1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_ddb.h" 41 #include "opt_ipsec.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_ratelimit.h" 45 #include "opt_route.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/hash.h> 50 #include <sys/systm.h> 51 #include <sys/libkern.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/smp.h> 60 #include <sys/smr.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 #include <vm/vm.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_private.h> 81 #include <net/if_types.h> 82 #include <net/if_llatbl.h> 83 #include <net/route.h> 84 #include <net/rss_config.h> 85 #include <net/vnet.h> 86 87 #if defined(INET) || defined(INET6) 88 #include <netinet/in.h> 89 #include <netinet/in_pcb.h> 90 #include <netinet/in_pcb_var.h> 91 #include <netinet/tcp.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet6/in6_pcb.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet6/ip6_var.h> 102 #endif /* INET6 */ 103 #include <net/route/nhop.h> 104 #endif 105 106 #include <netipsec/ipsec_support.h> 107 108 #include <security/mac/mac_framework.h> 109 110 #define INPCBLBGROUP_SIZMIN 8 111 #define INPCBLBGROUP_SIZMAX 256 112 113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */ 114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain, int fib); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 #endif /* RATELIMIT */ 224 225 #endif /* INET */ 226 227 VNET_DEFINE(uint32_t, in_pcbhashseed); 228 static void 229 in_pcbhashseed_init(void) 230 { 231 232 V_in_pcbhashseed = arc4random(); 233 } 234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 235 in_pcbhashseed_init, NULL); 236 237 #ifdef INET 238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1; 239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild) 240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild, 241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0, 242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)"); 243 #endif 244 245 static void in_pcbremhash(struct inpcb *); 246 247 /* 248 * in_pcb.c: manage the Protocol Control Blocks. 249 * 250 * NOTE: It is assumed that most of these functions will be called with 251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 252 * functions often modify hash chains or addresses in pcbs. 253 */ 254 255 static struct inpcblbgroup * 256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port, 257 const union in_dependaddr *addr, int size, uint8_t numa_domain, int fib) 258 { 259 struct inpcblbgroup *grp; 260 size_t bytes; 261 262 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 263 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 264 if (grp == NULL) 265 return (NULL); 266 LIST_INIT(&grp->il_pending); 267 grp->il_cred = crhold(cred); 268 grp->il_vflag = vflag; 269 grp->il_lport = port; 270 grp->il_numa_domain = numa_domain; 271 grp->il_fibnum = fib; 272 grp->il_dependladdr = *addr; 273 grp->il_inpsiz = size; 274 return (grp); 275 } 276 277 static void 278 in_pcblbgroup_free_deferred(epoch_context_t ctx) 279 { 280 struct inpcblbgroup *grp; 281 282 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 283 crfree(grp->il_cred); 284 free(grp, M_PCB); 285 } 286 287 static void 288 in_pcblbgroup_free(struct inpcblbgroup *grp) 289 { 290 KASSERT(LIST_EMPTY(&grp->il_pending), 291 ("local group %p still has pending inps", grp)); 292 293 CK_LIST_REMOVE(grp, il_list); 294 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 295 } 296 297 static struct inpcblbgroup * 298 in_pcblbgroup_find(struct inpcb *inp) 299 { 300 struct inpcbinfo *pcbinfo; 301 struct inpcblbgroup *grp; 302 struct inpcblbgrouphead *hdr; 303 304 INP_LOCK_ASSERT(inp); 305 306 pcbinfo = inp->inp_pcbinfo; 307 INP_HASH_LOCK_ASSERT(pcbinfo); 308 309 hdr = &pcbinfo->ipi_lbgrouphashbase[ 310 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 311 CK_LIST_FOREACH(grp, hdr, il_list) { 312 struct inpcb *inp1; 313 314 for (unsigned int i = 0; i < grp->il_inpcnt; i++) { 315 if (inp == grp->il_inp[i]) 316 goto found; 317 } 318 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) { 319 if (inp == inp1) 320 goto found; 321 } 322 } 323 found: 324 return (grp); 325 } 326 327 static void 328 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp) 329 { 330 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 331 ("invalid local group size %d and count %d", grp->il_inpsiz, 332 grp->il_inpcnt)); 333 INP_WLOCK_ASSERT(inp); 334 335 if (inp->inp_socket->so_proto->pr_listen != pr_listen_notsupp && 336 !SOLISTENING(inp->inp_socket)) { 337 /* 338 * If this is a TCP socket, it should not be visible to lbgroup 339 * lookups until listen() has been called. 340 */ 341 LIST_INSERT_HEAD(&grp->il_pending, inp, inp_lbgroup_list); 342 grp->il_pendcnt++; 343 } else { 344 grp->il_inp[grp->il_inpcnt] = inp; 345 346 /* 347 * Synchronize with in_pcblookup_lbgroup(): make sure that we 348 * don't expose a null slot to the lookup path. 349 */ 350 atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1); 351 } 352 353 inp->inp_flags |= INP_INLBGROUP; 354 } 355 356 static struct inpcblbgroup * 357 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 358 struct inpcblbgroup *old_grp, int size) 359 { 360 struct inpcblbgroup *grp; 361 int i; 362 363 grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag, 364 old_grp->il_lport, &old_grp->il_dependladdr, size, 365 old_grp->il_numa_domain, old_grp->il_fibnum); 366 if (grp == NULL) 367 return (NULL); 368 369 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 370 ("invalid new local group size %d and old local group count %d", 371 grp->il_inpsiz, old_grp->il_inpcnt)); 372 373 for (i = 0; i < old_grp->il_inpcnt; ++i) 374 grp->il_inp[i] = old_grp->il_inp[i]; 375 grp->il_inpcnt = old_grp->il_inpcnt; 376 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 377 LIST_SWAP(&old_grp->il_pending, &grp->il_pending, inpcb, 378 inp_lbgroup_list); 379 grp->il_pendcnt = old_grp->il_pendcnt; 380 old_grp->il_pendcnt = 0; 381 in_pcblbgroup_free(old_grp); 382 return (grp); 383 } 384 385 /* 386 * Add PCB to load balance group for SO_REUSEPORT_LB option. 387 */ 388 static int 389 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 390 { 391 const static struct timeval interval = { 60, 0 }; 392 static struct timeval lastprint; 393 struct inpcbinfo *pcbinfo; 394 struct inpcblbgrouphead *hdr; 395 struct inpcblbgroup *grp; 396 uint32_t idx; 397 int fib; 398 399 pcbinfo = inp->inp_pcbinfo; 400 401 INP_WLOCK_ASSERT(inp); 402 INP_HASH_WLOCK_ASSERT(pcbinfo); 403 404 fib = (inp->inp_flags & INP_BOUNDFIB) != 0 ? 405 inp->inp_inc.inc_fibnum : RT_ALL_FIBS; 406 407 #ifdef INET6 408 /* 409 * Don't allow IPv4 mapped INET6 wild socket. 410 */ 411 if ((inp->inp_vflag & INP_IPV4) && 412 inp->inp_laddr.s_addr == INADDR_ANY && 413 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 414 return (0); 415 } 416 #endif 417 418 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 419 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 420 CK_LIST_FOREACH(grp, hdr, il_list) { 421 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 422 grp->il_vflag == inp->inp_vflag && 423 grp->il_lport == inp->inp_lport && 424 grp->il_numa_domain == numa_domain && 425 grp->il_fibnum == fib && 426 memcmp(&grp->il_dependladdr, 427 &inp->inp_inc.inc_ie.ie_dependladdr, 428 sizeof(grp->il_dependladdr)) == 0) { 429 break; 430 } 431 } 432 if (grp == NULL) { 433 /* Create new load balance group. */ 434 grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag, 435 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 436 INPCBLBGROUP_SIZMIN, numa_domain, fib); 437 if (grp == NULL) 438 return (ENOBUFS); 439 in_pcblbgroup_insert(grp, inp); 440 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 441 } else if (grp->il_inpcnt + grp->il_pendcnt == grp->il_inpsiz) { 442 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 443 if (ratecheck(&lastprint, &interval)) 444 printf("lb group port %d, limit reached\n", 445 ntohs(grp->il_lport)); 446 return (0); 447 } 448 449 /* Expand this local group. */ 450 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 451 if (grp == NULL) 452 return (ENOBUFS); 453 in_pcblbgroup_insert(grp, inp); 454 } else { 455 in_pcblbgroup_insert(grp, inp); 456 } 457 return (0); 458 } 459 460 /* 461 * Remove PCB from load balance group. 462 */ 463 static void 464 in_pcbremlbgrouphash(struct inpcb *inp) 465 { 466 struct inpcbinfo *pcbinfo; 467 struct inpcblbgrouphead *hdr; 468 struct inpcblbgroup *grp; 469 struct inpcb *inp1; 470 int i; 471 472 pcbinfo = inp->inp_pcbinfo; 473 474 INP_WLOCK_ASSERT(inp); 475 MPASS(inp->inp_flags & INP_INLBGROUP); 476 INP_HASH_WLOCK_ASSERT(pcbinfo); 477 478 hdr = &pcbinfo->ipi_lbgrouphashbase[ 479 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 480 CK_LIST_FOREACH(grp, hdr, il_list) { 481 for (i = 0; i < grp->il_inpcnt; ++i) { 482 if (grp->il_inp[i] != inp) 483 continue; 484 485 if (grp->il_inpcnt == 1 && 486 LIST_EMPTY(&grp->il_pending)) { 487 /* We are the last, free this local group. */ 488 in_pcblbgroup_free(grp); 489 } else { 490 grp->il_inp[i] = 491 grp->il_inp[grp->il_inpcnt - 1]; 492 493 /* 494 * Synchronize with in_pcblookup_lbgroup(). 495 */ 496 atomic_store_rel_int(&grp->il_inpcnt, 497 grp->il_inpcnt - 1); 498 } 499 inp->inp_flags &= ~INP_INLBGROUP; 500 return; 501 } 502 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) { 503 if (inp == inp1) { 504 LIST_REMOVE(inp, inp_lbgroup_list); 505 grp->il_pendcnt--; 506 inp->inp_flags &= ~INP_INLBGROUP; 507 return; 508 } 509 } 510 } 511 __assert_unreachable(); 512 } 513 514 int 515 in_pcblbgroup_numa(struct inpcb *inp, int arg) 516 { 517 struct inpcbinfo *pcbinfo; 518 int error; 519 uint8_t numa_domain; 520 521 switch (arg) { 522 case TCP_REUSPORT_LB_NUMA_NODOM: 523 numa_domain = M_NODOM; 524 break; 525 case TCP_REUSPORT_LB_NUMA_CURDOM: 526 numa_domain = PCPU_GET(domain); 527 break; 528 default: 529 if (arg < 0 || arg >= vm_ndomains) 530 return (EINVAL); 531 numa_domain = arg; 532 } 533 534 pcbinfo = inp->inp_pcbinfo; 535 INP_WLOCK_ASSERT(inp); 536 INP_HASH_WLOCK(pcbinfo); 537 if (in_pcblbgroup_find(inp) != NULL) { 538 /* Remove it from the old group. */ 539 in_pcbremlbgrouphash(inp); 540 /* Add it to the new group based on numa domain. */ 541 in_pcbinslbgrouphash(inp, numa_domain); 542 error = 0; 543 } else { 544 error = ENOENT; 545 } 546 INP_HASH_WUNLOCK(pcbinfo); 547 return (error); 548 } 549 550 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 551 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 552 553 /* 554 * Initialize an inpcbinfo - a per-VNET instance of connections db. 555 */ 556 void 557 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 558 u_int hash_nelements, u_int porthash_nelements) 559 { 560 561 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 562 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 563 NULL, MTX_DEF); 564 #ifdef VIMAGE 565 pcbinfo->ipi_vnet = curvnet; 566 #endif 567 CK_LIST_INIT(&pcbinfo->ipi_listhead); 568 pcbinfo->ipi_count = 0; 569 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, 570 &pcbinfo->ipi_hashmask); 571 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, 572 &pcbinfo->ipi_hashmask); 573 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 574 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 575 &pcbinfo->ipi_porthashmask); 576 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 577 &pcbinfo->ipi_lbgrouphashmask); 578 pcbinfo->ipi_zone = pcbstor->ips_zone; 579 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 580 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 581 } 582 583 /* 584 * Destroy an inpcbinfo. 585 */ 586 void 587 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 588 { 589 590 KASSERT(pcbinfo->ipi_count == 0, 591 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 592 593 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); 594 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); 595 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 596 pcbinfo->ipi_porthashmask); 597 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 598 pcbinfo->ipi_lbgrouphashmask); 599 mtx_destroy(&pcbinfo->ipi_hash_lock); 600 mtx_destroy(&pcbinfo->ipi_lock); 601 } 602 603 /* 604 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 605 */ 606 static void inpcb_fini(void *, int); 607 void 608 in_pcbstorage_init(void *arg) 609 { 610 struct inpcbstorage *pcbstor = arg; 611 612 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 613 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit, 614 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 615 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 616 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 617 uma_zone_set_smr(pcbstor->ips_portzone, 618 uma_zone_get_smr(pcbstor->ips_zone)); 619 } 620 621 /* 622 * Destroy a pcbstorage - used by unloadable protocols. 