1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free_deferred(epoch_context_t ctx) 244 { 245 struct inpcblbgroup *grp; 246 247 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 248 free(grp, M_PCB); 249 } 250 251 static void 252 in_pcblbgroup_free(struct inpcblbgroup *grp) 253 { 254 255 CK_LIST_REMOVE(grp, il_list); 256 epoch_call(net_epoch_preempt, &grp->il_epoch_ctx, 257 in_pcblbgroup_free_deferred); 258 } 259 260 static struct inpcblbgroup * 261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 262 struct inpcblbgroup *old_grp, int size) 263 { 264 struct inpcblbgroup *grp; 265 int i; 266 267 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 268 old_grp->il_lport, &old_grp->il_dependladdr, size); 269 if (grp == NULL) 270 return (NULL); 271 272 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 273 ("invalid new local group size %d and old local group count %d", 274 grp->il_inpsiz, old_grp->il_inpcnt)); 275 276 for (i = 0; i < old_grp->il_inpcnt; ++i) 277 grp->il_inp[i] = old_grp->il_inp[i]; 278 grp->il_inpcnt = old_grp->il_inpcnt; 279 in_pcblbgroup_free(old_grp); 280 return (grp); 281 } 282 283 /* 284 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 285 * and shrink group if possible. 286 */ 287 static void 288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 289 int i) 290 { 291 struct inpcblbgroup *grp, *new_grp; 292 293 grp = *grpp; 294 for (; i + 1 < grp->il_inpcnt; ++i) 295 grp->il_inp[i] = grp->il_inp[i + 1]; 296 grp->il_inpcnt--; 297 298 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 299 grp->il_inpcnt <= grp->il_inpsiz / 4) { 300 /* Shrink this group. */ 301 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 302 if (new_grp != NULL) 303 *grpp = new_grp; 304 } 305 } 306 307 /* 308 * Add PCB to load balance group for SO_REUSEPORT_LB option. 309 */ 310 static int 311 in_pcbinslbgrouphash(struct inpcb *inp) 312 { 313 const static struct timeval interval = { 60, 0 }; 314 static struct timeval lastprint; 315 struct inpcbinfo *pcbinfo; 316 struct inpcblbgrouphead *hdr; 317 struct inpcblbgroup *grp; 318 uint32_t idx; 319 320 pcbinfo = inp->inp_pcbinfo; 321 322 INP_WLOCK_ASSERT(inp); 323 INP_HASH_WLOCK_ASSERT(pcbinfo); 324 325 /* 326 * Don't allow jailed socket to join local group. 327 */ 328 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 329 return (0); 330 331 #ifdef INET6 332 /* 333 * Don't allow IPv4 mapped INET6 wild socket. 334 */ 335 if ((inp->inp_vflag & INP_IPV4) && 336 inp->inp_laddr.s_addr == INADDR_ANY && 337 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 338 return (0); 339 } 340 #endif 341 342 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 343 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 344 CK_LIST_FOREACH(grp, hdr, il_list) { 345 if (grp->il_vflag == inp->inp_vflag && 346 grp->il_lport == inp->inp_lport && 347 memcmp(&grp->il_dependladdr, 348 &inp->inp_inc.inc_ie.ie_dependladdr, 349 sizeof(grp->il_dependladdr)) == 0) 350 break; 351 } 352 if (grp == NULL) { 353 /* Create new load balance group. */ 354 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 355 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 356 INPCBLBGROUP_SIZMIN); 357 if (grp == NULL) 358 return (ENOBUFS); 359 } else if (grp->il_inpcnt == grp->il_inpsiz) { 360 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 361 if (ratecheck(&lastprint, &interval)) 362 printf("lb group port %d, limit reached\n", 363 ntohs(grp->il_lport)); 364 return (0); 365 } 366 367 /* Expand this local group. */ 368 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 369 if (grp == NULL) 370 return (ENOBUFS); 371 } 372 373 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 374 ("invalid local group size %d and count %d", grp->il_inpsiz, 375 grp->il_inpcnt)); 376 377 grp->il_inp[grp->il_inpcnt] = inp; 378 grp->il_inpcnt++; 379 return (0); 380 } 381 382 /* 383 * Remove PCB from load balance group. 384 */ 385 static void 386 in_pcbremlbgrouphash(struct inpcb *inp) 387 { 388 struct inpcbinfo *pcbinfo; 389 struct inpcblbgrouphead *hdr; 390 struct inpcblbgroup *grp; 391 int i; 392 393 pcbinfo = inp->inp_pcbinfo; 394 395 INP_WLOCK_ASSERT(inp); 396 INP_HASH_WLOCK_ASSERT(pcbinfo); 397 398 hdr = &pcbinfo->ipi_lbgrouphashbase[ 399 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 400 CK_LIST_FOREACH(grp, hdr, il_list) { 401 for (i = 0; i < grp->il_inpcnt; ++i) { 402 if (grp->il_inp[i] != inp) 403 continue; 404 405 if (grp->il_inpcnt == 1) { 406 /* We are the last, free this local group. */ 407 in_pcblbgroup_free(grp); 408 } else { 409 /* Pull up inpcbs, shrink group if possible. */ 410 in_pcblbgroup_reorder(hdr, &grp, i); 411 } 412 return; 413 } 414 } 415 } 416 417 /* 418 * Different protocols initialize their inpcbs differently - giving 419 * different name to the lock. But they all are disposed the same. 420 */ 421 static void 422 inpcb_fini(void *mem, int size) 423 { 424 struct inpcb *inp = mem; 425 426 INP_LOCK_DESTROY(inp); 427 } 428 429 /* 430 * Initialize an inpcbinfo -- we should be able to reduce the number of 431 * arguments in time. 432 */ 433 void 434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 435 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 436 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 437 { 438 439 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 440 441 INP_INFO_LOCK_INIT(pcbinfo, name); 442 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 443 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 444 #ifdef VIMAGE 445 pcbinfo->ipi_vnet = curvnet; 446 #endif 447 pcbinfo->ipi_listhead = listhead; 448 CK_LIST_INIT(pcbinfo->ipi_listhead); 449 pcbinfo->ipi_count = 0; 450 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 451 &pcbinfo->ipi_hashmask); 452 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 453 &pcbinfo->ipi_porthashmask); 454 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 455 &pcbinfo->ipi_lbgrouphashmask); 456 #ifdef PCBGROUP 457 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 458 #endif 459 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 460 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 461 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 462 uma_zone_set_warning(pcbinfo->ipi_zone, 463 "kern.ipc.maxsockets limit reached"); 464 } 465 466 /* 467 * Destroy an inpcbinfo. 468 */ 469 void 470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 471 { 472 473 KASSERT(pcbinfo->ipi_count == 0, 474 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 475 476 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 477 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 478 pcbinfo->ipi_porthashmask); 479 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 480 pcbinfo->ipi_lbgrouphashmask); 481 #ifdef PCBGROUP 482 in_pcbgroup_destroy(pcbinfo); 483 #endif 484 uma_zdestroy(pcbinfo->ipi_zone); 485 INP_LIST_LOCK_DESTROY(pcbinfo); 486 INP_HASH_LOCK_DESTROY(pcbinfo); 487 INP_INFO_LOCK_DESTROY(pcbinfo); 488 } 489 490 /* 491 * Allocate a PCB and associate it with the socket. 492 * On success return with the PCB locked. 493 */ 494 int 495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 496 { 497 struct inpcb *inp; 498 int error; 499 500 #ifdef INVARIANTS 501 if (pcbinfo == &V_tcbinfo) { 502 INP_INFO_RLOCK_ASSERT(pcbinfo); 503 } else { 504 INP_INFO_WLOCK_ASSERT(pcbinfo); 505 } 506 #endif 507 508 error = 0; 509 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 510 if (inp == NULL) 511 return (ENOBUFS); 512 bzero(&inp->inp_start_zero, inp_zero_size); 513 inp->inp_pcbinfo = pcbinfo; 514 inp->inp_socket = so; 515 inp->inp_cred = crhold(so->so_cred); 516 inp->inp_inc.inc_fibnum = so->so_fibnum; 517 #ifdef MAC 518 error = mac_inpcb_init(inp, M_NOWAIT); 519 if (error != 0) 520 goto out; 521 mac_inpcb_create(so, inp); 522 #endif 523 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 524 error = ipsec_init_pcbpolicy(inp); 525 if (error != 0) { 526 #ifdef MAC 527 mac_inpcb_destroy(inp); 528 #endif 529 goto out; 530 } 531 #endif /*IPSEC*/ 532 #ifdef INET6 533 if (INP_SOCKAF(so) == AF_INET6) { 534 inp->inp_vflag |= INP_IPV6PROTO; 535 if (V_ip6_v6only) 536 inp->inp_flags |= IN6P_IPV6_V6ONLY; 537 } 538 #endif 539 INP_WLOCK(inp); 540 INP_LIST_WLOCK(pcbinfo); 541 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 542 pcbinfo->ipi_count++; 543 so->so_pcb = (caddr_t)inp; 544 #ifdef INET6 545 if (V_ip6_auto_flowlabel) 546 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 547 #endif 548 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 549 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 550 551 /* 552 * Routes in inpcb's can cache L2 as well; they are guaranteed 553 * to be cleaned up. 554 */ 555 inp->inp_route.ro_flags = RT_LLE_CACHE; 556 INP_LIST_WUNLOCK(pcbinfo); 557 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 558 out: 559 if (error != 0) { 560 crfree(inp->inp_cred); 561 uma_zfree(pcbinfo->ipi_zone, inp); 562 } 563 #endif 564 return (error); 565 } 566 567 #ifdef INET 568 int 569 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 570 { 571 int anonport, error; 572 573 INP_WLOCK_ASSERT(inp); 574 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 575 576 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 577 return (EINVAL); 578 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 579 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 580 &inp->inp_lport, cred); 581 if (error) 582 return (error); 583 if (in_pcbinshash(inp) != 0) { 584 inp->inp_laddr.s_addr = INADDR_ANY; 585 inp->inp_lport = 0; 586 return (EAGAIN); 587 } 588 if (anonport) 589 inp->inp_flags |= INP_ANONPORT; 590 return (0); 591 } 592 #endif 593 594 /* 595 * Select a local port (number) to use. 596 */ 597 #if defined(INET) || defined(INET6) 598 int 599 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 600 struct ucred *cred, int lookupflags) 601 { 602 struct inpcbinfo *pcbinfo; 603 struct inpcb *tmpinp; 604 unsigned short *lastport; 605 int count, dorandom, error; 606 u_short aux, first, last, lport; 607 #ifdef INET 608 struct in_addr laddr; 609 #endif 610 611 pcbinfo = inp->inp_pcbinfo; 612 613 /* 614 * Because no actual state changes occur here, a global write lock on 615 * the pcbinfo isn't required. 