1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/callout.h> 58 #include <sys/eventhandler.h> 59 #include <sys/domain.h> 60 #include <sys/protosw.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 #include <vm/vm.h> 78 79 #include <net/if.h> 80 #include <net/if_var.h> 81 #include <net/if_types.h> 82 #include <net/if_llatbl.h> 83 #include <net/route.h> 84 #include <net/rss_config.h> 85 #include <net/vnet.h> 86 87 #if defined(INET) || defined(INET6) 88 #include <netinet/in.h> 89 #include <netinet/in_pcb.h> 90 #include <netinet/in_pcb_var.h> 91 #ifdef INET 92 #include <netinet/in_var.h> 93 #include <netinet/in_fib.h> 94 #endif 95 #include <netinet/ip_var.h> 96 #include <netinet/tcp_var.h> 97 #ifdef TCPHPTS 98 #include <netinet/tcp_hpts.h> 99 #endif 100 #include <netinet/udp.h> 101 #include <netinet/udp_var.h> 102 #ifdef INET6 103 #include <netinet/ip6.h> 104 #include <netinet6/in6_pcb.h> 105 #include <netinet6/in6_var.h> 106 #include <netinet6/ip6_var.h> 107 #endif /* INET6 */ 108 #include <net/route/nhop.h> 109 #endif 110 111 #include <netipsec/ipsec_support.h> 112 113 #include <security/mac/mac_framework.h> 114 115 #define INPCBLBGROUP_SIZMIN 8 116 #define INPCBLBGROUP_SIZMAX 256 117 118 static struct callout ipport_tick_callout; 119 120 /* 121 * These configure the range of local port addresses assigned to 122 * "unspecified" outgoing connections/packets/whatever. 123 */ 124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 130 131 /* 132 * Reserved ports accessible only to root. There are significant 133 * security considerations that must be accounted for when changing these, 134 * but the security benefits can be great. Please be careful. 135 */ 136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 137 VNET_DEFINE(int, ipport_reservedlow); 138 139 /* Variables dealing with random ephemeral port allocation. */ 140 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 141 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 142 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 144 VNET_DEFINE(int, ipport_tcpallocs); 145 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 146 147 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 148 149 static void in_pcbremlists(struct inpcb *inp); 150 #ifdef INET 151 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 152 struct in_addr faddr, u_int fport_arg, 153 struct in_addr laddr, u_int lport_arg, 154 int lookupflags, struct ifnet *ifp, 155 uint8_t numa_domain); 156 157 #define RANGECHK(var, min, max) \ 158 if ((var) < (min)) { (var) = (min); } \ 159 else if ((var) > (max)) { (var) = (max); } 160 161 static int 162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 163 { 164 int error; 165 166 error = sysctl_handle_int(oidp, arg1, arg2, req); 167 if (error == 0) { 168 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 169 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 171 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 174 } 175 return (error); 176 } 177 178 #undef RANGECHK 179 180 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 181 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 182 "IP Ports"); 183 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 186 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 187 ""); 188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 189 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 190 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 191 ""); 192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 193 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 194 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 195 ""); 196 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 197 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 198 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 199 ""); 200 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 201 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 202 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 203 ""); 204 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 205 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 206 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 207 ""); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 209 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 210 &VNET_NAME(ipport_reservedhigh), 0, ""); 211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 212 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 214 CTLFLAG_VNET | CTLFLAG_RW, 215 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 216 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 217 CTLFLAG_VNET | CTLFLAG_RW, 218 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 219 "allocations before switching to a sequental one"); 220 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 221 CTLFLAG_VNET | CTLFLAG_RW, 222 &VNET_NAME(ipport_randomtime), 0, 223 "Minimum time to keep sequental port " 224 "allocation before switching to a random one"); 225 226 #ifdef RATELIMIT 227 counter_u64_t rate_limit_new; 228 counter_u64_t rate_limit_chg; 229 counter_u64_t rate_limit_active; 230 counter_u64_t rate_limit_alloc_fail; 231 counter_u64_t rate_limit_set_ok; 232 233 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 234 "IP Rate Limiting"); 235 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 236 &rate_limit_active, "Active rate limited connections"); 237 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 238 &rate_limit_alloc_fail, "Rate limited connection failures"); 239 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 240 &rate_limit_set_ok, "Rate limited setting succeeded"); 241 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 242 &rate_limit_new, "Total Rate limit new attempts"); 243 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 244 &rate_limit_chg, "Total Rate limited change attempts"); 245 246 #endif /* RATELIMIT */ 247 248 #endif /* INET */ 249 250 /* 251 * in_pcb.c: manage the Protocol Control Blocks. 252 * 253 * NOTE: It is assumed that most of these functions will be called with 254 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 255 * functions often modify hash chains or addresses in pcbs. 256 */ 257 258 static struct inpcblbgroup * 259 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 260 uint16_t port, const union in_dependaddr *addr, int size, 261 uint8_t numa_domain) 262 { 263 struct inpcblbgroup *grp; 264 size_t bytes; 265 266 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 267 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 268 if (!grp) 269 return (NULL); 270 grp->il_vflag = vflag; 271 grp->il_lport = port; 272 grp->il_numa_domain = numa_domain; 273 grp->il_dependladdr = *addr; 274 grp->il_inpsiz = size; 275 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 276 return (grp); 277 } 278 279 static void 280 in_pcblbgroup_free_deferred(epoch_context_t ctx) 281 { 282 struct inpcblbgroup *grp; 283 284 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 285 free(grp, M_PCB); 286 } 287 288 static void 289 in_pcblbgroup_free(struct inpcblbgroup *grp) 290 { 291 292 CK_LIST_REMOVE(grp, il_list); 293 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 294 } 295 296 static struct inpcblbgroup * 297 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 298 struct inpcblbgroup *old_grp, int size) 299 { 300 struct inpcblbgroup *grp; 301 int i; 302 303 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 304 old_grp->il_lport, &old_grp->il_dependladdr, size, 305 old_grp->il_numa_domain); 306 if (grp == NULL) 307 return (NULL); 308 309 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 310 ("invalid new local group size %d and old local group count %d", 311 grp->il_inpsiz, old_grp->il_inpcnt)); 312 313 for (i = 0; i < old_grp->il_inpcnt; ++i) 314 grp->il_inp[i] = old_grp->il_inp[i]; 315 grp->il_inpcnt = old_grp->il_inpcnt; 316 in_pcblbgroup_free(old_grp); 317 return (grp); 318 } 319 320 /* 321 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 322 * and shrink group if possible. 323 */ 324 static void 325 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 326 int i) 327 { 328 struct inpcblbgroup *grp, *new_grp; 329 330 grp = *grpp; 331 for (; i + 1 < grp->il_inpcnt; ++i) 332 grp->il_inp[i] = grp->il_inp[i + 1]; 333 grp->il_inpcnt--; 334 335 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 336 grp->il_inpcnt <= grp->il_inpsiz / 4) { 337 /* Shrink this group. */ 338 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 339 if (new_grp != NULL) 340 *grpp = new_grp; 341 } 342 } 343 344 /* 345 * Add PCB to load balance group for SO_REUSEPORT_LB option. 346 */ 347 static int 348 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 349 { 350 const static struct timeval interval = { 60, 0 }; 351 static struct timeval lastprint; 352 struct inpcbinfo *pcbinfo; 353 struct inpcblbgrouphead *hdr; 354 struct inpcblbgroup *grp; 355 uint32_t idx; 356 357 pcbinfo = inp->inp_pcbinfo; 358 359 INP_WLOCK_ASSERT(inp); 360 INP_HASH_WLOCK_ASSERT(pcbinfo); 361 362 /* 363 * Don't allow jailed socket to join local group. 364 */ 365 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 366 return (0); 367 368 #ifdef INET6 369 /* 370 * Don't allow IPv4 mapped INET6 wild socket. 371 */ 372 if ((inp->inp_vflag & INP_IPV4) && 373 inp->inp_laddr.s_addr == INADDR_ANY && 374 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 375 return (0); 376 } 377 #endif 378 379 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 380 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 381 CK_LIST_FOREACH(grp, hdr, il_list) { 382 if (grp->il_vflag == inp->inp_vflag && 383 grp->il_lport == inp->inp_lport && 384 grp->il_numa_domain == numa_domain && 385 memcmp(&grp->il_dependladdr, 386 &inp->inp_inc.inc_ie.ie_dependladdr, 387 sizeof(grp->il_dependladdr)) == 0) 388 break; 389 } 390 if (grp == NULL) { 391 /* Create new load balance group. */ 392 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 393 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 394 INPCBLBGROUP_SIZMIN, numa_domain); 395 if (grp == NULL) 396 return (ENOBUFS); 397 } else if (grp->il_inpcnt == grp->il_inpsiz) { 398 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 399 if (ratecheck(&lastprint, &interval)) 400 printf("lb group port %d, limit reached\n", 401 ntohs(grp->il_lport)); 402 return (0); 403 } 404 405 /* Expand this local group. */ 406 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 407 if (grp == NULL) 408 return (ENOBUFS); 409 } 410 411 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 412 ("invalid local group size %d and count %d", grp->il_inpsiz, 413 grp->il_inpcnt)); 414 415 grp->il_inp[grp->il_inpcnt] = inp; 416 grp->il_inpcnt++; 417 return (0); 418 } 419 420 /* 421 * Remove PCB from load balance group. 