623 */ 624 void 625 in_pcbstorage_destroy(void *arg) 626 { 627 struct inpcbstorage *pcbstor = arg; 628 629 uma_zdestroy(pcbstor->ips_zone); 630 uma_zdestroy(pcbstor->ips_portzone); 631 } 632 633 /* 634 * Allocate a PCB and associate it with the socket. 635 * On success return with the PCB locked. 636 */ 637 int 638 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 639 { 640 struct inpcb *inp; 641 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 642 int error; 643 #endif 644 645 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 646 if (inp == NULL) 647 return (ENOBUFS); 648 bzero(&inp->inp_start_zero, inp_zero_size); 649 #ifdef NUMA 650 inp->inp_numa_domain = M_NODOM; 651 #endif 652 inp->inp_pcbinfo = pcbinfo; 653 inp->inp_socket = so; 654 inp->inp_cred = crhold(so->so_cred); 655 inp->inp_inc.inc_fibnum = so->so_fibnum; 656 #ifdef MAC 657 error = mac_inpcb_init(inp, M_NOWAIT); 658 if (error != 0) 659 goto out; 660 mac_inpcb_create(so, inp); 661 #endif 662 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 663 error = ipsec_init_pcbpolicy(inp); 664 if (error != 0) { 665 #ifdef MAC 666 mac_inpcb_destroy(inp); 667 #endif 668 goto out; 669 } 670 #endif /*IPSEC*/ 671 #ifdef INET6 672 if (INP_SOCKAF(so) == AF_INET6) { 673 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 674 if (V_ip6_v6only) 675 inp->inp_flags |= IN6P_IPV6_V6ONLY; 676 #ifdef INET 677 else 678 inp->inp_vflag |= INP_IPV4; 679 #endif 680 if (V_ip6_auto_flowlabel) 681 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 682 inp->in6p_hops = -1; /* use kernel default */ 683 } 684 #endif 685 #if defined(INET) && defined(INET6) 686 else 687 #endif 688 #ifdef INET 689 inp->inp_vflag |= INP_IPV4; 690 #endif 691 inp->inp_smr = SMR_SEQ_INVALID; 692 693 /* 694 * Routes in inpcb's can cache L2 as well; they are guaranteed 695 * to be cleaned up. 696 */ 697 inp->inp_route.ro_flags = RT_LLE_CACHE; 698 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 699 INP_WLOCK(inp); 700 INP_INFO_WLOCK(pcbinfo); 701 pcbinfo->ipi_count++; 702 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 703 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 704 INP_INFO_WUNLOCK(pcbinfo); 705 so->so_pcb = inp; 706 707 return (0); 708 709 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 710 out: 711 crfree(inp->inp_cred); 712 #ifdef INVARIANTS 713 inp->inp_cred = NULL; 714 #endif 715 uma_zfree_smr(pcbinfo->ipi_zone, inp); 716 return (error); 717 #endif 718 } 719 720 #ifdef INET 721 int 722 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, int flags, 723 struct ucred *cred) 724 { 725 int anonport, error; 726 727 KASSERT(sin == NULL || sin->sin_family == AF_INET, 728 ("%s: invalid address family for %p", __func__, sin)); 729 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 730 ("%s: invalid address length for %p", __func__, sin)); 731 INP_WLOCK_ASSERT(inp); 732 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 733 734 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 735 return (EINVAL); 736 anonport = sin == NULL || sin->sin_port == 0; 737 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 738 &inp->inp_lport, flags, cred); 739 if (error) 740 return (error); 741 if (in_pcbinshash(inp) != 0) { 742 inp->inp_laddr.s_addr = INADDR_ANY; 743 inp->inp_lport = 0; 744 inp->inp_flags &= ~INP_BOUNDFIB; 745 return (EAGAIN); 746 } 747 if (anonport) 748 inp->inp_flags |= INP_ANONPORT; 749 return (0); 750 } 751 #endif 752 753 #if defined(INET) || defined(INET6) 754 /* 755 * Assign a local port like in_pcb_lport(), but also used with connect() 756 * and a foreign address and port. If fsa is non-NULL, choose a local port 757 * that is unused with those, otherwise one that is completely unused. 758 * lsa can be NULL for IPv6. 759 */ 760 int 761 in_pcb_lport_dest(const struct inpcb *inp, struct sockaddr *lsa, 762 u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred, 763 int lookupflags) 764 { 765 struct inpcbinfo *pcbinfo; 766 struct inpcb *tmpinp; 767 unsigned short *lastport; 768 int count, error; 769 u_short aux, first, last, lport; 770 #ifdef INET 771 struct in_addr laddr, faddr; 772 #endif 773 #ifdef INET6 774 struct in6_addr *laddr6, *faddr6; 775 #endif 776 777 pcbinfo = inp->inp_pcbinfo; 778 779 /* 780 * Because no actual state changes occur here, a global write lock on 781 * the pcbinfo isn't required. 782 */ 783 INP_LOCK_ASSERT(inp); 784 INP_HASH_LOCK_ASSERT(pcbinfo); 785 786 if (inp->inp_flags & INP_HIGHPORT) { 787 first = V_ipport_hifirstauto; /* sysctl */ 788 last = V_ipport_hilastauto; 789 lastport = &pcbinfo->ipi_lasthi; 790 } else if (inp->inp_flags & INP_LOWPORT) { 791 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 792 if (error) 793 return (error); 794 first = V_ipport_lowfirstauto; /* 1023 */ 795 last = V_ipport_lowlastauto; /* 600 */ 796 lastport = &pcbinfo->ipi_lastlow; 797 } else { 798 first = V_ipport_firstauto; /* sysctl */ 799 last = V_ipport_lastauto; 800 lastport = &pcbinfo->ipi_lastport; 801 } 802 803 /* 804 * Instead of having two loops further down counting up or down 805 * make sure that first is always <= last and go with only one 806 * code path implementing all logic. 807 */ 808 if (first > last) { 809 aux = first; 810 first = last; 811 last = aux; 812 } 813 814 #ifdef INET 815 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 816 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 817 if (lsa != NULL) 818 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 819 if (fsa != NULL) 820 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 821 } 822 #endif 823 #ifdef INET6 824 laddr6 = NULL; 825 if ((inp->inp_vflag & INP_IPV6) != 0) { 826 if (lsa != NULL) 827 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 828 if (fsa != NULL) 829 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 830 } 831 #endif 832 833 tmpinp = NULL; 834 lport = *lportp; 835 836 if (V_ipport_randomized) 837 *lastport = first + (arc4random() % (last - first)); 838 839 count = last - first; 840 841 do { 842 if (count-- < 0) /* completely used? */ 843 return (EADDRNOTAVAIL); 844 ++*lastport; 845 if (*lastport < first || *lastport > last) 846 *lastport = first; 847 lport = htons(*lastport); 848 849 if (fsa != NULL) { 850 #ifdef INET 851 if (lsa->sa_family == AF_INET) { 852 tmpinp = in_pcblookup_hash_locked(pcbinfo, 853 faddr, fport, laddr, lport, lookupflags, 854 M_NODOM, RT_ALL_FIBS); 855 } 856 #endif 857 #ifdef INET6 858 if (lsa->sa_family == AF_INET6) { 859 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 860 faddr6, fport, laddr6, lport, lookupflags, 861 M_NODOM, RT_ALL_FIBS); 862 } 863 #endif 864 } else { 865 #ifdef INET6 866 if ((inp->inp_vflag & INP_IPV6) != 0) { 867 tmpinp = in6_pcblookup_local(pcbinfo, 868 &inp->in6p_laddr, lport, RT_ALL_FIBS, 869 lookupflags, cred); 870 #ifdef INET 871 if (tmpinp == NULL && 872 (inp->inp_vflag & INP_IPV4)) 873 tmpinp = in_pcblookup_local(pcbinfo, 874 laddr, lport, RT_ALL_FIBS, 875 lookupflags, cred); 876 #endif 877 } 878 #endif 879 #if defined(INET) && defined(INET6) 880 else 881 #endif 882 #ifdef INET 883 tmpinp = in_pcblookup_local(pcbinfo, laddr, 884 lport, RT_ALL_FIBS, lookupflags, cred); 885 #endif 886 } 887 } while (tmpinp != NULL); 888 889 *lportp = lport; 890 891 return (0); 892 } 893 894 /* 895 * Select a local port (number) to use. 896 */ 897 int 898 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 899 struct ucred *cred, int lookupflags) 900 { 901 struct sockaddr_in laddr; 902 903 if (laddrp) { 904 bzero(&laddr, sizeof(laddr)); 905 laddr.sin_family = AF_INET; 906 laddr.sin_addr = *laddrp; 907 } 908 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 909 NULL, lportp, NULL, 0, cred, lookupflags)); 910 } 911 #endif /* INET || INET6 */ 912 913 #ifdef INET 914 /* 915 * Determine whether the inpcb can be bound to the specified address/port tuple. 916 */ 917 static int 918 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr, 919 const u_short lport, const int fib, int sooptions, int lookupflags, 920 struct ucred *cred) 921 { 922 int reuseport, reuseport_lb; 923 924 INP_LOCK_ASSERT(inp); 925 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 926 927 reuseport = (sooptions & SO_REUSEPORT); 928 reuseport_lb = (sooptions & SO_REUSEPORT_LB); 929 930 if (IN_MULTICAST(ntohl(laddr.s_addr))) { 931 /* 932 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 933 * allow complete duplication of binding if 934 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 935 * and a multicast address is bound on both 936 * new and duplicated sockets. 937 */ 938 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0) 939 reuseport = SO_REUSEADDR | SO_REUSEPORT; 940 /* 941 * XXX: How to deal with SO_REUSEPORT_LB here? 942 * Treat same as SO_REUSEPORT for now. 943 */ 944 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0) 945 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB; 946 } else if (!in_nullhost(laddr)) { 947 struct sockaddr_in sin; 948 949 memset(&sin, 0, sizeof(sin)); 950 sin.sin_family = AF_INET; 951 sin.sin_len = sizeof(sin); 952 sin.sin_addr = laddr; 953 954 /* 955 * Is the address a local IP address? 956 * If INP_BINDANY is set, then the socket may be bound 957 * to any endpoint address, local or not. 958 */ 959 if ((inp->inp_flags & INP_BINDANY) == 0 && 960 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0) 961 return (EADDRNOTAVAIL); 962 } 963 964 if (lport != 0) { 965 struct inpcb *t; 966 967 if (ntohs(lport) <= V_ipport_reservedhigh && 968 ntohs(lport) >= V_ipport_reservedlow && 969 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 970 return (EACCES); 971 972 if (!IN_MULTICAST(ntohl(laddr.s_addr)) && 973 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 974 /* 975 * If a socket owned by a different user is already 976 * bound to this port, fail. In particular, SO_REUSE* 977 * can only be used to share a port among sockets owned 978 * by the same user. 979 * 980 * However, we can share a port with a connected socket 981 * which has a unique 4-tuple. 982 */ 983 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, 984 RT_ALL_FIBS, INPLOOKUP_WILDCARD, cred); 985 if (t != NULL && 986 (inp->inp_socket->so_type != SOCK_STREAM || 987 in_nullhost(t->inp_faddr)) && 988 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) 989 return (EADDRINUSE); 990 } 991 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, fib, 992 lookupflags, cred); 993 if (t != NULL && ((reuseport | reuseport_lb) & 994 t->inp_socket->so_options) == 0) { 995 #ifdef INET6 996 if (!in_nullhost(laddr) || 997 !in_nullhost(t->inp_laddr) || 998 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 999 (t->inp_vflag & INP_IPV6PROTO) == 0) 1000 #endif 1001 return (EADDRINUSE); 1002 } 1003 } 1004 return (0); 1005 } 1006 1007 /* 1008 * Set up a bind operation on a PCB, performing port allocation 1009 * as required, but do not actually modify the PCB. Callers can 1010 * either complete the bind by setting inp_laddr/inp_lport and 1011 * calling in_pcbinshash(), or they can just use the resulting 1012 * port and address to authorise the sending of a once-off packet. 1013 * 1014 * On error, the values of *laddrp and *lportp are not changed. 