOCK_ASSERT(pcbinfo); 1187 INP_LOCK_ASSERT(inp); 1188 1189 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1190 if (inp->inp_lport) { 1191 struct inpcbport *phd = inp->inp_phd; 1192 1193 LIST_REMOVE(inp, inp_hash); 1194 LIST_REMOVE(inp, inp_portlist); 1195 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1196 LIST_REMOVE(phd, phd_hash); 1197 free(phd, M_PCB); 1198 } 1199 } 1200 LIST_REMOVE(inp, inp_list); 1201 pcbinfo->ipi_count--; 1202 } 1203 1204 /* 1205 * A set label operation has occurred at the socket layer, propagate the 1206 * label change into the in_pcb for the socket. 1207 */ 1208 void 1209 in_pcbsosetlabel(struct socket *so) 1210 { 1211 #ifdef MAC 1212 struct inpcb *inp; 1213 1214 inp = sotoinpcb(so); 1215 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1216 1217 INP_LOCK(inp); 1218 SOCK_LOCK(so); 1219 mac_inpcb_sosetlabel(so, inp); 1220 SOCK_UNLOCK(so); 1221 INP_UNLOCK(inp); 1222 #endif 1223 } 1224 1225 /* 1226 * ipport_tick runs once per second, determining if random port allocation 1227 * should be continued. If more than ipport_randomcps ports have been 1228 * allocated in the last second, then we return to sequential port 1229 * allocation. We return to random allocation only once we drop below 1230 * ipport_randomcps for at least ipport_randomtime seconds. 1231 */ 1232 void 1233 ipport_tick(void *xtp) 1234 { 1235 1236 if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) { 1237 if (ipport_stoprandom > 0) 1238 ipport_stoprandom--; 1239 } else 1240 ipport_stoprandom = ipport_randomtime; 1241 ipport_tcplastcount = ipport_tcpallocs; 1242 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1243 } 1244 1245 #ifdef DDB 1246 static void 1247 db_print_indent(int indent) 1248 { 1249 int i; 1250 1251 for (i = 0; i < indent; i++) 1252 db_printf(" "); 1253 } 1254 1255 static void 1256 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1257 { 1258 char faddr_str[48], laddr_str[48]; 1259 1260 db_print_indent(indent); 1261 db_printf("%s at %p\n", name, inc); 1262 1263 indent += 2; 1264 1265 #ifdef INET6 1266 if (inc->inc_flags == 1) { 1267 /* IPv6. */ 1268 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1269 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1270 } else { 1271 #endif 1272 /* IPv4. */ 1273 inet_ntoa_r(inc->inc_laddr, laddr_str); 1274 inet_ntoa_r(inc->inc_faddr, faddr_str); 1275 #ifdef INET6 1276 } 1277 #endif 1278 db_print_indent(indent); 1279 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1280 ntohs(inc->inc_lport)); 1281 db_print_indent(indent); 1282 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1283 ntohs(inc->inc_fport)); 1284 } 1285 1286 static void 1287 db_print_inpflags(int inp_flags) 1288 { 1289 int comma; 1290 1291 comma = 0; 1292 if (inp_flags & INP_RECVOPTS) { 1293 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1294 comma = 1; 1295 } 1296 if (inp_flags & INP_RECVRETOPTS) { 1297 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1298 comma = 1; 1299 } 1300 if (inp_flags & INP_RECVDSTADDR) { 1301 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1302 comma = 1; 1303 } 1304 if (inp_flags & INP_HDRINCL) { 1305 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1306 comma = 1; 1307 } 1308 if (inp_flags & INP_HIGHPORT) { 1309 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1310 comma = 1; 1311 } 1312 if (inp_flags & INP_LOWPORT) { 1313 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1314 comma = 1; 1315 } 1316 if (inp_flags & INP_ANONPORT) { 1317 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1318 comma = 1; 1319 } 1320 if (inp_flags & INP_RECVIF) { 1321 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1322 comma = 1; 1323 } 1324 if (inp_flags & INP_MTUDISC) { 1325 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1326 comma = 1; 1327 } 1328 if (inp_flags & INP_FAITH) { 1329 db_printf("%sINP_FAITH", comma ? ", " : ""); 1330 comma = 1; 1331 } 1332 if (inp_flags & INP_RECVTTL) { 1333 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1334 comma = 1; 1335 } 1336 if (inp_flags & INP_DONTFRAG) { 1337 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1338 comma = 1; 1339 } 1340 if (inp_flags & IN6P_IPV6_V6ONLY) { 1341 