1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/callout.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #include <netinet/tcp_var.h> 98 #ifdef TCPHPTS 99 #include <netinet/tcp_hpts.h> 100 #endif 101 #include <netinet/udp.h> 102 #include <netinet/udp_var.h> 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet6/ip6_var.h> 108 #endif /* INET6 */ 109 #include <net/route/nhop.h> 110 #endif 111 112 #include <netipsec/ipsec_support.h> 113 114 #include <security/mac/mac_framework.h> 115 116 #define INPCBLBGROUP_SIZMIN 8 117 #define INPCBLBGROUP_SIZMAX 256 118 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 119 120 static struct callout ipport_tick_callout; 121 122 /* 123 * These configure the range of local port addresses assigned to 124 * "unspecified" outgoing connections/packets/whatever. 125 */ 126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 132 133 /* 134 * Reserved ports accessible only to root. There are significant 135 * security considerations that must be accounted for when changing these, 136 * but the security benefits can be great. Please be careful. 137 */ 138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 139 VNET_DEFINE(int, ipport_reservedlow); 140 141 /* Variables dealing with random ephemeral port allocation. */ 142 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 144 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 145 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 146 VNET_DEFINE(int, ipport_tcpallocs); 147 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 148 149 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 150 151 #ifdef INET 152 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 153 struct in_addr faddr, u_int fport_arg, 154 struct in_addr laddr, u_int lport_arg, 155 int lookupflags, struct ifnet *ifp, 156 uint8_t numa_domain); 157 158 #define RANGECHK(var, min, max) \ 159 if ((var) < (min)) { (var) = (min); } \ 160 else if ((var) > (max)) { (var) = (max); } 161 162 static int 163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 167 error = sysctl_handle_int(oidp, arg1, arg2, req); 168 if (error == 0) { 169 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 171 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 174 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 175 } 176 return (error); 177 } 178 179 #undef RANGECHK 180 181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 182 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 183 "IP Ports"); 184 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 206 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 207 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 208 ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 210 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 211 &VNET_NAME(ipport_reservedhigh), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 213 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 220 "allocations before switching to a sequential one"); 221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 222 CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(ipport_randomtime), 0, 224 "Minimum time to keep sequential port " 225 "allocation before switching to a random one"); 226 227 #ifdef RATELIMIT 228 counter_u64_t rate_limit_new; 229 counter_u64_t rate_limit_chg; 230 counter_u64_t rate_limit_active; 231 counter_u64_t rate_limit_alloc_fail; 232 counter_u64_t rate_limit_set_ok; 233 234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 235 "IP Rate Limiting"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 237 &rate_limit_active, "Active rate limited connections"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 239 &rate_limit_alloc_fail, "Rate limited connection failures"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 241 &rate_limit_set_ok, "Rate limited setting succeeded"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 243 &rate_limit_new, "Total Rate limit new attempts"); 244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 245 &rate_limit_chg, "Total Rate limited change attempts"); 246 247 #endif /* RATELIMIT */ 248 249 #endif /* INET */ 250 251 VNET_DEFINE(uint32_t, in_pcbhashseed); 252 static void 253 in_pcbhashseed_init(void) 254 { 255 256 V_in_pcbhashseed = arc4random(); 257 } 258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 259 in_pcbhashseed_init, 0); 260 261 /* 262 * in_pcb.c: manage the Protocol Control Blocks. 263 * 264 * NOTE: It is assumed that most of these functions will be called with 265 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 266 * functions often modify hash chains or addresses in pcbs. 267 */ 268 269 static struct inpcblbgroup * 270 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 271 uint16_t port, const union in_dependaddr *addr, int size, 272 uint8_t numa_domain) 273 { 274 struct inpcblbgroup *grp; 275 size_t bytes; 276 277 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 278 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 279 if (!grp) 280 return (NULL); 281 grp->il_vflag = vflag; 282 grp->il_lport = port; 283 grp->il_numa_domain = numa_domain; 284 grp->il_dependladdr = *addr; 285 grp->il_inpsiz = size; 286 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 287 return (grp); 288 } 289 290 static void 291 in_pcblbgroup_free_deferred(epoch_context_t ctx) 292 { 293 struct inpcblbgroup *grp; 294 295 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 296 free(grp, M_PCB); 297 } 298 299 static void 300 in_pcblbgroup_free(struct inpcblbgroup *grp) 301 { 302 303 CK_LIST_REMOVE(grp, il_list); 304 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 305 } 306 307 static struct inpcblbgroup * 308 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 309 struct inpcblbgroup *old_grp, int size) 310 { 311 struct inpcblbgroup *grp; 312 int i; 313 314 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 315 old_grp->il_lport, &old_grp->il_dependladdr, size, 316 old_grp->il_numa_domain); 317 if (grp == NULL) 318 return (NULL); 319 320 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 321 ("invalid new local group size %d and old local group count %d", 322 grp->il_inpsiz, old_grp->il_inpcnt)); 323 324 for (i = 0; i < old_grp->il_inpcnt; ++i) 325 grp->il_inp[i] = old_grp->il_inp[i]; 326 grp->il_inpcnt = old_grp->il_inpcnt; 327 in_pcblbgroup_free(old_grp); 328 return (grp); 329 } 330 331 /* 332 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 333 * and shrink group if possible. 334 */ 335 static void 336 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 337 int i) 338 { 339 struct inpcblbgroup *grp, *new_grp; 340 341 grp = *grpp; 342 for (; i + 1 < grp->il_inpcnt; ++i) 343 grp->il_inp[i] = grp->il_inp[i + 1]; 344 grp->il_inpcnt--; 345 346 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 347 grp->il_inpcnt <= grp->il_inpsiz / 4) { 348 /* Shrink this group. */ 349 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 350 if (new_grp != NULL) 351 *grpp = new_grp; 352 } 353 } 354 355 /* 356 * Add PCB to load balance group for SO_REUSEPORT_LB option. 357 */ 358 static int 359 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 360 { 361 const static struct timeval interval = { 60, 0 }; 362 static struct timeval lastprint; 363 struct inpcbinfo *pcbinfo; 364 struct inpcblbgrouphead *hdr; 365 struct inpcblbgroup *grp; 366 uint32_t idx; 367 368 pcbinfo = inp->inp_pcbinfo; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(pcbinfo); 372 373 /* 374 * Don't allow jailed socket to join local group. 375 */ 376 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 377 return (0); 378 379 #ifdef INET6 380 /* 381 * Don't allow IPv4 mapped INET6 wild socket. 382 */ 383 if ((inp->inp_vflag & INP_IPV4) && 384 inp->inp_laddr.s_addr == INADDR_ANY && 385 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 386 return (0); 387 } 388 #endif 389 390 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 391 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 392 CK_LIST_FOREACH(grp, hdr, il_list) { 393 if (grp->il_vflag == inp->inp_vflag && 394 grp->il_lport == inp->inp_lport && 395 grp->il_numa_domain == numa_domain && 396 memcmp(&grp->il_dependladdr, 397 &inp->inp_inc.inc_ie.ie_dependladdr, 398 sizeof(grp->il_dependladdr)) == 0) 399 break; 400 } 401 if (grp == NULL) { 402 /* Create new load balance group. */ 403 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 404 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 405 INPCBLBGROUP_SIZMIN, numa_domain); 406 if (grp == NULL) 407 return (ENOBUFS); 408 } else if (grp->il_inpcnt == grp->il_inpsiz) { 409 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 410 if (ratecheck(&lastprint, &interval)) 411 printf("lb group port %d, limit reached\n", 412 ntohs(grp->il_lport)); 413 return (0); 414 } 415 416 /* Expand this local group. */ 417 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 418 if (grp == NULL) 419 return (ENOBUFS); 420 } 421 422 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 423 ("invalid local group size %d and count %d", grp->il_inpsiz, 424 grp->il_inpcnt)); 425 426 grp->il_inp[grp->il_inpcnt] = inp; 427 grp->il_inpcnt++; 428 return (0); 429 } 430 431 /* 432 * Remove PCB from load balance group. 433 */ 434 static void 435 in_pcbremlbgrouphash(struct inpcb *inp) 436 { 437 struct inpcbinfo *pcbinfo; 438 struct inpcblbgrouphead *hdr; 439 struct inpcblbgroup *grp; 440 int i; 441 442 pcbinfo = inp->inp_pcbinfo; 443 444 INP_WLOCK_ASSERT(inp); 445 INP_HASH_WLOCK_ASSERT(pcbinfo); 446 447 hdr = &pcbinfo->ipi_lbgrouphashbase[ 448 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 449 CK_LIST_FOREACH(grp, hdr, il_list) { 450 for (i = 0; i < grp->il_inpcnt; ++i) { 451 if (grp->il_inp[i] != inp) 452 continue; 453 454 if (grp->il_inpcnt == 1) { 455 /* We are the last, free this local group. */ 456 in_pcblbgroup_free(grp); 457 } else { 458 /* Pull up inpcbs, shrink group if possible. */ 459 in_pcblbgroup_reorder(hdr, &grp, i); 460 } 461 return; 462 } 463 } 464 } 465 466 int 467 in_pcblbgroup_numa(struct inpcb *inp, int arg) 468 { 469 struct inpcbinfo *pcbinfo; 470 struct inpcblbgrouphead *hdr; 471 struct inpcblbgroup *grp; 472 int err, i; 473 uint8_t numa_domain; 474 475 switch (arg) { 476 case TCP_REUSPORT_LB_NUMA_NODOM: 477 numa_domain = M_NODOM; 478 break; 479 case TCP_REUSPORT_LB_NUMA_CURDOM: 480 numa_domain = PCPU_GET(domain); 481 break; 482 default: 483 if (arg < 0 || arg >= vm_ndomains) 484 return (EINVAL); 485 numa_domain = arg; 486 } 487 488 err = 0; 489 pcbinfo = inp->inp_pcbinfo; 490 INP_WLOCK_ASSERT(inp); 491 INP_HASH_WLOCK(pcbinfo); 492 hdr = &pcbinfo->ipi_lbgrouphashbase[ 493 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 494 CK_LIST_FOREACH(grp, hdr, il_list) { 495 for (i = 0; i < grp->il_inpcnt; ++i) { 496 if (grp->il_inp[i] != inp) 497 continue; 498 499 if (grp->il_numa_domain == numa_domain) { 500 goto abort_with_hash_wlock; 501 } 502 503 /* Remove it from the old group. */ 504 in_pcbremlbgrouphash(inp); 505 506 /* Add it to the new group based on numa domain. */ 507 in_pcbinslbgrouphash(inp, numa_domain); 508 goto abort_with_hash_wlock; 509 } 510 } 511 err = ENOENT; 512 abort_with_hash_wlock: 513 INP_HASH_WUNLOCK(pcbinfo); 514 return (err); 515 } 516 517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 519 520 /* 521 * Initialize an inpcbinfo - a per-VNET instance of connections db. 522 */ 523 void 524 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 525 u_int hash_nelements, u_int porthash_nelements) 526 { 527 528 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 529 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 530 NULL, MTX_DEF); 531 #ifdef VIMAGE 532 pcbinfo->ipi_vnet = curvnet; 533 #endif 534 CK_LIST_INIT(&pcbinfo->ipi_listhead); 535 pcbinfo->ipi_count = 0; 536 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 537 &pcbinfo->ipi_hashmask); 538 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 539 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 540 &pcbinfo->ipi_porthashmask); 541 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 542 &pcbinfo->ipi_lbgrouphashmask); 543 pcbinfo->ipi_zone = pcbstor->ips_zone; 544 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 545 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 546 } 547 548 /* 549 * Destroy an inpcbinfo. 