1015 */ 1016 int 1017 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 1018 u_short *lportp, int flags, struct ucred *cred) 1019 { 1020 struct socket *so = inp->inp_socket; 1021 struct in_addr laddr; 1022 u_short lport = 0; 1023 int error, fib, lookupflags, sooptions; 1024 1025 /* 1026 * No state changes, so read locks are sufficient here. 1027 */ 1028 INP_LOCK_ASSERT(inp); 1029 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1030 1031 laddr.s_addr = *laddrp; 1032 if (sin != NULL && laddr.s_addr != INADDR_ANY) 1033 return (EINVAL); 1034 1035 lookupflags = 0; 1036 sooptions = atomic_load_int(&so->so_options); 1037 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0) 1038 lookupflags = INPLOOKUP_WILDCARD; 1039 if (sin == NULL) { 1040 if ((error = prison_local_ip4(cred, &laddr)) != 0) 1041 return (error); 1042 } else { 1043 KASSERT(sin->sin_family == AF_INET, 1044 ("%s: invalid family for address %p", __func__, sin)); 1045 KASSERT(sin->sin_len == sizeof(*sin), 1046 ("%s: invalid length for address %p", __func__, sin)); 1047 1048 error = prison_local_ip4(cred, &sin->sin_addr); 1049 if (error) 1050 return (error); 1051 if (sin->sin_port != *lportp) { 1052 /* Don't allow the port to change. */ 1053 if (*lportp != 0) 1054 return (EINVAL); 1055 lport = sin->sin_port; 1056 } 1057 laddr = sin->sin_addr; 1058 1059 fib = (flags & INPBIND_FIB) != 0 ? inp->inp_inc.inc_fibnum : 1060 RT_ALL_FIBS; 1061 1062 /* See if this address/port combo is available. */ 1063 error = in_pcbbind_avail(inp, laddr, lport, fib, sooptions, 1064 lookupflags, cred); 1065 if (error != 0) 1066 return (error); 1067 } 1068 if (*lportp != 0) 1069 lport = *lportp; 1070 if (lport == 0) { 1071 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1072 if (error != 0) 1073 return (error); 1074 } 1075 *laddrp = laddr.s_addr; 1076 *lportp = lport; 1077 if ((flags & INPBIND_FIB) != 0) 1078 inp->inp_flags |= INP_BOUNDFIB; 1079 return (0); 1080 } 1081 1082 /* 1083 * Connect from a socket to a specified address. 1084 * Both address and port must be specified in argument sin. 1085 * If don't have a local address for this socket yet, 1086 * then pick one. 1087 */ 1088 int 1089 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 1090 { 1091 u_short lport, fport; 1092 in_addr_t laddr, faddr; 1093 int anonport, error; 1094 1095 INP_WLOCK_ASSERT(inp); 1096 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1097 KASSERT(in_nullhost(inp->inp_faddr), 1098 ("%s: inp is already connected", __func__)); 1099 1100 lport = inp->inp_lport; 1101 laddr = inp->inp_laddr.s_addr; 1102 anonport = (lport == 0); 1103 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1104 cred); 1105 if (error) 1106 return (error); 1107 1108 inp->inp_faddr.s_addr = faddr; 1109 inp->inp_fport = fport; 1110 1111 /* Do the initial binding of the local address if required. */ 1112 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1113 inp->inp_lport = lport; 1114 inp->inp_laddr.s_addr = laddr; 1115 if (in_pcbinshash(inp) != 0) { 1116 inp->inp_laddr.s_addr = inp->inp_faddr.s_addr = 1117 INADDR_ANY; 1118 inp->inp_lport = inp->inp_fport = 0; 1119 return (EAGAIN); 1120 } 1121 } else { 1122 inp->inp_lport = lport; 1123 inp->inp_laddr.s_addr = laddr; 1124 if ((inp->inp_flags & INP_INHASHLIST) != 0) 1125 in_pcbrehash(inp); 1126 else 1127 in_pcbinshash(inp); 1128 } 1129 #ifdef ROUTE_MPATH 1130 if (CALC_FLOWID_OUTBOUND) { 1131 uint32_t hash_val, hash_type; 1132 1133 hash_val = fib4_calc_software_hash(inp->inp_laddr, 1134 inp->inp_faddr, 0, fport, 1135 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1136 1137 inp->inp_flowid = hash_val; 1138 inp->inp_flowtype = hash_type; 1139 } 1140 #endif 1141 if (anonport) 1142 inp->inp_flags |= INP_ANONPORT; 1143 return (0); 1144 } 1145 1146 /* 1147 * Do proper source address selection on an unbound socket in case 1148 * of connect. Take jails into account as well. 1149 */ 1150 int 1151 in_pcbladdr(const struct inpcb *inp, struct in_addr *faddr, 1152 struct in_addr *laddr, struct ucred *cred) 1153 { 1154 struct ifaddr *ifa; 1155 struct sockaddr *sa; 1156 struct sockaddr_in *sin, dst; 1157 struct nhop_object *nh; 1158 int error; 1159 1160 NET_EPOCH_ASSERT(); 1161 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1162 1163 /* 1164 * Bypass source address selection and use the primary jail IP 1165 * if requested. 1166 */ 1167 if (!prison_saddrsel_ip4(cred, laddr)) 1168 return (0); 1169 1170 error = 0; 1171 1172 nh = NULL; 1173 bzero(&dst, sizeof(dst)); 1174 sin = &dst; 1175 sin->sin_family = AF_INET; 1176 sin->sin_len = sizeof(struct sockaddr_in); 1177 sin->sin_addr.s_addr = faddr->s_addr; 1178 1179 /* 1180 * If route is known our src addr is taken from the i/f, 1181 * else punt. 1182 * 1183 * Find out route to destination. 1184 */ 1185 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1186 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1187 0, NHR_NONE, 0); 1188 1189 /* 1190 * If we found a route, use the address corresponding to 1191 * the outgoing interface. 1192 * 1193 * Otherwise assume faddr is reachable on a directly connected 1194 * network and try to find a corresponding interface to take 1195 * the source address from. 1196 */ 1197 if (nh == NULL || nh->nh_ifp == NULL) { 1198 struct in_ifaddr *ia; 1199 struct ifnet *ifp; 1200 1201 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1202 inp->inp_socket->so_fibnum)); 1203 if (ia == NULL) { 1204 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1205 inp->inp_socket->so_fibnum)); 1206 } 1207 if (ia == NULL) { 1208 error = ENETUNREACH; 1209 goto done; 1210 } 1211 1212 if (!prison_flag(cred, PR_IP4)) { 1213 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1214 goto done; 1215 } 1216 1217 ifp = ia->ia_ifp; 1218 ia = NULL; 1219 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1220 sa = ifa->ifa_addr; 1221 if (sa->sa_family != AF_INET) 1222 continue; 1223 sin = (struct sockaddr_in *)sa; 1224 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1225 ia = (struct in_ifaddr *)ifa; 1226 break; 1227 } 1228 } 1229 if (ia != NULL) { 1230 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1231 goto done; 1232 } 1233 1234 /* 3. As a last resort return the 'default' jail address. */ 1235 error = prison_get_ip4(cred, laddr); 1236 goto done; 1237 } 1238 1239 /* 1240 * If the outgoing interface on the route found is not 1241 * a loopback interface, use the address from that interface. 1242 * In case of jails do those three steps: 1243 * 1. check if the interface address belongs to the jail. If so use it. 1244 * 2. check if we have any address on the outgoing interface 1245 * belonging to this jail. If so use it. 1246 * 3. as a last resort return the 'default' jail address. 1247 */ 1248 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1249 struct in_ifaddr *ia; 1250 struct ifnet *ifp; 1251 1252 /* If not jailed, use the default returned. */ 1253 if (!prison_flag(cred, PR_IP4)) { 1254 ia = (struct in_ifaddr *)nh->nh_ifa; 1255 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1256 goto done; 1257 } 1258 1259 /* Jailed. */ 1260 /* 1. Check if the iface address belongs to the jail. */ 1261 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1262 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1263 ia = (struct in_ifaddr *)nh->nh_ifa; 1264 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1265 goto done; 1266 } 1267 1268 /* 1269 * 2. Check if we have any address on the outgoing interface 1270 * belonging to this jail. 1271 */ 1272 ia = NULL; 1273 ifp = nh->nh_ifp; 1274 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1275 sa = ifa->ifa_addr; 1276 if (sa->sa_family != AF_INET) 1277 continue; 1278 sin = (struct sockaddr_in *)sa; 1279 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1280 ia = (struct in_ifaddr *)ifa; 1281 break; 1282 } 1283 } 1284 if (ia != NULL) { 1285 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1286 goto done; 1287 } 1288 1289 /* 3. As a last resort return the 'default' jail address. */ 1290 error = prison_get_ip4(cred, laddr); 1291 goto done; 1292 } 1293 1294 /* 1295 * The outgoing interface is marked with 'loopback net', so a route 1296 * to ourselves is here. 1297 * Try to find the interface of the destination address and then 1298 * take the address from there. That interface is not necessarily 1299 * a loopback interface. 1300 * In case of jails, check that it is an address of the jail 1301 * and if we cannot find, fall back to the 'default' jail address. 1302 */ 1303 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1304 struct in_ifaddr *ia; 1305 1306 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1307 inp->inp_socket->so_fibnum)); 1308 if (ia == NULL) 1309 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1310 inp->inp_socket->so_fibnum)); 1311 if (ia == NULL) 1312 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1313 1314 if (!prison_flag(cred, PR_IP4)) { 1315 if (ia == NULL) { 1316 error = ENETUNREACH; 1317 goto done; 1318 } 1319 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1320 goto done; 1321 } 1322 1323 /* Jailed. */ 1324 if (ia != NULL) { 1325 struct ifnet *ifp; 1326 1327 ifp = ia->ia_ifp; 1328 ia = NULL; 1329 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1330 sa = ifa->ifa_addr; 1331 if (sa->sa_family != AF_INET) 1332 continue; 1333 sin = (struct sockaddr_in *)sa; 1334 if (prison_check_ip4(cred, 1335 &sin->sin_addr) == 0) { 1336 ia = (struct in_ifaddr *)ifa; 1337 break; 1338 } 1339 } 1340 if (ia != NULL) { 1341 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1342 goto done; 1343 } 1344 } 1345 1346 /* 3. As a last resort return the 'default' jail address. */ 1347 error = prison_get_ip4(cred, laddr); 1348 goto done; 1349 } 1350 1351 done: 1352 if (error == 0 && laddr->s_addr == INADDR_ANY) 1353 return (EHOSTUNREACH); 1354 return (error); 1355 } 1356 1357 /* 1358 * Set up for a connect from a socket to the specified address. 1359 * On entry, *laddrp and *lportp should contain the current local 1360 * address and port for the PCB; these are updated to the values 1361 * that should be placed in inp_laddr and inp_lport to complete 1362 * the connect. 1363 * 1364 * On success, *faddrp and *fportp will be set to the remote address 1365 * and port. These are not updated in the error case. 1366 */ 1367 int 1368 in_pcbconnect_setup(const struct inpcb *inp, struct sockaddr_in *sin, 1369 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1370 struct ucred *cred) 1371 { 1372 struct in_ifaddr *ia; 1373 struct in_addr laddr, faddr; 1374 u_short lport, fport; 1375 int error; 1376 1377 KASSERT(sin->sin_family == AF_INET, 1378 ("%s: invalid address family for %p", __func__, sin)); 1379 KASSERT(sin->sin_len == sizeof(*sin), 1380 ("%s: invalid address length for %p", __func__, sin)); 1381 1382 /* 1383 * Because a global state change doesn't actually occur here, a read 1384 * lock is sufficient. 1385 */ 1386 NET_EPOCH_ASSERT(); 1387 INP_LOCK_ASSERT(inp); 1388 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1389 1390 if (sin->sin_port == 0) 1391 return (EADDRNOTAVAIL); 1392 laddr.s_addr = *laddrp; 1393 lport = *lportp; 1394 faddr = sin->sin_addr; 1395 fport = sin->sin_port; 1396 if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1397 /* 1398 * If the destination address is INADDR_ANY, 1399 * use the primary local address. 1400 * If the supplied address is INADDR_BROADCAST, 1401 * and the primary interface supports broadcast, 1402 * choose the broadcast address for that interface. 1403 */ 1404 if (faddr.s_addr == INADDR_ANY) { 1405 faddr = 1406 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1407 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1408 return (error); 1409 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1410 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1411 IFF_BROADCAST) 1412 faddr = satosin(&CK_STAILQ_FIRST( 1413 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1414 } 1415 } else if (faddr.s_addr == INADDR_ANY) { 1416 return (ENETUNREACH); 1417 } 1418 if (laddr.s_addr == INADDR_ANY) { 1419 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1420 /* 1421 * If the destination address is multicast and an outgoing 1422 * interface has been set as a multicast option, prefer the 1423 * address of that interface as our source address. 