xref: /freebsd/sys/netinet/in_pcb.c (revision 0b37c1590418417c894529d371800dfac71ef887)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #ifdef INET
90 #include <netinet/in_var.h>
91 #endif
92 #include <netinet/ip_var.h>
93 #include <netinet/tcp_var.h>
94 #ifdef TCPHPTS
95 #include <netinet/tcp_hpts.h>
96 #endif
97 #include <netinet/udp.h>
98 #include <netinet/udp_var.h>
99 #ifdef INET6
100 #include <netinet/ip6.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #endif /* INET6 */
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 
214 #ifdef RATELIMIT
215 counter_u64_t rate_limit_active;
216 counter_u64_t rate_limit_alloc_fail;
217 counter_u64_t rate_limit_set_ok;
218 
219 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD, 0,
220     "IP Rate Limiting");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
222     &rate_limit_active, "Active rate limited connections");
223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
224    &rate_limit_alloc_fail, "Rate limited connection failures");
225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
226    &rate_limit_set_ok, "Rate limited setting succeeded");
227 #endif /* RATELIMIT */
228 
229 #endif /* INET */
230 
231 /*
232  * in_pcb.c: manage the Protocol Control Blocks.
233  *
234  * NOTE: It is assumed that most of these functions will be called with
235  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
236  * functions often modify hash chains or addresses in pcbs.
237  */
238 
239 static struct inpcblbgroup *
240 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
241     uint16_t port, const union in_dependaddr *addr, int size)
242 {
243 	struct inpcblbgroup *grp;
244 	size_t bytes;
245 
246 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
247 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
248 	if (!grp)
249 		return (NULL);
250 	grp->il_vflag = vflag;
251 	grp->il_lport = port;
252 	grp->il_dependladdr = *addr;
253 	grp->il_inpsiz = size;
254 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
255 	return (grp);
256 }
257 
258 static void
259 in_pcblbgroup_free_deferred(epoch_context_t ctx)
260 {
261 	struct inpcblbgroup *grp;
262 
263 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
264 	free(grp, M_PCB);
265 }
266 
267 static void
268 in_pcblbgroup_free(struct inpcblbgroup *grp)
269 {
270 
271 	CK_LIST_REMOVE(grp, il_list);
272 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
273 }
274 
275 static struct inpcblbgroup *
276 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
277     struct inpcblbgroup *old_grp, int size)
278 {
279 	struct inpcblbgroup *grp;
280 	int i;
281 
282 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
283 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
284 	if (grp == NULL)
285 		return (NULL);
286 
287 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
288 	    ("invalid new local group size %d and old local group count %d",
289 	     grp->il_inpsiz, old_grp->il_inpcnt));
290 
291 	for (i = 0; i < old_grp->il_inpcnt; ++i)
292 		grp->il_inp[i] = old_grp->il_inp[i];
293 	grp->il_inpcnt = old_grp->il_inpcnt;
294 	in_pcblbgroup_free(old_grp);
295 	return (grp);
296 }
297 
298 /*
299  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
300  * and shrink group if possible.
301  */
302 static void
303 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
304     int i)
305 {
306 	struct inpcblbgroup *grp, *new_grp;
307 
308 	grp = *grpp;
309 	for (; i + 1 < grp->il_inpcnt; ++i)
310 		grp->il_inp[i] = grp->il_inp[i + 1];
311 	grp->il_inpcnt--;
312 
313 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
314 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
315 		/* Shrink this group. */
316 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
317 		if (new_grp != NULL)
318 			*grpp = new_grp;
319 	}
320 }
321 
322 /*
323  * Add PCB to load balance group for SO_REUSEPORT_LB option.
324  */
325 static int
326 in_pcbinslbgrouphash(struct inpcb *inp)
327 {
328 	const static struct timeval interval = { 60, 0 };
329 	static struct timeval lastprint;
330 	struct inpcbinfo *pcbinfo;
331 	struct inpcblbgrouphead *hdr;
332 	struct inpcblbgroup *grp;
333 	uint32_t idx;
334 
335 	pcbinfo = inp->inp_pcbinfo;
336 
337 	INP_WLOCK_ASSERT(inp);
338 	INP_HASH_WLOCK_ASSERT(pcbinfo);
339 
340 	/*
341 	 * Don't allow jailed socket to join local group.
342 	 */
343 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
344 		return (0);
345 
346 #ifdef INET6
347 	/*
348 	 * Don't allow IPv4 mapped INET6 wild socket.
349 	 */
350 	if ((inp->inp_vflag & INP_IPV4) &&
351 	    inp->inp_laddr.s_addr == INADDR_ANY &&
352 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
353 		return (0);
354 	}
355 #endif
356 
357 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
358 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
359 	CK_LIST_FOREACH(grp, hdr, il_list) {
360 		if (grp->il_vflag == inp->inp_vflag &&
361 		    grp->il_lport == inp->inp_lport &&
362 		    memcmp(&grp->il_dependladdr,
363 		    &inp->inp_inc.inc_ie.ie_dependladdr,
364 		    sizeof(grp->il_dependladdr)) == 0)
365 			break;
366 	}
367 	if (grp == NULL) {
368 		/* Create new load balance group. */
369 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
370 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
371 		    INPCBLBGROUP_SIZMIN);
372 		if (grp == NULL)
373 			return (ENOBUFS);
374 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
375 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
376 			if (ratecheck(&lastprint, &interval))
377 				printf("lb group port %d, limit reached\n",
378 				    ntohs(grp->il_lport));
379 			return (0);
380 		}
381 
382 		/* Expand this local group. */
383 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
384 		if (grp == NULL)
385 			return (ENOBUFS);
386 	}
387 
388 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
389 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
390 	    grp->il_inpcnt));
391 
392 	grp->il_inp[grp->il_inpcnt] = inp;
393 	grp->il_inpcnt++;
394 	return (0);
395 }
396 
397 /*
398  * Remove PCB from load balance group.
399  */
400 static void
401 in_pcbremlbgrouphash(struct inpcb *inp)
402 {
403 	struct inpcbinfo *pcbinfo;
404 	struct inpcblbgrouphead *hdr;
405 	struct inpcblbgroup *grp;
406 	int i;
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	INP_WLOCK_ASSERT(inp);
411 	INP_HASH_WLOCK_ASSERT(pcbinfo);
412 
413 	hdr = &pcbinfo->ipi_lbgrouphashbase[
414 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
415 	CK_LIST_FOREACH(grp, hdr, il_list) {
416 		for (i = 0; i < grp->il_inpcnt; ++i) {
417 			if (grp->il_inp[i] != inp)
418 				continue;
419 
420 			if (grp->il_inpcnt == 1) {
421 				/* We are the last, free this local group. */
422 				in_pcblbgroup_free(grp);
423 			} else {
424 				/* Pull up inpcbs, shrink group if possible. */
425 				in_pcblbgroup_reorder(hdr, &grp, i);
426 			}
427 			return;
428 		}
429 	}
430 }
431 
432 /*
433  * Different protocols initialize their inpcbs differently - giving
434  * different name to the lock.  But they all are disposed the same.
435  */
436 static void
437 inpcb_fini(void *mem, int size)
438 {
439 	struct inpcb *inp = mem;
440 
441 	INP_LOCK_DESTROY(inp);
442 }
443 
444 /*
445  * Initialize an inpcbinfo -- we should be able to reduce the number of
446  * arguments in time.
447  */
448 void
449 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
450     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
451     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
452 {
453 
454 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
455 
456 	INP_INFO_LOCK_INIT(pcbinfo, name);
457 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
458 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
459 #ifdef VIMAGE
460 	pcbinfo->ipi_vnet = curvnet;
461 #endif
462 	pcbinfo->ipi_listhead = listhead;
463 	CK_LIST_INIT(pcbinfo->ipi_listhead);
464 	pcbinfo->ipi_count = 0;
465 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
466 	    &pcbinfo->ipi_hashmask);
467 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
468 	    &pcbinfo->ipi_porthashmask);
469 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
470 	    &pcbinfo->ipi_lbgrouphashmask);
471 #ifdef PCBGROUP
472 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
473 #endif
474 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
475 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
476 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
477 	uma_zone_set_warning(pcbinfo->ipi_zone,
478 	    "kern.ipc.maxsockets limit reached");
479 }
480 
481 /*
482  * Destroy an inpcbinfo.
483  */
484 void
485 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
486 {
487 
488 	KASSERT(pcbinfo->ipi_count == 0,
489 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
490 
491 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
492 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
493 	    pcbinfo->ipi_porthashmask);
494 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
495 	    pcbinfo->ipi_lbgrouphashmask);
496 #ifdef PCBGROUP
497 	in_pcbgroup_destroy(pcbinfo);
498 #endif
499 	uma_zdestroy(pcbinfo->ipi_zone);
500 	INP_LIST_LOCK_DESTROY(pcbinfo);
501 	INP_HASH_LOCK_DESTROY(pcbinfo);
502 	INP_INFO_LOCK_DESTROY(pcbinfo);
503 }
504 
505 /*
506  * Allocate a PCB and associate it with the socket.
507  * On success return with the PCB locked.
508  */
509 int
510 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
511 {
512 	struct inpcb *inp;
513 	int error;
514 
515 	error = 0;
516 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
517 	if (inp == NULL)
518 		return (ENOBUFS);
519 	bzero(&inp->inp_start_zero, inp_zero_size);
520 #ifdef NUMA
521 	inp->inp_numa_domain = M_NODOM;
522 #endif
523 	inp->inp_pcbinfo = pcbinfo;
524 	inp->inp_socket = so;
525 	inp->inp_cred = crhold(so->so_cred);
526 	inp->inp_inc.inc_fibnum = so->so_fibnum;
527 #ifdef MAC
528 	error = mac_inpcb_init(inp, M_NOWAIT);
529 	if (error != 0)
530 		goto out;
531 	mac_inpcb_create(so, inp);
532 #endif
533 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
534 	error = ipsec_init_pcbpolicy(inp);
535 	if (error != 0) {
536 #ifdef MAC
537 		mac_inpcb_destroy(inp);
538 #endif
539 		goto out;
540 	}
541 #endif /*IPSEC*/
542 #ifdef INET6
543 	if (INP_SOCKAF(so) == AF_INET6) {
544 		inp->inp_vflag |= INP_IPV6PROTO;
545 		if (V_ip6_v6only)
546 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
547 	}
548 #endif
549 	INP_WLOCK(inp);
550 	INP_LIST_WLOCK(pcbinfo);
551 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
552 	pcbinfo->ipi_count++;
553 	so->so_pcb = (caddr_t)inp;
554 #ifdef INET6
555 	if (V_ip6_auto_flowlabel)
556 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
557 #endif
558 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
559 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
560 
561 	/*
562 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
563 	 * to be cleaned up.
564 	 */
565 	inp->inp_route.ro_flags = RT_LLE_CACHE;
566 	INP_LIST_WUNLOCK(pcbinfo);
567 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
568 out:
569 	if (error != 0) {
570 		crfree(inp->inp_cred);
571 		uma_zfree(pcbinfo->ipi_zone, inp);
572 	}
573 #endif
574 	return (error);
575 }
576 
577 #ifdef INET
578 int
579 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
580 {
581 	int anonport, error;
582 
583 	INP_WLOCK_ASSERT(inp);
584 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
585 
586 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
587 		return (EINVAL);
588 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
589 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
590 	    &inp->inp_lport, cred);
591 	if (error)
592 		return (error);
593 	if (in_pcbinshash(inp) != 0) {
594 		inp->inp_laddr.s_addr = INADDR_ANY;
595 		inp->inp_lport = 0;
596 		return (EAGAIN);
597 	}
598 	if (anonport)
599 		inp->inp_flags |= INP_ANONPORT;
600 	return (0);
601 }
602 #endif
603 
604 /*
605  * Select a local port (number) to use.