616 */ 617 INP_LOCK_ASSERT(inp); 618 INP_HASH_LOCK_ASSERT(pcbinfo); 619 620 if (inp->inp_flags & INP_HIGHPORT) { 621 first = V_ipport_hifirstauto; /* sysctl */ 622 last = V_ipport_hilastauto; 623 lastport = &pcbinfo->ipi_lasthi; 624 } else if (inp->inp_flags & INP_LOWPORT) { 625 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 626 if (error) 627 return (error); 628 first = V_ipport_lowfirstauto; /* 1023 */ 629 last = V_ipport_lowlastauto; /* 600 */ 630 lastport = &pcbinfo->ipi_lastlow; 631 } else { 632 first = V_ipport_firstauto; /* sysctl */ 633 last = V_ipport_lastauto; 634 lastport = &pcbinfo->ipi_lastport; 635 } 636 /* 637 * For UDP(-Lite), use random port allocation as long as the user 638 * allows it. For TCP (and as of yet unknown) connections, 639 * use random port allocation only if the user allows it AND 640 * ipport_tick() allows it. 641 */ 642 if (V_ipport_randomized && 643 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 644 pcbinfo == &V_ulitecbinfo)) 645 dorandom = 1; 646 else 647 dorandom = 0; 648 /* 649 * It makes no sense to do random port allocation if 650 * we have the only port available. 651 */ 652 if (first == last) 653 dorandom = 0; 654 /* Make sure to not include UDP(-Lite) packets in the count. */ 655 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 656 V_ipport_tcpallocs++; 657 /* 658 * Instead of having two loops further down counting up or down 659 * make sure that first is always <= last and go with only one 660 * code path implementing all logic. 661 */ 662 if (first > last) { 663 aux = first; 664 first = last; 665 last = aux; 666 } 667 668 #ifdef INET 669 /* Make the compiler happy. */ 670 laddr.s_addr = 0; 671 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 672 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 673 __func__, inp)); 674 laddr = *laddrp; 675 } 676 #endif 677 tmpinp = NULL; /* Make compiler happy. */ 678 lport = *lportp; 679 680 if (dorandom) 681 *lastport = first + (arc4random() % (last - first)); 682 683 count = last - first; 684 685 do { 686 if (count-- < 0) /* completely used? */ 687 return (EADDRNOTAVAIL); 688 ++*lastport; 689 if (*lastport < first || *lastport > last) 690 *lastport = first; 691 lport = htons(*lastport); 692 693 #ifdef INET6 694 if ((inp->inp_vflag & INP_IPV6) != 0) 695 tmpinp = in6_pcblookup_local(pcbinfo, 696 &inp->in6p_laddr, lport, lookupflags, cred); 697 #endif 698 #if defined(INET) && defined(INET6) 699 else 700 #endif 701 #ifdef INET 702 tmpinp = in_pcblookup_local(pcbinfo, laddr, 703 lport, lookupflags, cred); 704 #endif 705 } while (tmpinp != NULL); 706 707 #ifdef INET 708 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 709 laddrp->s_addr = laddr.s_addr; 710 #endif 711 *lportp = lport; 712 713 return (0); 714 } 715 716 /* 717 * Return cached socket options. 718 */ 719 int 720 inp_so_options(const struct inpcb *inp) 721 { 722 int so_options; 723 724 so_options = 0; 725 726 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 727 so_options |= SO_REUSEPORT_LB; 728 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 729 so_options |= SO_REUSEPORT; 730 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 731 so_options |= SO_REUSEADDR; 732 return (so_options); 733 } 734 #endif /* INET || INET6 */ 735 736 /* 737 * Check if a new BINDMULTI socket is allowed to be created. 738 * 739 * ni points to the new inp. 740 * oi points to the exisitng inp. 741 * 742 * This checks whether the existing inp also has BINDMULTI and 743 * whether the credentials match. 744 */ 745 int 746 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 747 { 748 /* Check permissions match */ 749 if ((ni->inp_flags2 & INP_BINDMULTI) && 750 (ni->inp_cred->cr_uid != 751 oi->inp_cred->cr_uid)) 752 return (0); 753 754 /* Check the existing inp has BINDMULTI set */ 755 if ((ni->inp_flags2 & INP_BINDMULTI) && 756 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 757 return (0); 758 759 /* 760 * We're okay - either INP_BINDMULTI isn't set on ni, or 761 * it is and it matches the checks. 762 */ 763 return (1); 764 } 765 766 #ifdef INET 767 /* 768 * Set up a bind operation on a PCB, performing port allocation 769 * as required, but do not actually modify the PCB. Callers can 770 * either complete the bind by setting inp_laddr/inp_lport and 771 * calling in_pcbinshash(), or they can just use the resulting 772 * port and address to authorise the sending of a once-off packet. 773 * 774 * On error, the values of *laddrp and *lportp are not changed. 775 */ 776 int 777 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 778 u_short *lportp, struct ucred *cred) 779 { 780 struct socket *so = inp->inp_socket; 781 struct sockaddr_in *sin; 782 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 783 struct in_addr laddr; 784 u_short lport = 0; 785 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 786 int error; 787 788 /* 789 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 790 * so that we don't have to add to the (already messy) code below. 791 */ 792 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 793 794 /* 795 * No state changes, so read locks are sufficient here. 796 */ 797 INP_LOCK_ASSERT(inp); 798 INP_HASH_LOCK_ASSERT(pcbinfo); 799 800 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 801 return (EADDRNOTAVAIL); 802 laddr.s_addr = *laddrp; 803 if (nam != NULL && laddr.s_addr != INADDR_ANY) 804 return (EINVAL); 805 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 806 lookupflags = INPLOOKUP_WILDCARD; 807 if (nam == NULL) { 808 if ((error = prison_local_ip4(cred, &laddr)) != 0) 809 return (error); 810 } else { 811 sin = (struct sockaddr_in *)nam; 812 if (nam->sa_len != sizeof (*sin)) 813 return (EINVAL); 814 #ifdef notdef 815 /* 816 * We should check the family, but old programs 817 * incorrectly fail to initialize it. 818 */ 819 if (sin->sin_family != AF_INET) 820 return (EAFNOSUPPORT); 821 #endif 822 error = prison_local_ip4(cred, &sin->sin_addr); 823 if (error) 824 return (error); 825 if (sin->sin_port != *lportp) { 826 /* Don't allow the port to change. */ 827 if (*lportp != 0) 828 return (EINVAL); 829 lport = sin->sin_port; 830 } 831 /* NB: lport is left as 0 if the port isn't being changed. */ 832 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 833 /* 834 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 835 * allow complete duplication of binding if 836 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 837 * and a multicast address is bound on both 838 * new and duplicated sockets. 839 */ 840 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 841 reuseport = SO_REUSEADDR|SO_REUSEPORT; 842 /* 843 * XXX: How to deal with SO_REUSEPORT_LB here? 844 * Treat same as SO_REUSEPORT for now. 845 */ 846 if ((so->so_options & 847 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 848 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 849 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 850 sin->sin_port = 0; /* yech... */ 851 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 852 /* 853 * Is the address a local IP address? 854 * If INP_BINDANY is set, then the socket may be bound 855 * to any endpoint address, local or not. 856 */ 857 if ((inp->inp_flags & INP_BINDANY) == 0 && 858 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 859 return (EADDRNOTAVAIL); 860 } 861 laddr = sin->sin_addr; 862 if (lport) { 863 struct inpcb *t; 864 struct tcptw *tw; 865 866 /* GROSS */ 867 if (ntohs(lport) <= V_ipport_reservedhigh && 868 ntohs(lport) >= V_ipport_reservedlow && 869 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 870 0)) 871 return (EACCES); 872 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 873 priv_check_cred(inp->inp_cred, 874 PRIV_NETINET_REUSEPORT, 0) != 0) { 875 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 876 lport, INPLOOKUP_WILDCARD, cred); 877 /* 878 * XXX 879 * This entire block sorely needs a rewrite. 