550 */ 551 void 552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 553 { 554 555 KASSERT(pcbinfo->ipi_count == 0, 556 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 557 558 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 559 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 560 pcbinfo->ipi_porthashmask); 561 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 562 pcbinfo->ipi_lbgrouphashmask); 563 mtx_destroy(&pcbinfo->ipi_hash_lock); 564 mtx_destroy(&pcbinfo->ipi_lock); 565 } 566 567 /* 568 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 569 */ 570 static void inpcb_dtor(void *, int, void *); 571 static void inpcb_fini(void *, int); 572 void 573 in_pcbstorage_init(void *arg) 574 { 575 struct inpcbstorage *pcbstor = arg; 576 577 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 578 sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit, 579 inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR); 580 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 581 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 582 uma_zone_set_smr(pcbstor->ips_portzone, 583 uma_zone_get_smr(pcbstor->ips_zone)); 584 } 585 586 /* 587 * Destroy a pcbstorage - used by unloadable protocols. 588 */ 589 void 590 in_pcbstorage_destroy(void *arg) 591 { 592 struct inpcbstorage *pcbstor = arg; 593 594 uma_zdestroy(pcbstor->ips_zone); 595 uma_zdestroy(pcbstor->ips_portzone); 596 } 597 598 /* 599 * Allocate a PCB and associate it with the socket. 600 * On success return with the PCB locked. 601 */ 602 int 603 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 604 { 605 struct inpcb *inp; 606 int error; 607 608 error = 0; 609 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 610 if (inp == NULL) 611 return (ENOBUFS); 612 bzero(&inp->inp_start_zero, inp_zero_size); 613 #ifdef NUMA 614 inp->inp_numa_domain = M_NODOM; 615 #endif 616 inp->inp_pcbinfo = pcbinfo; 617 inp->inp_socket = so; 618 inp->inp_cred = crhold(so->so_cred); 619 inp->inp_inc.inc_fibnum = so->so_fibnum; 620 #ifdef MAC 621 error = mac_inpcb_init(inp, M_NOWAIT); 622 if (error != 0) 623 goto out; 624 mac_inpcb_create(so, inp); 625 #endif 626 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 627 error = ipsec_init_pcbpolicy(inp); 628 if (error != 0) { 629 #ifdef MAC 630 mac_inpcb_destroy(inp); 631 #endif 632 goto out; 633 } 634 #endif /*IPSEC*/ 635 #ifdef INET6 636 if (INP_SOCKAF(so) == AF_INET6) { 637 inp->inp_vflag |= INP_IPV6PROTO; 638 if (V_ip6_v6only) 639 inp->inp_flags |= IN6P_IPV6_V6ONLY; 640 } 641 if (V_ip6_auto_flowlabel) 642 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 643 #endif 644 /* 645 * Routes in inpcb's can cache L2 as well; they are guaranteed 646 * to be cleaned up. 647 */ 648 inp->inp_route.ro_flags = RT_LLE_CACHE; 649 #ifdef TCPHPTS 650 /* 651 * If using hpts lets drop a random number in so 652 * not all new connections fall on the same CPU. 653 */ 654 inp->inp_hpts_cpu = hpts_random_cpu(inp); 655 #endif 656 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 657 INP_WLOCK(inp); 658 INP_INFO_WLOCK(pcbinfo); 659 pcbinfo->ipi_count++; 660 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 661 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 662 INP_INFO_WUNLOCK(pcbinfo); 663 so->so_pcb = inp; 664 665 return (0); 666 667 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 668 out: 669 uma_zfree_smr(pcbinfo->ipi_zone, inp); 670 return (error); 671 #endif 672 } 673 674 #ifdef INET 675 int 676 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 677 { 678 int anonport, error; 679 680 KASSERT(nam == NULL || nam->sa_family == AF_INET, 681 ("%s: invalid address family for %p", __func__, nam)); 682 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 683 ("%s: invalid address length for %p", __func__, nam)); 684 INP_WLOCK_ASSERT(inp); 685 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 686 687 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 688 return (EINVAL); 689 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 690 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 691 &inp->inp_lport, cred); 692 if (error) 693 return (error); 694 if (in_pcbinshash(inp) != 0) { 695 inp->inp_laddr.s_addr = INADDR_ANY; 696 inp->inp_lport = 0; 697 return (EAGAIN); 698 } 699 if (anonport) 700 inp->inp_flags |= INP_ANONPORT; 701 return (0); 702 } 703 #endif 704 705 #if defined(INET) || defined(INET6) 706 /* 707 * Assign a local port like in_pcb_lport(), but also used with connect() 708 * and a foreign address and port. If fsa is non-NULL, choose a local port 709 * that is unused with those, otherwise one that is completely unused. 710 * lsa can be NULL for IPv6. 711 */ 712 int 713 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 714 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 715 { 716 struct inpcbinfo *pcbinfo; 717 struct inpcb *tmpinp; 718 unsigned short *lastport; 719 int count, dorandom, error; 720 u_short aux, first, last, lport; 721 #ifdef INET 722 struct in_addr laddr, faddr; 723 #endif 724 #ifdef INET6 725 struct in6_addr *laddr6, *faddr6; 726 #endif 727 728 pcbinfo = inp->inp_pcbinfo; 729 730 /* 731 * Because no actual state changes occur here, a global write lock on 732 * the pcbinfo isn't required. 733 */ 734 INP_LOCK_ASSERT(inp); 735 INP_HASH_LOCK_ASSERT(pcbinfo); 736 737 if (inp->inp_flags & INP_HIGHPORT) { 738 first = V_ipport_hifirstauto; /* sysctl */ 739 last = V_ipport_hilastauto; 740 lastport = &pcbinfo->ipi_lasthi; 741 } else if (inp->inp_flags & INP_LOWPORT) { 742 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 743 if (error) 744 return (error); 745 first = V_ipport_lowfirstauto; /* 1023 */ 746 last = V_ipport_lowlastauto; /* 600 */ 747 lastport = &pcbinfo->ipi_lastlow; 748 } else { 749 first = V_ipport_firstauto; /* sysctl */ 750 last = V_ipport_lastauto; 751 lastport = &pcbinfo->ipi_lastport; 752 } 753 /* 754 * For UDP(-Lite), use random port allocation as long as the user 755 * allows it. For TCP (and as of yet unknown) connections, 756 * use random port allocation only if the user allows it AND 757 * ipport_tick() allows it. 758 */ 759 if (V_ipport_randomized && 760 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 761 pcbinfo == &V_ulitecbinfo)) 762 dorandom = 1; 763 else 764 dorandom = 0; 765 /* 766 * It makes no sense to do random port allocation if 767 * we have the only port available. 768 */ 769 if (first == last) 770 dorandom = 0; 771 /* Make sure to not include UDP(-Lite) packets in the count. */ 772 if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) 773 V_ipport_tcpallocs++; 774 /* 775 * Instead of having two loops further down counting up or down 776 * make sure that first is always <= last and go with only one 777 * code path implementing all logic. 778 */ 779 if (first > last) { 780 aux = first; 781 first = last; 782 last = aux; 783 } 784 785 #ifdef INET 786 laddr.s_addr = INADDR_ANY; 787 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 788 if (lsa != NULL) 789 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 790 if (fsa != NULL) 791 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 792 } 793 #endif 794 #ifdef INET6 795 laddr6 = NULL; 796 if ((inp->inp_vflag & INP_IPV6) != 0) { 797 if (lsa != NULL) 798 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 799 if (fsa != NULL) 800 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 801 } 802 #endif 803 804 tmpinp = NULL; 805 lport = *lportp; 806 807 if (dorandom) 808 *lastport = first + (arc4random() % (last - first)); 809 810 count = last - first; 811 812 do { 813 if (count-- < 0) /* completely used? */ 814 return (EADDRNOTAVAIL); 815 ++*lastport; 816 if (*lastport < first || *lastport > last) 817 *lastport = first; 818 lport = htons(*lastport); 819 820 if (fsa != NULL) { 821 #ifdef INET 822 if (lsa->sa_family == AF_INET) { 823 tmpinp = in_pcblookup_hash_locked(pcbinfo, 824 faddr, fport, laddr, lport, lookupflags, 825 NULL, M_NODOM); 826 } 827 #endif 828 #ifdef INET6 829 if (lsa->sa_family == AF_INET6) { 830 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 831 faddr6, fport, laddr6, lport, lookupflags, 832 NULL, M_NODOM); 833 } 834 #endif 835 } else { 836 #ifdef INET6 837 if ((inp->inp_vflag & INP_IPV6) != 0) 838 tmpinp = in6_pcblookup_local(pcbinfo, 839 &inp->in6p_laddr, lport, lookupflags, cred); 840 #endif 841 #if defined(INET) && defined(INET6) 842 else 843 #endif 844 #ifdef INET 845 tmpinp = in_pcblookup_local(pcbinfo, laddr, 846 lport, lookupflags, cred); 847 #endif 848 } 849 } while (tmpinp != NULL); 850 851 *lportp = lport; 852 853 return (0); 854 } 855 856 /* 857 * Select a local port (number) to use. 858 */ 859 int 860 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 861 struct ucred *cred, int lookupflags) 862 { 863 struct sockaddr_in laddr; 864 865 if (laddrp) { 866 bzero(&laddr, sizeof(laddr)); 867 laddr.sin_family = AF_INET; 868 laddr.sin_addr = *laddrp; 869 } 870 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 871 NULL, lportp, NULL, 0, cred, lookupflags)); 872 } 873 874 /* 875 * Return cached socket options. 876 */ 877 int 878 inp_so_options(const struct inpcb *inp) 879 { 880 int so_options; 881 882 so_options = 0; 883 884 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 885 so_options |= SO_REUSEPORT_LB; 886 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 887 so_options |= SO_REUSEPORT; 888 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 889 so_options |= SO_REUSEADDR; 890 return (so_options); 891 } 892 #endif /* INET || INET6 */ 893 894 /* 895 * Check if a new BINDMULTI socket is allowed to be created. 896 * 897 * ni points to the new inp. 898 * oi points to the existing inp. 899 * 900 * This checks whether the existing inp also has BINDMULTI and 901 * whether the credentials match. 902 */ 903 int 904 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 905 { 906 /* Check permissions match */ 907 if ((ni->inp_flags2 & INP_BINDMULTI) && 908 (ni->inp_cred->cr_uid != 909 oi->inp_cred->cr_uid)) 910 return (0); 911 912 /* Check the existing inp has BINDMULTI set */ 913 if ((ni->inp_flags2 & INP_BINDMULTI) && 914 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 915 return (0); 916 917 /* 918 * We're okay - either INP_BINDMULTI isn't set on ni, or 919 * it is and it matches the checks. 920 */ 921 return (1); 922 } 923 924 #ifdef INET 925 /* 926 * Set up a bind operation on a PCB, performing port allocation 927 * as required, but do not actually modify the PCB. Callers can 928 * either complete the bind by setting inp_laddr/inp_lport and 929 * calling in_pcbinshash(), or they can just use the resulting 930 * port and address to authorise the sending of a once-off packet. 931 * 932 * On error, the values of *laddrp and *lportp are not changed. 933 */ 934 int 935 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 936 u_short *lportp, struct ucred *cred) 937 { 938 struct socket *so = inp->inp_socket; 939 struct sockaddr_in *sin; 940 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 941 struct in_addr laddr; 942 u_short lport = 0; 943 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 944 int error; 945 946 /* 947 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 948 * so that we don't have to add to the (already messy) code below. 