606  */
607 #if defined(INET) || defined(INET6)
608 int
609 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
610     struct ucred *cred, int lookupflags)
611 {
612 	struct inpcbinfo *pcbinfo;
613 	struct inpcb *tmpinp;
614 	unsigned short *lastport;
615 	int count, dorandom, error;
616 	u_short aux, first, last, lport;
617 #ifdef INET
618 	struct in_addr laddr;
619 #endif
620 
621 	pcbinfo = inp->inp_pcbinfo;
622 
623 	/*
624 	 * Because no actual state changes occur here, a global write lock on
625 	 * the pcbinfo isn't required.
626 	 */
627 	INP_LOCK_ASSERT(inp);
628 	INP_HASH_LOCK_ASSERT(pcbinfo);
629 
630 	if (inp->inp_flags & INP_HIGHPORT) {
631 		first = V_ipport_hifirstauto;	/* sysctl */
632 		last  = V_ipport_hilastauto;
633 		lastport = &pcbinfo->ipi_lasthi;
634 	} else if (inp->inp_flags & INP_LOWPORT) {
635 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
636 		if (error)
637 			return (error);
638 		first = V_ipport_lowfirstauto;	/* 1023 */
639 		last  = V_ipport_lowlastauto;	/* 600 */
640 		lastport = &pcbinfo->ipi_lastlow;
641 	} else {
642 		first = V_ipport_firstauto;	/* sysctl */
643 		last  = V_ipport_lastauto;
644 		lastport = &pcbinfo->ipi_lastport;
645 	}
646 	/*
647 	 * For UDP(-Lite), use random port allocation as long as the user
648 	 * allows it.  For TCP (and as of yet unknown) connections,
649 	 * use random port allocation only if the user allows it AND
650 	 * ipport_tick() allows it.
651 	 */
652 	if (V_ipport_randomized &&
653 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
654 		pcbinfo == &V_ulitecbinfo))
655 		dorandom = 1;
656 	else
657 		dorandom = 0;
658 	/*
659 	 * It makes no sense to do random port allocation if
660 	 * we have the only port available.
661 	 */
662 	if (first == last)
663 		dorandom = 0;
664 	/* Make sure to not include UDP(-Lite) packets in the count. */
665 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
666 		V_ipport_tcpallocs++;
667 	/*
668 	 * Instead of having two loops further down counting up or down
669 	 * make sure that first is always <= last and go with only one
670 	 * code path implementing all logic.
671 	 */
672 	if (first > last) {
673 		aux = first;
674 		first = last;
675 		last = aux;
676 	}
677 
678 #ifdef INET
679 	/* Make the compiler happy. */
680 	laddr.s_addr = 0;
681 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
682 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
683 		    __func__, inp));
684 		laddr = *laddrp;
685 	}
686 #endif
687 	tmpinp = NULL;	/* Make compiler happy. */
688 	lport = *lportp;
689 
690 	if (dorandom)
691 		*lastport = first + (arc4random() % (last - first));
692 
693 	count = last - first;
694 
695 	do {
696 		if (count-- < 0)	/* completely used? */
697 			return (EADDRNOTAVAIL);
698 		++*lastport;
699 		if (*lastport < first || *lastport > last)
700 			*lastport = first;
701 		lport = htons(*lastport);
702 
703 #ifdef INET6
704 		if ((inp->inp_vflag & INP_IPV6) != 0)
705 			tmpinp = in6_pcblookup_local(pcbinfo,
706 			    &inp->in6p_laddr, lport, lookupflags, cred);
707 #endif
708 #if defined(INET) && defined(INET6)
709 		else
710 #endif
711 #ifdef INET
712 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
713 			    lport, lookupflags, cred);
714 #endif
715 	} while (tmpinp != NULL);
716 
717 #ifdef INET
718 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
719 		laddrp->s_addr = laddr.s_addr;
720 #endif
721 	*lportp = lport;
722 
723 	return (0);
724 }
725 
726 /*
727  * Return cached socket options.
728  */
729 int
730 inp_so_options(const struct inpcb *inp)
731 {
732 	int so_options;
733 
734 	so_options = 0;
735 
736 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
737 		so_options |= SO_REUSEPORT_LB;
738 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
739 		so_options |= SO_REUSEPORT;
740 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
741 		so_options |= SO_REUSEADDR;
742 	return (so_options);
743 }
744 #endif /* INET || INET6 */
745 
746 /*
747  * Check if a new BINDMULTI socket is allowed to be created.
748  *
749  * ni points to the new inp.
750  * oi points to the exisitng inp.
751  *
752  * This checks whether the existing inp also has BINDMULTI and
753  * whether the credentials match.
754  */
755 int
756 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
757 {
758 	/* Check permissions match */
759 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
760 	    (ni->inp_cred->cr_uid !=
761 	    oi->inp_cred->cr_uid))
762 		return (0);
763 
764 	/* Check the existing inp has BINDMULTI set */
765 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
766 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
767 		return (0);
768 
769 	/*
770 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
771 	 * it is and it matches the checks.
772 	 */
773 	return (1);
774 }
775 
776 #ifdef INET
777 /*
778  * Set up a bind operation on a PCB, performing port allocation
779  * as required, but do not actually modify the PCB. Callers can
780  * either complete the bind by setting inp_laddr/inp_lport and
781  * calling in_pcbinshash(), or they can just use the resulting
782  * port and address to authorise the sending of a once-off packet.
783  *
784  * On error, the values of *laddrp and *lportp are not changed.
785  */
786 int
787 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
788     u_short *lportp, struct ucred *cred)
789 {
790 	struct socket *so = inp->inp_socket;
791 	struct sockaddr_in *sin;
792 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
793 	struct in_addr laddr;
794 	u_short lport = 0;
795 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
796 	int error;
797 
798 	/*
799 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
800 	 * so that we don't have to add to the (already messy) code below.
801 	 */
802 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
803 
804 	/*
805 	 * No state changes, so read locks are sufficient here.
806 	 */
807 	INP_LOCK_ASSERT(inp);
808 	INP_HASH_LOCK_ASSERT(pcbinfo);
809 
810 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
811 		return (EADDRNOTAVAIL);
812 	laddr.s_addr = *laddrp;
813 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
814 		return (EINVAL);
815 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
816 		lookupflags = INPLOOKUP_WILDCARD;
817 	if (nam == NULL) {
818 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
819 			return (error);
820 	} else {
821 		sin = (struct sockaddr_in *)nam;
822 		if (nam->sa_len != sizeof (*sin))
823 			return (EINVAL);
824 #ifdef notdef
825 		/*
826 		 * We should check the family, but old programs
827 		 * incorrectly fail to initialize it.
828 		 */
829 		if (sin->sin_family != AF_INET)
830 			return (EAFNOSUPPORT);
831 #endif
832 		error = prison_local_ip4(cred, &sin->sin_addr);
833 		if (error)
834 			return (error);
835 		if (sin->sin_port != *lportp) {
836 			/* Don't allow the port to change. */
837 			if (*lportp != 0)
838 				return (EINVAL);
839 			lport = sin->sin_port;
840 		}
841 		/* NB: lport is left as 0 if the port isn't being changed. */
842 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
843 			/*
844 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
845 			 * allow complete duplication of binding if
846 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
847 			 * and a multicast address is bound on both
848 			 * new and duplicated sockets.
849 			 */
850 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
851 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
852 			/*
853 			 * XXX: How to deal with SO_REUSEPORT_LB here?
854 			 * Treat same as SO_REUSEPORT for now.
855 			 */
856 			if ((so->so_options &
857 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
858 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
859 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
860 			sin->sin_port = 0;		/* yech... */
861 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
862 			/*
863 			 * Is the address a local IP address?
864 			 * If INP_BINDANY is set, then the socket may be bound
865 			 * to any endpoint address, local or not.
866 			 */
867 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
868 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
869 				return (EADDRNOTAVAIL);
870 		}
871 		laddr = sin->sin_addr;
872 		if (lport) {
873 			struct inpcb *t;
874 			struct tcptw *tw;
875 
876 			/* GROSS */
877 			if (ntohs(lport) <= V_ipport_reservedhigh &&
878 			    ntohs(lport) >= V_ipport_reservedlow &&
879 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
880 				return (EACCES);
881 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
882 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
883 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
884 				    lport, INPLOOKUP_WILDCARD, cred);
885 	/*
886 	 * XXX
887 	 * This entire block sorely needs a rewrite.
888 	 */
889 				if (t &&
890 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
891 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
892 				    (so->so_type != SOCK_STREAM ||
893 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
894 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
895 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
896 				     (t->inp_flags2 & INP_REUSEPORT) ||
897 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
898 				    (inp->inp_cred->cr_uid !=
899 				     t->inp_cred->cr_uid))
900 					return (EADDRINUSE);
901 
902 				/*
903 				 * If the socket is a BINDMULTI socket, then
904 				 * the credentials need to match and the
905 				 * original socket also has to have been bound
906 				 * with BINDMULTI.
907 				 */
908 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
909 					return (EADDRINUSE);
910 			}
911 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
912 			    lport, lookupflags, cred);
913 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
914 				/*
915 				 * XXXRW: If an incpb has had its timewait
916 				 * state recycled, we treat the address as
917 				 * being in use (for now).  This is better
918 				 * than a panic, but not desirable.
919 				 */
920 				tw = intotw(t);
921 				if (tw == NULL ||
922 				    ((reuseport & tw->tw_so_options) == 0 &&
923 					(reuseport_lb &
924 				            tw->tw_so_options) == 0)) {
925 					return (EADDRINUSE);
926 				}
927 			} else if (t &&
928 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
929 				   (reuseport & inp_so_options(t)) == 0 &&
930 				   (reuseport_lb & inp_so_options(t)) == 0) {
931 #ifdef INET6
932 				if (ntohl(sin->sin_addr.s_addr) !=
933 				    INADDR_ANY ||
934 				    ntohl(t->inp_laddr.s_addr) !=
935 				    INADDR_ANY ||
936 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
937 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
938 #endif
939 						return (EADDRINUSE);
940 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
941 					return (EADDRINUSE);
942 			}
943 		}
944 	}
945 	if (*lportp != 0)
946 		lport = *lportp;
947 	if (lport == 0) {
948 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
949 		if (error != 0)
950 			return (error);
951 
952 	}
953 	*laddrp = laddr.s_addr;
954 	*lportp = lport;
955 	return (0);
956 }
957 
958 /*
959  * Connect from a socket to a specified address.
960  * Both address and port must be specified in argument sin.
961  * If don't have a local address for this socket yet,
962  * then pick one.
963  */
964 int
965 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
966     struct ucred *cred, struct mbuf *m, bool rehash)
967 {
968 	u_short lport, fport;
969 	in_addr_t laddr, faddr;
970 	int anonport, error;
971 
972 	INP_WLOCK_ASSERT(inp);
973 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
974 
975 	lport = inp->inp_lport;
976 	laddr = inp->inp_laddr.s_addr;
977 	anonport = (lport == 0);
978 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
979 	    NULL, cred);
980 	if (error)
981 		return (error);
982 
983 	/* Do the initial binding of the local address if required. */
984 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
985 		KASSERT(rehash == true,
986 		    ("Rehashing required for unbound inps"));
987 		inp->inp_lport = lport;
988 		inp->inp_laddr.s_addr = laddr;
989 		if (in_pcbinshash(inp) != 0) {
990 			inp->inp_laddr.s_addr = INADDR_ANY;
991 			inp->inp_lport = 0;
992 			return (EAGAIN);
993 		}
994 	}
995 
996 	/* Commit the remaining changes. */
997 	inp->inp_lport = lport;
998 	inp->inp_laddr.s_addr = laddr;
999 	inp->inp_faddr.s_addr = faddr;
1000 	inp->inp_fport = fport;
1001 	if (rehash) {
1002 		in_pcbrehash_mbuf(inp, m);
1003 	} else {
1004 		in_pcbinshash_mbuf(inp, m);
1005 	}
1006 
1007 	if (anonport)
1008 		inp->inp_flags |= INP_ANONPORT;
1009 	return (0);
1010 }
1011 
1012 int
1013 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1014 {
1015 
1016 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1017 }
1018 
1019 /*
1020  * Do proper source address selection on an unbound socket in case
1021  * of connect. Take jails into account as well.