422 */ 423 static void 424 in_pcbremlbgrouphash(struct inpcb *inp) 425 { 426 struct inpcbinfo *pcbinfo; 427 struct inpcblbgrouphead *hdr; 428 struct inpcblbgroup *grp; 429 int i; 430 431 pcbinfo = inp->inp_pcbinfo; 432 433 INP_WLOCK_ASSERT(inp); 434 INP_HASH_WLOCK_ASSERT(pcbinfo); 435 436 hdr = &pcbinfo->ipi_lbgrouphashbase[ 437 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 438 CK_LIST_FOREACH(grp, hdr, il_list) { 439 for (i = 0; i < grp->il_inpcnt; ++i) { 440 if (grp->il_inp[i] != inp) 441 continue; 442 443 if (grp->il_inpcnt == 1) { 444 /* We are the last, free this local group. */ 445 in_pcblbgroup_free(grp); 446 } else { 447 /* Pull up inpcbs, shrink group if possible. */ 448 in_pcblbgroup_reorder(hdr, &grp, i); 449 } 450 return; 451 } 452 } 453 } 454 455 int 456 in_pcblbgroup_numa(struct inpcb *inp, int arg) 457 { 458 struct inpcbinfo *pcbinfo; 459 struct inpcblbgrouphead *hdr; 460 struct inpcblbgroup *grp; 461 int err, i; 462 uint8_t numa_domain; 463 464 switch (arg) { 465 case TCP_REUSPORT_LB_NUMA_NODOM: 466 numa_domain = M_NODOM; 467 break; 468 case TCP_REUSPORT_LB_NUMA_CURDOM: 469 numa_domain = PCPU_GET(domain); 470 break; 471 default: 472 if (arg < 0 || arg >= vm_ndomains) 473 return (EINVAL); 474 numa_domain = arg; 475 } 476 477 err = 0; 478 pcbinfo = inp->inp_pcbinfo; 479 INP_WLOCK_ASSERT(inp); 480 INP_HASH_WLOCK(pcbinfo); 481 hdr = &pcbinfo->ipi_lbgrouphashbase[ 482 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 483 CK_LIST_FOREACH(grp, hdr, il_list) { 484 for (i = 0; i < grp->il_inpcnt; ++i) { 485 if (grp->il_inp[i] != inp) 486 continue; 487 488 if (grp->il_numa_domain == numa_domain) { 489 goto abort_with_hash_wlock; 490 } 491 492 /* Remove it from the old group. */ 493 in_pcbremlbgrouphash(inp); 494 495 /* Add it to the new group based on numa domain. */ 496 in_pcbinslbgrouphash(inp, numa_domain); 497 goto abort_with_hash_wlock; 498 } 499 } 500 err = ENOENT; 501 abort_with_hash_wlock: 502 INP_HASH_WUNLOCK(pcbinfo); 503 return (err); 504 } 505 506 /* 507 * Different protocols initialize their inpcbs differently - giving 508 * different name to the lock. But they all are disposed the same. 509 */ 510 static void 511 inpcb_fini(void *mem, int size) 512 { 513 struct inpcb *inp = mem; 514 515 INP_LOCK_DESTROY(inp); 516 } 517 518 /* 519 * Initialize an inpcbinfo -- we should be able to reduce the number of 520 * arguments in time. 521 */ 522 void 523 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 524 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 525 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 526 { 527 528 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 529 530 INP_INFO_LOCK_INIT(pcbinfo, name); 531 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 532 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 533 #ifdef VIMAGE 534 pcbinfo->ipi_vnet = curvnet; 535 #endif 536 pcbinfo->ipi_listhead = listhead; 537 CK_LIST_INIT(pcbinfo->ipi_listhead); 538 pcbinfo->ipi_count = 0; 539 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 540 &pcbinfo->ipi_hashmask); 541 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 542 &pcbinfo->ipi_porthashmask); 543 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 544 &pcbinfo->ipi_lbgrouphashmask); 545 #ifdef PCBGROUP 546 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 547 #endif 548 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 549 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 550 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 551 uma_zone_set_warning(pcbinfo->ipi_zone, 552 "kern.ipc.maxsockets limit reached"); 553 } 554 555 /* 556 * Destroy an inpcbinfo. 557 */ 558 void 559 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 560 { 561 562 KASSERT(pcbinfo->ipi_count == 0, 563 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 564 565 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 566 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 567 pcbinfo->ipi_porthashmask); 568 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 569 pcbinfo->ipi_lbgrouphashmask); 570 #ifdef PCBGROUP 571 in_pcbgroup_destroy(pcbinfo); 572 #endif 573 uma_zdestroy(pcbinfo->ipi_zone); 574 INP_LIST_LOCK_DESTROY(pcbinfo); 575 INP_HASH_LOCK_DESTROY(pcbinfo); 576 INP_INFO_LOCK_DESTROY(pcbinfo); 577 } 578 579 /* 580 * Allocate a PCB and associate it with the socket. 581 * On success return with the PCB locked. 582 */ 583 int 584 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 585 { 586 struct inpcb *inp; 587 int error; 588 589 error = 0; 590 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 591 if (inp == NULL) 592 return (ENOBUFS); 593 bzero(&inp->inp_start_zero, inp_zero_size); 594 #ifdef NUMA 595 inp->inp_numa_domain = M_NODOM; 596 #endif 597 inp->inp_pcbinfo = pcbinfo; 598 inp->inp_socket = so; 599 inp->inp_cred = crhold(so->so_cred); 600 inp->inp_inc.inc_fibnum = so->so_fibnum; 601 #ifdef MAC 602 error = mac_inpcb_init(inp, M_NOWAIT); 603 if (error != 0) 604 goto out; 605 mac_inpcb_create(so, inp); 606 #endif 607 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 608 error = ipsec_init_pcbpolicy(inp); 609 if (error != 0) { 610 #ifdef MAC 611 mac_inpcb_destroy(inp); 612 #endif 613 goto out; 614 } 615 #endif /*IPSEC*/ 616 #ifdef INET6 617 if (INP_SOCKAF(so) == AF_INET6) { 618 inp->inp_vflag |= INP_IPV6PROTO; 619 if (V_ip6_v6only) 620 inp->inp_flags |= IN6P_IPV6_V6ONLY; 621 } 622 #endif 623 INP_WLOCK(inp); 624 INP_LIST_WLOCK(pcbinfo); 625 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 626 pcbinfo->ipi_count++; 627 so->so_pcb = (caddr_t)inp; 628 #ifdef INET6 629 if (V_ip6_auto_flowlabel) 630 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 631 #endif 632 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 633 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 634 635 /* 636 * Routes in inpcb's can cache L2 as well; they are guaranteed 637 * to be cleaned up. 638 */ 639 inp->inp_route.ro_flags = RT_LLE_CACHE; 640 INP_LIST_WUNLOCK(pcbinfo); 641 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 642 out: 643 if (error != 0) { 644 crfree(inp->inp_cred); 645 uma_zfree(pcbinfo->ipi_zone, inp); 646 } 647 #endif 648 return (error); 649 } 650 651 #ifdef INET 652 int 653 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 654 { 655 int anonport, error; 656 657 KASSERT(nam == NULL || nam->sa_family == AF_INET, 658 ("%s: invalid address family for %p", __func__, nam)); 659 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 660 ("%s: invalid address length for %p", __func__, nam)); 661 INP_WLOCK_ASSERT(inp); 662 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 663 664 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 665 return (EINVAL); 666 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 667 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 668 &inp->inp_lport, cred); 669 if (error) 670 return (error); 671 if (in_pcbinshash(inp) != 0) { 672 inp->inp_laddr.s_addr = INADDR_ANY; 673 inp->inp_lport = 0; 674 return (EAGAIN); 675 } 676 if (anonport) 677 inp->inp_flags |= INP_ANONPORT; 678 return (0); 679 } 680 #endif 681 682 #if defined(INET) || defined(INET6) 683 /* 684 * Assign a local port like in_pcb_lport(), but also used with connect() 685 * and a foreign address and port. If fsa is non-NULL, choose a local port 686 * that is unused with those, otherwise one that is completely unused. 687 * lsa can be NULL for IPv6. 688 */ 689 int 690 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 691 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 692 { 693 struct inpcbinfo *pcbinfo; 694 struct inpcb *tmpinp; 695 unsigned short *lastport; 696 int count, dorandom, error; 697 u_short aux, first, last, lport; 698 #ifdef INET 699 struct in_addr laddr, faddr; 700 #endif 701 #ifdef INET6 702 struct in6_addr *laddr6, *faddr6; 703 #endif 704 705 pcbinfo = inp->inp_pcbinfo; 706 707 /* 708 * Because no actual state changes occur here, a global write lock on 709 * the pcbinfo isn't required. 710 */ 711 INP_LOCK_ASSERT(inp); 712 INP_HASH_LOCK_ASSERT(pcbinfo); 713 714 if (inp->inp_flags & INP_HIGHPORT) { 715 first = V_ipport_hifirstauto; /* sysctl */ 716 last = V_ipport_hilastauto; 717 lastport = &pcbinfo->ipi_lasthi; 718 } else if (inp->inp_flags & INP_LOWPORT) { 719 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 720 if (error) 721 return (error); 722 first = V_ipport_lowfirstauto; /* 1023 */ 723 last = V_ipport_lowlastauto; /* 600 */ 724 lastport = &pcbinfo->ipi_lastlow; 725 } else { 726 first = V_ipport_firstauto; /* sysctl */ 727 last = V_ipport_lastauto; 728 lastport = &pcbinfo->ipi_lastport; 729 } 730 /* 731 * For UDP(-Lite), use random port allocation as long as the user 732 * allows it. For TCP (and as of yet unknown) connections, 733 * use random port allocation only if the user allows it AND 734 * ipport_tick() allows it. 735 */ 736 if (V_ipport_randomized && 737 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 738 pcbinfo == &V_ulitecbinfo)) 739 dorandom = 1; 740 else 741 dorandom = 0; 742 /* 743 * It makes no sense to do random port allocation if 744 * we have the only port available. 745 */ 746 if (first == last) 747 dorandom = 0; 748 /* Make sure to not include UDP(-Lite) packets in the count. */ 749 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 750 V_ipport_tcpallocs++; 751 /* 752 * Instead of having two loops further down counting up or down 753 * make sure that first is always <= last and go with only one 754 * code path implementing all logic. 755 */ 756 if (first > last) { 757 aux = first; 758 first = last; 759 last = aux; 760 } 761 762 #ifdef INET 763 laddr.s_addr = INADDR_ANY; 764 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 765 if (lsa != NULL) 766 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 767 if (fsa != NULL) 768 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 769 } 770 #endif 771 #ifdef INET6 772 laddr6 = NULL; 773 if ((inp->inp_vflag & INP_IPV6) != 0) { 774 if (lsa != NULL) 775 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 776 if (fsa != NULL) 777 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 778 } 779 #endif 780 781 tmpinp = NULL; 782 lport = *lportp; 783 784 if (dorandom) 785 *lastport = first + (arc4random() % (last - first)); 786 787 count = last - first; 788 789 do { 790 if (count-- < 0) /* completely used? */ 791 return (EADDRNOTAVAIL); 792 ++*lastport; 793 if (*lastport < first || *lastport > last) 794 *lastport = first; 795 lport = htons(*lastport); 796 797 if (fsa != NULL) { 798 #ifdef INET 799 if (lsa->sa_family == AF_INET) { 800 tmpinp = in_pcblookup_hash_locked(pcbinfo, 801 faddr, fport, laddr, lport, lookupflags, 802 NULL, M_NODOM); 803 } 804 #endif 805 #ifdef INET6 806 if (lsa->sa_family == AF_INET6) { 807 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 808 faddr6, fport, laddr6, lport, lookupflags, 809 NULL, M_NODOM); 810 } 811 #endif 812 } else { 813 #ifdef INET6 814 if ((inp->inp_vflag & INP_IPV6) != 0) 815 tmpinp = in6_pcblookup_local(pcbinfo, 816 &inp->in6p_laddr, lport, lookupflags, cred); 817 #endif 818 #if defined(INET) && defined(INET6) 819 else 820 #endif 821 #ifdef INET 822 tmpinp = in_pcblookup_local(pcbinfo, laddr, 823 lport, lookupflags, cred); 824 #endif 825 } 826 } while (tmpinp != NULL); 827 828 *lportp = lport; 829 830 return (0); 831 } 832 833 /* 834 * Select a local port (number) to use. 835 */ 836 int 837 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 838 struct ucred *cred, int lookupflags) 839 { 840 struct sockaddr_in laddr; 841 842 if (laddrp) { 843 bzero(&laddr, sizeof(laddr)); 844 laddr.sin_family = AF_INET; 845 laddr.sin_addr = *laddrp; 846 } 847 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 848 NULL, lportp, NULL, 0, cred, lookupflags)); 849 } 850 851 /* 852 * Return cached socket options. 853 */ 854 int 855 inp_so_options(const struct inpcb *inp) 856 { 857 int so_options; 858 859 so_options = 0; 860 861 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 862 so_options |= SO_REUSEPORT_LB; 863 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 864 so_options |= SO_REUSEPORT; 865 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 866 so_options |= SO_REUSEADDR; 867 return (so_options); 868 } 869 #endif /* INET || INET6 */ 870 871 /* 872 * Check if a new BINDMULTI socket is allowed to be created. 873 * 874 * ni points to the new inp. 875 * oi points to the exisitng inp. 876 * 877 * This checks whether the existing inp also has BINDMULTI and 878 * whether the credentials match. 879 */ 880 int 881 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 882 { 883 /* Check permissions match */ 884 if ((ni->inp_flags2 & INP_BINDMULTI) && 885 (ni->inp_cred->cr_uid != 886 oi->inp_cred->cr_uid)) 887 return (0); 888 889 /* Check the existing inp has BINDMULTI set */ 890 if ((ni->inp_flags2 & INP_BINDMULTI) && 891 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 892 return (0); 893 894 /* 895 * We're okay - either INP_BINDMULTI isn't set on ni, or 896 * it is and it matches the checks. 897 */ 898 return (1); 899 } 900 901 #ifdef INET 902 /* 903 * Set up a bind operation on a PCB, performing port allocation 904 * as required, but do not actually modify the PCB. Callers can 905 * either complete the bind by setting inp_laddr/inp_lport and 906 * calling in_pcbinshash(), or they can just use the resulting 907 * port and address to authorise the sending of a once-off packet. 908 * 909 * On error, the values of *laddrp and *lportp are not changed. 910 */ 911 int 912 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 913 u_short *lportp, struct ucred *cred) 914 { 915 struct socket *so = inp->inp_socket; 916 struct sockaddr_in *sin; 917 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 918 struct in_addr laddr; 919 u_short lport = 0; 920 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 921 int error; 922 923 /* 924 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 925 * so that we don't have to add to the (already messy) code below. 