1424 */ 1425 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1426 inp->inp_moptions != NULL) { 1427 struct ip_moptions *imo; 1428 struct ifnet *ifp; 1429 1430 imo = inp->inp_moptions; 1431 if (imo->imo_multicast_ifp != NULL) { 1432 ifp = imo->imo_multicast_ifp; 1433 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1434 if (ia->ia_ifp == ifp && 1435 prison_check_ip4(cred, 1436 &ia->ia_addr.sin_addr) == 0) 1437 break; 1438 } 1439 if (ia == NULL) 1440 error = EADDRNOTAVAIL; 1441 else { 1442 laddr = ia->ia_addr.sin_addr; 1443 error = 0; 1444 } 1445 } 1446 } 1447 if (error) 1448 return (error); 1449 } 1450 1451 if (lport != 0) { 1452 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1453 fport, laddr, lport, 0, M_NODOM, RT_ALL_FIBS) != NULL) 1454 return (EADDRINUSE); 1455 } else { 1456 struct sockaddr_in lsin, fsin; 1457 1458 bzero(&lsin, sizeof(lsin)); 1459 bzero(&fsin, sizeof(fsin)); 1460 lsin.sin_family = AF_INET; 1461 lsin.sin_addr = laddr; 1462 fsin.sin_family = AF_INET; 1463 fsin.sin_addr = faddr; 1464 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1465 &lport, (struct sockaddr *)& fsin, fport, cred, 1466 INPLOOKUP_WILDCARD); 1467 if (error) 1468 return (error); 1469 } 1470 *laddrp = laddr.s_addr; 1471 *lportp = lport; 1472 *faddrp = faddr.s_addr; 1473 *fportp = fport; 1474 return (0); 1475 } 1476 1477 void 1478 in_pcbdisconnect(struct inpcb *inp) 1479 { 1480 1481 INP_WLOCK_ASSERT(inp); 1482 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1483 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 1484 ("%s: inp %p was already disconnected", __func__, inp)); 1485 1486 in_pcbremhash_locked(inp); 1487 1488 /* See the comment in in_pcbinshash(). */ 1489 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); 1490 inp->inp_laddr.s_addr = INADDR_ANY; 1491 inp->inp_faddr.s_addr = INADDR_ANY; 1492 inp->inp_fport = 0; 1493 } 1494 #endif /* INET */ 1495 1496 void 1497 in_pcblisten(struct inpcb *inp) 1498 { 1499 struct inpcblbgroup *grp; 1500 1501 INP_WLOCK_ASSERT(inp); 1502 1503 if ((inp->inp_flags & INP_INLBGROUP) != 0) { 1504 struct inpcbinfo *pcbinfo; 1505 1506 pcbinfo = inp->inp_pcbinfo; 1507 INP_HASH_WLOCK(pcbinfo); 1508 grp = in_pcblbgroup_find(inp); 1509 LIST_REMOVE(inp, inp_lbgroup_list); 1510 grp->il_pendcnt--; 1511 in_pcblbgroup_insert(grp, inp); 1512 INP_HASH_WUNLOCK(pcbinfo); 1513 } 1514 } 1515 1516 /* 1517 * inpcb hash lookups are protected by SMR section. 1518 * 1519 * Once desired pcb has been found, switching from SMR section to a pcb 1520 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1521 * here because SMR is a critical section. 1522 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1523 */ 1524 void 1525 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1526 { 1527 1528 lock == INPLOOKUP_RLOCKPCB ? 1529 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1530 } 1531 1532 void 1533 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1534 { 1535 1536 lock == INPLOOKUP_RLOCKPCB ? 1537 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1538 } 1539 1540 int 1541 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1542 { 1543 1544 return (lock == INPLOOKUP_RLOCKPCB ? 1545 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1546 } 1547 1548 static inline bool 1549 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1550 { 1551 1552 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1553 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1554 1555 if (__predict_true(inp_trylock(inp, lock))) { 1556 if (__predict_false(inp->inp_flags & ignflags)) { 1557 smr_exit(inp->inp_pcbinfo->ipi_smr); 1558 inp_unlock(inp, lock); 1559 return (false); 1560 } 1561 smr_exit(inp->inp_pcbinfo->ipi_smr); 1562 return (true); 1563 } 1564 1565 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1566 smr_exit(inp->inp_pcbinfo->ipi_smr); 1567 inp_lock(inp, lock); 1568 if (__predict_false(in_pcbrele(inp, lock))) 1569 return (false); 1570 /* 1571 * inp acquired through refcount & lock for sure didn't went 1572 * through uma_zfree(). However, it may have already went 1573 * through in_pcbfree() and has another reference, that 1574 * prevented its release by our in_pcbrele(). 1575 */ 1576 if (__predict_false(inp->inp_flags & ignflags)) { 1577 inp_unlock(inp, lock); 1578 return (false); 1579 } 1580 return (true); 1581 } else { 1582 smr_exit(inp->inp_pcbinfo->ipi_smr); 1583 return (false); 1584 } 1585 } 1586 1587 bool 1588 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1589 { 1590 1591 /* 1592 * in_pcblookup() family of functions ignore not only freed entries, 1593 * that may be found due to lockless access to the hash, but dropped 1594 * entries, too. 1595 */ 1596 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1597 } 1598 1599 /* 1600 * inp_next() - inpcb hash/list traversal iterator 1601 * 1602 * Requires initialized struct inpcb_iterator for context. 1603 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1604 * 1605 * - Iterator can have either write-lock or read-lock semantics, that can not 1606 * be changed later. 1607 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1608 * a single hash slot. Note: only rip_input() does the latter. 1609 * - Iterator may have optional bool matching function. The matching function 1610 * will be executed for each inpcb in the SMR context, so it can not acquire 1611 * locks and can safely access only immutable fields of inpcb. 1612 * 1613 * A fresh initialized iterator has NULL inpcb in its context and that 1614 * means that inp_next() call would return the very first inpcb on the list 1615 * locked with desired semantic. In all following calls the context pointer 1616 * shall hold the current inpcb pointer. The KPI user is not supposed to 1617 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1618 * and write NULL to its context. After end of traversal an iterator can be 1619 * reused. 1620 * 1621 * List traversals have the following features/constraints: 1622 * - New entries won't be seen, as they are always added to the head of a list. 1623 * - Removed entries won't stop traversal as long as they are not added to 1624 * a different list. This is violated by in_pcbrehash(). 1625 */ 1626 #define II_LIST_FIRST(ipi, hash) \ 1627 (((hash) == INP_ALL_LIST) ? \ 1628 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1629 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) 1630 #define II_LIST_NEXT(inp, hash) \ 1631 (((hash) == INP_ALL_LIST) ? \ 1632 CK_LIST_NEXT((inp), inp_list) : \ 1633 CK_LIST_NEXT((inp), inp_hash_exact)) 1634 #define II_LOCK_ASSERT(inp, lock) \ 1635 rw_assert(&(inp)->inp_lock, \ 1636 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1637 struct inpcb * 1638 inp_next(struct inpcb_iterator *ii) 1639 { 1640 const struct inpcbinfo *ipi = ii->ipi; 1641 inp_match_t *match = ii->match; 1642 void *ctx = ii->ctx; 1643 inp_lookup_t lock = ii->lock; 1644 int hash = ii->hash; 1645 struct inpcb *inp; 1646 1647 if (ii->inp == NULL) { /* First call. */ 1648 smr_enter(ipi->ipi_smr); 1649 /* This is unrolled CK_LIST_FOREACH(). */ 1650 for (inp = II_LIST_FIRST(ipi, hash); 1651 inp != NULL; 1652 inp = II_LIST_NEXT(inp, hash)) { 1653 if (match != NULL && (match)(inp, ctx) == false) 1654 continue; 1655 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1656 break; 1657 else { 1658 smr_enter(ipi->ipi_smr); 1659 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1660 inp = II_LIST_FIRST(ipi, hash); 1661 if (inp == NULL) 1662 break; 1663 } 1664 } 1665 1666 if (inp == NULL) 1667 smr_exit(ipi->ipi_smr); 1668 else 1669 ii->inp = inp; 1670 1671 return (inp); 1672 } 1673 1674 /* Not a first call. */ 1675 smr_enter(ipi->ipi_smr); 1676 restart: 1677 inp = ii->inp; 1678 II_LOCK_ASSERT(inp, lock); 1679 next: 1680 inp = II_LIST_NEXT(inp, hash); 1681 if (inp == NULL) { 1682 smr_exit(ipi->ipi_smr); 1683 goto found; 1684 } 1685 1686 if (match != NULL && (match)(inp, ctx) == false) 1687 goto next; 1688 1689 if (__predict_true(inp_trylock(inp, lock))) { 1690 if (__predict_false(inp->inp_flags & INP_FREED)) { 1691 /* 1692 * Entries are never inserted in middle of a list, thus 1693 * as long as we are in SMR, we can continue traversal. 1694 * Jump to 'restart' should yield in the same result, 1695 * but could produce unnecessary looping. Could this 1696 * looping be unbound? 1697 */ 1698 inp_unlock(inp, lock); 1699 goto next; 1700 } else { 1701 smr_exit(ipi->ipi_smr); 1702 goto found; 1703 } 1704 } 1705 1706 /* 1707 * Can't obtain lock immediately, thus going hard. Once we exit the 1708 * SMR section we can no longer jump to 'next', and our only stable 1709 * anchoring point is ii->inp, which we keep locked for this case, so 1710 * we jump to 'restart'. 1711 */ 1712 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1713 smr_exit(ipi->ipi_smr); 1714 inp_lock(inp, lock); 1715 if (__predict_false(in_pcbrele(inp, lock))) { 1716 smr_enter(ipi->ipi_smr); 1717 goto restart; 1718 } 1719 /* 1720 * See comment in inp_smr_lock(). 1721 */ 1722 if (__predict_false(inp->inp_flags & INP_FREED)) { 1723 inp_unlock(inp, lock); 1724 smr_enter(ipi->ipi_smr); 1725 goto restart; 1726 } 1727 } else 1728 goto next; 1729 1730 found: 1731 inp_unlock(ii->inp, lock); 1732 ii->inp = inp; 1733 1734 return (ii->inp); 1735 } 1736 1737 /* 1738 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1739 * stability of an inpcb pointer despite the inpcb lock being released or 1740 * SMR section exited. 1741 * 1742 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1743 */ 1744 void 1745 in_pcbref(struct inpcb *inp) 1746 { 1747 u_int old __diagused; 1748 1749 old = refcount_acquire(&inp->inp_refcount); 1750 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1751 } 1752 1753 /* 1754 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1755 * freeing the pcb, if the reference was very last. 1756 */ 1757 bool 1758 in_pcbrele_rlocked(struct inpcb *inp) 1759 { 1760 1761 INP_RLOCK_ASSERT(inp); 1762 1763 if (!refcount_release(&inp->inp_refcount)) 1764 return (false); 1765 1766 MPASS(inp->inp_flags & INP_FREED); 1767 MPASS(inp->inp_socket == NULL); 1768 crfree(inp->inp_cred); 1769 #ifdef INVARIANTS 1770 inp->inp_cred = NULL; 1771 #endif 1772 INP_RUNLOCK(inp); 1773 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1774 return (true); 1775 } 1776 1777 bool 1778 in_pcbrele_wlocked(struct inpcb *inp) 1779 { 1780 1781 INP_WLOCK_ASSERT(inp); 1782 1783 if (!refcount_release(&inp->inp_refcount)) 1784 return (false); 1785 1786 MPASS(inp->inp_flags & INP_FREED); 1787 MPASS(inp->inp_socket == NULL); 1788 crfree(inp->inp_cred); 1789 #ifdef INVARIANTS 1790 inp->inp_cred = NULL; 1791 #endif 1792 INP_WUNLOCK(inp); 1793 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1794 return (true); 1795 } 1796 1797 bool 1798 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1799 { 1800 1801 return (lock == INPLOOKUP_RLOCKPCB ? 1802 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1803 } 1804 1805 /* 1806 * Unconditionally schedule an inpcb to be freed by decrementing its 1807 * reference count, which should occur only after the inpcb has been detached 1808 * from its socket. If another thread holds a temporary reference (acquired 1809 * using in_pcbref()) then the free is deferred until that reference is 1810 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1811 * Almost all work, including removal from global lists, is done in this 1812 * context, where the pcbinfo lock is held. 1813 */ 1814 void 1815 in_pcbfree(struct inpcb *inp) 1816 { 1817 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1818 #ifdef INET 1819 struct ip_moptions *imo; 1820 #endif 1821 #ifdef INET6 1822 struct ip6_moptions *im6o; 1823 #endif 1824 1825 INP_WLOCK_ASSERT(inp); 1826 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1827 KASSERT((inp->inp_flags & INP_FREED) == 0, 1828 ("%s: called twice for pcb %p", __func__, inp)); 1829 1830 /* 1831 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb 1832 * from the hash without acquiring inpcb lock, they rely on the hash 1833 * lock, thus in_pcbremhash() should be the first action. 1834 */ 1835 if (inp->inp_flags & INP_INHASHLIST) 1836 in_pcbremhash(inp); 1837 INP_INFO_WLOCK(pcbinfo); 1838 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1839 pcbinfo->ipi_count--; 1840 CK_LIST_REMOVE(inp, inp_list); 1841 INP_INFO_WUNLOCK(pcbinfo); 1842 1843 #ifdef RATELIMIT 1844 if (inp->inp_snd_tag != NULL) 1845 in_pcbdetach_txrtlmt(inp); 1846 #endif 1847 inp->inp_flags |= INP_FREED; 1848 inp->inp_socket->so_pcb = NULL; 1849 inp->inp_socket = NULL; 1850 1851 RO_INVALIDATE_CACHE(&inp->inp_route); 1852 #ifdef MAC 1853 mac_inpcb_destroy(inp); 1854 #endif 1855 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1856 if (inp->inp_sp != NULL) 1857 ipsec_delete_pcbpolicy(inp); 1858 #endif 1859 #ifdef INET 1860 if (inp->inp_options) 1861 (void)m_free(inp->inp_options); 1862 DEBUG_POISON_POINTER(inp->inp_options); 1863 imo = inp->inp_moptions; 1864 DEBUG_POISON_POINTER(inp->inp_moptions); 1865 #endif 1866 #ifdef INET6 1867 if (inp->inp_vflag & INP_IPV6PROTO) { 1868 ip6_freepcbopts(inp->in6p_outputopts); 1869 DEBUG_POISON_POINTER(inp->in6p_outputopts); 1870 im6o = inp->in6p_moptions; 1871 DEBUG_POISON_POINTER(inp->in6p_moptions); 1872 } else 1873 im6o = NULL; 1874 #endif 1875 1876 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1877 INP_WUNLOCK(inp); 1878 } 1879 #ifdef INET6 1880 ip6_freemoptions(im6o); 1881 #endif 1882 #ifdef INET 1883 inp_freemoptions(imo); 1884 #endif 1885 } 1886 1887 /* 1888 * Different protocols initialize their inpcbs differently - giving 1889 * different name to the lock. But they all are disposed the same. 1890 */ 1891 static void 1892 inpcb_fini(void *mem, int size) 1893 { 1894 struct inpcb *inp = mem; 1895 1896 INP_LOCK_DESTROY(inp); 1897 } 1898 1899 /* 1900 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1901 * port reservation, and preventing it from being returned by inpcb lookups. 