880 */ 881 if (t && 882 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 883 ((t->inp_flags & INP_TIMEWAIT) == 0) && 884 (so->so_type != SOCK_STREAM || 885 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 886 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 887 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 888 (t->inp_flags2 & INP_REUSEPORT) || 889 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 890 (inp->inp_cred->cr_uid != 891 t->inp_cred->cr_uid)) 892 return (EADDRINUSE); 893 894 /* 895 * If the socket is a BINDMULTI socket, then 896 * the credentials need to match and the 897 * original socket also has to have been bound 898 * with BINDMULTI. 899 */ 900 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 901 return (EADDRINUSE); 902 } 903 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 904 lport, lookupflags, cred); 905 if (t && (t->inp_flags & INP_TIMEWAIT)) { 906 /* 907 * XXXRW: If an incpb has had its timewait 908 * state recycled, we treat the address as 909 * being in use (for now). This is better 910 * than a panic, but not desirable. 911 */ 912 tw = intotw(t); 913 if (tw == NULL || 914 ((reuseport & tw->tw_so_options) == 0 && 915 (reuseport_lb & 916 tw->tw_so_options) == 0)) { 917 return (EADDRINUSE); 918 } 919 } else if (t && 920 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 921 (reuseport & inp_so_options(t)) == 0 && 922 (reuseport_lb & inp_so_options(t)) == 0) { 923 #ifdef INET6 924 if (ntohl(sin->sin_addr.s_addr) != 925 INADDR_ANY || 926 ntohl(t->inp_laddr.s_addr) != 927 INADDR_ANY || 928 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 929 (t->inp_vflag & INP_IPV6PROTO) == 0) 930 #endif 931 return (EADDRINUSE); 932 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 933 return (EADDRINUSE); 934 } 935 } 936 } 937 if (*lportp != 0) 938 lport = *lportp; 939 if (lport == 0) { 940 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 941 if (error != 0) 942 return (error); 943 944 } 945 *laddrp = laddr.s_addr; 946 *lportp = lport; 947 return (0); 948 } 949 950 /* 951 * Connect from a socket to a specified address. 952 * Both address and port must be specified in argument sin. 953 * If don't have a local address for this socket yet, 954 * then pick one. 955 */ 956 int 957 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 958 struct ucred *cred, struct mbuf *m) 959 { 960 u_short lport, fport; 961 in_addr_t laddr, faddr; 962 int anonport, error; 963 964 INP_WLOCK_ASSERT(inp); 965 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 966 967 lport = inp->inp_lport; 968 laddr = inp->inp_laddr.s_addr; 969 anonport = (lport == 0); 970 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 971 NULL, cred); 972 if (error) 973 return (error); 974 975 /* Do the initial binding of the local address if required. */ 976 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 977 inp->inp_lport = lport; 978 inp->inp_laddr.s_addr = laddr; 979 if (in_pcbinshash(inp) != 0) { 980 inp->inp_laddr.s_addr = INADDR_ANY; 981 inp->inp_lport = 0; 982 return (EAGAIN); 983 } 984 } 985 986 /* Commit the remaining changes. */ 987 inp->inp_lport = lport; 988 inp->inp_laddr.s_addr = laddr; 989 inp->inp_faddr.s_addr = faddr; 990 inp->inp_fport = fport; 991 in_pcbrehash_mbuf(inp, m); 992 993 if (anonport) 994 inp->inp_flags |= INP_ANONPORT; 995 return (0); 996 } 997 998 int 999 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1000 { 1001 1002 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1003 } 1004 1005 /* 1006 * Do proper source address selection on an unbound socket in case 1007 * of connect. Take jails into account as well. 1008 */ 1009 int 1010 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1011 struct ucred *cred) 1012 { 1013 struct ifaddr *ifa; 1014 struct sockaddr *sa; 1015 struct sockaddr_in *sin; 1016 struct route sro; 1017 int error; 1018 1019 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1020 /* 1021 * Bypass source address selection and use the primary jail IP 1022 * if requested. 1023 */ 1024 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1025 return (0); 1026 1027 error = 0; 1028 bzero(&sro, sizeof(sro)); 1029 1030 sin = (struct sockaddr_in *)&sro.ro_dst; 1031 sin->sin_family = AF_INET; 1032 sin->sin_len = sizeof(struct sockaddr_in); 1033 sin->sin_addr.s_addr = faddr->s_addr; 1034 1035 /* 1036 * If route is known our src addr is taken from the i/f, 1037 * else punt. 1038 * 1039 * Find out route to destination. 1040 */ 1041 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1042 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1043 1044 /* 1045 * If we found a route, use the address corresponding to 1046 * the outgoing interface. 1047 * 1048 * Otherwise assume faddr is reachable on a directly connected 1049 * network and try to find a corresponding interface to take 1050 * the source address from. 1051 */ 1052 NET_EPOCH_ENTER(); 1053 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1054 struct in_ifaddr *ia; 1055 struct ifnet *ifp; 1056 1057 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1058 inp->inp_socket->so_fibnum)); 1059 if (ia == NULL) { 1060 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1061 inp->inp_socket->so_fibnum)); 1062 1063 } 1064 if (ia == NULL) { 1065 error = ENETUNREACH; 1066 goto done; 1067 } 1068 1069 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1070 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1071 goto done; 1072 } 1073 1074 ifp = ia->ia_ifp; 1075 ia = NULL; 1076 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1077 1078 sa = ifa->ifa_addr; 1079 if (sa->sa_family != AF_INET) 1080 continue; 1081 sin = (struct sockaddr_in *)sa; 1082 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1083 ia = (struct in_ifaddr *)ifa; 1084 break; 1085 } 1086 } 1087 if (ia != NULL) { 1088 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1089 goto done; 1090 } 1091 1092 /* 3. As a last resort return the 'default' jail address. */ 1093 error = prison_get_ip4(cred, laddr); 1094 goto done; 1095 } 1096 1097 /* 1098 * If the outgoing interface on the route found is not 1099 * a loopback interface, use the address from that interface. 1100 * In case of jails do those three steps: 1101 * 1. check if the interface address belongs to the jail. If so use it. 1102 * 2. check if we have any address on the outgoing interface 1103 * belonging to this jail. If so use it. 1104 * 3. as a last resort return the 'default' jail address. 1105 */ 1106 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1107 struct in_ifaddr *ia; 1108 struct ifnet *ifp; 1109 1110 /* If not jailed, use the default returned. */ 1111 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1112 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1113 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1114 goto done; 1115 } 1116 1117 /* Jailed. */ 1118 /* 1. Check if the iface address belongs to the jail. */ 1119 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1120 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1121 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1122 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1123 goto done; 1124 } 1125 1126 /* 1127 * 2. Check if we have any address on the outgoing interface 1128 * belonging to this jail. 1129 */ 1130 ia = NULL; 1131 ifp = sro.ro_rt->rt_ifp; 1132 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1133 sa = ifa->ifa_addr; 1134 if (sa->sa_family != AF_INET) 1135 continue; 1136 sin = (struct sockaddr_in *)sa; 1137 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1138 ia = (struct in_ifaddr *)ifa; 1139 break; 1140 } 1141 } 1142 if (ia != NULL) { 1143 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1144 goto done; 1145 } 1146 1147 /* 3. As a last resort return the 'default' jail address. */ 1148 error = prison_get_ip4(cred, laddr); 1149 goto done; 1150 } 1151 1152 /* 1153 * The outgoing interface is marked with 'loopback net', so a route 1154 * to ourselves is here. 1155 * Try to find the interface of the destination address and then 1156 * take the address from there. That interface is not necessarily 1157 * a loopback interface. 1158 * In case of jails, check that it is an address of the jail 1159 * and if we cannot find, fall back to the 'default' jail address. 1160 */ 1161 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1162 struct sockaddr_in sain; 1163 struct in_ifaddr *ia; 1164 1165 bzero(&sain, sizeof(struct sockaddr_in)); 1166 sain.sin_family = AF_INET; 1167 sain.sin_len = sizeof(struct sockaddr_in); 1168 sain.sin_addr.s_addr = faddr->s_addr; 1169 1170 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1171 inp->inp_socket->so_fibnum)); 1172 if (ia == NULL) 1173 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1174 inp->inp_socket->so_fibnum)); 1175 if (ia == NULL) 1176 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1177 1178 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1179 if (ia == NULL) { 1180 error = ENETUNREACH; 1181 goto done; 1182 } 1183 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1184 goto done; 1185 } 1186 1187 /* Jailed. */ 1188 if (ia != NULL) { 1189 struct ifnet *ifp; 1190 1191 ifp = ia->ia_ifp; 1192 ia = NULL; 1193 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1194 sa = ifa->ifa_addr; 1195 if (sa->sa_family != AF_INET) 1196 continue; 1197 sin = (struct sockaddr_in *)sa; 1198 if (prison_check_ip4(cred, 1199 &sin->sin_addr) == 0) { 1200 ia = (struct in_ifaddr *)ifa; 1201 break; 1202 } 1203 } 1204 if (ia != NULL) { 1205 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1206 goto done; 1207 } 1208 } 1209 1210 /* 3. As a last resort return the 'default' jail address. */ 1211 error = prison_get_ip4(cred, laddr); 1212 goto done; 1213 } 1214 1215 done: 1216 NET_EPOCH_EXIT(); 1217 if (sro.ro_rt != NULL) 1218 RTFREE(sro.ro_rt); 1219 return (error); 1220 } 1221 1222 /* 1223 * Set up for a connect from a socket to the specified address. 