1022  */
1023 int
1024 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1025     struct ucred *cred)
1026 {
1027 	struct ifaddr *ifa;
1028 	struct sockaddr *sa;
1029 	struct sockaddr_in *sin;
1030 	struct route sro;
1031 	int error;
1032 
1033 	NET_EPOCH_ASSERT();
1034 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1035 	/*
1036 	 * Bypass source address selection and use the primary jail IP
1037 	 * if requested.
1038 	 */
1039 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1040 		return (0);
1041 
1042 	error = 0;
1043 	bzero(&sro, sizeof(sro));
1044 
1045 	sin = (struct sockaddr_in *)&sro.ro_dst;
1046 	sin->sin_family = AF_INET;
1047 	sin->sin_len = sizeof(struct sockaddr_in);
1048 	sin->sin_addr.s_addr = faddr->s_addr;
1049 
1050 	/*
1051 	 * If route is known our src addr is taken from the i/f,
1052 	 * else punt.
1053 	 *
1054 	 * Find out route to destination.
1055 	 */
1056 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1057 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1058 
1059 	/*
1060 	 * If we found a route, use the address corresponding to
1061 	 * the outgoing interface.
1062 	 *
1063 	 * Otherwise assume faddr is reachable on a directly connected
1064 	 * network and try to find a corresponding interface to take
1065 	 * the source address from.
1066 	 */
1067 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1068 		struct in_ifaddr *ia;
1069 		struct ifnet *ifp;
1070 
1071 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1072 					inp->inp_socket->so_fibnum));
1073 		if (ia == NULL) {
1074 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1075 						inp->inp_socket->so_fibnum));
1076 
1077 		}
1078 		if (ia == NULL) {
1079 			error = ENETUNREACH;
1080 			goto done;
1081 		}
1082 
1083 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1084 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1085 			goto done;
1086 		}
1087 
1088 		ifp = ia->ia_ifp;
1089 		ia = NULL;
1090 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1091 
1092 			sa = ifa->ifa_addr;
1093 			if (sa->sa_family != AF_INET)
1094 				continue;
1095 			sin = (struct sockaddr_in *)sa;
1096 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1097 				ia = (struct in_ifaddr *)ifa;
1098 				break;
1099 			}
1100 		}
1101 		if (ia != NULL) {
1102 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1103 			goto done;
1104 		}
1105 
1106 		/* 3. As a last resort return the 'default' jail address. */
1107 		error = prison_get_ip4(cred, laddr);
1108 		goto done;
1109 	}
1110 
1111 	/*
1112 	 * If the outgoing interface on the route found is not
1113 	 * a loopback interface, use the address from that interface.
1114 	 * In case of jails do those three steps:
1115 	 * 1. check if the interface address belongs to the jail. If so use it.
1116 	 * 2. check if we have any address on the outgoing interface
1117 	 *    belonging to this jail. If so use it.
1118 	 * 3. as a last resort return the 'default' jail address.
1119 	 */
1120 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1121 		struct in_ifaddr *ia;
1122 		struct ifnet *ifp;
1123 
1124 		/* If not jailed, use the default returned. */
1125 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1126 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1127 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1128 			goto done;
1129 		}
1130 
1131 		/* Jailed. */
1132 		/* 1. Check if the iface address belongs to the jail. */
1133 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1134 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1135 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1136 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1137 			goto done;
1138 		}
1139 
1140 		/*
1141 		 * 2. Check if we have any address on the outgoing interface
1142 		 *    belonging to this jail.
1143 		 */
1144 		ia = NULL;
1145 		ifp = sro.ro_rt->rt_ifp;
1146 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1147 			sa = ifa->ifa_addr;
1148 			if (sa->sa_family != AF_INET)
1149 				continue;
1150 			sin = (struct sockaddr_in *)sa;
1151 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1152 				ia = (struct in_ifaddr *)ifa;
1153 				break;
1154 			}
1155 		}
1156 		if (ia != NULL) {
1157 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1158 			goto done;
1159 		}
1160 
1161 		/* 3. As a last resort return the 'default' jail address. */
1162 		error = prison_get_ip4(cred, laddr);
1163 		goto done;
1164 	}
1165 
1166 	/*
1167 	 * The outgoing interface is marked with 'loopback net', so a route
1168 	 * to ourselves is here.
1169 	 * Try to find the interface of the destination address and then
1170 	 * take the address from there. That interface is not necessarily
1171 	 * a loopback interface.
1172 	 * In case of jails, check that it is an address of the jail
1173 	 * and if we cannot find, fall back to the 'default' jail address.
1174 	 */
1175 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1176 		struct sockaddr_in sain;
1177 		struct in_ifaddr *ia;
1178 
1179 		bzero(&sain, sizeof(struct sockaddr_in));
1180 		sain.sin_family = AF_INET;
1181 		sain.sin_len = sizeof(struct sockaddr_in);
1182 		sain.sin_addr.s_addr = faddr->s_addr;
1183 
1184 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1185 					inp->inp_socket->so_fibnum));
1186 		if (ia == NULL)
1187 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1188 						inp->inp_socket->so_fibnum));
1189 		if (ia == NULL)
1190 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1191 
1192 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1193 			if (ia == NULL) {
1194 				error = ENETUNREACH;
1195 				goto done;
1196 			}
1197 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1198 			goto done;
1199 		}
1200 
1201 		/* Jailed. */
1202 		if (ia != NULL) {
1203 			struct ifnet *ifp;
1204 
1205 			ifp = ia->ia_ifp;
1206 			ia = NULL;
1207 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1208 				sa = ifa->ifa_addr;
1209 				if (sa->sa_family != AF_INET)
1210 					continue;
1211 				sin = (struct sockaddr_in *)sa;
1212 				if (prison_check_ip4(cred,
1213 				    &sin->sin_addr) == 0) {
1214 					ia = (struct in_ifaddr *)ifa;
1215 					break;
1216 				}
1217 			}
1218 			if (ia != NULL) {
1219 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1220 				goto done;
1221 			}
1222 		}
1223 
1224 		/* 3. As a last resort return the 'default' jail address. */
1225 		error = prison_get_ip4(cred, laddr);
1226 		goto done;
1227 	}
1228 
1229 done:
1230 	if (sro.ro_rt != NULL)
1231 		RTFREE(sro.ro_rt);
1232 	return (error);
1233 }
1234 
1235 /*
1236  * Set up for a connect from a socket to the specified address.
1237  * On entry, *laddrp and *lportp should contain the current local
1238  * address and port for the PCB; these are updated to the values
1239  * that should be placed in inp_laddr and inp_lport to complete
1240  * the connect.
1241  *
1242  * On success, *faddrp and *fportp will be set to the remote address
1243  * and port. These are not updated in the error case.
1244  *
1245  * If the operation fails because the connection already exists,
1246  * *oinpp will be set to the PCB of that connection so that the
1247  * caller can decide to override it. In all other cases, *oinpp
1248  * is set to NULL.
1249  */
1250 int
1251 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1252     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1253     struct inpcb **oinpp, struct ucred *cred)
1254 {
1255 	struct rm_priotracker in_ifa_tracker;
1256 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1257 	struct in_ifaddr *ia;
1258 	struct inpcb *oinp;
1259 	struct in_addr laddr, faddr;
1260 	u_short lport, fport;
1261 	int error;
1262 
1263 	/*
1264 	 * Because a global state change doesn't actually occur here, a read
1265 	 * lock is sufficient.
1266 	 */
1267 	NET_EPOCH_ASSERT();
1268 	INP_LOCK_ASSERT(inp);
1269 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1270 
1271 	if (oinpp != NULL)
1272 		*oinpp = NULL;
1273 	if (nam->sa_len != sizeof (*sin))
1274 		return (EINVAL);
1275 	if (sin->sin_family != AF_INET)
1276 		return (EAFNOSUPPORT);
1277 	if (sin->sin_port == 0)
1278 		return (EADDRNOTAVAIL);
1279 	laddr.s_addr = *laddrp;
1280 	lport = *lportp;
1281 	faddr = sin->sin_addr;
1282 	fport = sin->sin_port;
1283 
1284 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1285 		/*
1286 		 * If the destination address is INADDR_ANY,
1287 		 * use the primary local address.
1288 		 * If the supplied address is INADDR_BROADCAST,
1289 		 * and the primary interface supports broadcast,
1290 		 * choose the broadcast address for that interface.
1291 		 */
1292 		if (faddr.s_addr == INADDR_ANY) {
1293 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1294 			faddr =
1295 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1296 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1297 			if (cred != NULL &&
1298 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1299 				return (error);
1300 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1301 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1302 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1303 			    IFF_BROADCAST)
1304 				faddr = satosin(&CK_STAILQ_FIRST(
1305 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1306 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1307 		}
1308 	}
1309 	if (laddr.s_addr == INADDR_ANY) {
1310 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1311 		/*
1312 		 * If the destination address is multicast and an outgoing
1313 		 * interface has been set as a multicast option, prefer the
1314 		 * address of that interface as our source address.
1315 		 */
1316 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1317 		    inp->inp_moptions != NULL) {
1318 			struct ip_moptions *imo;
1319 			struct ifnet *ifp;
1320 
1321 			imo = inp->inp_moptions;
1322 			if (imo->imo_multicast_ifp != NULL) {
1323 				ifp = imo->imo_multicast_ifp;
1324 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1325 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1326 					if ((ia->ia_ifp == ifp) &&
1327 					    (cred == NULL ||
1328 					    prison_check_ip4(cred,
1329 					    &ia->ia_addr.sin_addr) == 0))
1330 						break;
1331 				}
1332 				if (ia == NULL)
1333 					error = EADDRNOTAVAIL;
1334 				else {
1335 					laddr = ia->ia_addr.sin_addr;
1336 					error = 0;
1337 				}
1338 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1339 			}
1340 		}
1341 		if (error)
1342 			return (error);
1343 	}
1344 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1345 	    laddr, lport, 0, NULL);
1346 	if (oinp != NULL) {
1347 		if (oinpp != NULL)
1348 			*oinpp = oinp;
1349 		return (EADDRINUSE);
1350 	}
1351 	if (lport == 0) {
1352 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1353 		    cred);
1354 		if (error)
1355 			return (error);
1356 	}
1357 	*laddrp = laddr.s_addr;
1358 	*lportp = lport;
1359 	*faddrp = faddr.s_addr;
1360 	*fportp = fport;
1361 	return (0);
1362 }
1363 
1364 void
1365 in_pcbdisconnect(struct inpcb *inp)
1366 {
1367 
1368 	INP_WLOCK_ASSERT(inp);
1369 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1370 
1371 	inp->inp_faddr.s_addr = INADDR_ANY;
1372 	inp->inp_fport = 0;
1373 	in_pcbrehash(inp);
1374 }
1375 #endif /* INET */
1376 
1377 /*
1378  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1379  * For most protocols, this will be invoked immediately prior to calling
1380  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1381  * socket, in which case in_pcbfree() is deferred.
1382  */
1383 void
1384 in_pcbdetach(struct inpcb *inp)
1385 {
1386 
1387 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1388 
1389 #ifdef RATELIMIT
1390 	if (inp->inp_snd_tag != NULL)
1391 		in_pcbdetach_txrtlmt(inp);
1392 #endif
1393 	inp->inp_socket->so_pcb = NULL;
1394 	inp->inp_socket = NULL;
1395 }
1396 
1397 /*
1398  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1399  * stability of an inpcb pointer despite the inpcb lock being released.  This
1400  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1401  * but where the inpcb lock may already held, or when acquiring a reference
1402  * via a pcbgroup.
1403  *
1404  * in_pcbref() should be used only to provide brief memory stability, and
1405  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1406  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1407  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1408  * lock and rele are the *only* safe operations that may be performed on the
1409  * inpcb.
1410  *
1411  * While the inpcb will not be freed, releasing the inpcb lock means that the
1412  * connection's state may change, so the caller should be careful to
1413  * revalidate any cached state on reacquiring the lock.  Drop the reference
1414  * using in_pcbrele().
1415  */
1416 void
1417 in_pcbref(struct inpcb *inp)
1418 {
1419 
1420 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1421 
1422 	refcount_acquire(&inp->inp_refcount);
1423 }
1424 
1425 /*
1426  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1427  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1428  * return a flag indicating whether or not the inpcb remains valid.  If it is
1429  * valid, we return with the inpcb lock held.