949 */ 950 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 951 952 /* 953 * No state changes, so read locks are sufficient here. 954 */ 955 INP_LOCK_ASSERT(inp); 956 INP_HASH_LOCK_ASSERT(pcbinfo); 957 958 laddr.s_addr = *laddrp; 959 if (nam != NULL && laddr.s_addr != INADDR_ANY) 960 return (EINVAL); 961 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 962 lookupflags = INPLOOKUP_WILDCARD; 963 if (nam == NULL) { 964 if ((error = prison_local_ip4(cred, &laddr)) != 0) 965 return (error); 966 } else { 967 sin = (struct sockaddr_in *)nam; 968 KASSERT(sin->sin_family == AF_INET, 969 ("%s: invalid family for address %p", __func__, sin)); 970 KASSERT(sin->sin_len == sizeof(*sin), 971 ("%s: invalid length for address %p", __func__, sin)); 972 973 error = prison_local_ip4(cred, &sin->sin_addr); 974 if (error) 975 return (error); 976 if (sin->sin_port != *lportp) { 977 /* Don't allow the port to change. */ 978 if (*lportp != 0) 979 return (EINVAL); 980 lport = sin->sin_port; 981 } 982 /* NB: lport is left as 0 if the port isn't being changed. */ 983 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 984 /* 985 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 986 * allow complete duplication of binding if 987 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 988 * and a multicast address is bound on both 989 * new and duplicated sockets. 990 */ 991 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 992 reuseport = SO_REUSEADDR|SO_REUSEPORT; 993 /* 994 * XXX: How to deal with SO_REUSEPORT_LB here? 995 * Treat same as SO_REUSEPORT for now. 996 */ 997 if ((so->so_options & 998 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 999 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 1000 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 1001 sin->sin_port = 0; /* yech... */ 1002 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 1003 /* 1004 * Is the address a local IP address? 1005 * If INP_BINDANY is set, then the socket may be bound 1006 * to any endpoint address, local or not. 1007 */ 1008 if ((inp->inp_flags & INP_BINDANY) == 0 && 1009 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 1010 return (EADDRNOTAVAIL); 1011 } 1012 laddr = sin->sin_addr; 1013 if (lport) { 1014 struct inpcb *t; 1015 struct tcptw *tw; 1016 1017 /* GROSS */ 1018 if (ntohs(lport) <= V_ipport_reservedhigh && 1019 ntohs(lport) >= V_ipport_reservedlow && 1020 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1021 return (EACCES); 1022 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1023 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1024 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1025 lport, INPLOOKUP_WILDCARD, cred); 1026 /* 1027 * XXX 1028 * This entire block sorely needs a rewrite. 1029 */ 1030 if (t && 1031 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1032 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1033 (so->so_type != SOCK_STREAM || 1034 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1035 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1036 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1037 (t->inp_flags2 & INP_REUSEPORT) || 1038 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1039 (inp->inp_cred->cr_uid != 1040 t->inp_cred->cr_uid)) 1041 return (EADDRINUSE); 1042 1043 /* 1044 * If the socket is a BINDMULTI socket, then 1045 * the credentials need to match and the 1046 * original socket also has to have been bound 1047 * with BINDMULTI. 1048 */ 1049 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1050 return (EADDRINUSE); 1051 } 1052 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1053 lport, lookupflags, cred); 1054 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1055 /* 1056 * XXXRW: If an incpb has had its timewait 1057 * state recycled, we treat the address as 1058 * being in use (for now). This is better 1059 * than a panic, but not desirable. 1060 */ 1061 tw = intotw(t); 1062 if (tw == NULL || 1063 ((reuseport & tw->tw_so_options) == 0 && 1064 (reuseport_lb & 1065 tw->tw_so_options) == 0)) { 1066 return (EADDRINUSE); 1067 } 1068 } else if (t && 1069 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1070 (reuseport & inp_so_options(t)) == 0 && 1071 (reuseport_lb & inp_so_options(t)) == 0) { 1072 #ifdef INET6 1073 if (ntohl(sin->sin_addr.s_addr) != 1074 INADDR_ANY || 1075 ntohl(t->inp_laddr.s_addr) != 1076 INADDR_ANY || 1077 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1078 (t->inp_vflag & INP_IPV6PROTO) == 0) 1079 #endif 1080 return (EADDRINUSE); 1081 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1082 return (EADDRINUSE); 1083 } 1084 } 1085 } 1086 if (*lportp != 0) 1087 lport = *lportp; 1088 if (lport == 0) { 1089 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1090 if (error != 0) 1091 return (error); 1092 } 1093 *laddrp = laddr.s_addr; 1094 *lportp = lport; 1095 return (0); 1096 } 1097 1098 /* 1099 * Connect from a socket to a specified address. 1100 * Both address and port must be specified in argument sin. 1101 * If don't have a local address for this socket yet, 1102 * then pick one. 1103 */ 1104 int 1105 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1106 bool rehash) 1107 { 1108 u_short lport, fport; 1109 in_addr_t laddr, faddr; 1110 int anonport, error; 1111 1112 INP_WLOCK_ASSERT(inp); 1113 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1114 1115 lport = inp->inp_lport; 1116 laddr = inp->inp_laddr.s_addr; 1117 anonport = (lport == 0); 1118 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1119 NULL, cred); 1120 if (error) 1121 return (error); 1122 1123 /* Do the initial binding of the local address if required. */ 1124 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1125 KASSERT(rehash == true, 1126 ("Rehashing required for unbound inps")); 1127 inp->inp_lport = lport; 1128 inp->inp_laddr.s_addr = laddr; 1129 if (in_pcbinshash(inp) != 0) { 1130 inp->inp_laddr.s_addr = INADDR_ANY; 1131 inp->inp_lport = 0; 1132 return (EAGAIN); 1133 } 1134 } 1135 1136 /* Commit the remaining changes. */ 1137 inp->inp_lport = lport; 1138 inp->inp_laddr.s_addr = laddr; 1139 inp->inp_faddr.s_addr = faddr; 1140 inp->inp_fport = fport; 1141 if (rehash) { 1142 in_pcbrehash(inp); 1143 } else { 1144 in_pcbinshash(inp); 1145 } 1146 1147 if (anonport) 1148 inp->inp_flags |= INP_ANONPORT; 1149 return (0); 1150 } 1151 1152 /* 1153 * Do proper source address selection on an unbound socket in case 1154 * of connect. Take jails into account as well. 1155 */ 1156 int 1157 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1158 struct ucred *cred) 1159 { 1160 struct ifaddr *ifa; 1161 struct sockaddr *sa; 1162 struct sockaddr_in *sin, dst; 1163 struct nhop_object *nh; 1164 int error; 1165 1166 NET_EPOCH_ASSERT(); 1167 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1168 /* 1169 * Bypass source address selection and use the primary jail IP 1170 * if requested. 1171 */ 1172 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1173 return (0); 1174 1175 error = 0; 1176 1177 nh = NULL; 1178 bzero(&dst, sizeof(dst)); 1179 sin = &dst; 1180 sin->sin_family = AF_INET; 1181 sin->sin_len = sizeof(struct sockaddr_in); 1182 sin->sin_addr.s_addr = faddr->s_addr; 1183 1184 /* 1185 * If route is known our src addr is taken from the i/f, 1186 * else punt. 1187 * 1188 * Find out route to destination. 1189 */ 1190 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1191 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1192 0, NHR_NONE, 0); 1193 1194 /* 1195 * If we found a route, use the address corresponding to 1196 * the outgoing interface. 1197 * 1198 * Otherwise assume faddr is reachable on a directly connected 1199 * network and try to find a corresponding interface to take 1200 * the source address from. 1201 */ 1202 if (nh == NULL || nh->nh_ifp == NULL) { 1203 struct in_ifaddr *ia; 1204 struct ifnet *ifp; 1205 1206 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1207 inp->inp_socket->so_fibnum)); 1208 if (ia == NULL) { 1209 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1210 inp->inp_socket->so_fibnum)); 1211 } 1212 if (ia == NULL) { 1213 error = ENETUNREACH; 1214 goto done; 1215 } 1216 1217 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1218 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1219 goto done; 1220 } 1221 1222 ifp = ia->ia_ifp; 1223 ia = NULL; 1224 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1225 sa = ifa->ifa_addr; 1226 if (sa->sa_family != AF_INET) 1227 continue; 1228 sin = (struct sockaddr_in *)sa; 1229 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1230 ia = (struct in_ifaddr *)ifa; 1231 break; 1232 } 1233 } 1234 if (ia != NULL) { 1235 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1236 goto done; 1237 } 1238 1239 /* 3. As a last resort return the 'default' jail address. */ 1240 error = prison_get_ip4(cred, laddr); 1241 goto done; 1242 } 1243 1244 /* 1245 * If the outgoing interface on the route found is not 1246 * a loopback interface, use the address from that interface. 1247 * In case of jails do those three steps: 1248 * 1. check if the interface address belongs to the jail. If so use it. 1249 * 2. check if we have any address on the outgoing interface 1250 * belonging to this jail. If so use it. 1251 * 3. as a last resort return the 'default' jail address. 1252 */ 1253 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1254 struct in_ifaddr *ia; 1255 struct ifnet *ifp; 1256 1257 /* If not jailed, use the default returned. */ 1258 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1259 ia = (struct in_ifaddr *)nh->nh_ifa; 1260 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1261 goto done; 1262 } 1263 1264 /* Jailed. */ 1265 /* 1. Check if the iface address belongs to the jail. */ 1266 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1267 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1268 ia = (struct in_ifaddr *)nh->nh_ifa; 1269 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1270 goto done; 1271 } 1272 1273 /* 1274 * 2. Check if we have any address on the outgoing interface 1275 * belonging to this jail. 1276 */ 1277 ia = NULL; 1278 ifp = nh->nh_ifp; 1279 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1280 sa = ifa->ifa_addr; 1281 if (sa->sa_family != AF_INET) 1282 continue; 1283 sin = (struct sockaddr_in *)sa; 1284 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1285 ia = (struct in_ifaddr *)ifa; 1286 break; 1287 } 1288 } 1289 if (ia != NULL) { 1290 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1291 goto done; 1292 } 1293 1294 /* 3. As a last resort return the 'default' jail address. */ 1295 error = prison_get_ip4(cred, laddr); 1296 goto done; 1297 } 1298 1299 /* 1300 * The outgoing interface is marked with 'loopback net', so a route 1301 * to ourselves is here. 1302 * Try to find the interface of the destination address and then 1303 * take the address from there. That interface is not necessarily 1304 * a loopback interface. 1305 * In case of jails, check that it is an address of the jail 1306 * and if we cannot find, fall back to the 'default' jail address. 1307 */ 1308 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1309 struct in_ifaddr *ia; 1310 1311 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1312 inp->inp_socket->so_fibnum)); 1313 if (ia == NULL) 1314 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1315 inp->inp_socket->so_fibnum)); 1316 if (ia == NULL) 1317 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1318 1319 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1320 if (ia == NULL) { 1321 error = ENETUNREACH; 1322 goto done; 1323 } 1324 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1325 goto done; 1326 } 1327 1328 /* Jailed. */ 1329 if (ia != NULL) { 1330 struct ifnet *ifp; 1331 1332 ifp = ia->ia_ifp; 1333 ia = NULL; 1334 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1335 sa = ifa->ifa_addr; 1336 if (sa->sa_family != AF_INET) 1337 continue; 1338 sin = (struct sockaddr_in *)sa; 1339 if (prison_check_ip4(cred, 1340 &sin->sin_addr) == 0) { 1341 ia = (struct in_ifaddr *)ifa; 1342 break; 1343 } 1344 } 1345 if (ia != NULL) { 1346 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1347 goto done; 1348 } 1349 } 1350 1351 /* 3. As a last resort return the 'default' jail address. */ 1352 error = prison_get_ip4(cred, laddr); 1353 goto done; 1354 } 1355 1356 done: 1357 return (error); 1358 } 1359 1360 /* 1361 * Set up for a connect from a socket to the specified address. 