1224 * On entry, *laddrp and *lportp should contain the current local 1225 * address and port for the PCB; these are updated to the values 1226 * that should be placed in inp_laddr and inp_lport to complete 1227 * the connect. 1228 * 1229 * On success, *faddrp and *fportp will be set to the remote address 1230 * and port. These are not updated in the error case. 1231 * 1232 * If the operation fails because the connection already exists, 1233 * *oinpp will be set to the PCB of that connection so that the 1234 * caller can decide to override it. In all other cases, *oinpp 1235 * is set to NULL. 1236 */ 1237 int 1238 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1239 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1240 struct inpcb **oinpp, struct ucred *cred) 1241 { 1242 struct rm_priotracker in_ifa_tracker; 1243 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1244 struct in_ifaddr *ia; 1245 struct inpcb *oinp; 1246 struct in_addr laddr, faddr; 1247 u_short lport, fport; 1248 int error; 1249 1250 /* 1251 * Because a global state change doesn't actually occur here, a read 1252 * lock is sufficient. 1253 */ 1254 INP_LOCK_ASSERT(inp); 1255 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1256 1257 if (oinpp != NULL) 1258 *oinpp = NULL; 1259 if (nam->sa_len != sizeof (*sin)) 1260 return (EINVAL); 1261 if (sin->sin_family != AF_INET) 1262 return (EAFNOSUPPORT); 1263 if (sin->sin_port == 0) 1264 return (EADDRNOTAVAIL); 1265 laddr.s_addr = *laddrp; 1266 lport = *lportp; 1267 faddr = sin->sin_addr; 1268 fport = sin->sin_port; 1269 1270 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1271 /* 1272 * If the destination address is INADDR_ANY, 1273 * use the primary local address. 1274 * If the supplied address is INADDR_BROADCAST, 1275 * and the primary interface supports broadcast, 1276 * choose the broadcast address for that interface. 1277 */ 1278 if (faddr.s_addr == INADDR_ANY) { 1279 IN_IFADDR_RLOCK(&in_ifa_tracker); 1280 faddr = 1281 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1282 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1283 if (cred != NULL && 1284 (error = prison_get_ip4(cred, &faddr)) != 0) 1285 return (error); 1286 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1287 IN_IFADDR_RLOCK(&in_ifa_tracker); 1288 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1289 IFF_BROADCAST) 1290 faddr = satosin(&CK_STAILQ_FIRST( 1291 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1292 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1293 } 1294 } 1295 if (laddr.s_addr == INADDR_ANY) { 1296 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1297 /* 1298 * If the destination address is multicast and an outgoing 1299 * interface has been set as a multicast option, prefer the 1300 * address of that interface as our source address. 1301 */ 1302 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1303 inp->inp_moptions != NULL) { 1304 struct ip_moptions *imo; 1305 struct ifnet *ifp; 1306 1307 imo = inp->inp_moptions; 1308 if (imo->imo_multicast_ifp != NULL) { 1309 ifp = imo->imo_multicast_ifp; 1310 IN_IFADDR_RLOCK(&in_ifa_tracker); 1311 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1312 if ((ia->ia_ifp == ifp) && 1313 (cred == NULL || 1314 prison_check_ip4(cred, 1315 &ia->ia_addr.sin_addr) == 0)) 1316 break; 1317 } 1318 if (ia == NULL) 1319 error = EADDRNOTAVAIL; 1320 else { 1321 laddr = ia->ia_addr.sin_addr; 1322 error = 0; 1323 } 1324 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1325 } 1326 } 1327 if (error) 1328 return (error); 1329 } 1330 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1331 laddr, lport, 0, NULL); 1332 if (oinp != NULL) { 1333 if (oinpp != NULL) 1334 *oinpp = oinp; 1335 return (EADDRINUSE); 1336 } 1337 if (lport == 0) { 1338 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1339 cred); 1340 if (error) 1341 return (error); 1342 } 1343 *laddrp = laddr.s_addr; 1344 *lportp = lport; 1345 *faddrp = faddr.s_addr; 1346 *fportp = fport; 1347 return (0); 1348 } 1349 1350 void 1351 in_pcbdisconnect(struct inpcb *inp) 1352 { 1353 1354 INP_WLOCK_ASSERT(inp); 1355 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1356 1357 inp->inp_faddr.s_addr = INADDR_ANY; 1358 inp->inp_fport = 0; 1359 in_pcbrehash(inp); 1360 } 1361 #endif /* INET */ 1362 1363 /* 1364 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1365 * For most protocols, this will be invoked immediately prior to calling 1366 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1367 * socket, in which case in_pcbfree() is deferred. 1368 */ 1369 void 1370 in_pcbdetach(struct inpcb *inp) 1371 { 1372 1373 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1374 1375 #ifdef RATELIMIT 1376 if (inp->inp_snd_tag != NULL) 1377 in_pcbdetach_txrtlmt(inp); 1378 #endif 1379 inp->inp_socket->so_pcb = NULL; 1380 inp->inp_socket = NULL; 1381 } 1382 1383 /* 1384 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1385 * stability of an inpcb pointer despite the inpcb lock being released. This 1386 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1387 * but where the inpcb lock may already held, or when acquiring a reference 1388 * via a pcbgroup. 1389 * 1390 * in_pcbref() should be used only to provide brief memory stability, and 1391 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1392 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1393 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1394 * lock and rele are the *only* safe operations that may be performed on the 1395 * inpcb. 1396 * 1397 * While the inpcb will not be freed, releasing the inpcb lock means that the 1398 * connection's state may change, so the caller should be careful to 1399 * revalidate any cached state on reacquiring the lock. Drop the reference 1400 * using in_pcbrele(). 1401 */ 1402 void 1403 in_pcbref(struct inpcb *inp) 1404 { 1405 1406 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1407 1408 refcount_acquire(&inp->inp_refcount); 1409 } 1410 1411 /* 1412 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1413 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1414 * return a flag indicating whether or not the inpcb remains valid. If it is 1415 * valid, we return with the inpcb lock held. 1416 * 1417 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1418 * reference on an inpcb. Historically more work was done here (actually, in 1419 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1420 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1421 * about memory stability (and continued use of the write lock). 1422 */ 1423 int 1424 in_pcbrele_rlocked(struct inpcb *inp) 1425 { 1426 struct inpcbinfo *pcbinfo; 1427 1428 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1429 1430 INP_RLOCK_ASSERT(inp); 1431 1432 if (refcount_release(&inp->inp_refcount) == 0) { 1433 /* 1434 * If the inpcb has been freed, let the caller know, even if 1435 * this isn't the last reference. 1436 */ 1437 if (inp->inp_flags2 & INP_FREED) { 1438 INP_RUNLOCK(inp); 1439 return (1); 1440 } 1441 return (0); 1442 } 1443 1444 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1445 #ifdef TCPHPTS 1446 if (inp->inp_in_hpts || inp->inp_in_input) { 1447 struct tcp_hpts_entry *hpts; 1448 /* 1449 * We should not be on the hpts at 1450 * this point in any form. we must 1451 * get the lock to be sure. 1452 */ 1453 hpts = tcp_hpts_lock(inp); 1454 if (inp->inp_in_hpts) 1455 panic("Hpts:%p inp:%p at free still on hpts", 1456 hpts, inp); 1457 mtx_unlock(&hpts->p_mtx); 1458 hpts = tcp_input_lock(inp); 1459 if (inp->inp_in_input) 1460 panic("Hpts:%p inp:%p at free still on input hpts", 1461 hpts, inp); 1462 mtx_unlock(&hpts->p_mtx); 1463 } 1464 #endif 1465 INP_RUNLOCK(inp); 1466 pcbinfo = inp->inp_pcbinfo; 1467 uma_zfree(pcbinfo->ipi_zone, inp); 1468 return (1); 1469 } 1470 1471 int 1472 in_pcbrele_wlocked(struct inpcb *inp) 1473 { 1474 struct inpcbinfo *pcbinfo; 1475 1476 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1477 1478 INP_WLOCK_ASSERT(inp); 1479 1480 if (refcount_release(&inp->inp_refcount) == 0) { 1481 /* 1482 * If the inpcb has been freed, let the caller know, even if 1483 * this isn't the last reference. 