926 */ 927 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 928 929 /* 930 * No state changes, so read locks are sufficient here. 931 */ 932 INP_LOCK_ASSERT(inp); 933 INP_HASH_LOCK_ASSERT(pcbinfo); 934 935 laddr.s_addr = *laddrp; 936 if (nam != NULL && laddr.s_addr != INADDR_ANY) 937 return (EINVAL); 938 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 939 lookupflags = INPLOOKUP_WILDCARD; 940 if (nam == NULL) { 941 if ((error = prison_local_ip4(cred, &laddr)) != 0) 942 return (error); 943 } else { 944 sin = (struct sockaddr_in *)nam; 945 KASSERT(sin->sin_family == AF_INET, 946 ("%s: invalid family for address %p", __func__, sin)); 947 KASSERT(sin->sin_len == sizeof(*sin), 948 ("%s: invalid length for address %p", __func__, sin)); 949 950 error = prison_local_ip4(cred, &sin->sin_addr); 951 if (error) 952 return (error); 953 if (sin->sin_port != *lportp) { 954 /* Don't allow the port to change. */ 955 if (*lportp != 0) 956 return (EINVAL); 957 lport = sin->sin_port; 958 } 959 /* NB: lport is left as 0 if the port isn't being changed. */ 960 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 961 /* 962 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 963 * allow complete duplication of binding if 964 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 965 * and a multicast address is bound on both 966 * new and duplicated sockets. 967 */ 968 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 969 reuseport = SO_REUSEADDR|SO_REUSEPORT; 970 /* 971 * XXX: How to deal with SO_REUSEPORT_LB here? 972 * Treat same as SO_REUSEPORT for now. 973 */ 974 if ((so->so_options & 975 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 976 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 977 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 978 sin->sin_port = 0; /* yech... */ 979 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 980 /* 981 * Is the address a local IP address? 982 * If INP_BINDANY is set, then the socket may be bound 983 * to any endpoint address, local or not. 984 */ 985 if ((inp->inp_flags & INP_BINDANY) == 0 && 986 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 987 return (EADDRNOTAVAIL); 988 } 989 laddr = sin->sin_addr; 990 if (lport) { 991 struct inpcb *t; 992 struct tcptw *tw; 993 994 /* GROSS */ 995 if (ntohs(lport) <= V_ipport_reservedhigh && 996 ntohs(lport) >= V_ipport_reservedlow && 997 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 998 return (EACCES); 999 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1000 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1001 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1002 lport, INPLOOKUP_WILDCARD, cred); 1003 /* 1004 * XXX 1005 * This entire block sorely needs a rewrite. 1006 */ 1007 if (t && 1008 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1009 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1010 (so->so_type != SOCK_STREAM || 1011 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1012 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1013 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1014 (t->inp_flags2 & INP_REUSEPORT) || 1015 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1016 (inp->inp_cred->cr_uid != 1017 t->inp_cred->cr_uid)) 1018 return (EADDRINUSE); 1019 1020 /* 1021 * If the socket is a BINDMULTI socket, then 1022 * the credentials need to match and the 1023 * original socket also has to have been bound 1024 * with BINDMULTI. 1025 */ 1026 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1027 return (EADDRINUSE); 1028 } 1029 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1030 lport, lookupflags, cred); 1031 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1032 /* 1033 * XXXRW: If an incpb has had its timewait 1034 * state recycled, we treat the address as 1035 * being in use (for now). This is better 1036 * than a panic, but not desirable. 1037 */ 1038 tw = intotw(t); 1039 if (tw == NULL || 1040 ((reuseport & tw->tw_so_options) == 0 && 1041 (reuseport_lb & 1042 tw->tw_so_options) == 0)) { 1043 return (EADDRINUSE); 1044 } 1045 } else if (t && 1046 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1047 (reuseport & inp_so_options(t)) == 0 && 1048 (reuseport_lb & inp_so_options(t)) == 0) { 1049 #ifdef INET6 1050 if (ntohl(sin->sin_addr.s_addr) != 1051 INADDR_ANY || 1052 ntohl(t->inp_laddr.s_addr) != 1053 INADDR_ANY || 1054 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1055 (t->inp_vflag & INP_IPV6PROTO) == 0) 1056 #endif 1057 return (EADDRINUSE); 1058 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1059 return (EADDRINUSE); 1060 } 1061 } 1062 } 1063 if (*lportp != 0) 1064 lport = *lportp; 1065 if (lport == 0) { 1066 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1067 if (error != 0) 1068 return (error); 1069 } 1070 *laddrp = laddr.s_addr; 1071 *lportp = lport; 1072 return (0); 1073 } 1074 1075 /* 1076 * Connect from a socket to a specified address. 1077 * Both address and port must be specified in argument sin. 1078 * If don't have a local address for this socket yet, 1079 * then pick one. 1080 */ 1081 int 1082 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 1083 struct ucred *cred, struct mbuf *m, bool rehash) 1084 { 1085 u_short lport, fport; 1086 in_addr_t laddr, faddr; 1087 int anonport, error; 1088 1089 INP_WLOCK_ASSERT(inp); 1090 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1091 1092 lport = inp->inp_lport; 1093 laddr = inp->inp_laddr.s_addr; 1094 anonport = (lport == 0); 1095 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1096 NULL, cred); 1097 if (error) 1098 return (error); 1099 1100 /* Do the initial binding of the local address if required. */ 1101 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1102 KASSERT(rehash == true, 1103 ("Rehashing required for unbound inps")); 1104 inp->inp_lport = lport; 1105 inp->inp_laddr.s_addr = laddr; 1106 if (in_pcbinshash(inp) != 0) { 1107 inp->inp_laddr.s_addr = INADDR_ANY; 1108 inp->inp_lport = 0; 1109 return (EAGAIN); 1110 } 1111 } 1112 1113 /* Commit the remaining changes. */ 1114 inp->inp_lport = lport; 1115 inp->inp_laddr.s_addr = laddr; 1116 inp->inp_faddr.s_addr = faddr; 1117 inp->inp_fport = fport; 1118 if (rehash) { 1119 in_pcbrehash_mbuf(inp, m); 1120 } else { 1121 in_pcbinshash_mbuf(inp, m); 1122 } 1123 1124 if (anonport) 1125 inp->inp_flags |= INP_ANONPORT; 1126 return (0); 1127 } 1128 1129 int 1130 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1131 { 1132 1133 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1134 } 1135 1136 /* 1137 * Do proper source address selection on an unbound socket in case 1138 * of connect. Take jails into account as well. 1139 */ 1140 int 1141 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1142 struct ucred *cred) 1143 { 1144 struct ifaddr *ifa; 1145 struct sockaddr *sa; 1146 struct sockaddr_in *sin, dst; 1147 struct nhop_object *nh; 1148 int error; 1149 1150 NET_EPOCH_ASSERT(); 1151 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1152 /* 1153 * Bypass source address selection and use the primary jail IP 1154 * if requested. 1155 */ 1156 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1157 return (0); 1158 1159 error = 0; 1160 1161 nh = NULL; 1162 bzero(&dst, sizeof(dst)); 1163 sin = &dst; 1164 sin->sin_family = AF_INET; 1165 sin->sin_len = sizeof(struct sockaddr_in); 1166 sin->sin_addr.s_addr = faddr->s_addr; 1167 1168 /* 1169 * If route is known our src addr is taken from the i/f, 1170 * else punt. 1171 * 1172 * Find out route to destination. 1173 */ 1174 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1175 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1176 0, NHR_NONE, 0); 1177 1178 /* 1179 * If we found a route, use the address corresponding to 1180 * the outgoing interface. 1181 * 1182 * Otherwise assume faddr is reachable on a directly connected 1183 * network and try to find a corresponding interface to take 1184 * the source address from. 1185 */ 1186 if (nh == NULL || nh->nh_ifp == NULL) { 1187 struct in_ifaddr *ia; 1188 struct ifnet *ifp; 1189 1190 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1191 inp->inp_socket->so_fibnum)); 1192 if (ia == NULL) { 1193 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1194 inp->inp_socket->so_fibnum)); 1195 } 1196 if (ia == NULL) { 1197 error = ENETUNREACH; 1198 goto done; 1199 } 1200 1201 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1202 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1203 goto done; 1204 } 1205 1206 ifp = ia->ia_ifp; 1207 ia = NULL; 1208 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1209 sa = ifa->ifa_addr; 1210 if (sa->sa_family != AF_INET) 1211 continue; 1212 sin = (struct sockaddr_in *)sa; 1213 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1214 ia = (struct in_ifaddr *)ifa; 1215 break; 1216 } 1217 } 1218 if (ia != NULL) { 1219 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1220 goto done; 1221 } 1222 1223 /* 3. As a last resort return the 'default' jail address. */ 1224 error = prison_get_ip4(cred, laddr); 1225 goto done; 1226 } 1227 1228 /* 1229 * If the outgoing interface on the route found is not 1230 * a loopback interface, use the address from that interface. 1231 * In case of jails do those three steps: 1232 * 1. check if the interface address belongs to the jail. If so use it. 1233 * 2. check if we have any address on the outgoing interface 1234 * belonging to this jail. If so use it. 1235 * 3. as a last resort return the 'default' jail address. 1236 */ 1237 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1238 struct in_ifaddr *ia; 1239 struct ifnet *ifp; 1240 1241 /* If not jailed, use the default returned. */ 1242 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1243 ia = (struct in_ifaddr *)nh->nh_ifa; 1244 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1245 goto done; 1246 } 1247 1248 /* Jailed. */ 1249 /* 1. Check if the iface address belongs to the jail. */ 1250 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1251 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1252 ia = (struct in_ifaddr *)nh->nh_ifa; 1253 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1254 goto done; 1255 } 1256 1257 /* 1258 * 2. Check if we have any address on the outgoing interface 1259 * belonging to this jail. 1260 */ 1261 ia = NULL; 1262 ifp = nh->nh_ifp; 1263 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1264 sa = ifa->ifa_addr; 1265 if (sa->sa_family != AF_INET) 1266 continue; 1267 sin = (struct sockaddr_in *)sa; 1268 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1269 ia = (struct in_ifaddr *)ifa; 1270 break; 1271 } 1272 } 1273 if (ia != NULL) { 1274 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1275 goto done; 1276 } 1277 1278 /* 3. As a last resort return the 'default' jail address. */ 1279 error = prison_get_ip4(cred, laddr); 1280 goto done; 1281 } 1282 1283 /* 1284 * The outgoing interface is marked with 'loopback net', so a route 1285 * to ourselves is here. 1286 * Try to find the interface of the destination address and then 1287 * take the address from there. That interface is not necessarily 1288 * a loopback interface. 1289 * In case of jails, check that it is an address of the jail 1290 * and if we cannot find, fall back to the 'default' jail address. 1291 */ 1292 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1293 struct in_ifaddr *ia; 1294 1295 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1296 inp->inp_socket->so_fibnum)); 1297 if (ia == NULL) 1298 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1299 inp->inp_socket->so_fibnum)); 1300 if (ia == NULL) 1301 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1302 1303 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1304 if (ia == NULL) { 1305 error = ENETUNREACH; 1306 goto done; 1307 } 1308 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1309 goto done; 1310 } 1311 1312 /* Jailed. */ 1313 if (ia != NULL) { 1314 struct ifnet *ifp; 1315 1316 ifp = ia->ia_ifp; 1317 ia = NULL; 1318 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1319 sa = ifa->ifa_addr; 1320 if (sa->sa_family != AF_INET) 1321 continue; 1322 sin = (struct sockaddr_in *)sa; 1323 if (prison_check_ip4(cred, 1324 &sin->sin_addr) == 0) { 1325 ia = (struct in_ifaddr *)ifa; 1326 break; 1327 } 1328 } 1329 if (ia != NULL) { 1330 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1331 goto done; 1332 } 1333 } 1334 1335 /* 3. As a last resort return the 'default' jail address. */ 1336 error = prison_get_ip4(cred, laddr); 1337 goto done; 1338 } 1339 1340 done: 1341 return (error); 1342 } 1343 1344 /* 1345 * Set up for a connect from a socket to the specified address. 