1902 * 1903 * It is used by TCP to mark an inpcb as unused and avoid future packet 1904 * delivery or event notification when a socket remains open but TCP has 1905 * closed. This might occur as a result of a shutdown()-initiated TCP close 1906 * or a RST on the wire, and allows the port binding to be reused while still 1907 * maintaining the invariant that so_pcb always points to a valid inpcb until 1908 * in_pcbdetach(). 1909 * 1910 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1911 * in_pcbpurgeif0()? 1912 */ 1913 void 1914 in_pcbdrop(struct inpcb *inp) 1915 { 1916 1917 INP_WLOCK_ASSERT(inp); 1918 1919 inp->inp_flags |= INP_DROPPED; 1920 if (inp->inp_flags & INP_INHASHLIST) 1921 in_pcbremhash(inp); 1922 } 1923 1924 #ifdef INET 1925 /* 1926 * Common routines to return the socket addresses associated with inpcbs. 1927 */ 1928 int 1929 in_getsockaddr(struct socket *so, struct sockaddr *sa) 1930 { 1931 struct inpcb *inp; 1932 1933 inp = sotoinpcb(so); 1934 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1935 1936 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1937 .sin_len = sizeof(struct sockaddr_in), 1938 .sin_family = AF_INET, 1939 .sin_port = inp->inp_lport, 1940 .sin_addr = inp->inp_laddr, 1941 }; 1942 1943 return (0); 1944 } 1945 1946 int 1947 in_getpeeraddr(struct socket *so, struct sockaddr *sa) 1948 { 1949 struct inpcb *inp; 1950 1951 inp = sotoinpcb(so); 1952 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1953 1954 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1955 .sin_len = sizeof(struct sockaddr_in), 1956 .sin_family = AF_INET, 1957 .sin_port = inp->inp_fport, 1958 .sin_addr = inp->inp_faddr, 1959 }; 1960 1961 return (0); 1962 } 1963 1964 static bool 1965 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1966 { 1967 1968 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1969 return (true); 1970 else 1971 return (false); 1972 } 1973 1974 void 1975 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1976 { 1977 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1978 inp_v4_multi_match, NULL); 1979 struct inpcb *inp; 1980 struct in_multi *inm; 1981 struct in_mfilter *imf; 1982 struct ip_moptions *imo; 1983 1984 IN_MULTI_LOCK_ASSERT(); 1985 1986 while ((inp = inp_next(&inpi)) != NULL) { 1987 INP_WLOCK_ASSERT(inp); 1988 1989 imo = inp->inp_moptions; 1990 /* 1991 * Unselect the outgoing interface if it is being 1992 * detached. 1993 */ 1994 if (imo->imo_multicast_ifp == ifp) 1995 imo->imo_multicast_ifp = NULL; 1996 1997 /* 1998 * Drop multicast group membership if we joined 1999 * through the interface being detached. 2000 * 2001 * XXX This can all be deferred to an epoch_call 2002 */ 2003 restart: 2004 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2005 if ((inm = imf->imf_inm) == NULL) 2006 continue; 2007 if (inm->inm_ifp != ifp) 2008 continue; 2009 ip_mfilter_remove(&imo->imo_head, imf); 2010 in_leavegroup_locked(inm, NULL); 2011 ip_mfilter_free(imf); 2012 goto restart; 2013 } 2014 } 2015 } 2016 2017 /* 2018 * Lookup a PCB based on the local address and port. Caller must hold the 2019 * hash lock. No inpcb locks or references are acquired. 2020 */ 2021 #define INP_LOOKUP_MAPPED_PCB_COST 3 2022 struct inpcb * 2023 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2024 u_short lport, int fib, int lookupflags, struct ucred *cred) 2025 { 2026 struct inpcb *inp; 2027 #ifdef INET6 2028 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2029 #else 2030 int matchwild = 3; 2031 #endif 2032 int wildcard; 2033 2034 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2035 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2036 KASSERT(fib == RT_ALL_FIBS || (fib >= 0 && fib < V_rt_numfibs), 2037 ("%s: invalid fib %d", __func__, fib)); 2038 2039 INP_HASH_LOCK_ASSERT(pcbinfo); 2040 2041 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2042 struct inpcbhead *head; 2043 /* 2044 * Look for an unconnected (wildcard foreign addr) PCB that 2045 * matches the local address and port we're looking for. 2046 */ 2047 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2048 pcbinfo->ipi_hashmask)]; 2049 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2050 #ifdef INET6 2051 /* XXX inp locking */ 2052 if ((inp->inp_vflag & INP_IPV4) == 0) 2053 continue; 2054 #endif 2055 if (inp->inp_faddr.s_addr == INADDR_ANY && 2056 inp->inp_laddr.s_addr == laddr.s_addr && 2057 inp->inp_lport == lport && (fib == RT_ALL_FIBS || 2058 inp->inp_inc.inc_fibnum == fib)) { 2059 /* 2060 * Found? 2061 */ 2062 if (prison_equal_ip4(cred->cr_prison, 2063 inp->inp_cred->cr_prison)) 2064 return (inp); 2065 } 2066 } 2067 /* 2068 * Not found. 2069 */ 2070 return (NULL); 2071 } else { 2072 struct inpcbporthead *porthash; 2073 struct inpcbport *phd; 2074 struct inpcb *match = NULL; 2075 /* 2076 * Best fit PCB lookup. 2077 * 2078 * First see if this local port is in use by looking on the 2079 * port hash list. 2080 */ 2081 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2082 pcbinfo->ipi_porthashmask)]; 2083 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2084 if (phd->phd_port == lport) 2085 break; 2086 } 2087 if (phd != NULL) { 2088 /* 2089 * Port is in use by one or more PCBs. Look for best 2090 * fit. 2091 */ 2092 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2093 wildcard = 0; 2094 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2095 cred->cr_prison)) 2096 continue; 2097 if (fib != RT_ALL_FIBS && 2098 inp->inp_inc.inc_fibnum != fib) 2099 continue; 2100 #ifdef INET6 2101 /* XXX inp locking */ 2102 if ((inp->inp_vflag & INP_IPV4) == 0) 2103 continue; 2104 /* 2105 * We never select the PCB that has 2106 * INP_IPV6 flag and is bound to :: if 2107 * we have another PCB which is bound 2108 * to 0.0.0.0. If a PCB has the 2109 * INP_IPV6 flag, then we set its cost 2110 * higher than IPv4 only PCBs. 2111 * 2112 * Note that the case only happens 2113 * when a socket is bound to ::, under 2114 * the condition that the use of the 2115 * mapped address is allowed. 2116 */ 2117 if ((inp->inp_vflag & INP_IPV6) != 0) 2118 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2119 #endif 2120 if (inp->inp_faddr.s_addr != INADDR_ANY) 2121 wildcard++; 2122 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2123 if (laddr.s_addr == INADDR_ANY) 2124 wildcard++; 2125 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2126 continue; 2127 } else { 2128 if (laddr.s_addr != INADDR_ANY) 2129 wildcard++; 2130 } 2131 if (wildcard < matchwild) { 2132 match = inp; 2133 matchwild = wildcard; 2134 if (matchwild == 0) 2135 break; 2136 } 2137 } 2138 } 2139 return (match); 2140 } 2141 } 2142 #undef INP_LOOKUP_MAPPED_PCB_COST 2143 2144 static bool 2145 in_pcblookup_lb_match(const struct inpcblbgroup *grp, int domain, int fib) 2146 { 2147 return ((domain == M_NODOM || domain == grp->il_numa_domain) && 2148 (fib == RT_ALL_FIBS || fib == grp->il_fibnum)); 2149 } 2150 2151 static struct inpcb * 2152 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2153 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2154 uint16_t lport, int domain, int fib) 2155 { 2156 const struct inpcblbgrouphead *hdr; 2157 struct inpcblbgroup *grp; 2158 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2159 struct inpcb *inp; 2160 u_int count; 2161 2162 INP_HASH_LOCK_ASSERT(pcbinfo); 2163 NET_EPOCH_ASSERT(); 2164 2165 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2166 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2167 2168 /* 2169 * Search for an LB group match based on the following criteria: 2170 * - prefer jailed groups to non-jailed groups 2171 * - prefer exact source address matches to wildcard matches 2172 * - prefer groups bound to the specified NUMA domain 2173 */ 2174 jail_exact = jail_wild = local_exact = local_wild = NULL; 2175 CK_LIST_FOREACH(grp, hdr, il_list) { 2176 bool injail; 2177 2178 #ifdef INET6 2179 if (!(grp->il_vflag & INP_IPV4)) 2180 continue; 2181 #endif 2182 if (grp->il_lport != lport) 2183 continue; 2184 2185 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2186 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2187 laddr) != 0) 2188 continue; 2189 2190 if (grp->il_laddr.s_addr == laddr->s_addr) { 2191 if (injail) { 2192 jail_exact = grp; 2193 if (in_pcblookup_lb_match(grp, domain, fib)) 2194 /* This is a perfect match. */ 2195 goto out; 2196 } else if (local_exact == NULL || 2197 in_pcblookup_lb_match(grp, domain, fib)) { 2198 local_exact = grp; 2199 } 2200 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2201 if (injail) { 2202 if (jail_wild == NULL || 2203 in_pcblookup_lb_match(grp, domain, fib)) 2204 jail_wild = grp; 2205 } else if (local_wild == NULL || 2206 in_pcblookup_lb_match(grp, domain, fib)) { 2207 local_wild = grp; 2208 } 2209 } 2210 } 2211 2212 if (jail_exact != NULL) 2213 grp = jail_exact; 2214 else if (jail_wild != NULL) 2215 grp = jail_wild; 2216 else if (local_exact != NULL) 2217 grp = local_exact; 2218 else 2219 grp = local_wild; 2220 if (grp == NULL) 2221 return (NULL); 2222 2223 out: 2224 /* 2225 * Synchronize with in_pcblbgroup_insert(). 2226 */ 2227 count = atomic_load_acq_int(&grp->il_inpcnt); 2228 if (count == 0) 2229 return (NULL); 2230 inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count]; 2231 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 2232 return (inp); 2233 } 2234 2235 static bool 2236 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr, 2237 u_short fport, struct in_addr laddr, u_short lport) 2238 { 2239 #ifdef INET6 2240 /* XXX inp locking */ 2241 if ((inp->inp_vflag & INP_IPV4) == 0) 2242 return (false); 2243 #endif 2244 if (inp->inp_faddr.s_addr == faddr.s_addr && 2245 inp->inp_laddr.s_addr == laddr.s_addr && 2246 inp->inp_fport == fport && 2247 inp->inp_lport == lport) 2248 return (true); 2249 return (false); 2250 } 2251 2252 static struct inpcb * 2253 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2254 u_short fport, struct in_addr laddr, u_short lport) 2255 { 2256 struct inpcbhead *head; 2257 struct inpcb *inp; 2258 2259 INP_HASH_LOCK_ASSERT(pcbinfo); 2260 2261 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, 2262 pcbinfo->ipi_hashmask)]; 2263 CK_LIST_FOREACH(inp, head, inp_hash_exact) { 2264 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport)) 2265 return (inp); 2266 } 2267 return (NULL); 2268 } 2269 2270 typedef enum { 2271 INPLOOKUP_MATCH_NONE = 0, 2272 INPLOOKUP_MATCH_WILD = 1, 2273 INPLOOKUP_MATCH_LADDR = 2, 2274 } inp_lookup_match_t; 2275 2276 static inp_lookup_match_t 2277 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr, 2278 u_short lport, int fib) 2279 { 2280 #ifdef INET6 2281 /* XXX inp locking */ 2282 if ((inp->inp_vflag & INP_IPV4) == 0) 2283 return (INPLOOKUP_MATCH_NONE); 2284 #endif 2285 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) 2286 return (INPLOOKUP_MATCH_NONE); 2287 if (fib != RT_ALL_FIBS && inp->inp_inc.inc_fibnum != fib) 2288 return (INPLOOKUP_MATCH_NONE); 2289 if (inp->inp_laddr.s_addr == INADDR_ANY) 2290 return (INPLOOKUP_MATCH_WILD); 2291 if (inp->inp_laddr.s_addr == laddr.s_addr) 2292 return (INPLOOKUP_MATCH_LADDR); 2293 return (INPLOOKUP_MATCH_NONE); 2294 } 2295 2296 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1) 2297 2298 static struct inpcb * 2299 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2300 u_short lport, int fib, const inp_lookup_t lockflags) 2301 { 2302 struct inpcbhead *head; 2303 struct inpcb *inp; 2304 2305 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr), 2306 ("%s: not in SMR read section", __func__)); 2307 2308 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2309 pcbinfo->ipi_hashmask)]; 2310 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2311 inp_lookup_match_t match; 2312 2313 match = in_pcblookup_wild_match(inp, laddr, lport, fib); 2314 if (match == INPLOOKUP_MATCH_NONE) 2315 continue; 2316 2317 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2318 match = in_pcblookup_wild_match(inp, laddr, lport, fib); 2319 if (match != INPLOOKUP_MATCH_NONE && 2320 prison_check_ip4_locked(inp->inp_cred->cr_prison, 2321 &laddr) == 0) 2322 return (inp); 2323 inp_unlock(inp, lockflags); 2324 } 2325 2326 /* 2327 * The matching socket disappeared out from under us. Fall back 2328 * to a serialized lookup. 