1484 */ 1485 if (inp->inp_flags2 & INP_FREED) { 1486 INP_WUNLOCK(inp); 1487 return (1); 1488 } 1489 return (0); 1490 } 1491 1492 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1493 #ifdef TCPHPTS 1494 if (inp->inp_in_hpts || inp->inp_in_input) { 1495 struct tcp_hpts_entry *hpts; 1496 /* 1497 * We should not be on the hpts at 1498 * this point in any form. we must 1499 * get the lock to be sure. 1500 */ 1501 hpts = tcp_hpts_lock(inp); 1502 if (inp->inp_in_hpts) 1503 panic("Hpts:%p inp:%p at free still on hpts", 1504 hpts, inp); 1505 mtx_unlock(&hpts->p_mtx); 1506 hpts = tcp_input_lock(inp); 1507 if (inp->inp_in_input) 1508 panic("Hpts:%p inp:%p at free still on input hpts", 1509 hpts, inp); 1510 mtx_unlock(&hpts->p_mtx); 1511 } 1512 #endif 1513 INP_WUNLOCK(inp); 1514 pcbinfo = inp->inp_pcbinfo; 1515 uma_zfree(pcbinfo->ipi_zone, inp); 1516 return (1); 1517 } 1518 1519 /* 1520 * Temporary wrapper. 1521 */ 1522 int 1523 in_pcbrele(struct inpcb *inp) 1524 { 1525 1526 return (in_pcbrele_wlocked(inp)); 1527 } 1528 1529 void 1530 in_pcblist_rele_rlocked(epoch_context_t ctx) 1531 { 1532 struct in_pcblist *il; 1533 struct inpcb *inp; 1534 struct inpcbinfo *pcbinfo; 1535 int i, n; 1536 1537 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1538 pcbinfo = il->il_pcbinfo; 1539 n = il->il_count; 1540 INP_INFO_WLOCK(pcbinfo); 1541 for (i = 0; i < n; i++) { 1542 inp = il->il_inp_list[i]; 1543 INP_RLOCK(inp); 1544 if (!in_pcbrele_rlocked(inp)) 1545 INP_RUNLOCK(inp); 1546 } 1547 INP_INFO_WUNLOCK(pcbinfo); 1548 free(il, M_TEMP); 1549 } 1550 1551 static void 1552 inpcbport_free(epoch_context_t ctx) 1553 { 1554 struct inpcbport *phd; 1555 1556 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1557 free(phd, M_PCB); 1558 } 1559 1560 static void 1561 in_pcbfree_deferred(epoch_context_t ctx) 1562 { 1563 struct inpcb *inp; 1564 int released __unused; 1565 1566 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1567 1568 INP_WLOCK(inp); 1569 #ifdef INET 1570 struct ip_moptions *imo = inp->inp_moptions; 1571 inp->inp_moptions = NULL; 1572 #endif 1573 /* XXXRW: Do as much as possible here. */ 1574 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1575 if (inp->inp_sp != NULL) 1576 ipsec_delete_pcbpolicy(inp); 1577 #endif 1578 #ifdef INET6 1579 struct ip6_moptions *im6o = NULL; 1580 if (inp->inp_vflag & INP_IPV6PROTO) { 1581 ip6_freepcbopts(inp->in6p_outputopts); 1582 im6o = inp->in6p_moptions; 1583 inp->in6p_moptions = NULL; 1584 } 1585 #endif 1586 if (inp->inp_options) 1587 (void)m_free(inp->inp_options); 1588 inp->inp_vflag = 0; 1589 crfree(inp->inp_cred); 1590 #ifdef MAC 1591 mac_inpcb_destroy(inp); 1592 #endif 1593 released = in_pcbrele_wlocked(inp); 1594 MPASS(released); 1595 #ifdef INET6 1596 ip6_freemoptions(im6o); 1597 #endif 1598 #ifdef INET 1599 inp_freemoptions(imo); 1600 #endif 1601 } 1602 1603 /* 1604 * Unconditionally schedule an inpcb to be freed by decrementing its 1605 * reference count, which should occur only after the inpcb has been detached 1606 * from its socket. If another thread holds a temporary reference (acquired 1607 * using in_pcbref()) then the free is deferred until that reference is 1608 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1609 * work, including removal from global lists, is done in this context, where 1610 * the pcbinfo lock is held. 1611 */ 1612 void 1613 in_pcbfree(struct inpcb *inp) 1614 { 1615 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1616 1617 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1618 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1619 ("%s: called twice for pcb %p", __func__, inp)); 1620 if (inp->inp_flags2 & INP_FREED) { 1621 INP_WUNLOCK(inp); 1622 return; 1623 } 1624 1625 #ifdef INVARIANTS 1626 if (pcbinfo == &V_tcbinfo) { 1627 INP_INFO_LOCK_ASSERT(pcbinfo); 1628 } else { 1629 INP_INFO_WLOCK_ASSERT(pcbinfo); 1630 } 1631 #endif 1632 INP_WLOCK_ASSERT(inp); 1633 INP_LIST_WLOCK(pcbinfo); 1634 in_pcbremlists(inp); 1635 INP_LIST_WUNLOCK(pcbinfo); 1636 RO_INVALIDATE_CACHE(&inp->inp_route); 1637 /* mark as destruction in progress */ 1638 inp->inp_flags2 |= INP_FREED; 1639 INP_WUNLOCK(inp); 1640 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1641 } 1642 1643 /* 1644 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1645 * port reservation, and preventing it from being returned by inpcb lookups. 1646 * 1647 * It is used by TCP to mark an inpcb as unused and avoid future packet 1648 * delivery or event notification when a socket remains open but TCP has 1649 * closed. This might occur as a result of a shutdown()-initiated TCP close 1650 * or a RST on the wire, and allows the port binding to be reused while still 1651 * maintaining the invariant that so_pcb always points to a valid inpcb until 1652 * in_pcbdetach(). 1653 * 1654 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1655 * in_pcbnotifyall() and in_pcbpurgeif0()? 1656 */ 1657 void 1658 in_pcbdrop(struct inpcb *inp) 1659 { 1660 1661 INP_WLOCK_ASSERT(inp); 1662 #ifdef INVARIANTS 1663 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1664 MPASS(inp->inp_refcount > 1); 1665 #endif 1666 1667 /* 1668 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1669 * the hash lock...? 1670 */ 1671 inp->inp_flags |= INP_DROPPED; 1672 if (inp->inp_flags & INP_INHASHLIST) { 1673 struct inpcbport *phd = inp->inp_phd; 1674 1675 INP_HASH_WLOCK(inp->inp_pcbinfo); 1676 in_pcbremlbgrouphash(inp); 1677 CK_LIST_REMOVE(inp, inp_hash); 1678 CK_LIST_REMOVE(inp, inp_portlist); 1679 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1680 CK_LIST_REMOVE(phd, phd_hash); 1681 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1682 } 1683 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1684 inp->inp_flags &= ~INP_INHASHLIST; 1685 #ifdef PCBGROUP 1686 in_pcbgroup_remove(inp); 1687 #endif 1688 } 1689 } 1690 1691 #ifdef INET 1692 /* 1693 * Common routines to return the socket addresses associated with inpcbs. 1694 */ 1695 struct sockaddr * 1696 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1697 { 1698 struct sockaddr_in *sin; 1699 1700 sin = malloc(sizeof *sin, M_SONAME, 1701 M_WAITOK | M_ZERO); 1702 sin->sin_family = AF_INET; 1703 sin->sin_len = sizeof(*sin); 1704 sin->sin_addr = *addr_p; 1705 sin->sin_port = port; 1706 1707 return (struct sockaddr *)sin; 1708 } 1709 1710 int 1711 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1712 { 1713 struct inpcb *inp; 1714 struct in_addr addr; 1715 in_port_t port; 1716 1717 inp = sotoinpcb(so); 1718 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1719 1720 INP_RLOCK(inp); 1721 port = inp->inp_lport; 1722 addr = inp->inp_laddr; 1723 INP_RUNLOCK(inp); 1724 1725 *nam = in_sockaddr(port, &addr); 1726 return 0; 1727 } 1728 1729 int 1730 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1731 { 1732 struct inpcb *inp; 1733 struct in_addr addr; 1734 in_port_t port; 1735 1736 inp = sotoinpcb(so); 1737 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1738 1739 INP_RLOCK(inp); 1740 port = inp->inp_fport; 1741 addr = inp->inp_faddr; 1742 INP_RUNLOCK(inp); 1743 1744 *nam = in_sockaddr(port, &addr); 1745 return 0; 1746 } 1747 1748 void 1749 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1750 struct inpcb *(*notify)(struct inpcb *, int)) 1751 { 1752 struct inpcb *inp, *inp_temp; 1753 1754 INP_INFO_WLOCK(pcbinfo); 1755 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1756 INP_WLOCK(inp); 1757 #ifdef INET6 1758 if ((inp->inp_vflag & INP_IPV4) == 0) { 1759 INP_WUNLOCK(inp); 1760 continue; 1761 } 1762 #endif 1763 if (inp->inp_faddr.s_addr != faddr.s_addr || 1764 inp->inp_socket == NULL) { 1765 INP_WUNLOCK(inp); 1766 continue; 1767 } 1768 if ((*notify)(inp, errno)) 1769 INP_WUNLOCK(inp); 1770 } 1771 INP_INFO_WUNLOCK(pcbinfo); 1772 } 1773 1774 void 1775 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1776 { 1777 struct inpcb *inp; 1778 struct ip_moptions *imo; 1779 int i, gap; 1780 1781 INP_INFO_WLOCK(pcbinfo); 1782 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1783 INP_WLOCK(inp); 1784 imo = inp->inp_moptions; 1785 if ((inp->inp_vflag & INP_IPV4) && 1786 imo != NULL) { 1787 /* 1788 * Unselect the outgoing interface if it is being 1789 * detached. 1790 */ 1791 if (imo->imo_multicast_ifp == ifp) 1792 imo->imo_multicast_ifp = NULL; 1793 1794 /* 1795 * Drop multicast group membership if we joined 1796 * through the interface being detached. 1797 * 1798 * XXX This can all be deferred to an epoch_call 1799 */ 1800 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1801 i++) { 1802 if (imo->imo_membership[i]->inm_ifp == ifp) { 1803 IN_MULTI_LOCK_ASSERT(); 1804 in_leavegroup_locked(imo->imo_membership[i], NULL); 1805 gap++; 1806 } else if (gap != 0) 1807 imo->imo_membership[i - gap] = 1808 imo->imo_membership[i]; 1809 } 1810 imo->imo_num_memberships -= gap; 1811 } 1812 INP_WUNLOCK(inp); 1813 } 1814 INP_INFO_WUNLOCK(pcbinfo); 1815 } 1816 1817 /* 1818 * Lookup a PCB based on the local address and port. Caller must hold the 1819 * hash lock. No inpcb locks or references are acquired. 