1362 * On entry, *laddrp and *lportp should contain the current local 1363 * address and port for the PCB; these are updated to the values 1364 * that should be placed in inp_laddr and inp_lport to complete 1365 * the connect. 1366 * 1367 * On success, *faddrp and *fportp will be set to the remote address 1368 * and port. These are not updated in the error case. 1369 * 1370 * If the operation fails because the connection already exists, 1371 * *oinpp will be set to the PCB of that connection so that the 1372 * caller can decide to override it. In all other cases, *oinpp 1373 * is set to NULL. 1374 */ 1375 int 1376 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1377 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1378 struct inpcb **oinpp, struct ucred *cred) 1379 { 1380 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1381 struct in_ifaddr *ia; 1382 struct inpcb *oinp; 1383 struct in_addr laddr, faddr; 1384 u_short lport, fport; 1385 int error; 1386 1387 KASSERT(sin->sin_family == AF_INET, 1388 ("%s: invalid address family for %p", __func__, sin)); 1389 KASSERT(sin->sin_len == sizeof(*sin), 1390 ("%s: invalid address length for %p", __func__, sin)); 1391 1392 /* 1393 * Because a global state change doesn't actually occur here, a read 1394 * lock is sufficient. 1395 */ 1396 NET_EPOCH_ASSERT(); 1397 INP_LOCK_ASSERT(inp); 1398 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1399 1400 if (oinpp != NULL) 1401 *oinpp = NULL; 1402 if (sin->sin_port == 0) 1403 return (EADDRNOTAVAIL); 1404 laddr.s_addr = *laddrp; 1405 lport = *lportp; 1406 faddr = sin->sin_addr; 1407 fport = sin->sin_port; 1408 #ifdef ROUTE_MPATH 1409 if (CALC_FLOWID_OUTBOUND) { 1410 uint32_t hash_val, hash_type; 1411 1412 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1413 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1414 1415 inp->inp_flowid = hash_val; 1416 inp->inp_flowtype = hash_type; 1417 } 1418 #endif 1419 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1420 /* 1421 * If the destination address is INADDR_ANY, 1422 * use the primary local address. 1423 * If the supplied address is INADDR_BROADCAST, 1424 * and the primary interface supports broadcast, 1425 * choose the broadcast address for that interface. 1426 */ 1427 if (faddr.s_addr == INADDR_ANY) { 1428 faddr = 1429 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1430 if (cred != NULL && 1431 (error = prison_get_ip4(cred, &faddr)) != 0) 1432 return (error); 1433 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1434 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1435 IFF_BROADCAST) 1436 faddr = satosin(&CK_STAILQ_FIRST( 1437 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1438 } 1439 } 1440 if (laddr.s_addr == INADDR_ANY) { 1441 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1442 /* 1443 * If the destination address is multicast and an outgoing 1444 * interface has been set as a multicast option, prefer the 1445 * address of that interface as our source address. 1446 */ 1447 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1448 inp->inp_moptions != NULL) { 1449 struct ip_moptions *imo; 1450 struct ifnet *ifp; 1451 1452 imo = inp->inp_moptions; 1453 if (imo->imo_multicast_ifp != NULL) { 1454 ifp = imo->imo_multicast_ifp; 1455 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1456 if ((ia->ia_ifp == ifp) && 1457 (cred == NULL || 1458 prison_check_ip4(cred, 1459 &ia->ia_addr.sin_addr) == 0)) 1460 break; 1461 } 1462 if (ia == NULL) 1463 error = EADDRNOTAVAIL; 1464 else { 1465 laddr = ia->ia_addr.sin_addr; 1466 error = 0; 1467 } 1468 } 1469 } 1470 if (error) 1471 return (error); 1472 } 1473 1474 if (lport != 0) { 1475 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1476 fport, laddr, lport, 0, NULL, M_NODOM); 1477 if (oinp != NULL) { 1478 if (oinpp != NULL) 1479 *oinpp = oinp; 1480 return (EADDRINUSE); 1481 } 1482 } else { 1483 struct sockaddr_in lsin, fsin; 1484 1485 bzero(&lsin, sizeof(lsin)); 1486 bzero(&fsin, sizeof(fsin)); 1487 lsin.sin_family = AF_INET; 1488 lsin.sin_addr = laddr; 1489 fsin.sin_family = AF_INET; 1490 fsin.sin_addr = faddr; 1491 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1492 &lport, (struct sockaddr *)& fsin, fport, cred, 1493 INPLOOKUP_WILDCARD); 1494 if (error) 1495 return (error); 1496 } 1497 *laddrp = laddr.s_addr; 1498 *lportp = lport; 1499 *faddrp = faddr.s_addr; 1500 *fportp = fport; 1501 return (0); 1502 } 1503 1504 void 1505 in_pcbdisconnect(struct inpcb *inp) 1506 { 1507 1508 INP_WLOCK_ASSERT(inp); 1509 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1510 1511 inp->inp_faddr.s_addr = INADDR_ANY; 1512 inp->inp_fport = 0; 1513 in_pcbrehash(inp); 1514 } 1515 #endif /* INET */ 1516 1517 /* 1518 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1519 * For most protocols, this will be invoked immediately prior to calling 1520 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1521 * socket, in which case in_pcbfree() is deferred. 1522 */ 1523 void 1524 in_pcbdetach(struct inpcb *inp) 1525 { 1526 1527 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1528 1529 #ifdef RATELIMIT 1530 if (inp->inp_snd_tag != NULL) 1531 in_pcbdetach_txrtlmt(inp); 1532 #endif 1533 inp->inp_socket->so_pcb = NULL; 1534 inp->inp_socket = NULL; 1535 } 1536 1537 /* 1538 * inpcb hash lookups are protected by SMR section. 1539 * 1540 * Once desired pcb has been found, switching from SMR section to a pcb 1541 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1542 * here because SMR is a critical section. 1543 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1544 */ 1545 static inline void 1546 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1547 { 1548 1549 lock == INPLOOKUP_RLOCKPCB ? 1550 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1551 } 1552 1553 static inline void 1554 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1555 { 1556 1557 lock == INPLOOKUP_RLOCKPCB ? 1558 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1559 } 1560 1561 static inline int 1562 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1563 { 1564 1565 return (lock == INPLOOKUP_RLOCKPCB ? 1566 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1567 } 1568 1569 static inline bool 1570 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1571 { 1572 1573 return (lock == INPLOOKUP_RLOCKPCB ? 1574 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1575 } 1576 1577 bool 1578 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1579 { 1580 1581 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1582 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1583 1584 if (__predict_true(inp_trylock(inp, lock))) { 1585 if (__predict_false(inp->inp_flags & INP_FREED)) { 1586 smr_exit(inp->inp_pcbinfo->ipi_smr); 1587 inp_unlock(inp, lock); 1588 return (false); 1589 } 1590 smr_exit(inp->inp_pcbinfo->ipi_smr); 1591 return (true); 1592 } 1593 1594 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1595 smr_exit(inp->inp_pcbinfo->ipi_smr); 1596 inp_lock(inp, lock); 1597 if (__predict_false(in_pcbrele(inp, lock))) 1598 return (false); 1599 /* 1600 * inp acquired through refcount & lock for sure didn't went 1601 * through uma_zfree(). However, it may have already went 1602 * through in_pcbfree() and has another reference, that 1603 * prevented its release by our in_pcbrele(). 1604 */ 1605 if (__predict_false(inp->inp_flags & INP_FREED)) { 1606 inp_unlock(inp, lock); 1607 return (false); 1608 } 1609 return (true); 1610 } else { 1611 smr_exit(inp->inp_pcbinfo->ipi_smr); 1612 return (false); 1613 } 1614 } 1615 1616 /* 1617 * inp_next() - inpcb hash/list traversal iterator 1618 * 1619 * Requires initialized struct inpcb_iterator for context. 1620 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1621 * 1622 * - Iterator can have either write-lock or read-lock semantics, that can not 1623 * be changed later. 1624 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1625 * a single hash slot. Note: only rip_input() does the latter. 1626 * - Iterator may have optional bool matching function. The matching function 1627 * will be executed for each inpcb in the SMR context, so it can not acquire 1628 * locks and can safely access only immutable fields of inpcb. 1629 * 1630 * A fresh initialized iterator has NULL inpcb in its context and that 1631 * means that inp_next() call would return the very first inpcb on the list 1632 * locked with desired semantic. In all following calls the context pointer 1633 * shall hold the current inpcb pointer. The KPI user is not supposed to 1634 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1635 * and write NULL to its context. After end of traversal an iterator can be 1636 * reused. 1637 * 1638 * List traversals have the following features/constraints: 1639 * - New entries won't be seen, as they are always added to the head of a list. 1640 * - Removed entries won't stop traversal as long as they are not added to 1641 * a different list. This is violated by in_pcbrehash(). 1642 */ 1643 #define II_LIST_FIRST(ipi, hash) \ 1644 (((hash) == INP_ALL_LIST) ? \ 1645 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1646 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1647 #define II_LIST_NEXT(inp, hash) \ 1648 (((hash) == INP_ALL_LIST) ? \ 1649 CK_LIST_NEXT((inp), inp_list) : \ 1650 CK_LIST_NEXT((inp), inp_hash)) 1651 #define II_LOCK_ASSERT(inp, lock) \ 1652 rw_assert(&(inp)->inp_lock, \ 1653 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1654 struct inpcb * 1655 inp_next(struct inpcb_iterator *ii) 1656 { 1657 const struct inpcbinfo *ipi = ii->ipi; 1658 inp_match_t *match = ii->match; 1659 void *ctx = ii->ctx; 1660 inp_lookup_t lock = ii->lock; 1661 int hash = ii->hash; 1662 struct inpcb *inp; 1663 1664 if (ii->inp == NULL) { /* First call. */ 1665 smr_enter(ipi->ipi_smr); 1666 /* This is unrolled CK_LIST_FOREACH(). */ 1667 for (inp = II_LIST_FIRST(ipi, hash); 1668 inp != NULL; 1669 inp = II_LIST_NEXT(inp, hash)) { 1670 if (match != NULL && (match)(inp, ctx) == false) 1671 continue; 1672 if (__predict_true(inp_smr_lock(inp, lock))) 1673 break; 1674 else { 1675 smr_enter(ipi->ipi_smr); 1676 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1677 inp = II_LIST_FIRST(ipi, hash); 1678 if (inp == NULL) 1679 break; 1680 } 1681 } 1682 1683 if (inp == NULL) 1684 smr_exit(ipi->ipi_smr); 1685 else 1686 ii->inp = inp; 1687 1688 return (inp); 1689 } 1690 1691 /* Not a first call. */ 1692 smr_enter(ipi->ipi_smr); 1693 restart: 1694 inp = ii->inp; 1695 II_LOCK_ASSERT(inp, lock); 1696 next: 1697 inp = II_LIST_NEXT(inp, hash); 1698 if (inp == NULL) { 1699 smr_exit(ipi->ipi_smr); 1700 goto found; 1701 } 1702 1703 if (match != NULL && (match)(inp, ctx) == false) 1704 goto next; 1705 1706 if (__predict_true(inp_trylock(inp, lock))) { 1707 if (__predict_false(inp->inp_flags & INP_FREED)) { 1708 /* 1709 * Entries are never inserted in middle of a list, thus 1710 * as long as we are in SMR, we can continue traversal. 1711 * Jump to 'restart' should yield in the same result, 1712 * but could produce unnecessary looping. Could this 1713 * looping be unbound? 