2329 */ 2330 return (INP_LOOKUP_AGAIN); 2331 } 2332 return (NULL); 2333 } 2334 2335 static struct inpcb * 2336 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2337 u_short lport, int fib) 2338 { 2339 struct inpcbhead *head; 2340 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2341 #ifdef INET6 2342 struct inpcb *local_wild_mapped; 2343 #endif 2344 2345 INP_HASH_LOCK_ASSERT(pcbinfo); 2346 2347 /* 2348 * Order of socket selection - we always prefer jails. 2349 * 1. jailed, non-wild. 2350 * 2. jailed, wild. 2351 * 3. non-jailed, non-wild. 2352 * 4. non-jailed, wild. 2353 */ 2354 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2355 pcbinfo->ipi_hashmask)]; 2356 local_wild = local_exact = jail_wild = NULL; 2357 #ifdef INET6 2358 local_wild_mapped = NULL; 2359 #endif 2360 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2361 inp_lookup_match_t match; 2362 bool injail; 2363 2364 match = in_pcblookup_wild_match(inp, laddr, lport, fib); 2365 if (match == INPLOOKUP_MATCH_NONE) 2366 continue; 2367 2368 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2369 if (injail) { 2370 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2371 &laddr) != 0) 2372 continue; 2373 } else { 2374 if (local_exact != NULL) 2375 continue; 2376 } 2377 2378 if (match == INPLOOKUP_MATCH_LADDR) { 2379 if (injail) 2380 return (inp); 2381 local_exact = inp; 2382 } else { 2383 #ifdef INET6 2384 /* XXX inp locking, NULL check */ 2385 if (inp->inp_vflag & INP_IPV6PROTO) 2386 local_wild_mapped = inp; 2387 else 2388 #endif 2389 if (injail) 2390 jail_wild = inp; 2391 else 2392 local_wild = inp; 2393 } 2394 } 2395 if (jail_wild != NULL) 2396 return (jail_wild); 2397 if (local_exact != NULL) 2398 return (local_exact); 2399 if (local_wild != NULL) 2400 return (local_wild); 2401 #ifdef INET6 2402 if (local_wild_mapped != NULL) 2403 return (local_wild_mapped); 2404 #endif 2405 return (NULL); 2406 } 2407 2408 /* 2409 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2410 * that the caller has either locked the hash list, which usually happens 2411 * for bind(2) operations, or is in SMR section, which happens when sorting 2412 * out incoming packets. 2413 */ 2414 static struct inpcb * 2415 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2416 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2417 uint8_t numa_domain, int fib) 2418 { 2419 struct inpcb *inp; 2420 const u_short fport = fport_arg, lport = lport_arg; 2421 2422 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD | INPLOOKUP_FIB)) == 0, 2423 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2424 KASSERT(faddr.s_addr != INADDR_ANY, 2425 ("%s: invalid foreign address", __func__)); 2426 KASSERT(laddr.s_addr != INADDR_ANY, 2427 ("%s: invalid local address", __func__)); 2428 INP_HASH_WLOCK_ASSERT(pcbinfo); 2429 2430 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2431 if (inp != NULL) 2432 return (inp); 2433 2434 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2435 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2436 &laddr, lport, numa_domain, fib); 2437 if (inp == NULL) { 2438 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr, 2439 lport, fib); 2440 } 2441 } 2442 2443 return (inp); 2444 } 2445 2446 static struct inpcb * 2447 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2448 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2449 uint8_t numa_domain, int fib) 2450 { 2451 struct inpcb *inp; 2452 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2453 2454 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2455 ("%s: LOCKPCB not set", __func__)); 2456 2457 INP_HASH_WLOCK(pcbinfo); 2458 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2459 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain, fib); 2460 if (inp != NULL && !inp_trylock(inp, lockflags)) { 2461 in_pcbref(inp); 2462 INP_HASH_WUNLOCK(pcbinfo); 2463 inp_lock(inp, lockflags); 2464 if (in_pcbrele(inp, lockflags)) 2465 /* XXX-MJ or retry until we get a negative match? */ 2466 inp = NULL; 2467 } else { 2468 INP_HASH_WUNLOCK(pcbinfo); 2469 } 2470 return (inp); 2471 } 2472 2473 static struct inpcb * 2474 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2475 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2476 uint8_t numa_domain, int fib) 2477 { 2478 struct inpcb *inp; 2479 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2480 const u_short fport = fport_arg, lport = lport_arg; 2481 2482 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2483 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2484 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2485 ("%s: LOCKPCB not set", __func__)); 2486 2487 smr_enter(pcbinfo->ipi_smr); 2488 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2489 if (inp != NULL) { 2490 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2491 /* 2492 * Revalidate the 4-tuple, the socket could have been 2493 * disconnected. 2494 */ 2495 if (__predict_true(in_pcblookup_exact_match(inp, 2496 faddr, fport, laddr, lport))) 2497 return (inp); 2498 inp_unlock(inp, lockflags); 2499 } 2500 2501 /* 2502 * We failed to lock the inpcb, or its connection state changed 2503 * out from under us. Fall back to a precise search. 2504 */ 2505 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2506 lookupflags, numa_domain, fib)); 2507 } 2508 2509 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2510 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2511 &laddr, lport, numa_domain, fib); 2512 if (inp != NULL) { 2513 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2514 if (__predict_true(in_pcblookup_wild_match(inp, 2515 laddr, lport, fib) != INPLOOKUP_MATCH_NONE)) 2516 return (inp); 2517 inp_unlock(inp, lockflags); 2518 } 2519 inp = INP_LOOKUP_AGAIN; 2520 } else { 2521 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport, 2522 fib, lockflags); 2523 } 2524 if (inp == INP_LOOKUP_AGAIN) { 2525 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, 2526 lport, lookupflags, numa_domain, fib)); 2527 } 2528 } 2529 2530 if (inp == NULL) 2531 smr_exit(pcbinfo->ipi_smr); 2532 2533 return (inp); 2534 } 2535 2536 /* 2537 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2538 * from which a pre-calculated hash value may be extracted. 2539 */ 2540 struct inpcb * 2541 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2542 struct in_addr laddr, u_int lport, int lookupflags, 2543 struct ifnet *ifp) 2544 { 2545 int fib; 2546 2547 fib = (lookupflags & INPLOOKUP_FIB) ? if_getfib(ifp) : RT_ALL_FIBS; 2548 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2549 lookupflags, M_NODOM, fib)); 2550 } 2551 2552 struct inpcb * 2553 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2554 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2555 struct ifnet *ifp __unused, struct mbuf *m) 2556 { 2557 int fib; 2558 2559 M_ASSERTPKTHDR(m); 2560 fib = (lookupflags & INPLOOKUP_FIB) ? M_GETFIB(m) : RT_ALL_FIBS; 2561 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2562 lookupflags, m->m_pkthdr.numa_domain, fib)); 2563 } 2564 #endif /* INET */ 2565 2566 static bool 2567 in_pcbjailed(const struct inpcb *inp, unsigned int flag) 2568 { 2569 return (prison_flag(inp->inp_cred, flag) != 0); 2570 } 2571 2572 /* 2573 * Insert the PCB into a hash chain using ordering rules which ensure that 2574 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first. 2575 * 2576 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs 2577 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs 2578 * always appear last no matter whether they are jailed. 2579 */ 2580 static void 2581 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2582 { 2583 struct inpcb *last; 2584 bool bound, injail; 2585 2586 INP_LOCK_ASSERT(inp); 2587 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2588 2589 last = NULL; 2590 bound = inp->inp_laddr.s_addr != INADDR_ANY; 2591 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) { 2592 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2593 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2594 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2595 return; 2596 } 2597 } 2598 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2599 return; 2600 } 2601 2602 injail = in_pcbjailed(inp, PR_IP4); 2603 if (!injail) { 2604 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2605 if (!in_pcbjailed(last, PR_IP4)) 2606 break; 2607 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2608 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2609 return; 2610 } 2611 } 2612 } else if (!CK_LIST_EMPTY(pcbhash) && 2613 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) { 2614 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2615 return; 2616 } 2617 if (!bound) { 2618 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2619 if (last->inp_laddr.s_addr == INADDR_ANY) 2620 break; 2621 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2622 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2623 return; 2624 } 2625 } 2626 } 2627 if (last == NULL) 2628 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2629 else 2630 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2631 } 2632 2633 #ifdef INET6 2634 /* 2635 * See the comment above _in_pcbinshash_wild(). 2636 */ 2637 static void 2638 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2639 { 2640 struct inpcb *last; 2641 bool bound, injail; 2642 2643 INP_LOCK_ASSERT(inp); 2644 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2645 2646 last = NULL; 2647 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr); 2648 injail = in_pcbjailed(inp, PR_IP6); 2649 if (!injail) { 2650 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2651 if (!in_pcbjailed(last, PR_IP6)) 2652 break; 2653 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2654 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2655 return; 2656 } 2657 } 2658 } else if (!CK_LIST_EMPTY(pcbhash) && 2659 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) { 2660 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2661 return; 2662 } 2663 if (!bound) { 2664 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2665 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr)) 2666 break; 2667 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2668 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2669 return; 2670 } 2671 } 2672 } 2673 if (last == NULL) 2674 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2675 else 2676 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2677 } 2678 #endif 2679 2680 /* 2681 * Insert PCB onto various hash lists. 2682 */ 2683 int 2684 in_pcbinshash(struct inpcb *inp) 2685 { 2686 struct inpcbhead *pcbhash; 2687 struct inpcbporthead *pcbporthash; 2688 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2689 struct inpcbport *phd; 2690 uint32_t hash; 2691 bool connected; 2692 2693 INP_WLOCK_ASSERT(inp); 2694 INP_HASH_WLOCK_ASSERT(pcbinfo); 2695 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2696 ("in_pcbinshash: INP_INHASHLIST")); 2697 2698 #ifdef INET6 2699 if (inp->inp_vflag & INP_IPV6) { 2700 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2701 inp->inp_fport, pcbinfo->ipi_hashmask); 2702 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2703 } else 2704 #endif 2705 { 2706 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2707 inp->inp_fport, pcbinfo->ipi_hashmask); 2708 connected = !in_nullhost(inp->inp_faddr); 2709 } 2710 2711 if (connected) 2712 pcbhash = &pcbinfo->ipi_hash_exact[hash]; 2713 else 2714 pcbhash = &pcbinfo->ipi_hash_wild[hash]; 2715 2716 pcbporthash = &pcbinfo->ipi_porthashbase[ 2717 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2718 2719 /* 2720 * Add entry to load balance group. 2721 * Only do this if SO_REUSEPORT_LB is set. 2722 */ 2723 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) { 2724 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2725 if (error != 0) 2726 return (error); 2727 } 2728 2729 /* 2730 * Go through port list and look for a head for this lport. 