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1342 comma = 1; 1343 } 1344 if (inp_flags & IN6P_PKTINFO) { 1345 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1346 comma = 1; 1347 } 1348 if (inp_flags & IN6P_HOPLIMIT) { 1349 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1350 comma = 1; 1351 } 1352 if (inp_flags & IN6P_HOPOPTS) { 1353 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1354 comma = 1; 1355 } 1356 if (inp_flags & IN6P_DSTOPTS) { 1357 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1358 comma = 1; 1359 } 1360 if (inp_flags & IN6P_RTHDR) { 1361 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1362 comma = 1; 1363 } 1364 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1365 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1366 comma = 1; 1367 } 1368 if (inp_flags & IN6P_TCLASS) { 1369 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1370 comma = 1; 1371 } 1372 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1373 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1374 comma = 1; 1375 } 1376 if (inp_flags & IN6P_RFC2292) { 1377 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1378 comma = 1; 1379 } 1380 if (inp_flags & IN6P_MTU) { 1381 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1382 comma = 1; 1383 } 1384 } 1385 1386 static void 1387 db_print_inpvflag(u_char inp_vflag) 1388 { 1389 int comma; 1390 1391 comma = 0; 1392 if (inp_vflag & INP_IPV4) { 1393 db_printf("%sINP_IPV4", comma ? ", " : ""); 1394 comma = 1; 1395 } 1396 if (inp_vflag & INP_IPV6) { 1397 db_printf("%sINP_IPV6", comma ? ", " : ""); 1398 comma = 1; 1399 } 1400 if (inp_vflag & INP_IPV6PROTO) { 1401 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1402 comma = 1; 1403 } 1404 if (inp_vflag & INP_TIMEWAIT) { 1405 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1406 comma = 1; 1407 } 1408 if (inp_vflag & INP_ONESBCAST) { 1409 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1410 comma = 1; 1411 } 1412 if (inp_vflag & INP_DROPPED) { 1413 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1414 comma = 1; 1415 } 1416 if (inp_vflag & INP_SOCKREF) { 1417 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1418 comma = 1; 1419 } 1420 } 1421 1422 void 1423 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1424 { 1425 1426 db_print_indent(indent); 1427 db_printf("%s at %p\n", name, inp); 1428 1429 indent += 2; 1430 1431 db_print_indent(indent); 1432 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1433 1434 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1435 1436 db_print_indent(indent); 1437 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1438 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1439 1440 db_print_indent(indent); 1441 db_printf("inp_label: %p inp_flags: 0x%x (", 1442 inp->inp_label, inp->inp_flags); 1443 db_print_inpflags(inp->inp_flags); 1444 db_printf(")\n"); 1445 1446 db_print_indent(indent); 1447 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1448 inp->inp_vflag); 1449 db_print_inpvflag(inp->inp_vflag); 1450 db_printf(")\n"); 1451 1452 db_print_indent(indent); 1453 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1454 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1455 1456 db_print_indent(indent); 1457 #ifdef INET6 1458 if (inp->inp_vflag & INP_IPV6) { 1459 db_printf("in6p_options: %p in6p_outputopts: %p " 1460 "in6p_moptions: %p\n", inp->in6p_options, 1461 inp->in6p_outputopts, inp->in6p_moptions); 1462 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1463 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1464 inp->in6p_hops); 1465 } else 1466 #endif 1467 { 1468 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1469 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1470 inp->inp_options, inp->inp_moptions); 1471 } 1472 1473 db_print_indent(indent); 1474 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1475 (uintmax_t)inp->inp_gencnt); 1476 } 1477 1478 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1479 { 1480 struct inpcb *inp; 1481 1482 if (!have_addr) { 1483 db_printf("usage: show inpcb <addr>\n"); 1484 return; 1485 } 1486 inp = (struct inpcb *)addr; 1487 1488 db_print_inpcb(inp, "inpcb", 0); 1489 } 1490 #endif 1491