1346 * On entry, *laddrp and *lportp should contain the current local 1347 * address and port for the PCB; these are updated to the values 1348 * that should be placed in inp_laddr and inp_lport to complete 1349 * the connect. 1350 * 1351 * On success, *faddrp and *fportp will be set to the remote address 1352 * and port. These are not updated in the error case. 1353 * 1354 * If the operation fails because the connection already exists, 1355 * *oinpp will be set to the PCB of that connection so that the 1356 * caller can decide to override it. In all other cases, *oinpp 1357 * is set to NULL. 1358 */ 1359 int 1360 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1361 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1362 struct inpcb **oinpp, struct ucred *cred) 1363 { 1364 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1365 struct in_ifaddr *ia; 1366 struct inpcb *oinp; 1367 struct in_addr laddr, faddr; 1368 u_short lport, fport; 1369 int error; 1370 1371 KASSERT(sin->sin_family == AF_INET, 1372 ("%s: invalid address family for %p", __func__, sin)); 1373 KASSERT(sin->sin_len == sizeof(*sin), 1374 ("%s: invalid address length for %p", __func__, sin)); 1375 1376 /* 1377 * Because a global state change doesn't actually occur here, a read 1378 * lock is sufficient. 1379 */ 1380 NET_EPOCH_ASSERT(); 1381 INP_LOCK_ASSERT(inp); 1382 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1383 1384 if (oinpp != NULL) 1385 *oinpp = NULL; 1386 if (sin->sin_port == 0) 1387 return (EADDRNOTAVAIL); 1388 laddr.s_addr = *laddrp; 1389 lport = *lportp; 1390 faddr = sin->sin_addr; 1391 fport = sin->sin_port; 1392 #ifdef ROUTE_MPATH 1393 if (CALC_FLOWID_OUTBOUND) { 1394 uint32_t hash_val, hash_type; 1395 1396 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1397 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1398 1399 inp->inp_flowid = hash_val; 1400 inp->inp_flowtype = hash_type; 1401 } 1402 #endif 1403 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1404 /* 1405 * If the destination address is INADDR_ANY, 1406 * use the primary local address. 1407 * If the supplied address is INADDR_BROADCAST, 1408 * and the primary interface supports broadcast, 1409 * choose the broadcast address for that interface. 1410 */ 1411 if (faddr.s_addr == INADDR_ANY) { 1412 faddr = 1413 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1414 if (cred != NULL && 1415 (error = prison_get_ip4(cred, &faddr)) != 0) 1416 return (error); 1417 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1418 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1419 IFF_BROADCAST) 1420 faddr = satosin(&CK_STAILQ_FIRST( 1421 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1422 } 1423 } 1424 if (laddr.s_addr == INADDR_ANY) { 1425 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1426 /* 1427 * If the destination address is multicast and an outgoing 1428 * interface has been set as a multicast option, prefer the 1429 * address of that interface as our source address. 1430 */ 1431 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1432 inp->inp_moptions != NULL) { 1433 struct ip_moptions *imo; 1434 struct ifnet *ifp; 1435 1436 imo = inp->inp_moptions; 1437 if (imo->imo_multicast_ifp != NULL) { 1438 ifp = imo->imo_multicast_ifp; 1439 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1440 if ((ia->ia_ifp == ifp) && 1441 (cred == NULL || 1442 prison_check_ip4(cred, 1443 &ia->ia_addr.sin_addr) == 0)) 1444 break; 1445 } 1446 if (ia == NULL) 1447 error = EADDRNOTAVAIL; 1448 else { 1449 laddr = ia->ia_addr.sin_addr; 1450 error = 0; 1451 } 1452 } 1453 } 1454 if (error) 1455 return (error); 1456 } 1457 1458 if (lport != 0) { 1459 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1460 fport, laddr, lport, 0, NULL, M_NODOM); 1461 if (oinp != NULL) { 1462 if (oinpp != NULL) 1463 *oinpp = oinp; 1464 return (EADDRINUSE); 1465 } 1466 } else { 1467 struct sockaddr_in lsin, fsin; 1468 1469 bzero(&lsin, sizeof(lsin)); 1470 bzero(&fsin, sizeof(fsin)); 1471 lsin.sin_family = AF_INET; 1472 lsin.sin_addr = laddr; 1473 fsin.sin_family = AF_INET; 1474 fsin.sin_addr = faddr; 1475 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1476 &lport, (struct sockaddr *)& fsin, fport, cred, 1477 INPLOOKUP_WILDCARD); 1478 if (error) 1479 return (error); 1480 } 1481 *laddrp = laddr.s_addr; 1482 *lportp = lport; 1483 *faddrp = faddr.s_addr; 1484 *fportp = fport; 1485 return (0); 1486 } 1487 1488 void 1489 in_pcbdisconnect(struct inpcb *inp) 1490 { 1491 1492 INP_WLOCK_ASSERT(inp); 1493 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1494 1495 inp->inp_faddr.s_addr = INADDR_ANY; 1496 inp->inp_fport = 0; 1497 in_pcbrehash(inp); 1498 } 1499 #endif /* INET */ 1500 1501 /* 1502 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1503 * For most protocols, this will be invoked immediately prior to calling 1504 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1505 * socket, in which case in_pcbfree() is deferred. 1506 */ 1507 void 1508 in_pcbdetach(struct inpcb *inp) 1509 { 1510 1511 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1512 1513 #ifdef RATELIMIT 1514 if (inp->inp_snd_tag != NULL) 1515 in_pcbdetach_txrtlmt(inp); 1516 #endif 1517 inp->inp_socket->so_pcb = NULL; 1518 inp->inp_socket = NULL; 1519 } 1520 1521 /* 1522 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1523 * stability of an inpcb pointer despite the inpcb lock being released. This 1524 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1525 * but where the inpcb lock may already held, or when acquiring a reference 1526 * via a pcbgroup. 1527 * 1528 * in_pcbref() should be used only to provide brief memory stability, and 1529 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1530 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1531 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1532 * lock and rele are the *only* safe operations that may be performed on the 1533 * inpcb. 1534 * 1535 * While the inpcb will not be freed, releasing the inpcb lock means that the 1536 * connection's state may change, so the caller should be careful to 1537 * revalidate any cached state on reacquiring the lock. Drop the reference 1538 * using in_pcbrele(). 1539 */ 1540 void 1541 in_pcbref(struct inpcb *inp) 1542 { 1543 1544 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1545 1546 refcount_acquire(&inp->inp_refcount); 1547 } 1548 1549 /* 1550 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1551 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1552 * return a flag indicating whether or not the inpcb remains valid. If it is 1553 * valid, we return with the inpcb lock held. 1554 * 1555 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1556 * reference on an inpcb. Historically more work was done here (actually, in 1557 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1558 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1559 * about memory stability (and continued use of the write lock). 1560 */ 1561 int 1562 in_pcbrele_rlocked(struct inpcb *inp) 1563 { 1564 struct inpcbinfo *pcbinfo; 1565 1566 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1567 1568 INP_RLOCK_ASSERT(inp); 1569 1570 if (refcount_release(&inp->inp_refcount) == 0) { 1571 /* 1572 * If the inpcb has been freed, let the caller know, even if 1573 * this isn't the last reference. 1574 */ 1575 if (inp->inp_flags2 & INP_FREED) { 1576 INP_RUNLOCK(inp); 1577 return (1); 1578 } 1579 return (0); 1580 } 1581 1582 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1583 #ifdef TCPHPTS 1584 if (inp->inp_in_hpts || inp->inp_in_input) { 1585 struct tcp_hpts_entry *hpts; 1586 /* 1587 * We should not be on the hpts at 1588 * this point in any form. we must 1589 * get the lock to be sure. 1590 */ 1591 hpts = tcp_hpts_lock(inp); 1592 if (inp->inp_in_hpts) 1593 panic("Hpts:%p inp:%p at free still on hpts", 1594 hpts, inp); 1595 mtx_unlock(&hpts->p_mtx); 1596 hpts = tcp_input_lock(inp); 1597 if (inp->inp_in_input) 1598 panic("Hpts:%p inp:%p at free still on input hpts", 1599 hpts, inp); 1600 mtx_unlock(&hpts->p_mtx); 1601 } 1602 #endif 1603 INP_RUNLOCK(inp); 1604 pcbinfo = inp->inp_pcbinfo; 1605 uma_zfree(pcbinfo->ipi_zone, inp); 1606 return (1); 1607 } 1608 1609 int 1610 in_pcbrele_wlocked(struct inpcb *inp) 1611 { 1612 struct inpcbinfo *pcbinfo; 1613 1614 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1615 1616 INP_WLOCK_ASSERT(inp); 1617 1618 if (refcount_release(&inp->inp_refcount) == 0) { 1619 /* 1620 * If the inpcb has been freed, let the caller know, even if 1621 * this isn't the last reference. 1622 */ 1623 if (inp->inp_flags2 & INP_FREED) { 1624 INP_WUNLOCK(inp); 1625 return (1); 1626 } 1627 return (0); 1628 } 1629 1630 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1631 #ifdef TCPHPTS 1632 if (inp->inp_in_hpts || inp->inp_in_input) { 1633 struct tcp_hpts_entry *hpts; 1634 /* 1635 * We should not be on the hpts at 1636 * this point in any form. we must 1637 * get the lock to be sure. 1638 */ 1639 hpts = tcp_hpts_lock(inp); 1640 if (inp->inp_in_hpts) 1641 panic("Hpts:%p inp:%p at free still on hpts", 1642 hpts, inp); 1643 mtx_unlock(&hpts->p_mtx); 1644 hpts = tcp_input_lock(inp); 1645 if (inp->inp_in_input) 1646 panic("Hpts:%p inp:%p at free still on input hpts", 1647 hpts, inp); 1648 mtx_unlock(&hpts->p_mtx); 1649 } 1650 #endif 1651 INP_WUNLOCK(inp); 1652 pcbinfo = inp->inp_pcbinfo; 1653 uma_zfree(pcbinfo->ipi_zone, inp); 1654 return (1); 1655 } 1656 1657 static void 1658 inpcbport_free(epoch_context_t ctx) 1659 { 1660 struct inpcbport *phd; 1661 1662 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1663 free(phd, M_PCB); 1664 } 1665 1666 static void 1667 in_pcbfree_deferred(epoch_context_t ctx) 1668 { 1669 struct inpcb *inp; 1670 int released __unused; 1671 1672 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1673 1674 INP_WLOCK(inp); 1675 CURVNET_SET(inp->inp_vnet); 1676 #ifdef INET 1677 struct ip_moptions *imo = inp->inp_moptions; 1678 inp->inp_moptions = NULL; 1679 #endif 1680 /* XXXRW: Do as much as possible here. */ 1681 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1682 if (inp->inp_sp != NULL) 1683 ipsec_delete_pcbpolicy(inp); 1684 #endif 1685 #ifdef INET6 1686 struct ip6_moptions *im6o = NULL; 1687 if (inp->inp_vflag & INP_IPV6PROTO) { 1688 ip6_freepcbopts(inp->in6p_outputopts); 1689 im6o = inp->in6p_moptions; 1690 inp->in6p_moptions = NULL; 1691 } 1692 #endif 1693 if (inp->inp_options) 1694 (void)m_free(inp->inp_options); 1695 inp->inp_vflag = 0; 1696 crfree(inp->inp_cred); 1697 #ifdef MAC 1698 mac_inpcb_destroy(inp); 1699 #endif 1700 released = in_pcbrele_wlocked(inp); 1701 MPASS(released); 1702 #ifdef INET6 1703 ip6_freemoptions(im6o); 1704 #endif 1705 #ifdef INET 1706 inp_freemoptions(imo); 1707 #endif 1708 CURVNET_RESTORE(); 1709 } 1710 1711 /* 1712 * Unconditionally schedule an inpcb to be freed by decrementing its 1713 * reference count, which should occur only after the inpcb has been detached 1714 * from its socket. If another thread holds a temporary reference (acquired 1715 * using in_pcbref()) then the free is deferred until that reference is 1716 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1717 * work, including removal from global lists, is done in this context, where 1718 * the pcbinfo lock is held. 1719 */ 1720 void 1721 in_pcbfree(struct inpcb *inp) 1722 { 1723 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1724 1725 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1726 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1727 ("%s: called twice for pcb %p", __func__, inp)); 1728 if (inp->inp_flags2 & INP_FREED) { 1729 INP_WUNLOCK(inp); 1730 return; 1731 } 1732 1733 INP_WLOCK_ASSERT(inp); 1734 INP_LIST_WLOCK(pcbinfo); 1735 in_pcbremlists(inp); 1736 INP_LIST_WUNLOCK(pcbinfo); 1737 RO_INVALIDATE_CACHE(&inp->inp_route); 1738 /* mark as destruction in progress */ 1739 inp->inp_flags2 |= INP_FREED; 1740 INP_WUNLOCK(inp); 1741 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1742 } 1743 1744 /* 1745 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1746 * port reservation, and preventing it from being returned by inpcb lookups. 