2731 */ 2732 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2733 if (phd->phd_port == inp->inp_lport) 2734 break; 2735 } 2736 2737 /* 2738 * If none exists, malloc one and tack it on. 2739 */ 2740 if (phd == NULL) { 2741 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2742 if (phd == NULL) { 2743 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2744 in_pcbremlbgrouphash(inp); 2745 return (ENOMEM); 2746 } 2747 phd->phd_port = inp->inp_lport; 2748 CK_LIST_INIT(&phd->phd_pcblist); 2749 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2750 } 2751 inp->inp_phd = phd; 2752 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2753 2754 /* 2755 * The PCB may have been disconnected in the past. Before we can safely 2756 * make it visible in the hash table, we must wait for all readers which 2757 * may be traversing this PCB to finish. 2758 */ 2759 if (inp->inp_smr != SMR_SEQ_INVALID) { 2760 smr_wait(pcbinfo->ipi_smr, inp->inp_smr); 2761 inp->inp_smr = SMR_SEQ_INVALID; 2762 } 2763 2764 if (connected) 2765 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); 2766 else { 2767 #ifdef INET6 2768 if ((inp->inp_vflag & INP_IPV6) != 0) 2769 _in6_pcbinshash_wild(pcbhash, inp); 2770 else 2771 #endif 2772 _in_pcbinshash_wild(pcbhash, inp); 2773 } 2774 inp->inp_flags |= INP_INHASHLIST; 2775 2776 return (0); 2777 } 2778 2779 void 2780 in_pcbremhash_locked(struct inpcb *inp) 2781 { 2782 struct inpcbport *phd = inp->inp_phd; 2783 2784 INP_WLOCK_ASSERT(inp); 2785 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2786 MPASS(inp->inp_flags & INP_INHASHLIST); 2787 2788 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2789 in_pcbremlbgrouphash(inp); 2790 #ifdef INET6 2791 if (inp->inp_vflag & INP_IPV6) { 2792 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) 2793 CK_LIST_REMOVE(inp, inp_hash_wild); 2794 else 2795 CK_LIST_REMOVE(inp, inp_hash_exact); 2796 } else 2797 #endif 2798 { 2799 if (in_nullhost(inp->inp_faddr)) 2800 CK_LIST_REMOVE(inp, inp_hash_wild); 2801 else 2802 CK_LIST_REMOVE(inp, inp_hash_exact); 2803 } 2804 CK_LIST_REMOVE(inp, inp_portlist); 2805 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2806 CK_LIST_REMOVE(phd, phd_hash); 2807 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2808 } 2809 inp->inp_flags &= ~INP_INHASHLIST; 2810 } 2811 2812 static void 2813 in_pcbremhash(struct inpcb *inp) 2814 { 2815 INP_HASH_WLOCK(inp->inp_pcbinfo); 2816 in_pcbremhash_locked(inp); 2817 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2818 } 2819 2820 /* 2821 * Move PCB to the proper hash bucket when { faddr, fport } have been 2822 * changed. NOTE: This does not handle the case of the lport changing (the 2823 * hashed port list would have to be updated as well), so the lport must 2824 * not change after in_pcbinshash() has been called. 2825 */ 2826 void 2827 in_pcbrehash(struct inpcb *inp) 2828 { 2829 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2830 struct inpcbhead *head; 2831 uint32_t hash; 2832 bool connected; 2833 2834 INP_WLOCK_ASSERT(inp); 2835 INP_HASH_WLOCK_ASSERT(pcbinfo); 2836 KASSERT(inp->inp_flags & INP_INHASHLIST, 2837 ("%s: !INP_INHASHLIST", __func__)); 2838 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 2839 ("%s: inp was disconnected", __func__)); 2840 2841 #ifdef INET6 2842 if (inp->inp_vflag & INP_IPV6) { 2843 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2844 inp->inp_fport, pcbinfo->ipi_hashmask); 2845 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2846 } else 2847 #endif 2848 { 2849 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2850 inp->inp_fport, pcbinfo->ipi_hashmask); 2851 connected = !in_nullhost(inp->inp_faddr); 2852 } 2853 2854 /* 2855 * When rehashing, the caller must ensure that either the new or the old 2856 * foreign address was unspecified. 2857 */ 2858 if (connected) 2859 CK_LIST_REMOVE(inp, inp_hash_wild); 2860 else 2861 CK_LIST_REMOVE(inp, inp_hash_exact); 2862 2863 if (connected) { 2864 head = &pcbinfo->ipi_hash_exact[hash]; 2865 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); 2866 } else { 2867 head = &pcbinfo->ipi_hash_wild[hash]; 2868 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); 2869 } 2870 } 2871 2872 /* 2873 * Check for alternatives when higher level complains 2874 * about service problems. For now, invalidate cached 2875 * routing information. If the route was created dynamically 2876 * (by a redirect), time to try a default gateway again. 2877 */ 2878 void 2879 in_losing(struct inpcb *inp) 2880 { 2881 2882 RO_INVALIDATE_CACHE(&inp->inp_route); 2883 return; 2884 } 2885 2886 /* 2887 * A set label operation has occurred at the socket layer, propagate the 2888 * label change into the in_pcb for the socket. 2889 */ 2890 void 2891 in_pcbsosetlabel(struct socket *so) 2892 { 2893 #ifdef MAC 2894 struct inpcb *inp; 2895 2896 inp = sotoinpcb(so); 2897 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2898 2899 INP_WLOCK(inp); 2900 SOCK_LOCK(so); 2901 mac_inpcb_sosetlabel(so, inp); 2902 SOCK_UNLOCK(so); 2903 INP_WUNLOCK(inp); 2904 #endif 2905 } 2906 2907 void 2908 inp_wlock(struct inpcb *inp) 2909 { 2910 2911 INP_WLOCK(inp); 2912 } 2913 2914 void 2915 inp_wunlock(struct inpcb *inp) 2916 { 2917 2918 INP_WUNLOCK(inp); 2919 } 2920 2921 void 2922 inp_rlock(struct inpcb *inp) 2923 { 2924 2925 INP_RLOCK(inp); 2926 } 2927 2928 void 2929 inp_runlock(struct inpcb *inp) 2930 { 2931 2932 INP_RUNLOCK(inp); 2933 } 2934 2935 #ifdef INVARIANT_SUPPORT 2936 void 2937 inp_lock_assert(struct inpcb *inp) 2938 { 2939 2940 INP_WLOCK_ASSERT(inp); 2941 } 2942 2943 void 2944 inp_unlock_assert(struct inpcb *inp) 2945 { 2946 2947 INP_UNLOCK_ASSERT(inp); 2948 } 2949 #endif 2950 2951 void 2952 inp_apply_all(struct inpcbinfo *pcbinfo, 2953 void (*func)(struct inpcb *, void *), void *arg) 2954 { 2955 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2956 INPLOOKUP_WLOCKPCB); 2957 struct inpcb *inp; 2958 2959 while ((inp = inp_next(&inpi)) != NULL) 2960 func(inp, arg); 2961 } 2962 2963 struct socket * 2964 inp_inpcbtosocket(struct inpcb *inp) 2965 { 2966 2967 INP_WLOCK_ASSERT(inp); 2968 return (inp->inp_socket); 2969 } 2970 2971 void 2972 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2973 uint32_t *faddr, uint16_t *fp) 2974 { 2975 2976 INP_LOCK_ASSERT(inp); 2977 *laddr = inp->inp_laddr.s_addr; 2978 *faddr = inp->inp_faddr.s_addr; 2979 *lp = inp->inp_lport; 2980 *fp = inp->inp_fport; 2981 } 2982 2983 /* 2984 * Create an external-format (``xinpcb'') structure using the information in 2985 * the kernel-format in_pcb structure pointed to by inp. This is done to 2986 * reduce the spew of irrelevant information over this interface, to isolate 2987 * user code from changes in the kernel structure, and potentially to provide 2988 * information-hiding if we decide that some of this information should be 2989 * hidden from users. 2990 */ 2991 void 2992 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2993 { 2994 2995 bzero(xi, sizeof(*xi)); 2996 xi->xi_len = sizeof(struct xinpcb); 2997 if (inp->inp_socket) 2998 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2999 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 3000 xi->inp_gencnt = inp->inp_gencnt; 3001 xi->inp_flow = inp->inp_flow; 3002 xi->inp_flowid = inp->inp_flowid; 3003 xi->inp_flowtype = inp->inp_flowtype; 3004 xi->inp_flags = inp->inp_flags; 3005 xi->inp_flags2 = inp->inp_flags2; 3006 xi->in6p_cksum = inp->in6p_cksum; 3007 xi->in6p_hops = inp->in6p_hops; 3008 xi->inp_ip_tos = inp->inp_ip_tos; 3009 xi->inp_vflag = inp->inp_vflag; 3010 xi->inp_ip_ttl = inp->inp_ip_ttl; 3011 xi->inp_ip_p = inp->inp_ip_p; 3012 xi->inp_ip_minttl = inp->inp_ip_minttl; 3013 } 3014 3015 int 3016 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 3017 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 3018 { 3019 struct sockopt sopt; 3020 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 3021 INPLOOKUP_WLOCKPCB); 3022 struct inpcb *inp; 3023 struct sockopt_parameters *params; 3024 struct socket *so; 3025 int error; 3026 char buf[1024]; 3027 3028 if (req->oldptr != NULL || req->oldlen != 0) 3029 return (EINVAL); 3030 if (req->newptr == NULL) 3031 return (EPERM); 3032 if (req->newlen > sizeof(buf)) 3033 return (ENOMEM); 3034 error = SYSCTL_IN(req, buf, req->newlen); 3035 if (error != 0) 3036 return (error); 3037 if (req->newlen < sizeof(struct sockopt_parameters)) 3038 return (EINVAL); 3039 params = (struct sockopt_parameters *)buf; 3040 sopt.sopt_level = params->sop_level; 3041 sopt.sopt_name = params->sop_optname; 3042 sopt.sopt_dir = SOPT_SET; 3043 sopt.sopt_val = params->sop_optval; 3044 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 3045 sopt.sopt_td = NULL; 3046 #ifdef INET6 3047 if (params->sop_inc.inc_flags & INC_ISIPV6) { 3048 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 3049 params->sop_inc.inc6_laddr.s6_addr16[1] = 3050 htons(params->sop_inc.inc6_zoneid & 0xffff); 3051 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 3052 params->sop_inc.inc6_faddr.s6_addr16[1] = 3053 htons(params->sop_inc.inc6_zoneid & 0xffff); 3054 } 3055 #endif 3056 if (params->sop_inc.inc_lport != htons(0) && 3057 params->sop_inc.inc_fport != htons(0)) { 3058 #ifdef INET6 3059 if (params->sop_inc.inc_flags & INC_ISIPV6) 3060 inpi.hash = INP6_PCBHASH( 3061 ¶ms->sop_inc.inc6_faddr, 3062 params->sop_inc.inc_lport, 3063 params->sop_inc.inc_fport, 3064 pcbinfo->ipi_hashmask); 3065 else 3066 #endif 3067 inpi.hash = INP_PCBHASH( 3068 ¶ms->sop_inc.inc_faddr, 3069 params->sop_inc.inc_lport, 3070 params->sop_inc.inc_fport, 3071 pcbinfo->ipi_hashmask); 3072 } 3073 while ((inp = inp_next(&inpi)) != NULL) 3074 if (inp->inp_gencnt == params->sop_id) { 3075 if (inp->inp_flags & INP_DROPPED) { 3076 INP_WUNLOCK(inp); 3077 return (ECONNRESET); 3078 } 3079 so = inp->inp_socket; 3080 KASSERT(so != NULL, ("inp_socket == NULL")); 3081 soref(so); 3082 if (params->sop_level == SOL_SOCKET) { 3083 INP_WUNLOCK(inp); 3084 error = sosetopt(so, &sopt); 3085 } else 3086 error = (*ctloutput_set)(inp, &sopt); 3087 sorele(so); 3088 break; 3089 } 3090 if (inp == NULL) 3091 error = ESRCH; 3092 return (error); 3093 } 3094 3095 #ifdef DDB 3096 static void 3097 db_print_indent(int indent) 3098 { 3099 int i; 3100 3101 for (i = 0; i < indent; i++) 3102 db_printf(" "); 3103 } 3104 3105 static void 3106 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 3107 { 3108 char faddr_str[48], laddr_str[48]; 3109 3110 db_print_indent(indent); 3111 db_printf("%s at %p\n", name, inc); 3112 3113 indent += 2; 3114 3115 #ifdef INET6 3116 if (inc->inc_flags & INC_ISIPV6) { 3117 /* IPv6. */ 3118 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3119 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3120 } else 3121 #endif 3122 { 3123 /* IPv4. */ 3124 inet_ntoa_r(inc->inc_laddr, laddr_str); 3125 inet_ntoa_r(inc->inc_faddr, faddr_str); 3126 } 3127 db_print_indent(indent); 3128 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3129 ntohs(inc->inc_lport)); 3130 db_print_indent(indent); 3131 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3132 ntohs(inc->inc_fport)); 3133 } 3134 3135 static void 3136 db_print_inpflags(int inp_flags) 3137 { 3138 int comma; 3139 3140 comma = 0; 3141 if (inp_flags & INP_RECVOPTS) { 3142 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3143 comma = 1; 3144 } 3145 if (inp_flags & INP_RECVRETOPTS) { 3146 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3147 comma = 1; 3148 } 3149 if (inp_flags & INP_RECVDSTADDR) { 3150 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3151 comma = 1; 3152 } 3153 if (inp_flags & INP_ORIGDSTADDR) { 3154 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3155 comma = 1; 3156 } 3157 if (inp_flags & INP_HDRINCL) { 3158 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3159 comma = 1; 3160 } 3161 if (inp_flags & INP_HIGHPORT) { 3162 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3163 comma = 1; 3164 } 3165 if (inp_flags & INP_LOWPORT) { 3166 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3167 comma = 1; 3168 } 3169 if (inp_flags & INP_ANONPORT) { 3170 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3171 comma = 1; 3172 } 3173 if (inp_flags & INP_RECVIF) { 3174 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3175 comma = 1; 3176 } 3177 if (inp_flags & INP_MTUDISC) { 3178 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3179 