1714 */ 1715 inp_unlock(inp, lock); 1716 goto next; 1717 } else { 1718 smr_exit(ipi->ipi_smr); 1719 goto found; 1720 } 1721 } 1722 1723 /* 1724 * Can't obtain lock immediately, thus going hard. Once we exit the 1725 * SMR section we can no longer jump to 'next', and our only stable 1726 * anchoring point is ii->inp, which we keep locked for this case, so 1727 * we jump to 'restart'. 1728 */ 1729 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1730 smr_exit(ipi->ipi_smr); 1731 inp_lock(inp, lock); 1732 if (__predict_false(in_pcbrele(inp, lock))) { 1733 smr_enter(ipi->ipi_smr); 1734 goto restart; 1735 } 1736 /* 1737 * See comment in inp_smr_lock(). 1738 */ 1739 if (__predict_false(inp->inp_flags & INP_FREED)) { 1740 inp_unlock(inp, lock); 1741 smr_enter(ipi->ipi_smr); 1742 goto restart; 1743 } 1744 } else 1745 goto next; 1746 1747 found: 1748 inp_unlock(ii->inp, lock); 1749 ii->inp = inp; 1750 1751 return (ii->inp); 1752 } 1753 1754 /* 1755 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1756 * stability of an inpcb pointer despite the inpcb lock being released or 1757 * SMR section exited. 1758 * 1759 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1760 */ 1761 void 1762 in_pcbref(struct inpcb *inp) 1763 { 1764 u_int old __diagused; 1765 1766 old = refcount_acquire(&inp->inp_refcount); 1767 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1768 } 1769 1770 /* 1771 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1772 * freeing the pcb, if the reference was very last. 1773 */ 1774 bool 1775 in_pcbrele_rlocked(struct inpcb *inp) 1776 { 1777 1778 INP_RLOCK_ASSERT(inp); 1779 1780 if (refcount_release(&inp->inp_refcount) == 0) 1781 return (false); 1782 1783 MPASS(inp->inp_flags & INP_FREED); 1784 MPASS(inp->inp_socket == NULL); 1785 MPASS(inp->inp_in_hpts == 0); 1786 INP_RUNLOCK(inp); 1787 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1788 return (true); 1789 } 1790 1791 bool 1792 in_pcbrele_wlocked(struct inpcb *inp) 1793 { 1794 1795 INP_WLOCK_ASSERT(inp); 1796 1797 if (refcount_release(&inp->inp_refcount) == 0) 1798 return (false); 1799 1800 MPASS(inp->inp_flags & INP_FREED); 1801 MPASS(inp->inp_socket == NULL); 1802 MPASS(inp->inp_in_hpts == 0); 1803 INP_WUNLOCK(inp); 1804 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1805 return (true); 1806 } 1807 1808 /* 1809 * Unconditionally schedule an inpcb to be freed by decrementing its 1810 * reference count, which should occur only after the inpcb has been detached 1811 * from its socket. If another thread holds a temporary reference (acquired 1812 * using in_pcbref()) then the free is deferred until that reference is 1813 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1814 * Almost all work, including removal from global lists, is done in this 1815 * context, where the pcbinfo lock is held. 1816 */ 1817 void 1818 in_pcbfree(struct inpcb *inp) 1819 { 1820 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1821 #ifdef INET 1822 struct ip_moptions *imo; 1823 #endif 1824 #ifdef INET6 1825 struct ip6_moptions *im6o; 1826 #endif 1827 1828 INP_WLOCK_ASSERT(inp); 1829 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1830 KASSERT((inp->inp_flags & INP_FREED) == 0, 1831 ("%s: called twice for pcb %p", __func__, inp)); 1832 1833 inp->inp_flags |= INP_FREED; 1834 INP_INFO_WLOCK(pcbinfo); 1835 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1836 pcbinfo->ipi_count--; 1837 CK_LIST_REMOVE(inp, inp_list); 1838 INP_INFO_WUNLOCK(pcbinfo); 1839 1840 if (inp->inp_flags & INP_INHASHLIST) { 1841 struct inpcbport *phd = inp->inp_phd; 1842 1843 INP_HASH_WLOCK(pcbinfo); 1844 /* XXX: Only do if SO_REUSEPORT_LB set? */ 1845 in_pcbremlbgrouphash(inp); 1846 1847 CK_LIST_REMOVE(inp, inp_hash); 1848 CK_LIST_REMOVE(inp, inp_portlist); 1849 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1850 CK_LIST_REMOVE(phd, phd_hash); 1851 uma_zfree_smr(pcbinfo->ipi_portzone, phd); 1852 } 1853 INP_HASH_WUNLOCK(pcbinfo); 1854 inp->inp_flags &= ~INP_INHASHLIST; 1855 } 1856 1857 RO_INVALIDATE_CACHE(&inp->inp_route); 1858 #ifdef MAC 1859 mac_inpcb_destroy(inp); 1860 #endif 1861 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1862 if (inp->inp_sp != NULL) 1863 ipsec_delete_pcbpolicy(inp); 1864 #endif 1865 #ifdef INET 1866 if (inp->inp_options) 1867 (void)m_free(inp->inp_options); 1868 imo = inp->inp_moptions; 1869 #endif 1870 #ifdef INET6 1871 if (inp->inp_vflag & INP_IPV6PROTO) { 1872 ip6_freepcbopts(inp->in6p_outputopts); 1873 im6o = inp->in6p_moptions; 1874 } else 1875 im6o = NULL; 1876 #endif 1877 1878 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1879 INP_WUNLOCK(inp); 1880 } 1881 #ifdef INET6 1882 ip6_freemoptions(im6o); 1883 #endif 1884 #ifdef INET 1885 inp_freemoptions(imo); 1886 #endif 1887 /* Destruction is finalized in inpcb_dtor(). */ 1888 } 1889 1890 static void 1891 inpcb_dtor(void *mem, int size, void *arg) 1892 { 1893 struct inpcb *inp = mem; 1894 1895 crfree(inp->inp_cred); 1896 #ifdef INVARIANTS 1897 inp->inp_cred = NULL; 1898 #endif 1899 } 1900 1901 /* 1902 * Different protocols initialize their inpcbs differently - giving 1903 * different name to the lock. But they all are disposed the same. 1904 */ 1905 static void 1906 inpcb_fini(void *mem, int size) 1907 { 1908 struct inpcb *inp = mem; 1909 1910 INP_LOCK_DESTROY(inp); 1911 } 1912 1913 /* 1914 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1915 * port reservation, and preventing it from being returned by inpcb lookups. 1916 * 1917 * It is used by TCP to mark an inpcb as unused and avoid future packet 1918 * delivery or event notification when a socket remains open but TCP has 1919 * closed. This might occur as a result of a shutdown()-initiated TCP close 1920 * or a RST on the wire, and allows the port binding to be reused while still 1921 * maintaining the invariant that so_pcb always points to a valid inpcb until 1922 * in_pcbdetach(). 1923 * 1924 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1925 * in_pcbnotifyall() and in_pcbpurgeif0()? 1926 */ 1927 void 1928 in_pcbdrop(struct inpcb *inp) 1929 { 1930 1931 INP_WLOCK_ASSERT(inp); 1932 #ifdef INVARIANTS 1933 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1934 MPASS(inp->inp_refcount > 1); 1935 #endif 1936 1937 /* 1938 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1939 * the hash lock...? 1940 */ 1941 inp->inp_flags |= INP_DROPPED; 1942 if (inp->inp_flags & INP_INHASHLIST) { 1943 struct inpcbport *phd = inp->inp_phd; 1944 1945 INP_HASH_WLOCK(inp->inp_pcbinfo); 1946 in_pcbremlbgrouphash(inp); 1947 CK_LIST_REMOVE(inp, inp_hash); 1948 CK_LIST_REMOVE(inp, inp_portlist); 1949 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1950 CK_LIST_REMOVE(phd, phd_hash); 1951 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 1952 } 1953 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1954 inp->inp_flags &= ~INP_INHASHLIST; 1955 } 1956 } 1957 1958 #ifdef INET 1959 /* 1960 * Common routines to return the socket addresses associated with inpcbs. 1961 */ 1962 struct sockaddr * 1963 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1964 { 1965 struct sockaddr_in *sin; 1966 1967 sin = malloc(sizeof *sin, M_SONAME, 1968 M_WAITOK | M_ZERO); 1969 sin->sin_family = AF_INET; 1970 sin->sin_len = sizeof(*sin); 1971 sin->sin_addr = *addr_p; 1972 sin->sin_port = port; 1973 1974 return (struct sockaddr *)sin; 1975 } 1976 1977 int 1978 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1979 { 1980 struct inpcb *inp; 1981 struct in_addr addr; 1982 in_port_t port; 1983 1984 inp = sotoinpcb(so); 1985 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1986 1987 INP_RLOCK(inp); 1988 port = inp->inp_lport; 1989 addr = inp->inp_laddr; 1990 INP_RUNLOCK(inp); 1991 1992 *nam = in_sockaddr(port, &addr); 1993 return 0; 1994 } 1995 1996 int 1997 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1998 { 1999 struct inpcb *inp; 2000 struct in_addr addr; 2001 in_port_t port; 2002 2003 inp = sotoinpcb(so); 2004 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 2005 2006 INP_RLOCK(inp); 2007 port = inp->inp_fport; 2008 addr = inp->inp_faddr; 2009 INP_RUNLOCK(inp); 2010 2011 *nam = in_sockaddr(port, &addr); 2012 return 0; 2013 } 2014 2015 void 2016 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 2017 struct inpcb *(*notify)(struct inpcb *, int)) 2018 { 2019 struct inpcb *inp, *inp_temp; 2020 2021 INP_INFO_WLOCK(pcbinfo); 2022 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 2023 INP_WLOCK(inp); 2024 #ifdef INET6 2025 if ((inp->inp_vflag & INP_IPV4) == 0) { 2026 INP_WUNLOCK(inp); 2027 continue; 2028 } 2029 #endif 2030 if (inp->inp_faddr.s_addr != faddr.s_addr || 2031 inp->inp_socket == NULL) { 2032 INP_WUNLOCK(inp); 2033 continue; 2034 } 2035 if ((*notify)(inp, errno)) 2036 INP_WUNLOCK(inp); 2037 } 2038 INP_INFO_WUNLOCK(pcbinfo); 2039 } 2040 2041 static bool 2042 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 2043 { 2044 2045 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2046 return (true); 2047 else 2048 return (false); 2049 } 2050 2051 void 2052 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2053 { 2054 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2055 inp_v4_multi_match, NULL); 2056 struct inpcb *inp; 2057 struct in_multi *inm; 2058 struct in_mfilter *imf; 2059 struct ip_moptions *imo; 2060 2061 IN_MULTI_LOCK_ASSERT(); 2062 2063 while ((inp = inp_next(&inpi)) != NULL) { 2064 INP_WLOCK_ASSERT(inp); 2065 2066 imo = inp->inp_moptions; 2067 /* 2068 * Unselect the outgoing interface if it is being 2069 * detached. 2070 */ 2071 if (imo->imo_multicast_ifp == ifp) 2072 imo->imo_multicast_ifp = NULL; 2073 2074 /* 2075 * Drop multicast group membership if we joined 2076 * through the interface being detached. 2077 * 2078 * XXX This can all be deferred to an epoch_call 2079 */ 2080 restart: 2081 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2082 if ((inm = imf->imf_inm) == NULL) 2083 continue; 2084 if (inm->inm_ifp != ifp) 2085 continue; 2086 ip_mfilter_remove(&imo->imo_head, imf); 2087 in_leavegroup_locked(inm, NULL); 2088 ip_mfilter_free(imf); 2089 goto restart; 2090 } 2091 } 2092 } 2093 2094 /* 2095 * Lookup a PCB based on the local address and port. Caller must hold the 2096 * hash lock. No inpcb locks or references are acquired. 2097 */ 2098 #define INP_LOOKUP_MAPPED_PCB_COST 3 2099 struct inpcb * 2100 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2101 u_short lport, int lookupflags, struct ucred *cred) 2102 { 2103 struct inpcb *inp; 2104 #ifdef INET6 2105 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2106 #else 2107 int matchwild = 3; 2108 #endif 2109 int wildcard; 2110 2111 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2112 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2113 INP_HASH_LOCK_ASSERT(pcbinfo); 2114 2115 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2116 struct inpcbhead *head; 2117 /* 2118 * Look for an unconnected (wildcard foreign addr) PCB that 2119 * matches the local address and port we're looking for. 2120 */ 2121 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2122 pcbinfo->ipi_hashmask)]; 2123 CK_LIST_FOREACH(inp, head, inp_hash) { 2124 #ifdef INET6 2125 /* XXX inp locking */ 2126 if ((inp->inp_vflag & INP_IPV4) == 0) 2127 continue; 2128 #endif 2129 if (inp->inp_faddr.s_addr == INADDR_ANY && 2130 inp->inp_laddr.s_addr == laddr.s_addr && 2131 inp->inp_lport == lport) { 2132 /* 2133 * Found? 2134 */ 2135 if (cred == NULL || 2136 prison_equal_ip4(cred->cr_prison, 2137 inp->inp_cred->cr_prison)) 2138 return (inp); 2139 } 2140 } 2141 /* 2142 * Not found. 2143 */ 2144 return (NULL); 2145 } else { 2146 struct inpcbporthead *porthash; 2147 struct inpcbport *phd; 2148 struct inpcb *match = NULL; 2149 /* 2150 * Best fit PCB lookup. 