1430  *
1431  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1432  * reference on an inpcb.  Historically more work was done here (actually, in
1433  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1434  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1435  * about memory stability (and continued use of the write lock).
1436  */
1437 int
1438 in_pcbrele_rlocked(struct inpcb *inp)
1439 {
1440 	struct inpcbinfo *pcbinfo;
1441 
1442 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1443 
1444 	INP_RLOCK_ASSERT(inp);
1445 
1446 	if (refcount_release(&inp->inp_refcount) == 0) {
1447 		/*
1448 		 * If the inpcb has been freed, let the caller know, even if
1449 		 * this isn't the last reference.
1450 		 */
1451 		if (inp->inp_flags2 & INP_FREED) {
1452 			INP_RUNLOCK(inp);
1453 			return (1);
1454 		}
1455 		return (0);
1456 	}
1457 
1458 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1459 #ifdef TCPHPTS
1460 	if (inp->inp_in_hpts || inp->inp_in_input) {
1461 		struct tcp_hpts_entry *hpts;
1462 		/*
1463 		 * We should not be on the hpts at
1464 		 * this point in any form. we must
1465 		 * get the lock to be sure.
1466 		 */
1467 		hpts = tcp_hpts_lock(inp);
1468 		if (inp->inp_in_hpts)
1469 			panic("Hpts:%p inp:%p at free still on hpts",
1470 			      hpts, inp);
1471 		mtx_unlock(&hpts->p_mtx);
1472 		hpts = tcp_input_lock(inp);
1473 		if (inp->inp_in_input)
1474 			panic("Hpts:%p inp:%p at free still on input hpts",
1475 			      hpts, inp);
1476 		mtx_unlock(&hpts->p_mtx);
1477 	}
1478 #endif
1479 	INP_RUNLOCK(inp);
1480 	pcbinfo = inp->inp_pcbinfo;
1481 	uma_zfree(pcbinfo->ipi_zone, inp);
1482 	return (1);
1483 }
1484 
1485 int
1486 in_pcbrele_wlocked(struct inpcb *inp)
1487 {
1488 	struct inpcbinfo *pcbinfo;
1489 
1490 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1491 
1492 	INP_WLOCK_ASSERT(inp);
1493 
1494 	if (refcount_release(&inp->inp_refcount) == 0) {
1495 		/*
1496 		 * If the inpcb has been freed, let the caller know, even if
1497 		 * this isn't the last reference.
1498 		 */
1499 		if (inp->inp_flags2 & INP_FREED) {
1500 			INP_WUNLOCK(inp);
1501 			return (1);
1502 		}
1503 		return (0);
1504 	}
1505 
1506 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1507 #ifdef TCPHPTS
1508 	if (inp->inp_in_hpts || inp->inp_in_input) {
1509 		struct tcp_hpts_entry *hpts;
1510 		/*
1511 		 * We should not be on the hpts at
1512 		 * this point in any form. we must
1513 		 * get the lock to be sure.
1514 		 */
1515 		hpts = tcp_hpts_lock(inp);
1516 		if (inp->inp_in_hpts)
1517 			panic("Hpts:%p inp:%p at free still on hpts",
1518 			      hpts, inp);
1519 		mtx_unlock(&hpts->p_mtx);
1520 		hpts = tcp_input_lock(inp);
1521 		if (inp->inp_in_input)
1522 			panic("Hpts:%p inp:%p at free still on input hpts",
1523 			      hpts, inp);
1524 		mtx_unlock(&hpts->p_mtx);
1525 	}
1526 #endif
1527 	INP_WUNLOCK(inp);
1528 	pcbinfo = inp->inp_pcbinfo;
1529 	uma_zfree(pcbinfo->ipi_zone, inp);
1530 	return (1);
1531 }
1532 
1533 /*
1534  * Temporary wrapper.
1535  */
1536 int
1537 in_pcbrele(struct inpcb *inp)
1538 {
1539 
1540 	return (in_pcbrele_wlocked(inp));
1541 }
1542 
1543 void
1544 in_pcblist_rele_rlocked(epoch_context_t ctx)
1545 {
1546 	struct in_pcblist *il;
1547 	struct inpcb *inp;
1548 	struct inpcbinfo *pcbinfo;
1549 	int i, n;
1550 
1551 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1552 	pcbinfo = il->il_pcbinfo;
1553 	n = il->il_count;
1554 	INP_INFO_WLOCK(pcbinfo);
1555 	for (i = 0; i < n; i++) {
1556 		inp = il->il_inp_list[i];
1557 		INP_RLOCK(inp);
1558 		if (!in_pcbrele_rlocked(inp))
1559 			INP_RUNLOCK(inp);
1560 	}
1561 	INP_INFO_WUNLOCK(pcbinfo);
1562 	free(il, M_TEMP);
1563 }
1564 
1565 static void
1566 inpcbport_free(epoch_context_t ctx)
1567 {
1568 	struct inpcbport *phd;
1569 
1570 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1571 	free(phd, M_PCB);
1572 }
1573 
1574 static void
1575 in_pcbfree_deferred(epoch_context_t ctx)
1576 {
1577 	struct inpcb *inp;
1578 	int released __unused;
1579 
1580 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1581 
1582 	INP_WLOCK(inp);
1583 	CURVNET_SET(inp->inp_vnet);
1584 #ifdef INET
1585 	struct ip_moptions *imo = inp->inp_moptions;
1586 	inp->inp_moptions = NULL;
1587 #endif
1588 	/* XXXRW: Do as much as possible here. */
1589 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1590 	if (inp->inp_sp != NULL)
1591 		ipsec_delete_pcbpolicy(inp);
1592 #endif
1593 #ifdef INET6
1594 	struct ip6_moptions *im6o = NULL;
1595 	if (inp->inp_vflag & INP_IPV6PROTO) {
1596 		ip6_freepcbopts(inp->in6p_outputopts);
1597 		im6o = inp->in6p_moptions;
1598 		inp->in6p_moptions = NULL;
1599 	}
1600 #endif
1601 	if (inp->inp_options)
1602 		(void)m_free(inp->inp_options);
1603 	inp->inp_vflag = 0;
1604 	crfree(inp->inp_cred);
1605 #ifdef MAC
1606 	mac_inpcb_destroy(inp);
1607 #endif
1608 	released = in_pcbrele_wlocked(inp);
1609 	MPASS(released);
1610 #ifdef INET6
1611 	ip6_freemoptions(im6o);
1612 #endif
1613 #ifdef INET
1614 	inp_freemoptions(imo);
1615 #endif
1616 	CURVNET_RESTORE();
1617 }
1618 
1619 /*
1620  * Unconditionally schedule an inpcb to be freed by decrementing its
1621  * reference count, which should occur only after the inpcb has been detached
1622  * from its socket.  If another thread holds a temporary reference (acquired
1623  * using in_pcbref()) then the free is deferred until that reference is
1624  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1625  * work, including removal from global lists, is done in this context, where
1626  * the pcbinfo lock is held.
1627  */
1628 void
1629 in_pcbfree(struct inpcb *inp)
1630 {
1631 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1632 
1633 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1634 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1635 	    ("%s: called twice for pcb %p", __func__, inp));
1636 	if (inp->inp_flags2 & INP_FREED) {
1637 		INP_WUNLOCK(inp);
1638 		return;
1639 	}
1640 
1641 	INP_WLOCK_ASSERT(inp);
1642 	INP_LIST_WLOCK(pcbinfo);
1643 	in_pcbremlists(inp);
1644 	INP_LIST_WUNLOCK(pcbinfo);
1645 	RO_INVALIDATE_CACHE(&inp->inp_route);
1646 	/* mark as destruction in progress */
1647 	inp->inp_flags2 |= INP_FREED;
1648 	INP_WUNLOCK(inp);
1649 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1650 }
1651 
1652 /*
1653  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1654  * port reservation, and preventing it from being returned by inpcb lookups.
1655  *
1656  * It is used by TCP to mark an inpcb as unused and avoid future packet
1657  * delivery or event notification when a socket remains open but TCP has
1658  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1659  * or a RST on the wire, and allows the port binding to be reused while still
1660  * maintaining the invariant that so_pcb always points to a valid inpcb until
1661  * in_pcbdetach().
1662  *
1663  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1664  * in_pcbnotifyall() and in_pcbpurgeif0()?
1665  */
1666 void
1667 in_pcbdrop(struct inpcb *inp)
1668 {
1669 
1670 	INP_WLOCK_ASSERT(inp);
1671 #ifdef INVARIANTS
1672 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1673 		MPASS(inp->inp_refcount > 1);
1674 #endif
1675 
1676 	/*
1677 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1678 	 * the hash lock...?
1679 	 */
1680 	inp->inp_flags |= INP_DROPPED;
1681 	if (inp->inp_flags & INP_INHASHLIST) {
1682 		struct inpcbport *phd = inp->inp_phd;
1683 
1684 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1685 		in_pcbremlbgrouphash(inp);
1686 		CK_LIST_REMOVE(inp, inp_hash);
1687 		CK_LIST_REMOVE(inp, inp_portlist);
1688 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1689 			CK_LIST_REMOVE(phd, phd_hash);
1690 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1691 		}
1692 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1693 		inp->inp_flags &= ~INP_INHASHLIST;
1694 #ifdef PCBGROUP
1695 		in_pcbgroup_remove(inp);
1696 #endif
1697 	}
1698 }
1699 
1700 #ifdef INET
1701 /*
1702  * Common routines to return the socket addresses associated with inpcbs.
1703  */
1704 struct sockaddr *
1705 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1706 {
1707 	struct sockaddr_in *sin;
1708 
1709 	sin = malloc(sizeof *sin, M_SONAME,
1710 		M_WAITOK | M_ZERO);
1711 	sin->sin_family = AF_INET;
1712 	sin->sin_len = sizeof(*sin);
1713 	sin->sin_addr = *addr_p;
1714 	sin->sin_port = port;
1715 
1716 	return (struct sockaddr *)sin;
1717 }
1718 
1719 int
1720 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1721 {
1722 	struct inpcb *inp;
1723 	struct in_addr addr;
1724 	in_port_t port;
1725 
1726 	inp = sotoinpcb(so);
1727 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1728 
1729 	INP_RLOCK(inp);
1730 	port = inp->inp_lport;
1731 	addr = inp->inp_laddr;
1732 	INP_RUNLOCK(inp);
1733 
1734 	*nam = in_sockaddr(port, &addr);
1735 	return 0;
1736 }
1737 
1738 int
1739 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1740 {
1741 	struct inpcb *inp;
1742 	struct in_addr addr;
1743 	in_port_t port;
1744 
1745 	inp = sotoinpcb(so);
1746 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1747 
1748 	INP_RLOCK(inp);
1749 	port = inp->inp_fport;
1750 	addr = inp->inp_faddr;
1751 	INP_RUNLOCK(inp);
1752 
1753 	*nam = in_sockaddr(port, &addr);
1754 	return 0;
1755 }
1756 
1757 void
1758 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1759     struct inpcb *(*notify)(struct inpcb *, int))
1760 {
1761 	struct inpcb *inp, *inp_temp;
1762 
1763 	INP_INFO_WLOCK(pcbinfo);
1764 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1765 		INP_WLOCK(inp);
1766 #ifdef INET6
1767 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1768 			INP_WUNLOCK(inp);
1769 			continue;
1770 		}
1771 #endif
1772 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1773 		    inp->inp_socket == NULL) {
1774 			INP_WUNLOCK(inp);
1775 			continue;
1776 		}
1777 		if ((*notify)(inp, errno))
1778 			INP_WUNLOCK(inp);
1779 	}
1780 	INP_INFO_WUNLOCK(pcbinfo);
1781 }
1782 
1783 void
1784 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1785 {
1786 	struct inpcb *inp;
1787 	struct in_multi *inm;
1788 	struct in_mfilter *imf;
1789 	struct ip_moptions *imo;
1790 
1791 	INP_INFO_WLOCK(pcbinfo);
1792 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1793 		INP_WLOCK(inp);
1794 		imo = inp->inp_moptions;
1795 		if ((inp->inp_vflag & INP_IPV4) &&
1796 		    imo != NULL) {
1797 			/*
1798 			 * Unselect the outgoing interface if it is being
1799 			 * detached.