1747 * 1748 * It is used by TCP to mark an inpcb as unused and avoid future packet 1749 * delivery or event notification when a socket remains open but TCP has 1750 * closed. This might occur as a result of a shutdown()-initiated TCP close 1751 * or a RST on the wire, and allows the port binding to be reused while still 1752 * maintaining the invariant that so_pcb always points to a valid inpcb until 1753 * in_pcbdetach(). 1754 * 1755 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1756 * in_pcbnotifyall() and in_pcbpurgeif0()? 1757 */ 1758 void 1759 in_pcbdrop(struct inpcb *inp) 1760 { 1761 1762 INP_WLOCK_ASSERT(inp); 1763 #ifdef INVARIANTS 1764 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1765 MPASS(inp->inp_refcount > 1); 1766 #endif 1767 1768 /* 1769 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1770 * the hash lock...? 1771 */ 1772 inp->inp_flags |= INP_DROPPED; 1773 if (inp->inp_flags & INP_INHASHLIST) { 1774 struct inpcbport *phd = inp->inp_phd; 1775 1776 INP_HASH_WLOCK(inp->inp_pcbinfo); 1777 in_pcbremlbgrouphash(inp); 1778 CK_LIST_REMOVE(inp, inp_hash); 1779 CK_LIST_REMOVE(inp, inp_portlist); 1780 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1781 CK_LIST_REMOVE(phd, phd_hash); 1782 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1783 } 1784 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1785 inp->inp_flags &= ~INP_INHASHLIST; 1786 #ifdef PCBGROUP 1787 in_pcbgroup_remove(inp); 1788 #endif 1789 } 1790 } 1791 1792 #ifdef INET 1793 /* 1794 * Common routines to return the socket addresses associated with inpcbs. 1795 */ 1796 struct sockaddr * 1797 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1798 { 1799 struct sockaddr_in *sin; 1800 1801 sin = malloc(sizeof *sin, M_SONAME, 1802 M_WAITOK | M_ZERO); 1803 sin->sin_family = AF_INET; 1804 sin->sin_len = sizeof(*sin); 1805 sin->sin_addr = *addr_p; 1806 sin->sin_port = port; 1807 1808 return (struct sockaddr *)sin; 1809 } 1810 1811 int 1812 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1813 { 1814 struct inpcb *inp; 1815 struct in_addr addr; 1816 in_port_t port; 1817 1818 inp = sotoinpcb(so); 1819 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1820 1821 INP_RLOCK(inp); 1822 port = inp->inp_lport; 1823 addr = inp->inp_laddr; 1824 INP_RUNLOCK(inp); 1825 1826 *nam = in_sockaddr(port, &addr); 1827 return 0; 1828 } 1829 1830 int 1831 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1832 { 1833 struct inpcb *inp; 1834 struct in_addr addr; 1835 in_port_t port; 1836 1837 inp = sotoinpcb(so); 1838 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1839 1840 INP_RLOCK(inp); 1841 port = inp->inp_fport; 1842 addr = inp->inp_faddr; 1843 INP_RUNLOCK(inp); 1844 1845 *nam = in_sockaddr(port, &addr); 1846 return 0; 1847 } 1848 1849 void 1850 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1851 struct inpcb *(*notify)(struct inpcb *, int)) 1852 { 1853 struct inpcb *inp, *inp_temp; 1854 1855 INP_INFO_WLOCK(pcbinfo); 1856 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1857 INP_WLOCK(inp); 1858 #ifdef INET6 1859 if ((inp->inp_vflag & INP_IPV4) == 0) { 1860 INP_WUNLOCK(inp); 1861 continue; 1862 } 1863 #endif 1864 if (inp->inp_faddr.s_addr != faddr.s_addr || 1865 inp->inp_socket == NULL) { 1866 INP_WUNLOCK(inp); 1867 continue; 1868 } 1869 if ((*notify)(inp, errno)) 1870 INP_WUNLOCK(inp); 1871 } 1872 INP_INFO_WUNLOCK(pcbinfo); 1873 } 1874 1875 void 1876 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1877 { 1878 struct inpcb *inp; 1879 struct in_multi *inm; 1880 struct in_mfilter *imf; 1881 struct ip_moptions *imo; 1882 1883 INP_INFO_WLOCK(pcbinfo); 1884 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1885 INP_WLOCK(inp); 1886 imo = inp->inp_moptions; 1887 if ((inp->inp_vflag & INP_IPV4) && 1888 imo != NULL) { 1889 /* 1890 * Unselect the outgoing interface if it is being 1891 * detached. 1892 */ 1893 if (imo->imo_multicast_ifp == ifp) 1894 imo->imo_multicast_ifp = NULL; 1895 1896 /* 1897 * Drop multicast group membership if we joined 1898 * through the interface being detached. 1899 * 1900 * XXX This can all be deferred to an epoch_call 1901 */ 1902 restart: 1903 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1904 if ((inm = imf->imf_inm) == NULL) 1905 continue; 1906 if (inm->inm_ifp != ifp) 1907 continue; 1908 ip_mfilter_remove(&imo->imo_head, imf); 1909 IN_MULTI_LOCK_ASSERT(); 1910 in_leavegroup_locked(inm, NULL); 1911 ip_mfilter_free(imf); 1912 goto restart; 1913 } 1914 } 1915 INP_WUNLOCK(inp); 1916 } 1917 INP_INFO_WUNLOCK(pcbinfo); 1918 } 1919 1920 /* 1921 * Lookup a PCB based on the local address and port. Caller must hold the 1922 * hash lock. No inpcb locks or references are acquired. 1923 */ 1924 #define INP_LOOKUP_MAPPED_PCB_COST 3 1925 struct inpcb * 1926 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1927 u_short lport, int lookupflags, struct ucred *cred) 1928 { 1929 struct inpcb *inp; 1930 #ifdef INET6 1931 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1932 #else 1933 int matchwild = 3; 1934 #endif 1935 int wildcard; 1936 1937 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1938 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1939 1940 INP_HASH_LOCK_ASSERT(pcbinfo); 1941 1942 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1943 struct inpcbhead *head; 1944 /* 1945 * Look for an unconnected (wildcard foreign addr) PCB that 1946 * matches the local address and port we're looking for. 1947 */ 1948 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1949 0, pcbinfo->ipi_hashmask)]; 1950 CK_LIST_FOREACH(inp, head, inp_hash) { 1951 #ifdef INET6 1952 /* XXX inp locking */ 1953 if ((inp->inp_vflag & INP_IPV4) == 0) 1954 continue; 1955 #endif 1956 if (inp->inp_faddr.s_addr == INADDR_ANY && 1957 inp->inp_laddr.s_addr == laddr.s_addr && 1958 inp->inp_lport == lport) { 1959 /* 1960 * Found? 1961 */ 1962 if (cred == NULL || 1963 prison_equal_ip4(cred->cr_prison, 1964 inp->inp_cred->cr_prison)) 1965 return (inp); 1966 } 1967 } 1968 /* 1969 * Not found. 1970 */ 1971 return (NULL); 1972 } else { 1973 struct inpcbporthead *porthash; 1974 struct inpcbport *phd; 1975 struct inpcb *match = NULL; 1976 /* 1977 * Best fit PCB lookup. 1978 * 1979 * First see if this local port is in use by looking on the 1980 * port hash list. 1981 */ 1982 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1983 pcbinfo->ipi_porthashmask)]; 1984 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1985 if (phd->phd_port == lport) 1986 break; 1987 } 1988 if (phd != NULL) { 1989 /* 1990 * Port is in use by one or more PCBs. Look for best 1991 * fit. 1992 */ 1993 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1994 wildcard = 0; 1995 if (cred != NULL && 1996 !prison_equal_ip4(inp->inp_cred->cr_prison, 1997 cred->cr_prison)) 1998 continue; 1999 #ifdef INET6 2000 /* XXX inp locking */ 2001 if ((inp->inp_vflag & INP_IPV4) == 0) 2002 continue; 2003 /* 2004 * We never select the PCB that has 2005 * INP_IPV6 flag and is bound to :: if 2006 * we have another PCB which is bound 2007 * to 0.0.0.0. If a PCB has the 2008 * INP_IPV6 flag, then we set its cost 2009 * higher than IPv4 only PCBs. 2010 * 2011 * Note that the case only happens 2012 * when a socket is bound to ::, under 2013 * the condition that the use of the 2014 * mapped address is allowed. 2015 */ 2016 if ((inp->inp_vflag & INP_IPV6) != 0) 2017 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2018 #endif 2019 if (inp->inp_faddr.s_addr != INADDR_ANY) 2020 wildcard++; 2021 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2022 if (laddr.s_addr == INADDR_ANY) 2023 wildcard++; 2024 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2025 continue; 2026 } else { 2027 if (laddr.s_addr != INADDR_ANY) 2028 wildcard++; 2029 } 2030 if (wildcard < matchwild) { 2031 match = inp; 2032 matchwild = wildcard; 2033 if (matchwild == 0) 2034 break; 2035 } 2036 } 2037 } 2038 return (match); 2039 } 2040 } 2041 #undef INP_LOOKUP_MAPPED_PCB_COST 2042 2043 static struct inpcb * 2044 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2045 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2046 uint16_t fport, int lookupflags, int numa_domain) 2047 { 2048 struct inpcb *local_wild, *numa_wild; 2049 const struct inpcblbgrouphead *hdr; 2050 struct inpcblbgroup *grp; 2051 uint32_t idx; 2052 2053 INP_HASH_LOCK_ASSERT(pcbinfo); 2054 2055 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2056 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2057 2058 /* 2059 * Order of socket selection: 2060 * 1. non-wild. 2061 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2062 * 2063 * NOTE: 2064 * - Load balanced group does not contain jailed sockets 2065 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2066 */ 2067 local_wild = NULL; 2068 numa_wild = NULL; 2069 CK_LIST_FOREACH(grp, hdr, il_list) { 2070 #ifdef INET6 2071 if (!(grp->il_vflag & INP_IPV4)) 2072 continue; 2073 #endif 2074 if (grp->il_lport != lport) 2075 continue; 2076 2077 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2078 grp->il_inpcnt; 2079 if (grp->il_laddr.s_addr == laddr->s_addr) { 2080 if (numa_domain == M_NODOM || 2081 grp->il_numa_domain == numa_domain) { 2082 return (grp->il_inp[idx]); 2083 } else { 2084 numa_wild = grp->il_inp[idx]; 2085 } 2086 } 2087 if (grp->il_laddr.s_addr == INADDR_ANY && 2088 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2089 (local_wild == NULL || numa_domain == M_NODOM || 2090 grp->il_numa_domain == numa_domain)) { 2091 local_wild = grp->il_inp[idx]; 2092 } 2093 } 2094 if (numa_wild != NULL) 2095 return (numa_wild); 2096 2097 return (local_wild); 2098 } 2099 2100 #ifdef PCBGROUP 2101 /* 2102 * Lookup PCB in hash list, using pcbgroup tables. 2103 */ 2104 static struct inpcb * 2105 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2106 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2107 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2108 { 2109 struct inpcbhead *head; 2110 struct inpcb *inp, *tmpinp; 2111 u_short fport = fport_arg, lport = lport_arg; 2112 bool locked; 2113 2114 /* 2115 * First look for an exact match. 2116 */ 2117 tmpinp = NULL; 2118 INP_GROUP_LOCK(pcbgroup); 2119 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2120 pcbgroup->ipg_hashmask)]; 2121 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2122 #ifdef INET6 2123 /* XXX inp locking */ 2124 if ((inp->inp_vflag & INP_IPV4) == 0) 2125 continue; 2126 #endif 2127 if (inp->inp_faddr.s_addr == faddr.s_addr && 2128 inp->inp_laddr.s_addr == laddr.s_addr && 2129 inp->inp_fport == fport && 2130 inp->inp_lport == lport) { 2131 /* 2132 * XXX We should be able to directly return 2133 * the inp here, without any checks. 2134 * Well unless both bound with SO_REUSEPORT? 2135 */ 2136 if (prison_flag(inp->inp_cred, PR_IP4)) 2137 goto found; 2138 if (tmpinp == NULL) 2139 tmpinp = inp; 2140 } 2141 } 2142 if (tmpinp != NULL) { 2143 inp = tmpinp; 2144 goto found; 2145 } 2146 2147 #ifdef RSS 2148 /* 2149 * For incoming connections, we may wish to do a wildcard 2150 * match for an RSS-local socket. 2151 */ 2152 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2153 struct inpcb *local_wild = NULL, *local_exact = NULL; 2154 #ifdef INET6 2155 struct inpcb *local_wild_mapped = NULL; 2156 #endif 2157 struct inpcb *jail_wild = NULL; 2158 struct inpcbhead *head; 2159 int injail; 2160 2161 /* 2162 * Order of socket selection - we always prefer jails. 