2151 * 2152 * First see if this local port is in use by looking on the 2153 * port hash list. 2154 */ 2155 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2156 pcbinfo->ipi_porthashmask)]; 2157 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2158 if (phd->phd_port == lport) 2159 break; 2160 } 2161 if (phd != NULL) { 2162 /* 2163 * Port is in use by one or more PCBs. Look for best 2164 * fit. 2165 */ 2166 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2167 wildcard = 0; 2168 if (cred != NULL && 2169 !prison_equal_ip4(inp->inp_cred->cr_prison, 2170 cred->cr_prison)) 2171 continue; 2172 #ifdef INET6 2173 /* XXX inp locking */ 2174 if ((inp->inp_vflag & INP_IPV4) == 0) 2175 continue; 2176 /* 2177 * We never select the PCB that has 2178 * INP_IPV6 flag and is bound to :: if 2179 * we have another PCB which is bound 2180 * to 0.0.0.0. If a PCB has the 2181 * INP_IPV6 flag, then we set its cost 2182 * higher than IPv4 only PCBs. 2183 * 2184 * Note that the case only happens 2185 * when a socket is bound to ::, under 2186 * the condition that the use of the 2187 * mapped address is allowed. 2188 */ 2189 if ((inp->inp_vflag & INP_IPV6) != 0) 2190 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2191 #endif 2192 if (inp->inp_faddr.s_addr != INADDR_ANY) 2193 wildcard++; 2194 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2195 if (laddr.s_addr == INADDR_ANY) 2196 wildcard++; 2197 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2198 continue; 2199 } else { 2200 if (laddr.s_addr != INADDR_ANY) 2201 wildcard++; 2202 } 2203 if (wildcard < matchwild) { 2204 match = inp; 2205 matchwild = wildcard; 2206 if (matchwild == 0) 2207 break; 2208 } 2209 } 2210 } 2211 return (match); 2212 } 2213 } 2214 #undef INP_LOOKUP_MAPPED_PCB_COST 2215 2216 static struct inpcb * 2217 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2218 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2219 uint16_t fport, int lookupflags, int numa_domain) 2220 { 2221 struct inpcb *local_wild, *numa_wild; 2222 const struct inpcblbgrouphead *hdr; 2223 struct inpcblbgroup *grp; 2224 uint32_t idx; 2225 2226 INP_HASH_LOCK_ASSERT(pcbinfo); 2227 2228 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2229 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2230 2231 /* 2232 * Order of socket selection: 2233 * 1. non-wild. 2234 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2235 * 2236 * NOTE: 2237 * - Load balanced group does not contain jailed sockets 2238 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2239 */ 2240 local_wild = NULL; 2241 numa_wild = NULL; 2242 CK_LIST_FOREACH(grp, hdr, il_list) { 2243 #ifdef INET6 2244 if (!(grp->il_vflag & INP_IPV4)) 2245 continue; 2246 #endif 2247 if (grp->il_lport != lport) 2248 continue; 2249 2250 idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2251 grp->il_inpcnt; 2252 if (grp->il_laddr.s_addr == laddr->s_addr) { 2253 if (numa_domain == M_NODOM || 2254 grp->il_numa_domain == numa_domain) { 2255 return (grp->il_inp[idx]); 2256 } else { 2257 numa_wild = grp->il_inp[idx]; 2258 } 2259 } 2260 if (grp->il_laddr.s_addr == INADDR_ANY && 2261 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2262 (local_wild == NULL || numa_domain == M_NODOM || 2263 grp->il_numa_domain == numa_domain)) { 2264 local_wild = grp->il_inp[idx]; 2265 } 2266 } 2267 if (numa_wild != NULL) 2268 return (numa_wild); 2269 2270 return (local_wild); 2271 } 2272 2273 /* 2274 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2275 * that the caller has either locked the hash list, which usually happens 2276 * for bind(2) operations, or is in SMR section, which happens when sorting 2277 * out incoming packets. 2278 */ 2279 static struct inpcb * 2280 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2281 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2282 struct ifnet *ifp, uint8_t numa_domain) 2283 { 2284 struct inpcbhead *head; 2285 struct inpcb *inp, *tmpinp; 2286 u_short fport = fport_arg, lport = lport_arg; 2287 2288 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2289 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2290 INP_HASH_LOCK_ASSERT(pcbinfo); 2291 2292 /* 2293 * First look for an exact match. 2294 */ 2295 tmpinp = NULL; 2296 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2297 pcbinfo->ipi_hashmask)]; 2298 CK_LIST_FOREACH(inp, head, inp_hash) { 2299 #ifdef INET6 2300 /* XXX inp locking */ 2301 if ((inp->inp_vflag & INP_IPV4) == 0) 2302 continue; 2303 #endif 2304 if (inp->inp_faddr.s_addr == faddr.s_addr && 2305 inp->inp_laddr.s_addr == laddr.s_addr && 2306 inp->inp_fport == fport && 2307 inp->inp_lport == lport) { 2308 /* 2309 * XXX We should be able to directly return 2310 * the inp here, without any checks. 2311 * Well unless both bound with SO_REUSEPORT? 2312 */ 2313 if (prison_flag(inp->inp_cred, PR_IP4)) 2314 return (inp); 2315 if (tmpinp == NULL) 2316 tmpinp = inp; 2317 } 2318 } 2319 if (tmpinp != NULL) 2320 return (tmpinp); 2321 2322 /* 2323 * Then look in lb group (for wildcard match). 2324 */ 2325 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2326 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2327 fport, lookupflags, numa_domain); 2328 if (inp != NULL) 2329 return (inp); 2330 } 2331 2332 /* 2333 * Then look for a wildcard match, if requested. 2334 */ 2335 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2336 struct inpcb *local_wild = NULL, *local_exact = NULL; 2337 #ifdef INET6 2338 struct inpcb *local_wild_mapped = NULL; 2339 #endif 2340 struct inpcb *jail_wild = NULL; 2341 int injail; 2342 2343 /* 2344 * Order of socket selection - we always prefer jails. 2345 * 1. jailed, non-wild. 2346 * 2. jailed, wild. 2347 * 3. non-jailed, non-wild. 2348 * 4. non-jailed, wild. 2349 */ 2350 2351 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2352 pcbinfo->ipi_hashmask)]; 2353 CK_LIST_FOREACH(inp, head, inp_hash) { 2354 #ifdef INET6 2355 /* XXX inp locking */ 2356 if ((inp->inp_vflag & INP_IPV4) == 0) 2357 continue; 2358 #endif 2359 if (inp->inp_faddr.s_addr != INADDR_ANY || 2360 inp->inp_lport != lport) 2361 continue; 2362 2363 injail = prison_flag(inp->inp_cred, PR_IP4); 2364 if (injail) { 2365 if (prison_check_ip4_locked( 2366 inp->inp_cred->cr_prison, &laddr) != 0) 2367 continue; 2368 } else { 2369 if (local_exact != NULL) 2370 continue; 2371 } 2372 2373 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2374 if (injail) 2375 return (inp); 2376 else 2377 local_exact = inp; 2378 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2379 #ifdef INET6 2380 /* XXX inp locking, NULL check */ 2381 if (inp->inp_vflag & INP_IPV6PROTO) 2382 local_wild_mapped = inp; 2383 else 2384 #endif 2385 if (injail) 2386 jail_wild = inp; 2387 else 2388 local_wild = inp; 2389 } 2390 } /* LIST_FOREACH */ 2391 if (jail_wild != NULL) 2392 return (jail_wild); 2393 if (local_exact != NULL) 2394 return (local_exact); 2395 if (local_wild != NULL) 2396 return (local_wild); 2397 #ifdef INET6 2398 if (local_wild_mapped != NULL) 2399 return (local_wild_mapped); 2400 #endif 2401 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2402 2403 return (NULL); 2404 } 2405 2406 /* 2407 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2408 * hash list lock, and will return the inpcb locked (i.e., requires 2409 * INPLOOKUP_LOCKPCB). 2410 */ 2411 static struct inpcb * 2412 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2413 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2414 struct ifnet *ifp, uint8_t numa_domain) 2415 { 2416 struct inpcb *inp; 2417 2418 smr_enter(pcbinfo->ipi_smr); 2419 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2420 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2421 if (inp != NULL) { 2422 if (__predict_false(inp_smr_lock(inp, 2423 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2424 inp = NULL; 2425 } else 2426 smr_exit(pcbinfo->ipi_smr); 2427 2428 return (inp); 2429 } 2430 2431 /* 2432 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2433 * from which a pre-calculated hash value may be extracted. 2434 */ 2435 struct inpcb * 2436 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2437 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2438 { 2439 2440 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2441 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2442 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2443 ("%s: LOCKPCB not set", __func__)); 2444 2445 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2446 lookupflags, ifp, M_NODOM)); 2447 } 2448 2449 struct inpcb * 2450 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2451 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2452 struct ifnet *ifp, struct mbuf *m) 2453 { 2454 2455 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2456 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2457 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2458 ("%s: LOCKPCB not set", __func__)); 2459 2460 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2461 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2462 } 2463 #endif /* INET */ 2464 2465 /* 2466 * Insert PCB onto various hash lists. 2467 */ 2468 int 2469 in_pcbinshash(struct inpcb *inp) 2470 { 2471 struct inpcbhead *pcbhash; 2472 struct inpcbporthead *pcbporthash; 2473 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2474 struct inpcbport *phd; 2475 int so_options; 2476 2477 INP_WLOCK_ASSERT(inp); 2478 INP_HASH_WLOCK_ASSERT(pcbinfo); 2479 2480 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2481 ("in_pcbinshash: INP_INHASHLIST")); 2482 2483 #ifdef INET6 2484 if (inp->inp_vflag & INP_IPV6) 2485 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2486 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2487 else 2488 #endif 2489 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2490 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2491 2492 pcbporthash = &pcbinfo->ipi_porthashbase[ 2493 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2494 2495 /* 2496 * Add entry to load balance group. 2497 * Only do this if SO_REUSEPORT_LB is set. 2498 */ 2499 so_options = inp_so_options(inp); 2500 if (so_options & SO_REUSEPORT_LB) { 2501 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2502 if (ret) { 2503 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2504 return (ret); 2505 } 2506 } 2507 2508 /* 2509 * Go through port list and look for a head for this lport. 2510 */ 2511 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2512 if (phd->phd_port == inp->inp_lport) 2513 break; 2514 } 2515 /* 2516 * If none exists, malloc one and tack it on. 2517 */ 2518 if (phd == NULL) { 2519 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2520 if (phd == NULL) { 2521 return (ENOBUFS); /* XXX */ 2522 } 2523 phd->phd_port = inp->inp_lport; 2524 CK_LIST_INIT(&phd->phd_pcblist); 2525 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2526 } 2527 inp->inp_phd = phd; 2528 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2529 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2530 inp->inp_flags |= INP_INHASHLIST; 2531 2532 return (0); 2533 } 2534 2535 /* 2536 * Move PCB to the proper hash bucket when { faddr, fport } have been 2537 * changed. NOTE: This does not handle the case of the lport changing (the 2538 * hashed port list would have to be updated as well), so the lport must 2539 * not change after in_pcbinshash() has been called. 2540 * 2541 * XXXGL: a race between this function and SMR-protected hash iterator 2542 * will lead to iterator traversing a possibly wrong hash list. However, 2543 * this race should have been here since change from rwlock to epoch. 