1800 			 */
1801 			if (imo->imo_multicast_ifp == ifp)
1802 				imo->imo_multicast_ifp = NULL;
1803 
1804 			/*
1805 			 * Drop multicast group membership if we joined
1806 			 * through the interface being detached.
1807 			 *
1808 			 * XXX This can all be deferred to an epoch_call
1809 			 */
1810 restart:
1811 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1812 				if ((inm = imf->imf_inm) == NULL)
1813 					continue;
1814 				if (inm->inm_ifp != ifp)
1815 					continue;
1816 				ip_mfilter_remove(&imo->imo_head, imf);
1817 				IN_MULTI_LOCK_ASSERT();
1818 				in_leavegroup_locked(inm, NULL);
1819 				ip_mfilter_free(imf);
1820 				goto restart;
1821 			}
1822 		}
1823 		INP_WUNLOCK(inp);
1824 	}
1825 	INP_INFO_WUNLOCK(pcbinfo);
1826 }
1827 
1828 /*
1829  * Lookup a PCB based on the local address and port.  Caller must hold the
1830  * hash lock.  No inpcb locks or references are acquired.
1831  */
1832 #define INP_LOOKUP_MAPPED_PCB_COST	3
1833 struct inpcb *
1834 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1835     u_short lport, int lookupflags, struct ucred *cred)
1836 {
1837 	struct inpcb *inp;
1838 #ifdef INET6
1839 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1840 #else
1841 	int matchwild = 3;
1842 #endif
1843 	int wildcard;
1844 
1845 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1846 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1847 
1848 	INP_HASH_LOCK_ASSERT(pcbinfo);
1849 
1850 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1851 		struct inpcbhead *head;
1852 		/*
1853 		 * Look for an unconnected (wildcard foreign addr) PCB that
1854 		 * matches the local address and port we're looking for.
1855 		 */
1856 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1857 		    0, pcbinfo->ipi_hashmask)];
1858 		CK_LIST_FOREACH(inp, head, inp_hash) {
1859 #ifdef INET6
1860 			/* XXX inp locking */
1861 			if ((inp->inp_vflag & INP_IPV4) == 0)
1862 				continue;
1863 #endif
1864 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1865 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1866 			    inp->inp_lport == lport) {
1867 				/*
1868 				 * Found?
1869 				 */
1870 				if (cred == NULL ||
1871 				    prison_equal_ip4(cred->cr_prison,
1872 					inp->inp_cred->cr_prison))
1873 					return (inp);
1874 			}
1875 		}
1876 		/*
1877 		 * Not found.
1878 		 */
1879 		return (NULL);
1880 	} else {
1881 		struct inpcbporthead *porthash;
1882 		struct inpcbport *phd;
1883 		struct inpcb *match = NULL;
1884 		/*
1885 		 * Best fit PCB lookup.
1886 		 *
1887 		 * First see if this local port is in use by looking on the
1888 		 * port hash list.
1889 		 */
1890 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1891 		    pcbinfo->ipi_porthashmask)];
1892 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1893 			if (phd->phd_port == lport)
1894 				break;
1895 		}
1896 		if (phd != NULL) {
1897 			/*
1898 			 * Port is in use by one or more PCBs. Look for best
1899 			 * fit.
1900 			 */
1901 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1902 				wildcard = 0;
1903 				if (cred != NULL &&
1904 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1905 					cred->cr_prison))
1906 					continue;
1907 #ifdef INET6
1908 				/* XXX inp locking */
1909 				if ((inp->inp_vflag & INP_IPV4) == 0)
1910 					continue;
1911 				/*
1912 				 * We never select the PCB that has
1913 				 * INP_IPV6 flag and is bound to :: if
1914 				 * we have another PCB which is bound
1915 				 * to 0.0.0.0.  If a PCB has the
1916 				 * INP_IPV6 flag, then we set its cost
1917 				 * higher than IPv4 only PCBs.
1918 				 *
1919 				 * Note that the case only happens
1920 				 * when a socket is bound to ::, under
1921 				 * the condition that the use of the
1922 				 * mapped address is allowed.
1923 				 */
1924 				if ((inp->inp_vflag & INP_IPV6) != 0)
1925 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1926 #endif
1927 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1928 					wildcard++;
1929 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1930 					if (laddr.s_addr == INADDR_ANY)
1931 						wildcard++;
1932 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1933 						continue;
1934 				} else {
1935 					if (laddr.s_addr != INADDR_ANY)
1936 						wildcard++;
1937 				}
1938 				if (wildcard < matchwild) {
1939 					match = inp;
1940 					matchwild = wildcard;
1941 					if (matchwild == 0)
1942 						break;
1943 				}
1944 			}
1945 		}
1946 		return (match);
1947 	}
1948 }
1949 #undef INP_LOOKUP_MAPPED_PCB_COST
1950 
1951 static struct inpcb *
1952 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1953     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1954     uint16_t fport, int lookupflags)
1955 {
1956 	struct inpcb *local_wild;
1957 	const struct inpcblbgrouphead *hdr;
1958 	struct inpcblbgroup *grp;
1959 	uint32_t idx;
1960 
1961 	INP_HASH_LOCK_ASSERT(pcbinfo);
1962 
1963 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1964 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1965 
1966 	/*
1967 	 * Order of socket selection:
1968 	 * 1. non-wild.
1969 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1970 	 *
1971 	 * NOTE:
1972 	 * - Load balanced group does not contain jailed sockets
1973 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1974 	 */
1975 	local_wild = NULL;
1976 	CK_LIST_FOREACH(grp, hdr, il_list) {
1977 #ifdef INET6
1978 		if (!(grp->il_vflag & INP_IPV4))
1979 			continue;
1980 #endif
1981 		if (grp->il_lport != lport)
1982 			continue;
1983 
1984 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1985 		    grp->il_inpcnt;
1986 		if (grp->il_laddr.s_addr == laddr->s_addr)
1987 			return (grp->il_inp[idx]);
1988 		if (grp->il_laddr.s_addr == INADDR_ANY &&
1989 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
1990 			local_wild = grp->il_inp[idx];
1991 	}
1992 	return (local_wild);
1993 }
1994 
1995 #ifdef PCBGROUP
1996 /*
1997  * Lookup PCB in hash list, using pcbgroup tables.
1998  */
1999 static struct inpcb *
2000 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2001     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2002     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2003 {
2004 	struct inpcbhead *head;
2005 	struct inpcb *inp, *tmpinp;
2006 	u_short fport = fport_arg, lport = lport_arg;
2007 	bool locked;
2008 
2009 	/*
2010 	 * First look for an exact match.
2011 	 */
2012 	tmpinp = NULL;
2013 	INP_GROUP_LOCK(pcbgroup);
2014 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2015 	    pcbgroup->ipg_hashmask)];
2016 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2017 #ifdef INET6
2018 		/* XXX inp locking */
2019 		if ((inp->inp_vflag & INP_IPV4) == 0)
2020 			continue;
2021 #endif
2022 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2023 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2024 		    inp->inp_fport == fport &&
2025 		    inp->inp_lport == lport) {
2026 			/*
2027 			 * XXX We should be able to directly return
2028 			 * the inp here, without any checks.
2029 			 * Well unless both bound with SO_REUSEPORT?
2030 			 */
2031 			if (prison_flag(inp->inp_cred, PR_IP4))
2032 				goto found;
2033 			if (tmpinp == NULL)
2034 				tmpinp = inp;
2035 		}
2036 	}
2037 	if (tmpinp != NULL) {
2038 		inp = tmpinp;
2039 		goto found;
2040 	}
2041 
2042 #ifdef	RSS
2043 	/*
2044 	 * For incoming connections, we may wish to do a wildcard
2045 	 * match for an RSS-local socket.
2046 	 */
2047 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2048 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2049 #ifdef INET6
2050 		struct inpcb *local_wild_mapped = NULL;
2051 #endif
2052 		struct inpcb *jail_wild = NULL;
2053 		struct inpcbhead *head;
2054 		int injail;
2055 
2056 		/*
2057 		 * Order of socket selection - we always prefer jails.
2058 		 *      1. jailed, non-wild.
2059 		 *      2. jailed, wild.
2060 		 *      3. non-jailed, non-wild.
2061 		 *      4. non-jailed, wild.
2062 		 */
2063 
2064 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2065 		    lport, 0, pcbgroup->ipg_hashmask)];
2066 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2067 #ifdef INET6
2068 			/* XXX inp locking */
2069 			if ((inp->inp_vflag & INP_IPV4) == 0)
2070 				continue;
2071 #endif
2072 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2073 			    inp->inp_lport != lport)
2074 				continue;
2075 
2076 			injail = prison_flag(inp->inp_cred, PR_IP4);
2077 			if (injail) {
2078 				if (prison_check_ip4(inp->inp_cred,
2079 				    &laddr) != 0)
2080 					continue;
2081 			} else {
2082 				if (local_exact != NULL)
2083 					continue;
2084 			}
2085 
2086 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2087 				if (injail)
2088 					goto found;
2089 				else
2090 					local_exact = inp;
2091 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2092 #ifdef INET6
2093 				/* XXX inp locking, NULL check */
2094 				if (inp->inp_vflag & INP_IPV6PROTO)
2095 					local_wild_mapped = inp;
2096 				else
2097 #endif
2098 					if (injail)
2099 						jail_wild = inp;
2100 					else
2101 						local_wild = inp;
2102 			}
2103 		} /* LIST_FOREACH */
2104 
2105 		inp = jail_wild;
2106 		if (inp == NULL)
2107 			inp = local_exact;
2108 		if (inp == NULL)
2109 			inp = local_wild;
2110 #ifdef INET6
2111 		if (inp == NULL)
2112 			inp = local_wild_mapped;
2113 #endif
2114 		if (inp != NULL)
2115 			goto found;
2116 	}
2117 #endif
2118 
2119 	/*
2120 	 * Then look for a wildcard match, if requested.
2121 	 */
2122 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2123 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2124 #ifdef INET6
2125 		struct inpcb *local_wild_mapped = NULL;
2126 #endif
2127 		struct inpcb *jail_wild = NULL;
2128 		struct inpcbhead *head;
2129 		int injail;
2130 
2131 		/*
2132 		 * Order of socket selection - we always prefer jails.
2133 		 *      1. jailed, non-wild.
2134 		 *      2. jailed, wild.
2135 		 *      3. non-jailed, non-wild.
2136 		 *      4. non-jailed, wild.
2137 		 */
2138 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2139 		    0, pcbinfo->ipi_wildmask)];
2140 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2141 #ifdef INET6
2142 			/* XXX inp locking */
2143 			if ((inp->inp_vflag & INP_IPV4) == 0)
2144 				continue;
2145 #endif
2146 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2147 			    inp->inp_lport != lport)
2148 				continue;
2149 
2150 			injail = prison_flag(inp->inp_cred, PR_IP4);
2151 			if (injail) {
2152 				if (prison_check_ip4(inp->inp_cred,
2153 				    &laddr) != 0)
2154 					continue;
2155 			} else {
2156 				if (local_exact != NULL)
2157 					continue;
2158 			}
2159 
2160 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2161 				if (injail)
2162 					goto found;
2163 				else
2164 					local_exact = inp;
2165 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2166 #ifdef INET6
2167 				/* XXX inp locking, NULL check */
2168 				if (inp->inp_vflag & INP_IPV6PROTO)
2169 					local_wild_mapped = inp;
2170 				else
2171 #endif
2172 					if (injail)
2173 						jail_wild = inp;
2174 					else
2175 						local_wild = inp;
2176 			}
2177 		} /* LIST_FOREACH */
2178 		inp = jail_wild;
2179 		if (inp == NULL)
2180 			inp = local_exact;
2181 		if (inp == NULL)
2182 			inp = local_wild;
2183 #ifdef INET6
2184 		if (inp == NULL)
2185 			inp = local_wild_mapped;
2186 #endif
2187 		if (inp != NULL)
2188 			goto found;
2189 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2190 	INP_GROUP_UNLOCK(pcbgroup);
2191 	return (NULL);
2192 
2193 found:
2194 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2195 		locked = INP_TRY_WLOCK(inp);
2196 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2197 		locked = INP_TRY_RLOCK(inp);
2198 	else
2199 		panic("%s: locking bug", __func__);
2200 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2201 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2202 			INP_WUNLOCK(inp);
2203 		else
2204 			INP_RUNLOCK(inp);
2205 		return (NULL);
2206 	} else if (!locked)
2207 		in_pcbref(inp);
2208 	INP_GROUP_UNLOCK(pcbgroup);
2209 	if (!locked) {
2210 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2211 			INP_WLOCK(inp);
2212 			if (in_pcbrele_wlocked(inp))
2213 				return (NULL);
2214 		} else {
2215 			INP_RLOCK(inp);
2216 			if (in_pcbrele_rlocked(inp))
2217 				return (NULL);
2218 		}
2219 	}
2220 #ifdef INVARIANTS
2221 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2222 		INP_WLOCK_ASSERT(inp);
2223 	else
2224 		INP_RLOCK_ASSERT(inp);
2225 #endif
2226 	return (inp);
2227 }
2228 #endif /* PCBGROUP */
2229 
2230 /*
2231  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2232  * that the caller has locked the hash list, and will not perform any further
2233  * locking or reference operations on either the hash list or the connection.