1820 */ 1821 #define INP_LOOKUP_MAPPED_PCB_COST 3 1822 struct inpcb * 1823 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1824 u_short lport, int lookupflags, struct ucred *cred) 1825 { 1826 struct inpcb *inp; 1827 #ifdef INET6 1828 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1829 #else 1830 int matchwild = 3; 1831 #endif 1832 int wildcard; 1833 1834 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1835 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1836 1837 INP_HASH_LOCK_ASSERT(pcbinfo); 1838 1839 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1840 struct inpcbhead *head; 1841 /* 1842 * Look for an unconnected (wildcard foreign addr) PCB that 1843 * matches the local address and port we're looking for. 1844 */ 1845 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1846 0, pcbinfo->ipi_hashmask)]; 1847 CK_LIST_FOREACH(inp, head, inp_hash) { 1848 #ifdef INET6 1849 /* XXX inp locking */ 1850 if ((inp->inp_vflag & INP_IPV4) == 0) 1851 continue; 1852 #endif 1853 if (inp->inp_faddr.s_addr == INADDR_ANY && 1854 inp->inp_laddr.s_addr == laddr.s_addr && 1855 inp->inp_lport == lport) { 1856 /* 1857 * Found? 1858 */ 1859 if (cred == NULL || 1860 prison_equal_ip4(cred->cr_prison, 1861 inp->inp_cred->cr_prison)) 1862 return (inp); 1863 } 1864 } 1865 /* 1866 * Not found. 1867 */ 1868 return (NULL); 1869 } else { 1870 struct inpcbporthead *porthash; 1871 struct inpcbport *phd; 1872 struct inpcb *match = NULL; 1873 /* 1874 * Best fit PCB lookup. 1875 * 1876 * First see if this local port is in use by looking on the 1877 * port hash list. 1878 */ 1879 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1880 pcbinfo->ipi_porthashmask)]; 1881 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1882 if (phd->phd_port == lport) 1883 break; 1884 } 1885 if (phd != NULL) { 1886 /* 1887 * Port is in use by one or more PCBs. Look for best 1888 * fit. 1889 */ 1890 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1891 wildcard = 0; 1892 if (cred != NULL && 1893 !prison_equal_ip4(inp->inp_cred->cr_prison, 1894 cred->cr_prison)) 1895 continue; 1896 #ifdef INET6 1897 /* XXX inp locking */ 1898 if ((inp->inp_vflag & INP_IPV4) == 0) 1899 continue; 1900 /* 1901 * We never select the PCB that has 1902 * INP_IPV6 flag and is bound to :: if 1903 * we have another PCB which is bound 1904 * to 0.0.0.0. If a PCB has the 1905 * INP_IPV6 flag, then we set its cost 1906 * higher than IPv4 only PCBs. 1907 * 1908 * Note that the case only happens 1909 * when a socket is bound to ::, under 1910 * the condition that the use of the 1911 * mapped address is allowed. 1912 */ 1913 if ((inp->inp_vflag & INP_IPV6) != 0) 1914 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1915 #endif 1916 if (inp->inp_faddr.s_addr != INADDR_ANY) 1917 wildcard++; 1918 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1919 if (laddr.s_addr == INADDR_ANY) 1920 wildcard++; 1921 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1922 continue; 1923 } else { 1924 if (laddr.s_addr != INADDR_ANY) 1925 wildcard++; 1926 } 1927 if (wildcard < matchwild) { 1928 match = inp; 1929 matchwild = wildcard; 1930 if (matchwild == 0) 1931 break; 1932 } 1933 } 1934 } 1935 return (match); 1936 } 1937 } 1938 #undef INP_LOOKUP_MAPPED_PCB_COST 1939 1940 static struct inpcb * 1941 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1942 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1943 uint16_t fport, int lookupflags) 1944 { 1945 struct inpcb *local_wild; 1946 const struct inpcblbgrouphead *hdr; 1947 struct inpcblbgroup *grp; 1948 uint32_t idx; 1949 1950 INP_HASH_LOCK_ASSERT(pcbinfo); 1951 1952 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1953 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1954 1955 /* 1956 * Order of socket selection: 1957 * 1. non-wild. 1958 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1959 * 1960 * NOTE: 1961 * - Load balanced group does not contain jailed sockets 1962 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1963 */ 1964 local_wild = NULL; 1965 CK_LIST_FOREACH(grp, hdr, il_list) { 1966 #ifdef INET6 1967 if (!(grp->il_vflag & INP_IPV4)) 1968 continue; 1969 #endif 1970 if (grp->il_lport != lport) 1971 continue; 1972 1973 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1974 grp->il_inpcnt; 1975 if (grp->il_laddr.s_addr == laddr->s_addr) 1976 return (grp->il_inp[idx]); 1977 if (grp->il_laddr.s_addr == INADDR_ANY && 1978 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1979 local_wild = grp->il_inp[idx]; 1980 } 1981 return (local_wild); 1982 } 1983 1984 #ifdef PCBGROUP 1985 /* 1986 * Lookup PCB in hash list, using pcbgroup tables. 1987 */ 1988 static struct inpcb * 1989 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1990 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1991 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1992 { 1993 struct inpcbhead *head; 1994 struct inpcb *inp, *tmpinp; 1995 u_short fport = fport_arg, lport = lport_arg; 1996 bool locked; 1997 1998 /* 1999 * First look for an exact match. 2000 */ 2001 tmpinp = NULL; 2002 INP_GROUP_LOCK(pcbgroup); 2003 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2004 pcbgroup->ipg_hashmask)]; 2005 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2006 #ifdef INET6 2007 /* XXX inp locking */ 2008 if ((inp->inp_vflag & INP_IPV4) == 0) 2009 continue; 2010 #endif 2011 if (inp->inp_faddr.s_addr == faddr.s_addr && 2012 inp->inp_laddr.s_addr == laddr.s_addr && 2013 inp->inp_fport == fport && 2014 inp->inp_lport == lport) { 2015 /* 2016 * XXX We should be able to directly return 2017 * the inp here, without any checks. 2018 * Well unless both bound with SO_REUSEPORT? 2019 */ 2020 if (prison_flag(inp->inp_cred, PR_IP4)) 2021 goto found; 2022 if (tmpinp == NULL) 2023 tmpinp = inp; 2024 } 2025 } 2026 if (tmpinp != NULL) { 2027 inp = tmpinp; 2028 goto found; 2029 } 2030 2031 #ifdef RSS 2032 /* 2033 * For incoming connections, we may wish to do a wildcard 2034 * match for an RSS-local socket. 2035 */ 2036 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2037 struct inpcb *local_wild = NULL, *local_exact = NULL; 2038 #ifdef INET6 2039 struct inpcb *local_wild_mapped = NULL; 2040 #endif 2041 struct inpcb *jail_wild = NULL; 2042 struct inpcbhead *head; 2043 int injail; 2044 2045 /* 2046 * Order of socket selection - we always prefer jails. 2047 * 1. jailed, non-wild. 2048 * 2. jailed, wild. 2049 * 3. non-jailed, non-wild. 2050 * 4. non-jailed, wild. 2051 */ 2052 2053 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2054 lport, 0, pcbgroup->ipg_hashmask)]; 2055 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2056 #ifdef INET6 2057 /* XXX inp locking */ 2058 if ((inp->inp_vflag & INP_IPV4) == 0) 2059 continue; 2060 #endif 2061 if (inp->inp_faddr.s_addr != INADDR_ANY || 2062 inp->inp_lport != lport) 2063 continue; 2064 2065 injail = prison_flag(inp->inp_cred, PR_IP4); 2066 if (injail) { 2067 if (prison_check_ip4(inp->inp_cred, 2068 &laddr) != 0) 2069 continue; 2070 } else { 2071 if (local_exact != NULL) 2072 continue; 2073 } 2074 2075 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2076 if (injail) 2077 goto found; 2078 else 2079 local_exact = inp; 2080 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2081 #ifdef INET6 2082 /* XXX inp locking, NULL check */ 2083 if (inp->inp_vflag & INP_IPV6PROTO) 2084 local_wild_mapped = inp; 2085 else 2086 #endif 2087 if (injail) 2088 jail_wild = inp; 2089 else 2090 local_wild = inp; 2091 } 2092 } /* LIST_FOREACH */ 2093 2094 inp = jail_wild; 2095 if (inp == NULL) 2096 inp = local_exact; 2097 if (inp == NULL) 2098 inp = local_wild; 2099 #ifdef INET6 2100 if (inp == NULL) 2101 inp = local_wild_mapped; 2102 #endif 2103 if (inp != NULL) 2104 goto found; 2105 } 2106 #endif 2107 2108 /* 2109 * Then look for a wildcard match, if requested. 2110 */ 2111 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2112 struct inpcb *local_wild = NULL, *local_exact = NULL; 2113 #ifdef INET6 2114 struct inpcb *local_wild_mapped = NULL; 2115 #endif 2116 struct inpcb *jail_wild = NULL; 2117 struct inpcbhead *head; 2118 int injail; 2119 2120 /* 2121 * Order of socket selection - we always prefer jails. 2122 * 1. jailed, non-wild. 2123 * 2. jailed, wild. 2124 * 3. non-jailed, non-wild. 2125 * 4. non-jailed, wild. 2126 */ 2127 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2128 0, pcbinfo->ipi_wildmask)]; 2129 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2130 #ifdef INET6 2131 /* XXX inp locking */ 2132 if ((inp->inp_vflag & INP_IPV4) == 0) 2133 continue; 2134 #endif 2135 if (inp->inp_faddr.s_addr != INADDR_ANY || 2136 inp->inp_lport != lport) 2137 continue; 2138 2139 injail = prison_flag(inp->inp_cred, PR_IP4); 2140 if (injail) { 2141 if (prison_check_ip4(inp->inp_cred, 2142 &laddr) != 0) 2143 continue; 2144 } else { 2145 if (local_exact != NULL) 2146 continue; 2147 } 2148 2149 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2150 if (injail) 2151 goto found; 2152 else 2153 local_exact = inp; 2154 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2155 #ifdef INET6 2156 /* XXX inp locking, NULL check */ 2157 if (inp->inp_vflag & INP_IPV6PROTO) 2158 local_wild_mapped = inp; 2159 else 2160 #endif 2161 if (injail) 2162 jail_wild = inp; 2163 else 2164 local_wild = inp; 2165 } 2166 } /* LIST_FOREACH */ 2167 inp = jail_wild; 2168 if (inp == NULL) 2169 inp = local_exact; 2170 if (inp == NULL) 2171 inp = local_wild; 2172 #ifdef INET6 2173 if (inp == NULL) 2174 inp = local_wild_mapped; 2175 #endif 2176 if (inp != NULL) 2177 goto found; 2178 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2179 INP_GROUP_UNLOCK(pcbgroup); 2180 return (NULL); 2181 2182 found: 2183 if (lookupflags & INPLOOKUP_WLOCKPCB) 2184 locked = INP_TRY_WLOCK(inp); 2185 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2186 locked = INP_TRY_RLOCK(inp); 2187 else 2188 panic("%s: locking bug", __func__); 2189 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2190 if (lookupflags & INPLOOKUP_WLOCKPCB) 2191 INP_WUNLOCK(inp); 2192 else 2193 INP_RUNLOCK(inp); 2194 return (NULL); 2195 } else if (!locked) 2196 in_pcbref(inp); 2197 INP_GROUP_UNLOCK(pcbgroup); 2198 if (!locked) { 2199 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2200 INP_WLOCK(inp); 2201 if (in_pcbrele_wlocked(inp)) 2202 return (NULL); 2203 } else { 2204 INP_RLOCK(inp); 2205 if (in_pcbrele_rlocked(inp)) 2206 return (NULL); 2207 } 2208 } 2209 #ifdef INVARIANTS 2210 if (lookupflags & INPLOOKUP_WLOCKPCB) 2211 INP_WLOCK_ASSERT(inp); 2212 else 2213 INP_RLOCK_ASSERT(inp); 2214 #endif 2215 return (inp); 2216 } 2217 #endif /* PCBGROUP */ 2218 2219 /* 2220 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2221 * that the caller has locked the hash list, and will not perform any further 2222 * locking or reference operations on either the hash list or the connection. 