2163 * 1. jailed, non-wild. 2164 * 2. jailed, wild. 2165 * 3. non-jailed, non-wild. 2166 * 4. non-jailed, wild. 2167 */ 2168 2169 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2170 lport, 0, pcbgroup->ipg_hashmask)]; 2171 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2172 #ifdef INET6 2173 /* XXX inp locking */ 2174 if ((inp->inp_vflag & INP_IPV4) == 0) 2175 continue; 2176 #endif 2177 if (inp->inp_faddr.s_addr != INADDR_ANY || 2178 inp->inp_lport != lport) 2179 continue; 2180 2181 injail = prison_flag(inp->inp_cred, PR_IP4); 2182 if (injail) { 2183 if (prison_check_ip4(inp->inp_cred, 2184 &laddr) != 0) 2185 continue; 2186 } else { 2187 if (local_exact != NULL) 2188 continue; 2189 } 2190 2191 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2192 if (injail) 2193 goto found; 2194 else 2195 local_exact = inp; 2196 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2197 #ifdef INET6 2198 /* XXX inp locking, NULL check */ 2199 if (inp->inp_vflag & INP_IPV6PROTO) 2200 local_wild_mapped = inp; 2201 else 2202 #endif 2203 if (injail) 2204 jail_wild = inp; 2205 else 2206 local_wild = inp; 2207 } 2208 } /* LIST_FOREACH */ 2209 2210 inp = jail_wild; 2211 if (inp == NULL) 2212 inp = local_exact; 2213 if (inp == NULL) 2214 inp = local_wild; 2215 #ifdef INET6 2216 if (inp == NULL) 2217 inp = local_wild_mapped; 2218 #endif 2219 if (inp != NULL) 2220 goto found; 2221 } 2222 #endif 2223 2224 /* 2225 * Then look for a wildcard match, if requested. 2226 */ 2227 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2228 struct inpcb *local_wild = NULL, *local_exact = NULL; 2229 #ifdef INET6 2230 struct inpcb *local_wild_mapped = NULL; 2231 #endif 2232 struct inpcb *jail_wild = NULL; 2233 struct inpcbhead *head; 2234 int injail; 2235 2236 /* 2237 * Order of socket selection - we always prefer jails. 2238 * 1. jailed, non-wild. 2239 * 2. jailed, wild. 2240 * 3. non-jailed, non-wild. 2241 * 4. non-jailed, wild. 2242 */ 2243 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2244 0, pcbinfo->ipi_wildmask)]; 2245 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2246 #ifdef INET6 2247 /* XXX inp locking */ 2248 if ((inp->inp_vflag & INP_IPV4) == 0) 2249 continue; 2250 #endif 2251 if (inp->inp_faddr.s_addr != INADDR_ANY || 2252 inp->inp_lport != lport) 2253 continue; 2254 2255 injail = prison_flag(inp->inp_cred, PR_IP4); 2256 if (injail) { 2257 if (prison_check_ip4(inp->inp_cred, 2258 &laddr) != 0) 2259 continue; 2260 } else { 2261 if (local_exact != NULL) 2262 continue; 2263 } 2264 2265 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2266 if (injail) 2267 goto found; 2268 else 2269 local_exact = inp; 2270 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2271 #ifdef INET6 2272 /* XXX inp locking, NULL check */ 2273 if (inp->inp_vflag & INP_IPV6PROTO) 2274 local_wild_mapped = inp; 2275 else 2276 #endif 2277 if (injail) 2278 jail_wild = inp; 2279 else 2280 local_wild = inp; 2281 } 2282 } /* LIST_FOREACH */ 2283 inp = jail_wild; 2284 if (inp == NULL) 2285 inp = local_exact; 2286 if (inp == NULL) 2287 inp = local_wild; 2288 #ifdef INET6 2289 if (inp == NULL) 2290 inp = local_wild_mapped; 2291 #endif 2292 if (inp != NULL) 2293 goto found; 2294 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2295 INP_GROUP_UNLOCK(pcbgroup); 2296 return (NULL); 2297 2298 found: 2299 if (lookupflags & INPLOOKUP_WLOCKPCB) 2300 locked = INP_TRY_WLOCK(inp); 2301 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2302 locked = INP_TRY_RLOCK(inp); 2303 else 2304 panic("%s: locking bug", __func__); 2305 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2306 if (lookupflags & INPLOOKUP_WLOCKPCB) 2307 INP_WUNLOCK(inp); 2308 else 2309 INP_RUNLOCK(inp); 2310 return (NULL); 2311 } else if (!locked) 2312 in_pcbref(inp); 2313 INP_GROUP_UNLOCK(pcbgroup); 2314 if (!locked) { 2315 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2316 INP_WLOCK(inp); 2317 if (in_pcbrele_wlocked(inp)) 2318 return (NULL); 2319 } else { 2320 INP_RLOCK(inp); 2321 if (in_pcbrele_rlocked(inp)) 2322 return (NULL); 2323 } 2324 } 2325 #ifdef INVARIANTS 2326 if (lookupflags & INPLOOKUP_WLOCKPCB) 2327 INP_WLOCK_ASSERT(inp); 2328 else 2329 INP_RLOCK_ASSERT(inp); 2330 #endif 2331 return (inp); 2332 } 2333 #endif /* PCBGROUP */ 2334 2335 /* 2336 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2337 * that the caller has locked the hash list, and will not perform any further 2338 * locking or reference operations on either the hash list or the connection. 2339 */ 2340 static struct inpcb * 2341 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2342 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2343 struct ifnet *ifp, uint8_t numa_domain) 2344 { 2345 struct inpcbhead *head; 2346 struct inpcb *inp, *tmpinp; 2347 u_short fport = fport_arg, lport = lport_arg; 2348 2349 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2350 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2351 INP_HASH_LOCK_ASSERT(pcbinfo); 2352 2353 /* 2354 * First look for an exact match. 2355 */ 2356 tmpinp = NULL; 2357 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2358 pcbinfo->ipi_hashmask)]; 2359 CK_LIST_FOREACH(inp, head, inp_hash) { 2360 #ifdef INET6 2361 /* XXX inp locking */ 2362 if ((inp->inp_vflag & INP_IPV4) == 0) 2363 continue; 2364 #endif 2365 if (inp->inp_faddr.s_addr == faddr.s_addr && 2366 inp->inp_laddr.s_addr == laddr.s_addr && 2367 inp->inp_fport == fport && 2368 inp->inp_lport == lport) { 2369 /* 2370 * XXX We should be able to directly return 2371 * the inp here, without any checks. 2372 * Well unless both bound with SO_REUSEPORT? 2373 */ 2374 if (prison_flag(inp->inp_cred, PR_IP4)) 2375 return (inp); 2376 if (tmpinp == NULL) 2377 tmpinp = inp; 2378 } 2379 } 2380 if (tmpinp != NULL) 2381 return (tmpinp); 2382 2383 /* 2384 * Then look in lb group (for wildcard match). 2385 */ 2386 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2387 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2388 fport, lookupflags, numa_domain); 2389 if (inp != NULL) 2390 return (inp); 2391 } 2392 2393 /* 2394 * Then look for a wildcard match, if requested. 2395 */ 2396 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2397 struct inpcb *local_wild = NULL, *local_exact = NULL; 2398 #ifdef INET6 2399 struct inpcb *local_wild_mapped = NULL; 2400 #endif 2401 struct inpcb *jail_wild = NULL; 2402 int injail; 2403 2404 /* 2405 * Order of socket selection - we always prefer jails. 2406 * 1. jailed, non-wild. 2407 * 2. jailed, wild. 2408 * 3. non-jailed, non-wild. 2409 * 4. non-jailed, wild. 2410 */ 2411 2412 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2413 0, pcbinfo->ipi_hashmask)]; 2414 CK_LIST_FOREACH(inp, head, inp_hash) { 2415 #ifdef INET6 2416 /* XXX inp locking */ 2417 if ((inp->inp_vflag & INP_IPV4) == 0) 2418 continue; 2419 #endif 2420 if (inp->inp_faddr.s_addr != INADDR_ANY || 2421 inp->inp_lport != lport) 2422 continue; 2423 2424 injail = prison_flag(inp->inp_cred, PR_IP4); 2425 if (injail) { 2426 if (prison_check_ip4(inp->inp_cred, 2427 &laddr) != 0) 2428 continue; 2429 } else { 2430 if (local_exact != NULL) 2431 continue; 2432 } 2433 2434 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2435 if (injail) 2436 return (inp); 2437 else 2438 local_exact = inp; 2439 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2440 #ifdef INET6 2441 /* XXX inp locking, NULL check */ 2442 if (inp->inp_vflag & INP_IPV6PROTO) 2443 local_wild_mapped = inp; 2444 else 2445 #endif 2446 if (injail) 2447 jail_wild = inp; 2448 else 2449 local_wild = inp; 2450 } 2451 } /* LIST_FOREACH */ 2452 if (jail_wild != NULL) 2453 return (jail_wild); 2454 if (local_exact != NULL) 2455 return (local_exact); 2456 if (local_wild != NULL) 2457 return (local_wild); 2458 #ifdef INET6 2459 if (local_wild_mapped != NULL) 2460 return (local_wild_mapped); 2461 #endif 2462 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2463 2464 return (NULL); 2465 } 2466 2467 /* 2468 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2469 * hash list lock, and will return the inpcb locked (i.e., requires 2470 * INPLOOKUP_LOCKPCB). 2471 */ 2472 static struct inpcb * 2473 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2474 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2475 struct ifnet *ifp, uint8_t numa_domain) 2476 { 2477 struct inpcb *inp; 2478 2479 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2480 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2481 if (inp != NULL) { 2482 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2483 INP_WLOCK(inp); 2484 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2485 INP_RLOCK(inp); 2486 } else 2487 panic("%s: locking bug", __func__); 2488 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2489 INP_UNLOCK(inp); 2490 inp = NULL; 2491 } 2492 } 2493 2494 return (inp); 2495 } 2496 2497 /* 2498 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2499 * from which a pre-calculated hash value may be extracted. 2500 * 2501 * Possibly more of this logic should be in in_pcbgroup.c. 2502 */ 2503 struct inpcb * 2504 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2505 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2506 { 2507 #if defined(PCBGROUP) && !defined(RSS) 2508 struct inpcbgroup *pcbgroup; 2509 #endif 2510 2511 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2512 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2513 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2514 ("%s: LOCKPCB not set", __func__)); 2515 2516 /* 2517 * When not using RSS, use connection groups in preference to the 2518 * reservation table when looking up 4-tuples. When using RSS, just 2519 * use the reservation table, due to the cost of the Toeplitz hash 2520 * in software. 2521 * 2522 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2523 * we could be doing RSS with a non-Toeplitz hash that is affordable 2524 * in software. 2525 */ 2526 #if defined(PCBGROUP) && !defined(RSS) 2527 if (in_pcbgroup_enabled(pcbinfo)) { 2528 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2529 fport); 2530 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2531 laddr, lport, lookupflags, ifp)); 2532 } 2533 #endif 2534 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2535 lookupflags, ifp, M_NODOM)); 2536 } 2537 2538 struct inpcb * 2539 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2540 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2541 struct ifnet *ifp, struct mbuf *m) 2542 { 2543 #ifdef PCBGROUP 2544 struct inpcbgroup *pcbgroup; 2545 #endif 2546 2547 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2548 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2549 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2550 ("%s: LOCKPCB not set", __func__)); 2551 2552 #ifdef PCBGROUP 2553 /* 2554 * If we can use a hardware-generated hash to look up the connection 2555 * group, use that connection group to find the inpcb. Otherwise 2556 * fall back on a software hash -- or the reservation table if we're 2557 * using RSS. 2558 * 2559 * XXXRW: As above, that policy belongs in the pcbgroup code. 2560 */ 2561 if (in_pcbgroup_enabled(pcbinfo) && 2562 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2563 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2564 m->m_pkthdr.flowid); 2565 if (pcbgroup != NULL) 2566 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2567 fport, laddr, lport, lookupflags, ifp)); 2568 #ifndef RSS 2569 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2570 fport); 2571 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2572 laddr, lport, lookupflags, ifp)); 2573 #endif 2574 } 2575 #endif 2576 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2577 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2578 } 2579 #endif /* INET */ 2580 2581 /* 2582 * Insert PCB onto various hash lists. 2583 */ 2584 static int 2585 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2586 { 2587 struct inpcbhead *pcbhash; 2588 struct inpcbporthead *pcbporthash; 2589 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2590 struct inpcbport *phd; 2591 u_int32_t hashkey_faddr; 2592 int so_options; 2593 2594 INP_WLOCK_ASSERT(inp); 2595 INP_HASH_WLOCK_ASSERT(pcbinfo); 2596 2597 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2598 ("in_pcbinshash: INP_INHASHLIST")); 2599 2600 #ifdef INET6 2601 if (inp->inp_vflag & INP_IPV6) 2602 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2603 else 2604 #endif 2605 hashkey_faddr = inp->inp_faddr.s_addr; 2606 2607 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2608 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2609 2610 pcbporthash = &pcbinfo->ipi_porthashbase[ 2611 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2612 2613 /* 2614 * Add entry to load balance group. 