2234  */
2235 static struct inpcb *
2236 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2237     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2238     struct ifnet *ifp)
2239 {
2240 	struct inpcbhead *head;
2241 	struct inpcb *inp, *tmpinp;
2242 	u_short fport = fport_arg, lport = lport_arg;
2243 
2244 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2245 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2246 	INP_HASH_LOCK_ASSERT(pcbinfo);
2247 
2248 	/*
2249 	 * First look for an exact match.
2250 	 */
2251 	tmpinp = NULL;
2252 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2253 	    pcbinfo->ipi_hashmask)];
2254 	CK_LIST_FOREACH(inp, head, inp_hash) {
2255 #ifdef INET6
2256 		/* XXX inp locking */
2257 		if ((inp->inp_vflag & INP_IPV4) == 0)
2258 			continue;
2259 #endif
2260 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2261 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2262 		    inp->inp_fport == fport &&
2263 		    inp->inp_lport == lport) {
2264 			/*
2265 			 * XXX We should be able to directly return
2266 			 * the inp here, without any checks.
2267 			 * Well unless both bound with SO_REUSEPORT?
2268 			 */
2269 			if (prison_flag(inp->inp_cred, PR_IP4))
2270 				return (inp);
2271 			if (tmpinp == NULL)
2272 				tmpinp = inp;
2273 		}
2274 	}
2275 	if (tmpinp != NULL)
2276 		return (tmpinp);
2277 
2278 	/*
2279 	 * Then look in lb group (for wildcard match).
2280 	 */
2281 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2282 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2283 		    fport, lookupflags);
2284 		if (inp != NULL)
2285 			return (inp);
2286 	}
2287 
2288 	/*
2289 	 * Then look for a wildcard match, if requested.
2290 	 */
2291 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2292 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2293 #ifdef INET6
2294 		struct inpcb *local_wild_mapped = NULL;
2295 #endif
2296 		struct inpcb *jail_wild = NULL;
2297 		int injail;
2298 
2299 		/*
2300 		 * Order of socket selection - we always prefer jails.
2301 		 *      1. jailed, non-wild.
2302 		 *      2. jailed, wild.
2303 		 *      3. non-jailed, non-wild.
2304 		 *      4. non-jailed, wild.
2305 		 */
2306 
2307 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2308 		    0, pcbinfo->ipi_hashmask)];
2309 		CK_LIST_FOREACH(inp, head, inp_hash) {
2310 #ifdef INET6
2311 			/* XXX inp locking */
2312 			if ((inp->inp_vflag & INP_IPV4) == 0)
2313 				continue;
2314 #endif
2315 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2316 			    inp->inp_lport != lport)
2317 				continue;
2318 
2319 			injail = prison_flag(inp->inp_cred, PR_IP4);
2320 			if (injail) {
2321 				if (prison_check_ip4(inp->inp_cred,
2322 				    &laddr) != 0)
2323 					continue;
2324 			} else {
2325 				if (local_exact != NULL)
2326 					continue;
2327 			}
2328 
2329 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2330 				if (injail)
2331 					return (inp);
2332 				else
2333 					local_exact = inp;
2334 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2335 #ifdef INET6
2336 				/* XXX inp locking, NULL check */
2337 				if (inp->inp_vflag & INP_IPV6PROTO)
2338 					local_wild_mapped = inp;
2339 				else
2340 #endif
2341 					if (injail)
2342 						jail_wild = inp;
2343 					else
2344 						local_wild = inp;
2345 			}
2346 		} /* LIST_FOREACH */
2347 		if (jail_wild != NULL)
2348 			return (jail_wild);
2349 		if (local_exact != NULL)
2350 			return (local_exact);
2351 		if (local_wild != NULL)
2352 			return (local_wild);
2353 #ifdef INET6
2354 		if (local_wild_mapped != NULL)
2355 			return (local_wild_mapped);
2356 #endif
2357 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2358 
2359 	return (NULL);
2360 }
2361 
2362 /*
2363  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2364  * hash list lock, and will return the inpcb locked (i.e., requires
2365  * INPLOOKUP_LOCKPCB).
2366  */
2367 static struct inpcb *
2368 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2369     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2370     struct ifnet *ifp)
2371 {
2372 	struct inpcb *inp;
2373 
2374 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2375 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2376 	if (inp != NULL) {
2377 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2378 			INP_WLOCK(inp);
2379 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2380 				INP_WUNLOCK(inp);
2381 				inp = NULL;
2382 			}
2383 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2384 			INP_RLOCK(inp);
2385 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2386 				INP_RUNLOCK(inp);
2387 				inp = NULL;
2388 			}
2389 		} else
2390 			panic("%s: locking bug", __func__);
2391 #ifdef INVARIANTS
2392 		if (inp != NULL) {
2393 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2394 				INP_WLOCK_ASSERT(inp);
2395 			else
2396 				INP_RLOCK_ASSERT(inp);
2397 		}
2398 #endif
2399 	}
2400 
2401 	return (inp);
2402 }
2403 
2404 /*
2405  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2406  * from which a pre-calculated hash value may be extracted.
2407  *
2408  * Possibly more of this logic should be in in_pcbgroup.c.
2409  */
2410 struct inpcb *
2411 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2412     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2413 {
2414 #if defined(PCBGROUP) && !defined(RSS)
2415 	struct inpcbgroup *pcbgroup;
2416 #endif
2417 
2418 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2419 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2420 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2421 	    ("%s: LOCKPCB not set", __func__));
2422 
2423 	/*
2424 	 * When not using RSS, use connection groups in preference to the
2425 	 * reservation table when looking up 4-tuples.  When using RSS, just
2426 	 * use the reservation table, due to the cost of the Toeplitz hash
2427 	 * in software.
2428 	 *
2429 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2430 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2431 	 * in software.
2432 	 */
2433 #if defined(PCBGROUP) && !defined(RSS)
2434 	if (in_pcbgroup_enabled(pcbinfo)) {
2435 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2436 		    fport);
2437 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2438 		    laddr, lport, lookupflags, ifp));
2439 	}
2440 #endif
2441 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2442 	    lookupflags, ifp));
2443 }
2444 
2445 struct inpcb *
2446 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2447     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2448     struct ifnet *ifp, struct mbuf *m)
2449 {
2450 #ifdef PCBGROUP
2451 	struct inpcbgroup *pcbgroup;
2452 #endif
2453 
2454 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2455 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2456 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2457 	    ("%s: LOCKPCB not set", __func__));
2458 
2459 #ifdef PCBGROUP
2460 	/*
2461 	 * If we can use a hardware-generated hash to look up the connection
2462 	 * group, use that connection group to find the inpcb.  Otherwise
2463 	 * fall back on a software hash -- or the reservation table if we're
2464 	 * using RSS.
2465 	 *
2466 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2467 	 */
2468 	if (in_pcbgroup_enabled(pcbinfo) &&
2469 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2470 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2471 		    m->m_pkthdr.flowid);
2472 		if (pcbgroup != NULL)
2473 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2474 			    fport, laddr, lport, lookupflags, ifp));
2475 #ifndef RSS
2476 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2477 		    fport);
2478 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2479 		    laddr, lport, lookupflags, ifp));
2480 #endif
2481 	}
2482 #endif
2483 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2484 	    lookupflags, ifp));
2485 }
2486 #endif /* INET */
2487 
2488 /*
2489  * Insert PCB onto various hash lists.
2490  */
2491 static int
2492 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2493 {
2494 	struct inpcbhead *pcbhash;
2495 	struct inpcbporthead *pcbporthash;
2496 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2497 	struct inpcbport *phd;
2498 	u_int32_t hashkey_faddr;
2499 	int so_options;
2500 
2501 	INP_WLOCK_ASSERT(inp);
2502 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2503 
2504 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2505 	    ("in_pcbinshash: INP_INHASHLIST"));
2506 
2507 #ifdef INET6
2508 	if (inp->inp_vflag & INP_IPV6)
2509 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2510 	else
2511 #endif
2512 	hashkey_faddr = inp->inp_faddr.s_addr;
2513 
2514 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2515 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2516 
2517 	pcbporthash = &pcbinfo->ipi_porthashbase[
2518 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2519 
2520 	/*
2521 	 * Add entry to load balance group.
2522 	 * Only do this if SO_REUSEPORT_LB is set.
2523 	 */
2524 	so_options = inp_so_options(inp);
2525 	if (so_options & SO_REUSEPORT_LB) {
2526 		int ret = in_pcbinslbgrouphash(inp);
2527 		if (ret) {
2528 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2529 			return (ret);
2530 		}
2531 	}
2532 
2533 	/*
2534 	 * Go through port list and look for a head for this lport.
2535 	 */
2536 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2537 		if (phd->phd_port == inp->inp_lport)
2538 			break;
2539 	}
2540 	/*
2541 	 * If none exists, malloc one and tack it on.
2542 	 */
2543 	if (phd == NULL) {
2544 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2545 		if (phd == NULL) {
2546 			return (ENOBUFS); /* XXX */
2547 		}
2548 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2549 		phd->phd_port = inp->inp_lport;
2550 		CK_LIST_INIT(&phd->phd_pcblist);
2551 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2552 	}
2553 	inp->inp_phd = phd;
2554 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2555 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2556 	inp->inp_flags |= INP_INHASHLIST;
2557 #ifdef PCBGROUP
2558 	if (m != NULL) {
2559 		in_pcbgroup_update_mbuf(inp, m);
2560 	} else {
2561 		in_pcbgroup_update(inp);
2562 	}
2563 #endif
2564 	return (0);
2565 }
2566 
2567 int
2568 in_pcbinshash(struct inpcb *inp)
2569 {
2570 
2571 	return (in_pcbinshash_internal(inp, NULL));
2572 }
2573 
2574 int
2575 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2576 {
2577 
2578 	return (in_pcbinshash_internal(inp, m));
2579 }
2580 
2581 /*
2582  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2583  * changed. NOTE: This does not handle the case of the lport changing (the
2584  * hashed port list would have to be updated as well), so the lport must
2585  * not change after in_pcbinshash() has been called.
2586  */
2587 void
2588 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2589 {
2590 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2591 	struct inpcbhead *head;
2592 	u_int32_t hashkey_faddr;
2593 
2594 	INP_WLOCK_ASSERT(inp);
2595 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2596 
2597 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2598 	    ("in_pcbrehash: !INP_INHASHLIST"));
2599 
2600 #ifdef INET6
2601 	if (inp->inp_vflag & INP_IPV6)
2602 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2603 	else
2604 #endif
2605 	hashkey_faddr = inp->inp_faddr.s_addr;
2606 
2607 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2608 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2609 
2610 	CK_LIST_REMOVE(inp, inp_hash);
2611 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2612 
2613 #ifdef PCBGROUP
2614 	if (m != NULL)
2615 		in_pcbgroup_update_mbuf(inp, m);
2616 	else
2617 		in_pcbgroup_update(inp);
2618 #endif
2619 }
2620 
2621 void
2622 in_pcbrehash(struct inpcb *inp)
2623 {
2624 
2625 	in_pcbrehash_mbuf(inp, NULL);
2626 }
2627 
2628 /*
2629  * Remove PCB from various lists.