2544 */ 2545 void 2546 in_pcbrehash(struct inpcb *inp) 2547 { 2548 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2549 struct inpcbhead *head; 2550 2551 INP_WLOCK_ASSERT(inp); 2552 INP_HASH_WLOCK_ASSERT(pcbinfo); 2553 2554 KASSERT(inp->inp_flags & INP_INHASHLIST, 2555 ("in_pcbrehash: !INP_INHASHLIST")); 2556 2557 #ifdef INET6 2558 if (inp->inp_vflag & INP_IPV6) 2559 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2560 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2561 else 2562 #endif 2563 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2564 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2565 2566 CK_LIST_REMOVE(inp, inp_hash); 2567 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2568 } 2569 2570 /* 2571 * Check for alternatives when higher level complains 2572 * about service problems. For now, invalidate cached 2573 * routing information. If the route was created dynamically 2574 * (by a redirect), time to try a default gateway again. 2575 */ 2576 void 2577 in_losing(struct inpcb *inp) 2578 { 2579 2580 RO_INVALIDATE_CACHE(&inp->inp_route); 2581 return; 2582 } 2583 2584 /* 2585 * A set label operation has occurred at the socket layer, propagate the 2586 * label change into the in_pcb for the socket. 2587 */ 2588 void 2589 in_pcbsosetlabel(struct socket *so) 2590 { 2591 #ifdef MAC 2592 struct inpcb *inp; 2593 2594 inp = sotoinpcb(so); 2595 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2596 2597 INP_WLOCK(inp); 2598 SOCK_LOCK(so); 2599 mac_inpcb_sosetlabel(so, inp); 2600 SOCK_UNLOCK(so); 2601 INP_WUNLOCK(inp); 2602 #endif 2603 } 2604 2605 /* 2606 * ipport_tick runs once per second, determining if random port allocation 2607 * should be continued. If more than ipport_randomcps ports have been 2608 * allocated in the last second, then we return to sequential port 2609 * allocation. We return to random allocation only once we drop below 2610 * ipport_randomcps for at least ipport_randomtime seconds. 2611 */ 2612 static void 2613 ipport_tick(void *xtp) 2614 { 2615 VNET_ITERATOR_DECL(vnet_iter); 2616 2617 VNET_LIST_RLOCK_NOSLEEP(); 2618 VNET_FOREACH(vnet_iter) { 2619 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2620 if (V_ipport_tcpallocs - V_ipport_tcplastcount <= 2621 V_ipport_randomcps) { 2622 if (V_ipport_stoprandom > 0) 2623 V_ipport_stoprandom--; 2624 } else 2625 V_ipport_stoprandom = V_ipport_randomtime; 2626 V_ipport_tcplastcount = V_ipport_tcpallocs; 2627 CURVNET_RESTORE(); 2628 } 2629 VNET_LIST_RUNLOCK_NOSLEEP(); 2630 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2631 } 2632 2633 static void 2634 ip_fini(void *xtp) 2635 { 2636 2637 callout_stop(&ipport_tick_callout); 2638 } 2639 2640 /* 2641 * The ipport_callout should start running at about the time we attach the 2642 * inet or inet6 domains. 2643 */ 2644 static void 2645 ipport_tick_init(const void *unused __unused) 2646 { 2647 2648 /* Start ipport_tick. */ 2649 callout_init(&ipport_tick_callout, 1); 2650 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2651 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2652 SHUTDOWN_PRI_DEFAULT); 2653 } 2654 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2655 ipport_tick_init, NULL); 2656 2657 void 2658 inp_wlock(struct inpcb *inp) 2659 { 2660 2661 INP_WLOCK(inp); 2662 } 2663 2664 void 2665 inp_wunlock(struct inpcb *inp) 2666 { 2667 2668 INP_WUNLOCK(inp); 2669 } 2670 2671 void 2672 inp_rlock(struct inpcb *inp) 2673 { 2674 2675 INP_RLOCK(inp); 2676 } 2677 2678 void 2679 inp_runlock(struct inpcb *inp) 2680 { 2681 2682 INP_RUNLOCK(inp); 2683 } 2684 2685 #ifdef INVARIANT_SUPPORT 2686 void 2687 inp_lock_assert(struct inpcb *inp) 2688 { 2689 2690 INP_WLOCK_ASSERT(inp); 2691 } 2692 2693 void 2694 inp_unlock_assert(struct inpcb *inp) 2695 { 2696 2697 INP_UNLOCK_ASSERT(inp); 2698 } 2699 #endif 2700 2701 void 2702 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2703 { 2704 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2705 INPLOOKUP_WLOCKPCB); 2706 struct inpcb *inp; 2707 2708 while ((inp = inp_next(&inpi)) != NULL) 2709 func(inp, arg); 2710 } 2711 2712 struct socket * 2713 inp_inpcbtosocket(struct inpcb *inp) 2714 { 2715 2716 INP_WLOCK_ASSERT(inp); 2717 return (inp->inp_socket); 2718 } 2719 2720 struct tcpcb * 2721 inp_inpcbtotcpcb(struct inpcb *inp) 2722 { 2723 2724 INP_WLOCK_ASSERT(inp); 2725 return ((struct tcpcb *)inp->inp_ppcb); 2726 } 2727 2728 int 2729 inp_ip_tos_get(const struct inpcb *inp) 2730 { 2731 2732 return (inp->inp_ip_tos); 2733 } 2734 2735 void 2736 inp_ip_tos_set(struct inpcb *inp, int val) 2737 { 2738 2739 inp->inp_ip_tos = val; 2740 } 2741 2742 void 2743 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2744 uint32_t *faddr, uint16_t *fp) 2745 { 2746 2747 INP_LOCK_ASSERT(inp); 2748 *laddr = inp->inp_laddr.s_addr; 2749 *faddr = inp->inp_faddr.s_addr; 2750 *lp = inp->inp_lport; 2751 *fp = inp->inp_fport; 2752 } 2753 2754 struct inpcb * 2755 so_sotoinpcb(struct socket *so) 2756 { 2757 2758 return (sotoinpcb(so)); 2759 } 2760 2761 struct tcpcb * 2762 so_sototcpcb(struct socket *so) 2763 { 2764 2765 return (sototcpcb(so)); 2766 } 2767 2768 /* 2769 * Create an external-format (``xinpcb'') structure using the information in 2770 * the kernel-format in_pcb structure pointed to by inp. This is done to 2771 * reduce the spew of irrelevant information over this interface, to isolate 2772 * user code from changes in the kernel structure, and potentially to provide 2773 * information-hiding if we decide that some of this information should be 2774 * hidden from users. 2775 */ 2776 void 2777 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2778 { 2779 2780 bzero(xi, sizeof(*xi)); 2781 xi->xi_len = sizeof(struct xinpcb); 2782 if (inp->inp_socket) 2783 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2784 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2785 xi->inp_gencnt = inp->inp_gencnt; 2786 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2787 xi->inp_flow = inp->inp_flow; 2788 xi->inp_flowid = inp->inp_flowid; 2789 xi->inp_flowtype = inp->inp_flowtype; 2790 xi->inp_flags = inp->inp_flags; 2791 xi->inp_flags2 = inp->inp_flags2; 2792 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2793 xi->in6p_cksum = inp->in6p_cksum; 2794 xi->in6p_hops = inp->in6p_hops; 2795 xi->inp_ip_tos = inp->inp_ip_tos; 2796 xi->inp_vflag = inp->inp_vflag; 2797 xi->inp_ip_ttl = inp->inp_ip_ttl; 2798 xi->inp_ip_p = inp->inp_ip_p; 2799 xi->inp_ip_minttl = inp->inp_ip_minttl; 2800 } 2801 2802 int 2803 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2804 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2805 { 2806 struct sockopt sopt; 2807 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2808 INPLOOKUP_WLOCKPCB); 2809 struct inpcb *inp; 2810 struct sockopt_parameters *params; 2811 struct socket *so; 2812 int error; 2813 char buf[1024]; 2814 2815 if (req->oldptr != NULL || req->oldlen != 0) 2816 return (EINVAL); 2817 if (req->newptr == NULL) 2818 return (EPERM); 2819 if (req->newlen > sizeof(buf)) 2820 return (ENOMEM); 2821 error = SYSCTL_IN(req, buf, req->newlen); 2822 if (error != 0) 2823 return (error); 2824 if (req->newlen < sizeof(struct sockopt_parameters)) 2825 return (EINVAL); 2826 params = (struct sockopt_parameters *)buf; 2827 sopt.sopt_level = params->sop_level; 2828 sopt.sopt_name = params->sop_optname; 2829 sopt.sopt_dir = SOPT_SET; 2830 sopt.sopt_val = params->sop_optval; 2831 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2832 sopt.sopt_td = NULL; 2833 #ifdef INET6 2834 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2835 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2836 params->sop_inc.inc6_laddr.s6_addr16[1] = 2837 htons(params->sop_inc.inc6_zoneid & 0xffff); 2838 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2839 params->sop_inc.inc6_faddr.s6_addr16[1] = 2840 htons(params->sop_inc.inc6_zoneid & 0xffff); 2841 } 2842 #endif 2843 if (params->sop_inc.inc_lport != htons(0)) { 2844 if (params->sop_inc.inc_fport == htons(0)) 2845 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2846 pcbinfo->ipi_hashmask); 2847 else 2848 #ifdef INET6 2849 if (params->sop_inc.inc_flags & INC_ISIPV6) 2850 inpi.hash = INP6_PCBHASH( 2851 ¶ms->sop_inc.inc6_faddr, 2852 params->sop_inc.inc_lport, 2853 params->sop_inc.inc_fport, 2854 pcbinfo->ipi_hashmask); 2855 else 2856 #endif 2857 inpi.hash = INP_PCBHASH( 2858 ¶ms->sop_inc.inc_faddr, 2859 params->sop_inc.inc_lport, 2860 params->sop_inc.inc_fport, 2861 pcbinfo->ipi_hashmask); 2862 } 2863 while ((inp = inp_next(&inpi)) != NULL) 2864 if (inp->inp_gencnt == params->sop_id) { 2865 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2866 INP_WUNLOCK(inp); 2867 return (ECONNRESET); 2868 } 2869 so = inp->inp_socket; 2870 KASSERT(so != NULL, ("inp_socket == NULL")); 2871 soref(so); 2872 error = (*ctloutput_set)(inp, &sopt); 2873 sorele(so); 2874 break; 2875 } 2876 if (inp == NULL) 2877 error = ESRCH; 2878 return (error); 2879 } 2880 2881 #ifdef DDB 2882 static void 2883 db_print_indent(int indent) 2884 { 2885 int i; 2886 2887 for (i = 0; i < indent; i++) 2888 db_printf(" "); 2889 } 2890 2891 static void 2892 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2893 { 2894 char faddr_str[48], laddr_str[48]; 2895 2896 db_print_indent(indent); 2897 db_printf("%s at %p\n", name, inc); 2898 2899 indent += 2; 2900 2901 #ifdef INET6 2902 if (inc->inc_flags & INC_ISIPV6) { 2903 /* IPv6. */ 2904 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2905 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2906 } else 2907 #endif 2908 { 2909 /* IPv4. */ 2910 inet_ntoa_r(inc->inc_laddr, laddr_str); 2911 inet_ntoa_r(inc->inc_faddr, faddr_str); 2912 } 2913 db_print_indent(indent); 2914 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2915 ntohs(inc->inc_lport)); 2916 db_print_indent(indent); 2917 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2918 ntohs(inc->inc_fport)); 2919 } 2920 2921 static void 2922 db_print_inpflags(int inp_flags) 2923 { 2924 int comma; 2925 2926 comma = 0; 2927 if (inp_flags & INP_RECVOPTS) { 2928 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2929 comma = 1; 2930 } 2931 if (inp_flags & INP_RECVRETOPTS) { 2932 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2933 comma = 1; 2934 } 2935 if (inp_flags & INP_RECVDSTADDR) { 2936 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2937 comma = 1; 2938 } 2939 if (inp_flags & INP_ORIGDSTADDR) { 2940 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2941 comma = 1; 2942 } 2943 if (inp_flags & INP_HDRINCL) { 2944 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2945 comma = 1; 2946 } 2947 if (inp_flags & INP_HIGHPORT) { 2948 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2949 comma = 1; 2950 } 2951 if (inp_flags & INP_LOWPORT) { 2952 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2953 comma = 1; 2954 } 2955 if (inp_flags & INP_ANONPORT) { 2956 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2957 comma = 1; 2958 } 2959 if (inp_flags & INP_RECVIF) { 2960 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2961 comma = 1; 2962 } 2963 if (inp_flags & INP_MTUDISC) { 2964 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2965 comma = 1; 2966 } 2967 if (inp_flags & INP_RECVTTL) { 2968 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2969 comma = 1; 2970 } 2971 if (inp_flags & INP_DONTFRAG) { 2972 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2973 comma = 1; 2974 } 2975 if (inp_flags & INP_RECVTOS) { 2976 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2977 comma = 1; 2978 } 2979 if (inp_flags & IN6P_IPV6_V6ONLY) { 2980 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2981 comma = 1; 2982 } 2983 if (inp_flags & IN6P_PKTINFO) { 2984 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2985 comma = 1; 2986 } 2987 if (inp_flags & IN6P_HOPLIMIT) { 2988 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2989 comma = 1; 2990 } 2991 if (inp_flags & IN6P_HOPOPTS) { 2992 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2993 comma = 1; 2994 } 2995 if (inp_flags & IN6P_DSTOPTS) { 2996 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2997 comma = 1; 2998 } 2999 if (inp_flags & IN6P_RTHDR) { 3000 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3001 comma = 1; 3002 } 3003 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3004 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3005 comma = 1; 3006 } 3007 if (inp_flags & IN6P_TCLASS) { 3008 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3009 comma = 1; 3010 } 3011 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3012 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3013 comma = 1; 3014 } 3015 if (inp_flags & INP_TIMEWAIT) { 3016 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3017 comma = 1; 3018 } 3019 if (inp_flags & INP_ONESBCAST) { 3020 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3021 comma = 1; 3022 } 3023 if (inp_flags & INP_DROPPED) { 3024 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3025 comma = 1; 3026 } 3027 if (inp_flags & INP_SOCKREF) { 3028 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3029 comma = 1; 3030 } 3031 if (inp_flags & IN6P_RFC2292) { 3032 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3033 comma = 1; 3034 } 3035 if (inp_flags & IN6P_MTU) { 3036 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3037 comma = 1; 3038 } 3039 } 3040 3041 static void 3042 db_print_inpvflag(u_char inp_vflag) 3043 { 3044 int comma; 3045 3046 comma = 0; 3047 if (inp_vflag & INP_IPV4) { 3048 db_printf("%sINP_IPV4", comma ? ", " : ""); 3049 comma = 1; 3050 } 3051 if (inp_vflag & INP_IPV6) { 3052 db_printf("%sINP_IPV6", comma ? ", " : ""); 3053 comma = 1; 3054 } 3055 if (inp_vflag & INP_IPV6PROTO) { 3056 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3057 comma = 1; 3058 } 3059 } 3060 3061 static void 3062 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3063 { 3064 3065 db_print_indent(indent); 3066 db_printf("%s at %p\n", name, inp); 3067 3068 indent += 2; 3069 3070 db_print_indent(indent); 3071 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3072 3073 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3074 3075 db_print_indent(indent); 3076 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3077 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3078 3079 db_print_indent(indent); 3080 db_printf("inp_label: %p inp_flags: 0x%x (", 3081 inp->inp_label, inp->inp_flags); 3082 db_print_inpflags(inp->inp_flags); 3083 db_printf(")\n"); 3084 3085 db_print_indent(indent); 3086 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3087 inp->inp_vflag); 3088 db_print_inpvflag(inp->inp_vflag); 3089 db_printf(")\n"); 3090 3091 db_print_indent(indent); 3092 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3093 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3094 3095 db_print_indent(indent); 3096 #ifdef INET6 3097 if (inp->inp_vflag & INP_IPV6) { 3098 db_printf("in6p_options: %p in6p_outputopts: %p " 3099 "in6p_moptions: %p\n", inp->in6p_options, 3100 inp->in6p_outputopts, inp->in6p_moptions); 3101 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3102 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3103 inp->in6p_hops); 3104 } else 3105 #endif 3106 { 3107 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3108 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3109 inp->inp_options, inp->inp_moptions); 3110 } 3111 3112 db_print_indent(indent); 3113 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3114 (uintmax_t)inp->inp_gencnt); 3115 } 3116 3117 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3118 { 3119 struct inpcb *inp; 3120 3121 if (!have_addr) { 3122 db_printf("usage: show inpcb <addr>\n"); 3123 return; 3124 } 3125 inp = (struct inpcb *)addr; 3126 3127 db_print_inpcb(inp, "inpcb", 0); 3128 } 3129 #endif /* DDB */ 3130 3131 #ifdef RATELIMIT 3132 /* 3133 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3134 * if any. 3135 */ 3136 int 3137 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3138 { 3139 union if_snd_tag_modify_params params = { 3140 .rate_limit.max_rate = max_pacing_rate, 3141 .rate_limit.flags = M_NOWAIT, 3142 }; 3143 struct m_snd_tag *mst; 3144 int error; 3145 3146 mst = inp->inp_snd_tag; 3147 if (mst == NULL) 3148 return (EINVAL); 3149 3150 if (mst->sw->snd_tag_modify == NULL) { 3151 error = EOPNOTSUPP; 3152 } else { 3153 error = mst->sw->snd_tag_modify(mst, ¶ms); 3154 } 3155 return (error); 3156 } 3157 3158 /* 3159 * Query existing TX rate limit based on the existing 3160 * "inp->inp_snd_tag", if any. 3161 */ 3162 int 3163 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3164 { 3165 union if_snd_tag_query_params params = { }; 3166 struct m_snd_tag *mst; 3167 int error; 3168 3169 mst = inp->inp_snd_tag; 3170 if (mst == NULL) 3171 return (EINVAL); 3172 3173 if (mst->sw->snd_tag_query == NULL) { 3174 error = EOPNOTSUPP; 3175 } else { 3176 error = mst->sw->snd_tag_query(mst, ¶ms); 3177 if (error == 0 && p_max_pacing_rate != NULL) 3178 *p_max_pacing_rate = params.rate_limit.max_rate; 3179 } 3180 return (error); 3181 } 3182 3183 /* 3184 * Query existing TX queue level based on the existing 3185 * "inp->inp_snd_tag", if any. 3186 */ 3187 int 3188 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3189 { 3190 union if_snd_tag_query_params params = { }; 3191 struct m_snd_tag *mst; 3192 int error; 3193 3194 mst = inp->inp_snd_tag; 3195 if (mst == NULL) 3196 return (EINVAL); 3197 3198 if (mst->sw->snd_tag_query == NULL) 3199 return (EOPNOTSUPP); 3200 3201 error = mst->sw->snd_tag_query(mst, ¶ms); 3202 if (error == 0 && p_txqueue_level != NULL) 3203 *p_txqueue_level = params.rate_limit.queue_level; 3204 return (error); 3205 } 3206 3207 /* 3208 * Allocate a new TX rate limit send tag from the network interface 3209 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3210 */ 3211 int 3212 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3213 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3214 3215 { 3216 union if_snd_tag_alloc_params params = { 3217 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3218 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3219 .rate_limit.hdr.flowid = flowid, 3220 .rate_limit.hdr.flowtype = flowtype, 3221 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3222 .rate_limit.max_rate = max_pacing_rate, 3223 .rate_limit.flags = M_NOWAIT, 3224 }; 3225 int error; 3226 3227 INP_WLOCK_ASSERT(inp); 3228 3229 /* 3230 * If there is already a send tag, or the INP is being torn 3231 * down, allocating a new send tag is not allowed. Else send 3232 * tags may leak. 3233 */ 3234 if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) 3235 return (EINVAL); 3236 3237 error = m_snd_tag_alloc(ifp, ¶ms, st); 3238 #ifdef INET 3239 if (error == 0) { 3240 counter_u64_add(rate_limit_set_ok, 1); 3241 counter_u64_add(rate_limit_active, 1); 3242 } else if (error != EOPNOTSUPP) 3243 counter_u64_add(rate_limit_alloc_fail, 1); 3244 #endif 3245 return (error); 3246 } 3247 3248 void 3249 in_pcbdetach_tag(struct m_snd_tag *mst) 3250 { 3251 3252 m_snd_tag_rele(mst); 3253 #ifdef INET 3254 counter_u64_add(rate_limit_active, -1); 3255 #endif 3256 } 3257 3258 /* 3259 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3260 * if any: 3261 */ 3262 void 3263 in_pcbdetach_txrtlmt(struct inpcb *inp) 3264 { 3265 struct m_snd_tag *mst; 3266 3267 INP_WLOCK_ASSERT(inp); 3268 3269 mst = inp->inp_snd_tag; 3270 inp->inp_snd_tag = NULL; 3271 3272 if (mst == NULL) 3273 return; 3274 3275 m_snd_tag_rele(mst); 3276 #ifdef INET 3277 counter_u64_add(rate_limit_active, -1); 3278 #endif 3279 } 3280 3281 int 3282 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3283 { 3284 int error; 3285 3286 /* 3287 * If the existing send tag is for the wrong interface due to 3288 * a route change, first drop the existing tag. Set the 3289 * CHANGED flag so that we will keep trying to allocate a new 3290 * tag if we fail to allocate one this time. 3291 */ 3292 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3293 in_pcbdetach_txrtlmt(inp); 3294 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3295 } 3296 3297 /* 3298 * NOTE: When attaching to a network interface a reference is 3299 * made to ensure the network interface doesn't go away until 3300 * all ratelimit connections are gone. The network interface 3301 * pointers compared below represent valid network interfaces, 3302 * except when comparing towards NULL. 3303 */ 3304 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3305 error = 0; 3306 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3307 if (inp->inp_snd_tag != NULL) 3308 in_pcbdetach_txrtlmt(inp); 3309 error = 0; 3310 } else if (inp->inp_snd_tag == NULL) { 3311 /* 3312 * In order to utilize packet pacing with RSS, we need 3313 * to wait until there is a valid RSS hash before we 3314 * can proceed: 3315 */ 3316 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3317 error = EAGAIN; 3318 } else { 3319 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3320 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3321 } 3322 } else { 3323 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3324 } 3325 if (error == 0 || error == EOPNOTSUPP) 3326 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3327 3328 return (error); 3329 } 3330 3331 /* 3332 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3333 * is set in the fast path and will attach/detach/modify the TX rate 3334 * limit send tag based on the socket's so_max_pacing_rate value. 3335 */ 3336 void 3337 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3338 { 3339 struct socket *socket; 3340 uint32_t max_pacing_rate; 3341 bool did_upgrade; 3342 3343 if (inp == NULL) 3344 return; 3345 3346 socket = inp->inp_socket; 3347 if (socket == NULL) 3348 return; 3349 3350 if (!INP_WLOCKED(inp)) { 3351 /* 3352 * NOTE: If the write locking fails, we need to bail 3353 * out and use the non-ratelimited ring for the 3354 * transmit until there is a new chance to get the 3355 * write lock. 3356 */ 3357 if (!INP_TRY_UPGRADE(inp)) 3358 return; 3359 did_upgrade = 1; 3360 } else { 3361 did_upgrade = 0; 3362 } 3363 3364 /* 3365 * NOTE: The so_max_pacing_rate value is read unlocked, 3366 * because atomic updates are not required since the variable 3367 * is checked at every mbuf we send. It is assumed that the 3368 * variable read itself will be atomic. 3369 */ 3370 max_pacing_rate = socket->so_max_pacing_rate; 3371 3372 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3373 3374 if (did_upgrade) 3375 INP_DOWNGRADE(inp); 3376 } 3377 3378 /* 3379 * Track route changes for TX rate limiting. 3380 */ 3381 void 3382 in_pcboutput_eagain(struct inpcb *inp) 3383 { 3384 bool did_upgrade; 3385 3386 if (inp == NULL) 3387 return; 3388 3389 if (inp->inp_snd_tag == NULL) 3390 return; 3391 3392 if (!INP_WLOCKED(inp)) { 3393 /* 3394 * NOTE: If the write locking fails, we need to bail 3395 * out and use the non-ratelimited ring for the 3396 * transmit until there is a new chance to get the 3397 * write lock. 3398 */ 3399 if (!INP_TRY_UPGRADE(inp)) 3400 return; 3401 did_upgrade = 1; 3402 } else { 3403 did_upgrade = 0; 3404 } 3405 3406 /* detach rate limiting */ 3407 in_pcbdetach_txrtlmt(inp); 3408 3409 /* make sure new mbuf send tag allocation is made */ 3410 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3411 3412 if (did_upgrade) 3413 INP_DOWNGRADE(inp); 3414 } 3415 3416 #ifdef INET 3417 static void 3418 rl_init(void *st) 3419 { 3420 rate_limit_new = counter_u64_alloc(M_WAITOK); 3421 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3422 rate_limit_active = counter_u64_alloc(M_WAITOK); 3423 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3424 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3425 } 3426 3427 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3428 #endif 3429 #endif /* RATELIMIT */ 3430