2615 * Only do this if SO_REUSEPORT_LB is set. 2616 */ 2617 so_options = inp_so_options(inp); 2618 if (so_options & SO_REUSEPORT_LB) { 2619 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2620 if (ret) { 2621 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2622 return (ret); 2623 } 2624 } 2625 2626 /* 2627 * Go through port list and look for a head for this lport. 2628 */ 2629 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2630 if (phd->phd_port == inp->inp_lport) 2631 break; 2632 } 2633 /* 2634 * If none exists, malloc one and tack it on. 2635 */ 2636 if (phd == NULL) { 2637 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2638 if (phd == NULL) { 2639 return (ENOBUFS); /* XXX */ 2640 } 2641 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2642 phd->phd_port = inp->inp_lport; 2643 CK_LIST_INIT(&phd->phd_pcblist); 2644 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2645 } 2646 inp->inp_phd = phd; 2647 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2648 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2649 inp->inp_flags |= INP_INHASHLIST; 2650 #ifdef PCBGROUP 2651 if (m != NULL) { 2652 in_pcbgroup_update_mbuf(inp, m); 2653 } else { 2654 in_pcbgroup_update(inp); 2655 } 2656 #endif 2657 return (0); 2658 } 2659 2660 int 2661 in_pcbinshash(struct inpcb *inp) 2662 { 2663 2664 return (in_pcbinshash_internal(inp, NULL)); 2665 } 2666 2667 int 2668 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2669 { 2670 2671 return (in_pcbinshash_internal(inp, m)); 2672 } 2673 2674 /* 2675 * Move PCB to the proper hash bucket when { faddr, fport } have been 2676 * changed. NOTE: This does not handle the case of the lport changing (the 2677 * hashed port list would have to be updated as well), so the lport must 2678 * not change after in_pcbinshash() has been called. 2679 */ 2680 void 2681 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2682 { 2683 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2684 struct inpcbhead *head; 2685 u_int32_t hashkey_faddr; 2686 2687 INP_WLOCK_ASSERT(inp); 2688 INP_HASH_WLOCK_ASSERT(pcbinfo); 2689 2690 KASSERT(inp->inp_flags & INP_INHASHLIST, 2691 ("in_pcbrehash: !INP_INHASHLIST")); 2692 2693 #ifdef INET6 2694 if (inp->inp_vflag & INP_IPV6) 2695 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2696 else 2697 #endif 2698 hashkey_faddr = inp->inp_faddr.s_addr; 2699 2700 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2701 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2702 2703 CK_LIST_REMOVE(inp, inp_hash); 2704 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2705 2706 #ifdef PCBGROUP 2707 if (m != NULL) 2708 in_pcbgroup_update_mbuf(inp, m); 2709 else 2710 in_pcbgroup_update(inp); 2711 #endif 2712 } 2713 2714 void 2715 in_pcbrehash(struct inpcb *inp) 2716 { 2717 2718 in_pcbrehash_mbuf(inp, NULL); 2719 } 2720 2721 /* 2722 * Remove PCB from various lists. 2723 */ 2724 static void 2725 in_pcbremlists(struct inpcb *inp) 2726 { 2727 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2728 2729 INP_WLOCK_ASSERT(inp); 2730 INP_LIST_WLOCK_ASSERT(pcbinfo); 2731 2732 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2733 if (inp->inp_flags & INP_INHASHLIST) { 2734 struct inpcbport *phd = inp->inp_phd; 2735 2736 INP_HASH_WLOCK(pcbinfo); 2737 2738 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2739 in_pcbremlbgrouphash(inp); 2740 2741 CK_LIST_REMOVE(inp, inp_hash); 2742 CK_LIST_REMOVE(inp, inp_portlist); 2743 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2744 CK_LIST_REMOVE(phd, phd_hash); 2745 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2746 } 2747 INP_HASH_WUNLOCK(pcbinfo); 2748 inp->inp_flags &= ~INP_INHASHLIST; 2749 } 2750 CK_LIST_REMOVE(inp, inp_list); 2751 pcbinfo->ipi_count--; 2752 #ifdef PCBGROUP 2753 in_pcbgroup_remove(inp); 2754 #endif 2755 } 2756 2757 /* 2758 * Check for alternatives when higher level complains 2759 * about service problems. For now, invalidate cached 2760 * routing information. If the route was created dynamically 2761 * (by a redirect), time to try a default gateway again. 2762 */ 2763 void 2764 in_losing(struct inpcb *inp) 2765 { 2766 2767 RO_INVALIDATE_CACHE(&inp->inp_route); 2768 return; 2769 } 2770 2771 /* 2772 * A set label operation has occurred at the socket layer, propagate the 2773 * label change into the in_pcb for the socket. 2774 */ 2775 void 2776 in_pcbsosetlabel(struct socket *so) 2777 { 2778 #ifdef MAC 2779 struct inpcb *inp; 2780 2781 inp = sotoinpcb(so); 2782 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2783 2784 INP_WLOCK(inp); 2785 SOCK_LOCK(so); 2786 mac_inpcb_sosetlabel(so, inp); 2787 SOCK_UNLOCK(so); 2788 INP_WUNLOCK(inp); 2789 #endif 2790 } 2791 2792 /* 2793 * ipport_tick runs once per second, determining if random port allocation 2794 * should be continued. If more than ipport_randomcps ports have been 2795 * allocated in the last second, then we return to sequential port 2796 * allocation. We return to random allocation only once we drop below 2797 * ipport_randomcps for at least ipport_randomtime seconds. 2798 */ 2799 static void 2800 ipport_tick(void *xtp) 2801 { 2802 VNET_ITERATOR_DECL(vnet_iter); 2803 2804 VNET_LIST_RLOCK_NOSLEEP(); 2805 VNET_FOREACH(vnet_iter) { 2806 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2807 if (V_ipport_tcpallocs <= 2808 V_ipport_tcplastcount + V_ipport_randomcps) { 2809 if (V_ipport_stoprandom > 0) 2810 V_ipport_stoprandom--; 2811 } else 2812 V_ipport_stoprandom = V_ipport_randomtime; 2813 V_ipport_tcplastcount = V_ipport_tcpallocs; 2814 CURVNET_RESTORE(); 2815 } 2816 VNET_LIST_RUNLOCK_NOSLEEP(); 2817 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2818 } 2819 2820 static void 2821 ip_fini(void *xtp) 2822 { 2823 2824 callout_stop(&ipport_tick_callout); 2825 } 2826 2827 /* 2828 * The ipport_callout should start running at about the time we attach the 2829 * inet or inet6 domains. 2830 */ 2831 static void 2832 ipport_tick_init(const void *unused __unused) 2833 { 2834 2835 /* Start ipport_tick. */ 2836 callout_init(&ipport_tick_callout, 1); 2837 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2838 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2839 SHUTDOWN_PRI_DEFAULT); 2840 } 2841 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2842 ipport_tick_init, NULL); 2843 2844 void 2845 inp_wlock(struct inpcb *inp) 2846 { 2847 2848 INP_WLOCK(inp); 2849 } 2850 2851 void 2852 inp_wunlock(struct inpcb *inp) 2853 { 2854 2855 INP_WUNLOCK(inp); 2856 } 2857 2858 void 2859 inp_rlock(struct inpcb *inp) 2860 { 2861 2862 INP_RLOCK(inp); 2863 } 2864 2865 void 2866 inp_runlock(struct inpcb *inp) 2867 { 2868 2869 INP_RUNLOCK(inp); 2870 } 2871 2872 #ifdef INVARIANT_SUPPORT 2873 void 2874 inp_lock_assert(struct inpcb *inp) 2875 { 2876 2877 INP_WLOCK_ASSERT(inp); 2878 } 2879 2880 void 2881 inp_unlock_assert(struct inpcb *inp) 2882 { 2883 2884 INP_UNLOCK_ASSERT(inp); 2885 } 2886 #endif 2887 2888 void 2889 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2890 { 2891 struct inpcb *inp; 2892 2893 INP_INFO_WLOCK(&V_tcbinfo); 2894 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2895 INP_WLOCK(inp); 2896 func(inp, arg); 2897 INP_WUNLOCK(inp); 2898 } 2899 INP_INFO_WUNLOCK(&V_tcbinfo); 2900 } 2901 2902 struct socket * 2903 inp_inpcbtosocket(struct inpcb *inp) 2904 { 2905 2906 INP_WLOCK_ASSERT(inp); 2907 return (inp->inp_socket); 2908 } 2909 2910 struct tcpcb * 2911 inp_inpcbtotcpcb(struct inpcb *inp) 2912 { 2913 2914 INP_WLOCK_ASSERT(inp); 2915 return ((struct tcpcb *)inp->inp_ppcb); 2916 } 2917 2918 int 2919 inp_ip_tos_get(const struct inpcb *inp) 2920 { 2921 2922 return (inp->inp_ip_tos); 2923 } 2924 2925 void 2926 inp_ip_tos_set(struct inpcb *inp, int val) 2927 { 2928 2929 inp->inp_ip_tos = val; 2930 } 2931 2932 void 2933 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2934 uint32_t *faddr, uint16_t *fp) 2935 { 2936 2937 INP_LOCK_ASSERT(inp); 2938 *laddr = inp->inp_laddr.s_addr; 2939 *faddr = inp->inp_faddr.s_addr; 2940 *lp = inp->inp_lport; 2941 *fp = inp->inp_fport; 2942 } 2943 2944 struct inpcb * 2945 so_sotoinpcb(struct socket *so) 2946 { 2947 2948 return (sotoinpcb(so)); 2949 } 2950 2951 struct tcpcb * 2952 so_sototcpcb(struct socket *so) 2953 { 2954 2955 return (sototcpcb(so)); 2956 } 2957 2958 /* 2959 * Create an external-format (``xinpcb'') structure using the information in 2960 * the kernel-format in_pcb structure pointed to by inp. This is done to 2961 * reduce the spew of irrelevant information over this interface, to isolate 2962 * user code from changes in the kernel structure, and potentially to provide 2963 * information-hiding if we decide that some of this information should be 2964 * hidden from users. 2965 */ 2966 void 2967 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2968 { 2969 2970 bzero(xi, sizeof(*xi)); 2971 xi->xi_len = sizeof(struct xinpcb); 2972 if (inp->inp_socket) 2973 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2974 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2975 xi->inp_gencnt = inp->inp_gencnt; 2976 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2977 xi->inp_flow = inp->inp_flow; 2978 xi->inp_flowid = inp->inp_flowid; 2979 xi->inp_flowtype = inp->inp_flowtype; 2980 xi->inp_flags = inp->inp_flags; 2981 xi->inp_flags2 = inp->inp_flags2; 2982 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2983 xi->in6p_cksum = inp->in6p_cksum; 2984 xi->in6p_hops = inp->in6p_hops; 2985 xi->inp_ip_tos = inp->inp_ip_tos; 2986 xi->inp_vflag = inp->inp_vflag; 2987 xi->inp_ip_ttl = inp->inp_ip_ttl; 2988 xi->inp_ip_p = inp->inp_ip_p; 2989 xi->inp_ip_minttl = inp->inp_ip_minttl; 2990 } 2991 2992 #ifdef DDB 2993 static void 2994 db_print_indent(int indent) 2995 { 2996 int i; 2997 2998 for (i = 0; i < indent; i++) 2999 db_printf(" "); 3000 } 3001 3002 static void 3003 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 3004 { 3005 char faddr_str[48], laddr_str[48]; 3006 3007 db_print_indent(indent); 3008 db_printf("%s at %p\n", name, inc); 3009 3010 indent += 2; 3011 3012 #ifdef INET6 3013 if (inc->inc_flags & INC_ISIPV6) { 3014 /* IPv6. */ 3015 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3016 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3017 } else 3018 #endif 3019 { 3020 /* IPv4. */ 3021 inet_ntoa_r(inc->inc_laddr, laddr_str); 3022 inet_ntoa_r(inc->inc_faddr, faddr_str); 3023 } 3024 db_print_indent(indent); 3025 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3026 ntohs(inc->inc_lport)); 3027 db_print_indent(indent); 3028 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3029 ntohs(inc->inc_fport)); 3030 } 3031 3032 static void 3033 db_print_inpflags(int inp_flags) 3034 { 3035 int comma; 3036 3037 comma = 0; 3038 if (inp_flags & INP_RECVOPTS) { 3039 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3040 comma = 1; 3041 } 3042 if (inp_flags & INP_RECVRETOPTS) { 3043 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3044 comma = 1; 3045 } 3046 if (inp_flags & INP_RECVDSTADDR) { 3047 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3048 comma = 1; 3049 } 3050 if (inp_flags & INP_ORIGDSTADDR) { 3051 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3052 comma = 1; 3053 } 3054 if (inp_flags & INP_HDRINCL) { 3055 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3056 comma = 1; 3057 } 3058 if (inp_flags & INP_HIGHPORT) { 3059 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3060 comma = 1; 3061 } 3062 if (inp_flags & INP_LOWPORT) { 3063 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3064 comma = 1; 3065 } 3066 if (inp_flags & INP_ANONPORT) { 3067 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3068 comma = 1; 3069 } 3070 if (inp_flags & INP_RECVIF) { 3071 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3072 comma = 1; 3073 } 3074 if (inp_flags & INP_MTUDISC) { 3075 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3076 comma = 1; 3077 } 3078 if (inp_flags & INP_RECVTTL) { 3079 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3080 comma = 1; 3081 } 3082 if (inp_flags & INP_DONTFRAG) { 3083 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3084 comma = 1; 3085 } 3086 if (inp_flags & INP_RECVTOS) { 3087 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3088 comma = 1; 3089 } 3090 if (inp_flags & IN6P_IPV6_V6ONLY) { 3091 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3092 comma = 1; 3093 } 3094 if (inp_flags & IN6P_PKTINFO) { 3095 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3096 comma = 1; 3097 } 3098 if (inp_flags & IN6P_HOPLIMIT) { 3099 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3100 comma = 1; 3101 } 3102 if (inp_flags & IN6P_HOPOPTS) { 3103 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3104 comma = 1; 3105 } 3106 if (inp_flags & IN6P_DSTOPTS) { 3107 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3108 comma = 1; 3109 } 3110 if (inp_flags & IN6P_RTHDR) { 3111 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3112 comma = 1; 3113 } 3114 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3115 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3116 comma = 1; 3117 } 3118 if (inp_flags & IN6P_TCLASS) { 3119 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3120 comma = 1; 3121 } 3122 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3123 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3124 comma = 1; 3125 } 3126 if (inp_flags & INP_TIMEWAIT) { 3127 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3128 comma = 1; 3129 } 3130 if (inp_flags & INP_ONESBCAST) { 3131 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3132 comma = 1; 3133 } 3134 if (inp_flags & INP_DROPPED) { 3135 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3136 comma = 1; 3137 } 3138 if (inp_flags & INP_SOCKREF) { 3139 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3140 comma = 1; 3141 } 3142 if (inp_flags & IN6P_RFC2292) { 3143 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3144 comma = 1; 3145 } 3146 if (inp_flags & IN6P_MTU) { 3147 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3148 comma = 1; 3149 } 3150 } 3151 3152 static void 3153 db_print_inpvflag(u_char inp_vflag) 3154 { 3155 int comma; 3156 3157 comma = 0; 3158 if (inp_vflag & INP_IPV4) { 3159 db_printf("%sINP_IPV4", comma ? ", " : ""); 3160 comma = 1; 3161 } 3162 if (inp_vflag & INP_IPV6) { 3163 db_printf("%sINP_IPV6", comma ? ", " : ""); 3164 comma = 1; 3165 } 3166 if (inp_vflag & INP_IPV6PROTO) { 3167 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3168 comma = 1; 3169 } 3170 } 3171 3172 static void 3173 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3174 { 3175 3176 db_print_indent(indent); 3177 db_printf("%s at %p\n", name, inp); 3178 3179 indent += 2; 3180 3181 db_print_indent(indent); 3182 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3183 3184 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3185 3186 db_print_indent(indent); 3187 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3188 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3189 3190 db_print_indent(indent); 3191 db_printf("inp_label: %p inp_flags: 0x%x (", 3192 inp->inp_label, inp->inp_flags); 3193 db_print_inpflags(inp->inp_flags); 3194 db_printf(")\n"); 3195 3196 db_print_indent(indent); 3197 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3198 inp->inp_vflag); 3199 db_print_inpvflag(inp->inp_vflag); 3200 db_printf(")\n"); 3201 3202 db_print_indent(indent); 3203 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3204 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3205 3206 db_print_indent(indent); 3207 #ifdef INET6 3208 if (inp->inp_vflag & INP_IPV6) { 3209 db_printf("in6p_options: %p in6p_outputopts: %p " 3210 "in6p_moptions: %p\n", inp->in6p_options, 3211 inp->in6p_outputopts, inp->in6p_moptions); 3212 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3213 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3214 inp->in6p_hops); 3215 } else 3216 #endif 3217 { 3218 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3219 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3220 inp->inp_options, inp->inp_moptions); 3221 } 3222 3223 db_print_indent(indent); 3224 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3225 (uintmax_t)inp->inp_gencnt); 3226 } 3227 3228 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3229 { 3230 struct inpcb *inp; 3231 3232 if (!have_addr) { 3233 db_printf("usage: show inpcb <addr>\n"); 3234 return; 3235 } 3236 inp = (struct inpcb *)addr; 3237 3238 db_print_inpcb(inp, "inpcb", 0); 3239 } 3240 #endif /* DDB */ 3241 3242 #ifdef RATELIMIT 3243 /* 3244 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3245 * if any. 3246 */ 3247 int 3248 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3249 { 3250 union if_snd_tag_modify_params params = { 3251 .rate_limit.max_rate = max_pacing_rate, 3252 .rate_limit.flags = M_NOWAIT, 3253 }; 3254 struct m_snd_tag *mst; 3255 int error; 3256 3257 mst = inp->inp_snd_tag; 3258 if (mst == NULL) 3259 return (EINVAL); 3260 3261 if (mst->sw->snd_tag_modify == NULL) { 3262 error = EOPNOTSUPP; 3263 } else { 3264 error = mst->sw->snd_tag_modify(mst, ¶ms); 3265 } 3266 return (error); 3267 } 3268 3269 /* 3270 * Query existing TX rate limit based on the existing 3271 * "inp->inp_snd_tag", if any. 3272 */ 3273 int 3274 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3275 { 3276 union if_snd_tag_query_params params = { }; 3277 struct m_snd_tag *mst; 3278 int error; 3279 3280 mst = inp->inp_snd_tag; 3281 if (mst == NULL) 3282 return (EINVAL); 3283 3284 if (mst->sw->snd_tag_query == NULL) { 3285 error = EOPNOTSUPP; 3286 } else { 3287 error = mst->sw->snd_tag_query(mst, ¶ms); 3288 if (error == 0 && p_max_pacing_rate != NULL) 3289 *p_max_pacing_rate = params.rate_limit.max_rate; 3290 } 3291 return (error); 3292 } 3293 3294 /* 3295 * Query existing TX queue level based on the existing 3296 * "inp->inp_snd_tag", if any. 3297 */ 3298 int 3299 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3300 { 3301 union if_snd_tag_query_params params = { }; 3302 struct m_snd_tag *mst; 3303 int error; 3304 3305 mst = inp->inp_snd_tag; 3306 if (mst == NULL) 3307 return (EINVAL); 3308 3309 if (mst->sw->snd_tag_query == NULL) 3310 return (EOPNOTSUPP); 3311 3312 error = mst->sw->snd_tag_query(mst, ¶ms); 3313 if (error == 0 && p_txqueue_level != NULL) 3314 *p_txqueue_level = params.rate_limit.queue_level; 3315 return (error); 3316 } 3317 3318 /* 3319 * Allocate a new TX rate limit send tag from the network interface 3320 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3321 */ 3322 int 3323 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3324 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3325 3326 { 3327 union if_snd_tag_alloc_params params = { 3328 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3329 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3330 .rate_limit.hdr.flowid = flowid, 3331 .rate_limit.hdr.flowtype = flowtype, 3332 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3333 .rate_limit.max_rate = max_pacing_rate, 3334 .rate_limit.flags = M_NOWAIT, 3335 }; 3336 int error; 3337 3338 INP_WLOCK_ASSERT(inp); 3339 3340 /* 3341 * If there is already a send tag, or the INP is being torn 3342 * down, allocating a new send tag is not allowed. Else send 3343 * tags may leak. 3344 */ 3345 if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) 3346 return (EINVAL); 3347 3348 error = m_snd_tag_alloc(ifp, ¶ms, st); 3349 #ifdef INET 3350 if (error == 0) { 3351 counter_u64_add(rate_limit_set_ok, 1); 3352 counter_u64_add(rate_limit_active, 1); 3353 } else if (error != EOPNOTSUPP) 3354 counter_u64_add(rate_limit_alloc_fail, 1); 3355 #endif 3356 return (error); 3357 } 3358 3359 void 3360 in_pcbdetach_tag(struct m_snd_tag *mst) 3361 { 3362 3363 m_snd_tag_rele(mst); 3364 #ifdef INET 3365 counter_u64_add(rate_limit_active, -1); 3366 #endif 3367 } 3368 3369 /* 3370 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3371 * if any: 3372 */ 3373 void 3374 in_pcbdetach_txrtlmt(struct inpcb *inp) 3375 { 3376 struct m_snd_tag *mst; 3377 3378 INP_WLOCK_ASSERT(inp); 3379 3380 mst = inp->inp_snd_tag; 3381 inp->inp_snd_tag = NULL; 3382 3383 if (mst == NULL) 3384 return; 3385 3386 m_snd_tag_rele(mst); 3387 #ifdef INET 3388 counter_u64_add(rate_limit_active, -1); 3389 #endif 3390 } 3391 3392 int 3393 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3394 { 3395 int error; 3396 3397 /* 3398 * If the existing send tag is for the wrong interface due to 3399 * a route change, first drop the existing tag. Set the 3400 * CHANGED flag so that we will keep trying to allocate a new 3401 * tag if we fail to allocate one this time. 3402 */ 3403 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3404 in_pcbdetach_txrtlmt(inp); 3405 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3406 } 3407 3408 /* 3409 * NOTE: When attaching to a network interface a reference is 3410 * made to ensure the network interface doesn't go away until 3411 * all ratelimit connections are gone. The network interface 3412 * pointers compared below represent valid network interfaces, 3413 * except when comparing towards NULL. 3414 */ 3415 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3416 error = 0; 3417 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3418 if (inp->inp_snd_tag != NULL) 3419 in_pcbdetach_txrtlmt(inp); 3420 error = 0; 3421 } else if (inp->inp_snd_tag == NULL) { 3422 /* 3423 * In order to utilize packet pacing with RSS, we need 3424 * to wait until there is a valid RSS hash before we 3425 * can proceed: 3426 */ 3427 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3428 error = EAGAIN; 3429 } else { 3430 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3431 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3432 } 3433 } else { 3434 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3435 } 3436 if (error == 0 || error == EOPNOTSUPP) 3437 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3438 3439 return (error); 3440 } 3441 3442 /* 3443 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3444 * is set in the fast path and will attach/detach/modify the TX rate 3445 * limit send tag based on the socket's so_max_pacing_rate value. 3446 */ 3447 void 3448 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3449 { 3450 struct socket *socket; 3451 uint32_t max_pacing_rate; 3452 bool did_upgrade; 3453 int error; 3454 3455 if (inp == NULL) 3456 return; 3457 3458 socket = inp->inp_socket; 3459 if (socket == NULL) 3460 return; 3461 3462 if (!INP_WLOCKED(inp)) { 3463 /* 3464 * NOTE: If the write locking fails, we need to bail 3465 * out and use the non-ratelimited ring for the 3466 * transmit until there is a new chance to get the 3467 * write lock. 3468 */ 3469 if (!INP_TRY_UPGRADE(inp)) 3470 return; 3471 did_upgrade = 1; 3472 } else { 3473 did_upgrade = 0; 3474 } 3475 3476 /* 3477 * NOTE: The so_max_pacing_rate value is read unlocked, 3478 * because atomic updates are not required since the variable 3479 * is checked at every mbuf we send. It is assumed that the 3480 * variable read itself will be atomic. 3481 */ 3482 max_pacing_rate = socket->so_max_pacing_rate; 3483 3484 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3485 3486 if (did_upgrade) 3487 INP_DOWNGRADE(inp); 3488 } 3489 3490 /* 3491 * Track route changes for TX rate limiting. 3492 */ 3493 void 3494 in_pcboutput_eagain(struct inpcb *inp) 3495 { 3496 bool did_upgrade; 3497 3498 if (inp == NULL) 3499 return; 3500 3501 if (inp->inp_snd_tag == NULL) 3502 return; 3503 3504 if (!INP_WLOCKED(inp)) { 3505 /* 3506 * NOTE: If the write locking fails, we need to bail 3507 * out and use the non-ratelimited ring for the 3508 * transmit until there is a new chance to get the 3509 * write lock. 3510 */ 3511 if (!INP_TRY_UPGRADE(inp)) 3512 return; 3513 did_upgrade = 1; 3514 } else { 3515 did_upgrade = 0; 3516 } 3517 3518 /* detach rate limiting */ 3519 in_pcbdetach_txrtlmt(inp); 3520 3521 /* make sure new mbuf send tag allocation is made */ 3522 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3523 3524 if (did_upgrade) 3525 INP_DOWNGRADE(inp); 3526 } 3527 3528 #ifdef INET 3529 static void 3530 rl_init(void *st) 3531 { 3532 rate_limit_new = counter_u64_alloc(M_WAITOK); 3533 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3534 rate_limit_active = counter_u64_alloc(M_WAITOK); 3535 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3536 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3537 } 3538 3539 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3540 #endif 3541 #endif /* RATELIMIT */ 3542