2630  */
2631 static void
2632 in_pcbremlists(struct inpcb *inp)
2633 {
2634 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2635 
2636 	INP_WLOCK_ASSERT(inp);
2637 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2638 
2639 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2640 	if (inp->inp_flags & INP_INHASHLIST) {
2641 		struct inpcbport *phd = inp->inp_phd;
2642 
2643 		INP_HASH_WLOCK(pcbinfo);
2644 
2645 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2646 		in_pcbremlbgrouphash(inp);
2647 
2648 		CK_LIST_REMOVE(inp, inp_hash);
2649 		CK_LIST_REMOVE(inp, inp_portlist);
2650 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2651 			CK_LIST_REMOVE(phd, phd_hash);
2652 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2653 		}
2654 		INP_HASH_WUNLOCK(pcbinfo);
2655 		inp->inp_flags &= ~INP_INHASHLIST;
2656 	}
2657 	CK_LIST_REMOVE(inp, inp_list);
2658 	pcbinfo->ipi_count--;
2659 #ifdef PCBGROUP
2660 	in_pcbgroup_remove(inp);
2661 #endif
2662 }
2663 
2664 /*
2665  * Check for alternatives when higher level complains
2666  * about service problems.  For now, invalidate cached
2667  * routing information.  If the route was created dynamically
2668  * (by a redirect), time to try a default gateway again.
2669  */
2670 void
2671 in_losing(struct inpcb *inp)
2672 {
2673 
2674 	RO_INVALIDATE_CACHE(&inp->inp_route);
2675 	return;
2676 }
2677 
2678 /*
2679  * A set label operation has occurred at the socket layer, propagate the
2680  * label change into the in_pcb for the socket.
2681  */
2682 void
2683 in_pcbsosetlabel(struct socket *so)
2684 {
2685 #ifdef MAC
2686 	struct inpcb *inp;
2687 
2688 	inp = sotoinpcb(so);
2689 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2690 
2691 	INP_WLOCK(inp);
2692 	SOCK_LOCK(so);
2693 	mac_inpcb_sosetlabel(so, inp);
2694 	SOCK_UNLOCK(so);
2695 	INP_WUNLOCK(inp);
2696 #endif
2697 }
2698 
2699 /*
2700  * ipport_tick runs once per second, determining if random port allocation
2701  * should be continued.  If more than ipport_randomcps ports have been
2702  * allocated in the last second, then we return to sequential port
2703  * allocation. We return to random allocation only once we drop below
2704  * ipport_randomcps for at least ipport_randomtime seconds.
2705  */
2706 static void
2707 ipport_tick(void *xtp)
2708 {
2709 	VNET_ITERATOR_DECL(vnet_iter);
2710 
2711 	VNET_LIST_RLOCK_NOSLEEP();
2712 	VNET_FOREACH(vnet_iter) {
2713 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2714 		if (V_ipport_tcpallocs <=
2715 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2716 			if (V_ipport_stoprandom > 0)
2717 				V_ipport_stoprandom--;
2718 		} else
2719 			V_ipport_stoprandom = V_ipport_randomtime;
2720 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2721 		CURVNET_RESTORE();
2722 	}
2723 	VNET_LIST_RUNLOCK_NOSLEEP();
2724 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2725 }
2726 
2727 static void
2728 ip_fini(void *xtp)
2729 {
2730 
2731 	callout_stop(&ipport_tick_callout);
2732 }
2733 
2734 /*
2735  * The ipport_callout should start running at about the time we attach the
2736  * inet or inet6 domains.
2737  */
2738 static void
2739 ipport_tick_init(const void *unused __unused)
2740 {
2741 
2742 	/* Start ipport_tick. */
2743 	callout_init(&ipport_tick_callout, 1);
2744 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2745 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2746 		SHUTDOWN_PRI_DEFAULT);
2747 }
2748 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2749     ipport_tick_init, NULL);
2750 
2751 void
2752 inp_wlock(struct inpcb *inp)
2753 {
2754 
2755 	INP_WLOCK(inp);
2756 }
2757 
2758 void
2759 inp_wunlock(struct inpcb *inp)
2760 {
2761 
2762 	INP_WUNLOCK(inp);
2763 }
2764 
2765 void
2766 inp_rlock(struct inpcb *inp)
2767 {
2768 
2769 	INP_RLOCK(inp);
2770 }
2771 
2772 void
2773 inp_runlock(struct inpcb *inp)
2774 {
2775 
2776 	INP_RUNLOCK(inp);
2777 }
2778 
2779 #ifdef INVARIANT_SUPPORT
2780 void
2781 inp_lock_assert(struct inpcb *inp)
2782 {
2783 
2784 	INP_WLOCK_ASSERT(inp);
2785 }
2786 
2787 void
2788 inp_unlock_assert(struct inpcb *inp)
2789 {
2790 
2791 	INP_UNLOCK_ASSERT(inp);
2792 }
2793 #endif
2794 
2795 void
2796 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2797 {
2798 	struct inpcb *inp;
2799 
2800 	INP_INFO_WLOCK(&V_tcbinfo);
2801 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2802 		INP_WLOCK(inp);
2803 		func(inp, arg);
2804 		INP_WUNLOCK(inp);
2805 	}
2806 	INP_INFO_WUNLOCK(&V_tcbinfo);
2807 }
2808 
2809 struct socket *
2810 inp_inpcbtosocket(struct inpcb *inp)
2811 {
2812 
2813 	INP_WLOCK_ASSERT(inp);
2814 	return (inp->inp_socket);
2815 }
2816 
2817 struct tcpcb *
2818 inp_inpcbtotcpcb(struct inpcb *inp)
2819 {
2820 
2821 	INP_WLOCK_ASSERT(inp);
2822 	return ((struct tcpcb *)inp->inp_ppcb);
2823 }
2824 
2825 int
2826 inp_ip_tos_get(const struct inpcb *inp)
2827 {
2828 
2829 	return (inp->inp_ip_tos);
2830 }
2831 
2832 void
2833 inp_ip_tos_set(struct inpcb *inp, int val)
2834 {
2835 
2836 	inp->inp_ip_tos = val;
2837 }
2838 
2839 void
2840 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2841     uint32_t *faddr, uint16_t *fp)
2842 {
2843 
2844 	INP_LOCK_ASSERT(inp);
2845 	*laddr = inp->inp_laddr.s_addr;
2846 	*faddr = inp->inp_faddr.s_addr;
2847 	*lp = inp->inp_lport;
2848 	*fp = inp->inp_fport;
2849 }
2850 
2851 struct inpcb *
2852 so_sotoinpcb(struct socket *so)
2853 {
2854 
2855 	return (sotoinpcb(so));
2856 }
2857 
2858 struct tcpcb *
2859 so_sototcpcb(struct socket *so)
2860 {
2861 
2862 	return (sototcpcb(so));
2863 }
2864 
2865 /*
2866  * Create an external-format (``xinpcb'') structure using the information in
2867  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2868  * reduce the spew of irrelevant information over this interface, to isolate
2869  * user code from changes in the kernel structure, and potentially to provide
2870  * information-hiding if we decide that some of this information should be
2871  * hidden from users.
2872  */
2873 void
2874 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2875 {
2876 
2877 	bzero(xi, sizeof(*xi));
2878 	xi->xi_len = sizeof(struct xinpcb);
2879 	if (inp->inp_socket)
2880 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2881 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2882 	xi->inp_gencnt = inp->inp_gencnt;
2883 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2884 	xi->inp_flow = inp->inp_flow;
2885 	xi->inp_flowid = inp->inp_flowid;
2886 	xi->inp_flowtype = inp->inp_flowtype;
2887 	xi->inp_flags = inp->inp_flags;
2888 	xi->inp_flags2 = inp->inp_flags2;
2889 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2890 	xi->in6p_cksum = inp->in6p_cksum;
2891 	xi->in6p_hops = inp->in6p_hops;
2892 	xi->inp_ip_tos = inp->inp_ip_tos;
2893 	xi->inp_vflag = inp->inp_vflag;
2894 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2895 	xi->inp_ip_p = inp->inp_ip_p;
2896 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2897 }
2898 
2899 #ifdef DDB
2900 static void
2901 db_print_indent(int indent)
2902 {
2903 	int i;
2904 
2905 	for (i = 0; i < indent; i++)
2906 		db_printf(" ");
2907 }
2908 
2909 static void
2910 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2911 {
2912 	char faddr_str[48], laddr_str[48];
2913 
2914 	db_print_indent(indent);
2915 	db_printf("%s at %p\n", name, inc);
2916 
2917 	indent += 2;
2918 
2919 #ifdef INET6
2920 	if (inc->inc_flags & INC_ISIPV6) {
2921 		/* IPv6. */
2922 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2923 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2924 	} else
2925 #endif
2926 	{
2927 		/* IPv4. */
2928 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2929 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2930 	}
2931 	db_print_indent(indent);
2932 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2933 	    ntohs(inc->inc_lport));
2934 	db_print_indent(indent);
2935 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2936 	    ntohs(inc->inc_fport));
2937 }
2938 
2939 static void
2940 db_print_inpflags(int inp_flags)
2941 {
2942 	int comma;
2943 
2944 	comma = 0;
2945 	if (inp_flags & INP_RECVOPTS) {
2946 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2947 		comma = 1;
2948 	}
2949 	if (inp_flags & INP_RECVRETOPTS) {
2950 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2951 		comma = 1;
2952 	}
2953 	if (inp_flags & INP_RECVDSTADDR) {
2954 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2955 		comma = 1;
2956 	}
2957 	if (inp_flags & INP_ORIGDSTADDR) {
2958 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2959 		comma = 1;
2960 	}
2961 	if (inp_flags & INP_HDRINCL) {
2962 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2963 		comma = 1;
2964 	}
2965 	if (inp_flags & INP_HIGHPORT) {
2966 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2967 		comma = 1;
2968 	}
2969 	if (inp_flags & INP_LOWPORT) {
2970 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2971 		comma = 1;
2972 	}
2973 	if (inp_flags & INP_ANONPORT) {
2974 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2975 		comma = 1;
2976 	}
2977 	if (inp_flags & INP_RECVIF) {
2978 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2979 		comma = 1;
2980 	}
2981 	if (inp_flags & INP_MTUDISC) {
2982 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2983 		comma = 1;
2984 	}
2985 	if (inp_flags & INP_RECVTTL) {
2986 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2987 		comma = 1;
2988 	}
2989 	if (inp_flags & INP_DONTFRAG) {
2990 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2991 		comma = 1;
2992 	}
2993 	if (inp_flags & INP_RECVTOS) {
2994 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2995 		comma = 1;
2996 	}
2997 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2998 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2999 		comma = 1;
3000 	}
3001 	if (inp_flags & IN6P_PKTINFO) {
3002 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3003 		comma = 1;
3004 	}
3005 	if (inp_flags & IN6P_HOPLIMIT) {
3006 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3007 		comma = 1;
3008 	}
3009 	if (inp_flags & IN6P_HOPOPTS) {
3010 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3011 		comma = 1;
3012 	}
3013 	if (inp_flags & IN6P_DSTOPTS) {
3014 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3015 		comma = 1;
3016 	}
3017 	if (inp_flags & IN6P_RTHDR) {
3018 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3019 		comma = 1;
3020 	}
3021 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3022 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3023 		comma = 1;
3024 	}
3025 	if (inp_flags & IN6P_TCLASS) {
3026 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3027 		comma = 1;
3028 	}
3029 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3030 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3031 		comma = 1;
3032 	}
3033 	if (inp_flags & INP_TIMEWAIT) {
3034 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3035 		comma  = 1;
3036 	}
3037 	if (inp_flags & INP_ONESBCAST) {
3038 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3039 		comma  = 1;
3040 	}
3041 	if (inp_flags & INP_DROPPED) {
3042 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3043 		comma  = 1;
3044 	}
3045 	if (inp_flags & INP_SOCKREF) {
3046 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3047 		comma  = 1;
3048 	}
3049 	if (inp_flags & IN6P_RFC2292) {
3050 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3051 		comma = 1;
3052 	}
3053 	if (inp_flags & IN6P_MTU) {
3054 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3055 		comma = 1;
3056 	}
3057 }
3058 
3059 static void
3060 db_print_inpvflag(u_char inp_vflag)
3061 {
3062 	int comma;
3063 
3064 	comma = 0;
3065 	if (inp_vflag & INP_IPV4) {
3066 		db_printf("%sINP_IPV4", comma ? ", " : "");
3067 		comma  = 1;
3068 	}
3069 	if (inp_vflag & INP_IPV6) {
3070 		db_printf("%sINP_IPV6", comma ? ", " : "");
3071 		comma  = 1;
3072 	}
3073 	if (inp_vflag & INP_IPV6PROTO) {
3074 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3075 		comma  = 1;
3076 	}
3077 }
3078 
3079 static void
3080 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3081 {
3082 
3083 	db_print_indent(indent);
3084 	db_printf("%s at %p\n", name, inp);
3085 
3086 	indent += 2;
3087 
3088 	db_print_indent(indent);
3089 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3090 
3091 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3092 
3093 	db_print_indent(indent);
3094 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3095 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3096 
3097 	db_print_indent(indent);
3098 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3099 	   inp->inp_label, inp->inp_flags);
3100 	db_print_inpflags(inp->inp_flags);
3101 	db_printf(")\n");
3102 
3103 	db_print_indent(indent);
3104 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3105 	    inp->inp_vflag);
3106 	db_print_inpvflag(inp->inp_vflag);
3107 	db_printf(")\n");
3108 
3109 	db_print_indent(indent);
3110 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3111 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3112 
3113 	db_print_indent(indent);
3114 #ifdef INET6
3115 	if (inp->inp_vflag & INP_IPV6) {
3116 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3117 		    "in6p_moptions: %p\n", inp->in6p_options,
3118 		    inp->in6p_outputopts, inp->in6p_moptions);
3119 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3120 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3121 		    inp->in6p_hops);
3122 	} else
3123 #endif
3124 	{
3125 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3126 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3127 		    inp->inp_options, inp->inp_moptions);
3128 	}
3129 
3130 	db_print_indent(indent);
3131 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3132 	    (uintmax_t)inp->inp_gencnt);
3133 }
3134 
3135 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3136 {
3137 	struct inpcb *inp;
3138 
3139 	if (!have_addr) {
3140 		db_printf("usage: show inpcb <addr>\n");
3141 		return;
3142 	}
3143 	inp = (struct inpcb *)addr;
3144 
3145 	db_print_inpcb(inp, "inpcb", 0);
3146 }
3147 #endif /* DDB */
3148 
3149 #ifdef RATELIMIT
3150 /*
3151  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3152  * if any.