2223 */ 2224 static struct inpcb * 2225 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2226 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2227 struct ifnet *ifp) 2228 { 2229 struct inpcbhead *head; 2230 struct inpcb *inp, *tmpinp; 2231 u_short fport = fport_arg, lport = lport_arg; 2232 2233 #ifdef INVARIANTS 2234 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2235 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2236 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2237 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2238 #endif 2239 /* 2240 * First look for an exact match. 2241 */ 2242 tmpinp = NULL; 2243 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2244 pcbinfo->ipi_hashmask)]; 2245 CK_LIST_FOREACH(inp, head, inp_hash) { 2246 #ifdef INET6 2247 /* XXX inp locking */ 2248 if ((inp->inp_vflag & INP_IPV4) == 0) 2249 continue; 2250 #endif 2251 if (inp->inp_faddr.s_addr == faddr.s_addr && 2252 inp->inp_laddr.s_addr == laddr.s_addr && 2253 inp->inp_fport == fport && 2254 inp->inp_lport == lport) { 2255 /* 2256 * XXX We should be able to directly return 2257 * the inp here, without any checks. 2258 * Well unless both bound with SO_REUSEPORT? 2259 */ 2260 if (prison_flag(inp->inp_cred, PR_IP4)) 2261 return (inp); 2262 if (tmpinp == NULL) 2263 tmpinp = inp; 2264 } 2265 } 2266 if (tmpinp != NULL) 2267 return (tmpinp); 2268 2269 /* 2270 * Then look in lb group (for wildcard match). 2271 */ 2272 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2273 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2274 fport, lookupflags); 2275 if (inp != NULL) 2276 return (inp); 2277 } 2278 2279 /* 2280 * Then look for a wildcard match, if requested. 2281 */ 2282 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2283 struct inpcb *local_wild = NULL, *local_exact = NULL; 2284 #ifdef INET6 2285 struct inpcb *local_wild_mapped = NULL; 2286 #endif 2287 struct inpcb *jail_wild = NULL; 2288 int injail; 2289 2290 /* 2291 * Order of socket selection - we always prefer jails. 2292 * 1. jailed, non-wild. 2293 * 2. jailed, wild. 2294 * 3. non-jailed, non-wild. 2295 * 4. non-jailed, wild. 2296 */ 2297 2298 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2299 0, pcbinfo->ipi_hashmask)]; 2300 CK_LIST_FOREACH(inp, head, inp_hash) { 2301 #ifdef INET6 2302 /* XXX inp locking */ 2303 if ((inp->inp_vflag & INP_IPV4) == 0) 2304 continue; 2305 #endif 2306 if (inp->inp_faddr.s_addr != INADDR_ANY || 2307 inp->inp_lport != lport) 2308 continue; 2309 2310 injail = prison_flag(inp->inp_cred, PR_IP4); 2311 if (injail) { 2312 if (prison_check_ip4(inp->inp_cred, 2313 &laddr) != 0) 2314 continue; 2315 } else { 2316 if (local_exact != NULL) 2317 continue; 2318 } 2319 2320 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2321 if (injail) 2322 return (inp); 2323 else 2324 local_exact = inp; 2325 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2326 #ifdef INET6 2327 /* XXX inp locking, NULL check */ 2328 if (inp->inp_vflag & INP_IPV6PROTO) 2329 local_wild_mapped = inp; 2330 else 2331 #endif 2332 if (injail) 2333 jail_wild = inp; 2334 else 2335 local_wild = inp; 2336 } 2337 } /* LIST_FOREACH */ 2338 if (jail_wild != NULL) 2339 return (jail_wild); 2340 if (local_exact != NULL) 2341 return (local_exact); 2342 if (local_wild != NULL) 2343 return (local_wild); 2344 #ifdef INET6 2345 if (local_wild_mapped != NULL) 2346 return (local_wild_mapped); 2347 #endif 2348 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2349 2350 return (NULL); 2351 } 2352 2353 /* 2354 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2355 * hash list lock, and will return the inpcb locked (i.e., requires 2356 * INPLOOKUP_LOCKPCB). 2357 */ 2358 static struct inpcb * 2359 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2360 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2361 struct ifnet *ifp) 2362 { 2363 struct inpcb *inp; 2364 2365 INP_HASH_RLOCK(pcbinfo); 2366 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2367 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2368 if (inp != NULL) { 2369 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2370 INP_WLOCK(inp); 2371 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2372 INP_WUNLOCK(inp); 2373 inp = NULL; 2374 } 2375 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2376 INP_RLOCK(inp); 2377 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2378 INP_RUNLOCK(inp); 2379 inp = NULL; 2380 } 2381 } else 2382 panic("%s: locking bug", __func__); 2383 #ifdef INVARIANTS 2384 if (inp != NULL) { 2385 if (lookupflags & INPLOOKUP_WLOCKPCB) 2386 INP_WLOCK_ASSERT(inp); 2387 else 2388 INP_RLOCK_ASSERT(inp); 2389 } 2390 #endif 2391 } 2392 INP_HASH_RUNLOCK(pcbinfo); 2393 return (inp); 2394 } 2395 2396 /* 2397 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2398 * from which a pre-calculated hash value may be extracted. 2399 * 2400 * Possibly more of this logic should be in in_pcbgroup.c. 2401 */ 2402 struct inpcb * 2403 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2404 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2405 { 2406 #if defined(PCBGROUP) && !defined(RSS) 2407 struct inpcbgroup *pcbgroup; 2408 #endif 2409 2410 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2411 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2412 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2413 ("%s: LOCKPCB not set", __func__)); 2414 2415 /* 2416 * When not using RSS, use connection groups in preference to the 2417 * reservation table when looking up 4-tuples. When using RSS, just 2418 * use the reservation table, due to the cost of the Toeplitz hash 2419 * in software. 2420 * 2421 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2422 * we could be doing RSS with a non-Toeplitz hash that is affordable 2423 * in software. 2424 */ 2425 #if defined(PCBGROUP) && !defined(RSS) 2426 if (in_pcbgroup_enabled(pcbinfo)) { 2427 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2428 fport); 2429 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2430 laddr, lport, lookupflags, ifp)); 2431 } 2432 #endif 2433 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2434 lookupflags, ifp)); 2435 } 2436 2437 struct inpcb * 2438 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2439 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2440 struct ifnet *ifp, struct mbuf *m) 2441 { 2442 #ifdef PCBGROUP 2443 struct inpcbgroup *pcbgroup; 2444 #endif 2445 2446 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2447 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2448 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2449 ("%s: LOCKPCB not set", __func__)); 2450 2451 #ifdef PCBGROUP 2452 /* 2453 * If we can use a hardware-generated hash to look up the connection 2454 * group, use that connection group to find the inpcb. Otherwise 2455 * fall back on a software hash -- or the reservation table if we're 2456 * using RSS. 2457 * 2458 * XXXRW: As above, that policy belongs in the pcbgroup code. 2459 */ 2460 if (in_pcbgroup_enabled(pcbinfo) && 2461 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2462 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2463 m->m_pkthdr.flowid); 2464 if (pcbgroup != NULL) 2465 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2466 fport, laddr, lport, lookupflags, ifp)); 2467 #ifndef RSS 2468 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2469 fport); 2470 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2471 laddr, lport, lookupflags, ifp)); 2472 #endif 2473 } 2474 #endif 2475 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2476 lookupflags, ifp)); 2477 } 2478 #endif /* INET */ 2479 2480 /* 2481 * Insert PCB onto various hash lists. 