comma = 1; 3180 } 3181 if (inp_flags & INP_RECVTTL) { 3182 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3183 comma = 1; 3184 } 3185 if (inp_flags & INP_DONTFRAG) { 3186 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3187 comma = 1; 3188 } 3189 if (inp_flags & INP_RECVTOS) { 3190 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3191 comma = 1; 3192 } 3193 if (inp_flags & IN6P_IPV6_V6ONLY) { 3194 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3195 comma = 1; 3196 } 3197 if (inp_flags & IN6P_PKTINFO) { 3198 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3199 comma = 1; 3200 } 3201 if (inp_flags & IN6P_HOPLIMIT) { 3202 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3203 comma = 1; 3204 } 3205 if (inp_flags & IN6P_HOPOPTS) { 3206 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3207 comma = 1; 3208 } 3209 if (inp_flags & IN6P_DSTOPTS) { 3210 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3211 comma = 1; 3212 } 3213 if (inp_flags & IN6P_RTHDR) { 3214 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3215 comma = 1; 3216 } 3217 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3218 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3219 comma = 1; 3220 } 3221 if (inp_flags & IN6P_TCLASS) { 3222 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3223 comma = 1; 3224 } 3225 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3226 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3227 comma = 1; 3228 } 3229 if (inp_flags & INP_ONESBCAST) { 3230 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3231 comma = 1; 3232 } 3233 if (inp_flags & INP_DROPPED) { 3234 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3235 comma = 1; 3236 } 3237 if (inp_flags & INP_SOCKREF) { 3238 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3239 comma = 1; 3240 } 3241 if (inp_flags & IN6P_RFC2292) { 3242 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3243 comma = 1; 3244 } 3245 if (inp_flags & IN6P_MTU) { 3246 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3247 comma = 1; 3248 } 3249 } 3250 3251 static void 3252 db_print_inpvflag(u_char inp_vflag) 3253 { 3254 int comma; 3255 3256 comma = 0; 3257 if (inp_vflag & INP_IPV4) { 3258 db_printf("%sINP_IPV4", comma ? ", " : ""); 3259 comma = 1; 3260 } 3261 if (inp_vflag & INP_IPV6) { 3262 db_printf("%sINP_IPV6", comma ? ", " : ""); 3263 comma = 1; 3264 } 3265 if (inp_vflag & INP_IPV6PROTO) { 3266 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3267 comma = 1; 3268 } 3269 } 3270 3271 static void 3272 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3273 { 3274 3275 db_print_indent(indent); 3276 db_printf("%s at %p\n", name, inp); 3277 3278 indent += 2; 3279 3280 db_print_indent(indent); 3281 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3282 3283 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3284 3285 db_print_indent(indent); 3286 db_printf("inp_label: %p inp_flags: 0x%x (", 3287 inp->inp_label, inp->inp_flags); 3288 db_print_inpflags(inp->inp_flags); 3289 db_printf(")\n"); 3290 3291 db_print_indent(indent); 3292 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3293 inp->inp_vflag); 3294 db_print_inpvflag(inp->inp_vflag); 3295 db_printf(")\n"); 3296 3297 db_print_indent(indent); 3298 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3299 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3300 3301 db_print_indent(indent); 3302 #ifdef INET6 3303 if (inp->inp_vflag & INP_IPV6) { 3304 db_printf("in6p_options: %p in6p_outputopts: %p " 3305 "in6p_moptions: %p\n", inp->in6p_options, 3306 inp->in6p_outputopts, inp->in6p_moptions); 3307 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3308 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3309 inp->in6p_hops); 3310 } else 3311 #endif 3312 { 3313 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3314 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3315 inp->inp_options, inp->inp_moptions); 3316 } 3317 3318 db_print_indent(indent); 3319 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3320 (uintmax_t)inp->inp_gencnt); 3321 } 3322 3323 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3324 { 3325 struct inpcb *inp; 3326 3327 if (!have_addr) { 3328 db_printf("usage: show inpcb <addr>\n"); 3329 return; 3330 } 3331 inp = (struct inpcb *)addr; 3332 3333 db_print_inpcb(inp, "inpcb", 0); 3334 } 3335 #endif /* DDB */ 3336 3337 #ifdef RATELIMIT 3338 /* 3339 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3340 * if any. 3341 */ 3342 int 3343 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3344 { 3345 union if_snd_tag_modify_params params = { 3346 .rate_limit.max_rate = max_pacing_rate, 3347 .rate_limit.flags = M_NOWAIT, 3348 }; 3349 struct m_snd_tag *mst; 3350 int error; 3351 3352 mst = inp->inp_snd_tag; 3353 if (mst == NULL) 3354 return (EINVAL); 3355 3356 if (mst->sw->snd_tag_modify == NULL) { 3357 error = EOPNOTSUPP; 3358 } else { 3359 error = mst->sw->snd_tag_modify(mst, ¶ms); 3360 } 3361 return (error); 3362 } 3363 3364 /* 3365 * Query existing TX rate limit based on the existing 3366 * "inp->inp_snd_tag", if any. 3367 */ 3368 int 3369 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3370 { 3371 union if_snd_tag_query_params params = { }; 3372 struct m_snd_tag *mst; 3373 int error; 3374 3375 mst = inp->inp_snd_tag; 3376 if (mst == NULL) 3377 return (EINVAL); 3378 3379 if (mst->sw->snd_tag_query == NULL) { 3380 error = EOPNOTSUPP; 3381 } else { 3382 error = mst->sw->snd_tag_query(mst, ¶ms); 3383 if (error == 0 && p_max_pacing_rate != NULL) 3384 *p_max_pacing_rate = params.rate_limit.max_rate; 3385 } 3386 return (error); 3387 } 3388 3389 /* 3390 * Query existing TX queue level based on the existing 3391 * "inp->inp_snd_tag", if any. 3392 */ 3393 int 3394 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3395 { 3396 union if_snd_tag_query_params params = { }; 3397 struct m_snd_tag *mst; 3398 int error; 3399 3400 mst = inp->inp_snd_tag; 3401 if (mst == NULL) 3402 return (EINVAL); 3403 3404 if (mst->sw->snd_tag_query == NULL) 3405 return (EOPNOTSUPP); 3406 3407 error = mst->sw->snd_tag_query(mst, ¶ms); 3408 if (error == 0 && p_txqueue_level != NULL) 3409 *p_txqueue_level = params.rate_limit.queue_level; 3410 return (error); 3411 } 3412 3413 /* 3414 * Allocate a new TX rate limit send tag from the network interface 3415 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3416 */ 3417 int 3418 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3419 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3420 3421 { 3422 union if_snd_tag_alloc_params params = { 3423 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3424 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3425 .rate_limit.hdr.flowid = flowid, 3426 .rate_limit.hdr.flowtype = flowtype, 3427 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3428 .rate_limit.max_rate = max_pacing_rate, 3429 .rate_limit.flags = M_NOWAIT, 3430 }; 3431 int error; 3432 3433 INP_WLOCK_ASSERT(inp); 3434 3435 /* 3436 * If there is already a send tag, or the INP is being torn 3437 * down, allocating a new send tag is not allowed. Else send 3438 * tags may leak. 3439 */ 3440 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3441 return (EINVAL); 3442 3443 error = m_snd_tag_alloc(ifp, ¶ms, st); 3444 #ifdef INET 3445 if (error == 0) { 3446 counter_u64_add(rate_limit_set_ok, 1); 3447 counter_u64_add(rate_limit_active, 1); 3448 } else if (error != EOPNOTSUPP) 3449 counter_u64_add(rate_limit_alloc_fail, 1); 3450 #endif 3451 return (error); 3452 } 3453 3454 void 3455 in_pcbdetach_tag(struct m_snd_tag *mst) 3456 { 3457 3458 m_snd_tag_rele(mst); 3459 #ifdef INET 3460 counter_u64_add(rate_limit_active, -1); 3461 #endif 3462 } 3463 3464 /* 3465 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3466 * if any: 3467 */ 3468 void 3469 in_pcbdetach_txrtlmt(struct inpcb *inp) 3470 { 3471 struct m_snd_tag *mst; 3472 3473 INP_WLOCK_ASSERT(inp); 3474 3475 mst = inp->inp_snd_tag; 3476 inp->inp_snd_tag = NULL; 3477 3478 if (mst == NULL) 3479 return; 3480 3481 m_snd_tag_rele(mst); 3482 #ifdef INET 3483 counter_u64_add(rate_limit_active, -1); 3484 #endif 3485 } 3486 3487 int 3488 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3489 { 3490 int error; 3491 3492 /* 3493 * If the existing send tag is for the wrong interface due to 3494 * a route change, first drop the existing tag. Set the 3495 * CHANGED flag so that we will keep trying to allocate a new 3496 * tag if we fail to allocate one this time. 3497 */ 3498 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3499 in_pcbdetach_txrtlmt(inp); 3500 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3501 } 3502 3503 /* 3504 * NOTE: When attaching to a network interface a reference is 3505 * made to ensure the network interface doesn't go away until 3506 * all ratelimit connections are gone. The network interface 3507 * pointers compared below represent valid network interfaces, 3508 * except when comparing towards NULL. 3509 */ 3510 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3511 error = 0; 3512 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3513 if (inp->inp_snd_tag != NULL) 3514 in_pcbdetach_txrtlmt(inp); 3515 error = 0; 3516 } else if (inp->inp_snd_tag == NULL) { 3517 /* 3518 * In order to utilize packet pacing with RSS, we need 3519 * to wait until there is a valid RSS hash before we 3520 * can proceed: 3521 */ 3522 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3523 error = EAGAIN; 3524 } else { 3525 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3526 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3527 } 3528 } else { 3529 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3530 } 3531 if (error == 0 || error == EOPNOTSUPP) 3532 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3533 3534 return (error); 3535 } 3536 3537 /* 3538 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3539 * is set in the fast path and will attach/detach/modify the TX rate 3540 * limit send tag based on the socket's so_max_pacing_rate value. 3541 */ 3542 void 3543 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3544 { 3545 struct socket *socket; 3546 uint32_t max_pacing_rate; 3547 bool did_upgrade; 3548 3549 if (inp == NULL) 3550 return; 3551 3552 socket = inp->inp_socket; 3553 if (socket == NULL) 3554 return; 3555 3556 if (!INP_WLOCKED(inp)) { 3557 /* 3558 * NOTE: If the write locking fails, we need to bail 3559 * out and use the non-ratelimited ring for the 3560 * transmit until there is a new chance to get the 3561 * write lock. 3562 */ 3563 if (!INP_TRY_UPGRADE(inp)) 3564 return; 3565 did_upgrade = 1; 3566 } else { 3567 did_upgrade = 0; 3568 } 3569 3570 /* 3571 * NOTE: The so_max_pacing_rate value is read unlocked, 3572 * because atomic updates are not required since the variable 3573 * is checked at every mbuf we send. It is assumed that the 3574 * variable read itself will be atomic. 3575 */ 3576 max_pacing_rate = socket->so_max_pacing_rate; 3577 3578 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3579 3580 if (did_upgrade) 3581 INP_DOWNGRADE(inp); 3582 } 3583 3584 /* 3585 * Track route changes for TX rate limiting. 3586 */ 3587 void 3588 in_pcboutput_eagain(struct inpcb *inp) 3589 { 3590 bool did_upgrade; 3591 3592 if (inp == NULL) 3593 return; 3594 3595 if (inp->inp_snd_tag == NULL) 3596 return; 3597 3598 if (!INP_WLOCKED(inp)) { 3599 /* 3600 * NOTE: If the write locking fails, we need to bail 3601 * out and use the non-ratelimited ring for the 3602 * transmit until there is a new chance to get the 3603 * write lock. 3604 */ 3605 if (!INP_TRY_UPGRADE(inp)) 3606 return; 3607 did_upgrade = 1; 3608 } else { 3609 did_upgrade = 0; 3610 } 3611 3612 /* detach rate limiting */ 3613 in_pcbdetach_txrtlmt(inp); 3614 3615 /* make sure new mbuf send tag allocation is made */ 3616 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3617 3618 if (did_upgrade) 3619 INP_DOWNGRADE(inp); 3620 } 3621 3622 #ifdef INET 3623 static void 3624 rl_init(void *st) 3625 { 3626 rate_limit_new = counter_u64_alloc(M_WAITOK); 3627 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3628 rate_limit_active = counter_u64_alloc(M_WAITOK); 3629 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3630 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3631 } 3632 3633 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3634 #endif 3635 #endif /* RATELIMIT */ 3636