3153  */
3154 int
3155 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3156 {
3157 	union if_snd_tag_modify_params params = {
3158 		.rate_limit.max_rate = max_pacing_rate,
3159 		.rate_limit.flags = M_NOWAIT,
3160 	};
3161 	struct m_snd_tag *mst;
3162 	struct ifnet *ifp;
3163 	int error;
3164 
3165 	mst = inp->inp_snd_tag;
3166 	if (mst == NULL)
3167 		return (EINVAL);
3168 
3169 	ifp = mst->ifp;
3170 	if (ifp == NULL)
3171 		return (EINVAL);
3172 
3173 	if (ifp->if_snd_tag_modify == NULL) {
3174 		error = EOPNOTSUPP;
3175 	} else {
3176 		error = ifp->if_snd_tag_modify(mst, &params);
3177 	}
3178 	return (error);
3179 }
3180 
3181 /*
3182  * Query existing TX rate limit based on the existing
3183  * "inp->inp_snd_tag", if any.
3184  */
3185 int
3186 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3187 {
3188 	union if_snd_tag_query_params params = { };
3189 	struct m_snd_tag *mst;
3190 	struct ifnet *ifp;
3191 	int error;
3192 
3193 	mst = inp->inp_snd_tag;
3194 	if (mst == NULL)
3195 		return (EINVAL);
3196 
3197 	ifp = mst->ifp;
3198 	if (ifp == NULL)
3199 		return (EINVAL);
3200 
3201 	if (ifp->if_snd_tag_query == NULL) {
3202 		error = EOPNOTSUPP;
3203 	} else {
3204 		error = ifp->if_snd_tag_query(mst, &params);
3205 		if (error == 0 &&  p_max_pacing_rate != NULL)
3206 			*p_max_pacing_rate = params.rate_limit.max_rate;
3207 	}
3208 	return (error);
3209 }
3210 
3211 /*
3212  * Query existing TX queue level based on the existing
3213  * "inp->inp_snd_tag", if any.
3214  */
3215 int
3216 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3217 {
3218 	union if_snd_tag_query_params params = { };
3219 	struct m_snd_tag *mst;
3220 	struct ifnet *ifp;
3221 	int error;
3222 
3223 	mst = inp->inp_snd_tag;
3224 	if (mst == NULL)
3225 		return (EINVAL);
3226 
3227 	ifp = mst->ifp;
3228 	if (ifp == NULL)
3229 		return (EINVAL);
3230 
3231 	if (ifp->if_snd_tag_query == NULL)
3232 		return (EOPNOTSUPP);
3233 
3234 	error = ifp->if_snd_tag_query(mst, &params);
3235 	if (error == 0 &&  p_txqueue_level != NULL)
3236 		*p_txqueue_level = params.rate_limit.queue_level;
3237 	return (error);
3238 }
3239 
3240 /*
3241  * Allocate a new TX rate limit send tag from the network interface
3242  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3243  */
3244 int
3245 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3246     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3247 
3248 {
3249 	union if_snd_tag_alloc_params params = {
3250 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3251 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3252 		.rate_limit.hdr.flowid = flowid,
3253 		.rate_limit.hdr.flowtype = flowtype,
3254 		.rate_limit.max_rate = max_pacing_rate,
3255 		.rate_limit.flags = M_NOWAIT,
3256 	};
3257 	int error;
3258 
3259 	INP_WLOCK_ASSERT(inp);
3260 
3261 	if (*st != NULL)
3262 		return (EINVAL);
3263 
3264 	if (ifp->if_snd_tag_alloc == NULL) {
3265 		error = EOPNOTSUPP;
3266 	} else {
3267 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3268 
3269 #ifdef INET
3270 		if (error == 0) {
3271 			counter_u64_add(rate_limit_set_ok, 1);
3272 			counter_u64_add(rate_limit_active, 1);
3273 		} else
3274 			counter_u64_add(rate_limit_alloc_fail, 1);
3275 #endif
3276 	}
3277 	return (error);
3278 }
3279 
3280 void
3281 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
3282 {
3283 	if (ifp == NULL)
3284 		return;
3285 
3286 	/*
3287 	 * If the device was detached while we still had reference(s)
3288 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3289 	 * stubs.
3290 	 */
3291 	ifp->if_snd_tag_free(mst);
3292 
3293 	/* release reference count on network interface */
3294 	if_rele(ifp);
3295 #ifdef INET
3296 	counter_u64_add(rate_limit_active, -1);
3297 #endif
3298 }
3299 
3300 /*
3301  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3302  * if any:
3303  */
3304 void
3305 in_pcbdetach_txrtlmt(struct inpcb *inp)
3306 {
3307 	struct m_snd_tag *mst;
3308 
3309 	INP_WLOCK_ASSERT(inp);
3310 
3311 	mst = inp->inp_snd_tag;
3312 	inp->inp_snd_tag = NULL;
3313 
3314 	if (mst == NULL)
3315 		return;
3316 
3317 	m_snd_tag_rele(mst);
3318 }
3319 
3320 int
3321 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3322 {
3323 	int error;
3324 
3325 	/*
3326 	 * If the existing send tag is for the wrong interface due to
3327 	 * a route change, first drop the existing tag.  Set the
3328 	 * CHANGED flag so that we will keep trying to allocate a new
3329 	 * tag if we fail to allocate one this time.
3330 	 */
3331 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3332 		in_pcbdetach_txrtlmt(inp);
3333 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3334 	}
3335 
3336 	/*
3337 	 * NOTE: When attaching to a network interface a reference is
3338 	 * made to ensure the network interface doesn't go away until
3339 	 * all ratelimit connections are gone. The network interface
3340 	 * pointers compared below represent valid network interfaces,
3341 	 * except when comparing towards NULL.
3342 	 */
3343 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3344 		error = 0;
3345 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3346 		if (inp->inp_snd_tag != NULL)
3347 			in_pcbdetach_txrtlmt(inp);
3348 		error = 0;
3349 	} else if (inp->inp_snd_tag == NULL) {
3350 		/*
3351 		 * In order to utilize packet pacing with RSS, we need
3352 		 * to wait until there is a valid RSS hash before we
3353 		 * can proceed:
3354 		 */
3355 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3356 			error = EAGAIN;
3357 		} else {
3358 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3359 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3360 		}
3361 	} else {
3362 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3363 	}
3364 	if (error == 0 || error == EOPNOTSUPP)
3365 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3366 
3367 	return (error);
3368 }
3369 
3370 /*
3371  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3372  * is set in the fast path and will attach/detach/modify the TX rate
3373  * limit send tag based on the socket's so_max_pacing_rate value.
3374  */
3375 void
3376 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3377 {
3378 	struct socket *socket;
3379 	uint32_t max_pacing_rate;
3380 	bool did_upgrade;
3381 	int error;
3382 
3383 	if (inp == NULL)
3384 		return;
3385 
3386 	socket = inp->inp_socket;
3387 	if (socket == NULL)
3388 		return;
3389 
3390 	if (!INP_WLOCKED(inp)) {
3391 		/*
3392 		 * NOTE: If the write locking fails, we need to bail
3393 		 * out and use the non-ratelimited ring for the
3394 		 * transmit until there is a new chance to get the
3395 		 * write lock.
3396 		 */
3397 		if (!INP_TRY_UPGRADE(inp))
3398 			return;
3399 		did_upgrade = 1;
3400 	} else {
3401 		did_upgrade = 0;
3402 	}
3403 
3404 	/*
3405 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3406 	 * because atomic updates are not required since the variable
3407 	 * is checked at every mbuf we send. It is assumed that the
3408 	 * variable read itself will be atomic.
3409 	 */
3410 	max_pacing_rate = socket->so_max_pacing_rate;
3411 
3412 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3413 
3414 	if (did_upgrade)
3415 		INP_DOWNGRADE(inp);
3416 }
3417 
3418 /*
3419  * Track route changes for TX rate limiting.
3420  */
3421 void
3422 in_pcboutput_eagain(struct inpcb *inp)
3423 {
3424 	bool did_upgrade;
3425 
3426 	if (inp == NULL)
3427 		return;
3428 
3429 	if (inp->inp_snd_tag == NULL)
3430 		return;
3431 
3432 	if (!INP_WLOCKED(inp)) {
3433 		/*
3434 		 * NOTE: If the write locking fails, we need to bail
3435 		 * out and use the non-ratelimited ring for the
3436 		 * transmit until there is a new chance to get the
3437 		 * write lock.
3438 		 */
3439 		if (!INP_TRY_UPGRADE(inp))
3440 			return;
3441 		did_upgrade = 1;
3442 	} else {
3443 		did_upgrade = 0;
3444 	}
3445 
3446 	/* detach rate limiting */
3447 	in_pcbdetach_txrtlmt(inp);
3448 
3449 	/* make sure new mbuf send tag allocation is made */
3450 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3451 
3452 	if (did_upgrade)
3453 		INP_DOWNGRADE(inp);
3454 }
3455 
3456 #ifdef INET
3457 static void
3458 rl_init(void *st)
3459 {
3460 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3461 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3462 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3463 }
3464 
3465 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3466 #endif
3467 #endif /* RATELIMIT */
3468