2482 */ 2483 static int 2484 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2485 { 2486 struct inpcbhead *pcbhash; 2487 struct inpcbporthead *pcbporthash; 2488 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2489 struct inpcbport *phd; 2490 u_int32_t hashkey_faddr; 2491 int so_options; 2492 2493 INP_WLOCK_ASSERT(inp); 2494 INP_HASH_WLOCK_ASSERT(pcbinfo); 2495 2496 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2497 ("in_pcbinshash: INP_INHASHLIST")); 2498 2499 #ifdef INET6 2500 if (inp->inp_vflag & INP_IPV6) 2501 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2502 else 2503 #endif 2504 hashkey_faddr = inp->inp_faddr.s_addr; 2505 2506 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2507 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2508 2509 pcbporthash = &pcbinfo->ipi_porthashbase[ 2510 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2511 2512 /* 2513 * Add entry to load balance group. 2514 * Only do this if SO_REUSEPORT_LB is set. 2515 */ 2516 so_options = inp_so_options(inp); 2517 if (so_options & SO_REUSEPORT_LB) { 2518 int ret = in_pcbinslbgrouphash(inp); 2519 if (ret) { 2520 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2521 return (ret); 2522 } 2523 } 2524 2525 /* 2526 * Go through port list and look for a head for this lport. 2527 */ 2528 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2529 if (phd->phd_port == inp->inp_lport) 2530 break; 2531 } 2532 /* 2533 * If none exists, malloc one and tack it on. 2534 */ 2535 if (phd == NULL) { 2536 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2537 if (phd == NULL) { 2538 return (ENOBUFS); /* XXX */ 2539 } 2540 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2541 phd->phd_port = inp->inp_lport; 2542 CK_LIST_INIT(&phd->phd_pcblist); 2543 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2544 } 2545 inp->inp_phd = phd; 2546 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2547 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2548 inp->inp_flags |= INP_INHASHLIST; 2549 #ifdef PCBGROUP 2550 if (do_pcbgroup_update) 2551 in_pcbgroup_update(inp); 2552 #endif 2553 return (0); 2554 } 2555 2556 /* 2557 * For now, there are two public interfaces to insert an inpcb into the hash 2558 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2559 * is used only in the TCP syncache, where in_pcbinshash is called before the 2560 * full 4-tuple is set for the inpcb, and we don't want to install in the 2561 * pcbgroup until later. 2562 * 2563 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2564 * connection groups, and partially initialised inpcbs should not be exposed 2565 * to either reservation hash tables or pcbgroups. 2566 */ 2567 int 2568 in_pcbinshash(struct inpcb *inp) 2569 { 2570 2571 return (in_pcbinshash_internal(inp, 1)); 2572 } 2573 2574 int 2575 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2576 { 2577 2578 return (in_pcbinshash_internal(inp, 0)); 2579 } 2580 2581 /* 2582 * Move PCB to the proper hash bucket when { faddr, fport } have been 2583 * changed. NOTE: This does not handle the case of the lport changing (the 2584 * hashed port list would have to be updated as well), so the lport must 2585 * not change after in_pcbinshash() has been called. 2586 */ 2587 void 2588 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2589 { 2590 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2591 struct inpcbhead *head; 2592 u_int32_t hashkey_faddr; 2593 2594 INP_WLOCK_ASSERT(inp); 2595 INP_HASH_WLOCK_ASSERT(pcbinfo); 2596 2597 KASSERT(inp->inp_flags & INP_INHASHLIST, 2598 ("in_pcbrehash: !INP_INHASHLIST")); 2599 2600 #ifdef INET6 2601 if (inp->inp_vflag & INP_IPV6) 2602 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2603 else 2604 #endif 2605 hashkey_faddr = inp->inp_faddr.s_addr; 2606 2607 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2608 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2609 2610 CK_LIST_REMOVE(inp, inp_hash); 2611 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2612 2613 #ifdef PCBGROUP 2614 if (m != NULL) 2615 in_pcbgroup_update_mbuf(inp, m); 2616 else 2617 in_pcbgroup_update(inp); 2618 #endif 2619 } 2620 2621 void 2622 in_pcbrehash(struct inpcb *inp) 2623 { 2624 2625 in_pcbrehash_mbuf(inp, NULL); 2626 } 2627 2628 /* 2629 * Remove PCB from various lists. 2630 */ 2631 static void 2632 in_pcbremlists(struct inpcb *inp) 2633 { 2634 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2635 2636 #ifdef INVARIANTS 2637 if (pcbinfo == &V_tcbinfo) { 2638 INP_INFO_RLOCK_ASSERT(pcbinfo); 2639 } else { 2640 INP_INFO_WLOCK_ASSERT(pcbinfo); 2641 } 2642 #endif 2643 2644 INP_WLOCK_ASSERT(inp); 2645 INP_LIST_WLOCK_ASSERT(pcbinfo); 2646 2647 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2648 if (inp->inp_flags & INP_INHASHLIST) { 2649 struct inpcbport *phd = inp->inp_phd; 2650 2651 INP_HASH_WLOCK(pcbinfo); 2652 2653 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2654 in_pcbremlbgrouphash(inp); 2655 2656 CK_LIST_REMOVE(inp, inp_hash); 2657 CK_LIST_REMOVE(inp, inp_portlist); 2658 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2659 CK_LIST_REMOVE(phd, phd_hash); 2660 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2661 } 2662 INP_HASH_WUNLOCK(pcbinfo); 2663 inp->inp_flags &= ~INP_INHASHLIST; 2664 } 2665 CK_LIST_REMOVE(inp, inp_list); 2666 pcbinfo->ipi_count--; 2667 #ifdef PCBGROUP 2668 in_pcbgroup_remove(inp); 2669 #endif 2670 } 2671 2672 /* 2673 * Check for alternatives when higher level complains 2674 * about service problems. For now, invalidate cached 2675 * routing information. If the route was created dynamically 2676 * (by a redirect), time to try a default gateway again. 2677 */ 2678 void 2679 in_losing(struct inpcb *inp) 2680 { 2681 2682 RO_INVALIDATE_CACHE(&inp->inp_route); 2683 return; 2684 } 2685 2686 /* 2687 * A set label operation has occurred at the socket layer, propagate the 2688 * label change into the in_pcb for the socket. 2689 */ 2690 void 2691 in_pcbsosetlabel(struct socket *so) 2692 { 2693 #ifdef MAC 2694 struct inpcb *inp; 2695 2696 inp = sotoinpcb(so); 2697 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2698 2699 INP_WLOCK(inp); 2700 SOCK_LOCK(so); 2701 mac_inpcb_sosetlabel(so, inp); 2702 SOCK_UNLOCK(so); 2703 INP_WUNLOCK(inp); 2704 #endif 2705 } 2706 2707 /* 2708 * ipport_tick runs once per second, determining if random port allocation 2709 * should be continued. If more than ipport_randomcps ports have been 2710 * allocated in the last second, then we return to sequential port 2711 * allocation. We return to random allocation only once we drop below 2712 * ipport_randomcps for at least ipport_randomtime seconds. 2713 */ 2714 static void 2715 ipport_tick(void *xtp) 2716 { 2717 VNET_ITERATOR_DECL(vnet_iter); 2718 2719 VNET_LIST_RLOCK_NOSLEEP(); 2720 VNET_FOREACH(vnet_iter) { 2721 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2722 if (V_ipport_tcpallocs <= 2723 V_ipport_tcplastcount + V_ipport_randomcps) { 2724 if (V_ipport_stoprandom > 0) 2725 V_ipport_stoprandom--; 2726 } else 2727 V_ipport_stoprandom = V_ipport_randomtime; 2728 V_ipport_tcplastcount = V_ipport_tcpallocs; 2729 CURVNET_RESTORE(); 2730 } 2731 VNET_LIST_RUNLOCK_NOSLEEP(); 2732 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2733 } 2734 2735 static void 2736 ip_fini(void *xtp) 2737 { 2738 2739 callout_stop(&ipport_tick_callout); 2740 } 2741 2742 /* 2743 * The ipport_callout should start running at about the time we attach the 2744 * inet or inet6 domains. 2745 */ 2746 static void 2747 ipport_tick_init(const void *unused __unused) 2748 { 2749 2750 /* Start ipport_tick. */ 2751 callout_init(&ipport_tick_callout, 1); 2752 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2753 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2754 SHUTDOWN_PRI_DEFAULT); 2755 } 2756 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2757 ipport_tick_init, NULL); 2758 2759 void 2760 inp_wlock(struct inpcb *inp) 2761 { 2762 2763 INP_WLOCK(inp); 2764 } 2765 2766 void 2767 inp_wunlock(struct inpcb *inp) 2768 { 2769 2770 INP_WUNLOCK(inp); 2771 } 2772 2773 void 2774 inp_rlock(struct inpcb *inp) 2775 { 2776 2777 INP_RLOCK(inp); 2778 } 2779 2780 void 2781 inp_runlock(struct inpcb *inp) 2782 { 2783 2784 INP_RUNLOCK(inp); 2785 } 2786 2787 #ifdef INVARIANT_SUPPORT 2788 void 2789 inp_lock_assert(struct inpcb *inp) 2790 { 2791 2792 INP_WLOCK_ASSERT(inp); 2793 } 2794 2795 void 2796 inp_unlock_assert(struct inpcb *inp) 2797 { 2798 2799 INP_UNLOCK_ASSERT(inp); 2800 } 2801 #endif 2802 2803 void 2804 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2805 { 2806 struct inpcb *inp; 2807 2808 INP_INFO_WLOCK(&V_tcbinfo); 2809 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2810 INP_WLOCK(inp); 2811 func(inp, arg); 2812 INP_WUNLOCK(inp); 2813 } 2814 INP_INFO_WUNLOCK(&V_tcbinfo); 2815 } 2816 2817 struct socket * 2818 inp_inpcbtosocket(struct inpcb *inp) 2819 { 2820 2821 INP_WLOCK_ASSERT(inp); 2822 return (inp->inp_socket); 2823 } 2824 2825 struct tcpcb * 2826 inp_inpcbtotcpcb(struct inpcb *inp) 2827 { 2828 2829 INP_WLOCK_ASSERT(inp); 2830 return ((struct tcpcb *)inp->inp_ppcb); 2831 } 2832 2833 int 2834 inp_ip_tos_get(const struct inpcb *inp) 2835 { 2836 2837 return (inp->inp_ip_tos); 2838 } 2839 2840 void 2841 inp_ip_tos_set(struct inpcb *inp, int val) 2842 { 2843 2844 inp->inp_ip_tos = val; 2845 } 2846 2847 void 2848 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2849 uint32_t *faddr, uint16_t *fp) 2850 { 2851 2852 INP_LOCK_ASSERT(inp); 2853 *laddr = inp->inp_laddr.s_addr; 2854 *faddr = inp->inp_faddr.s_addr; 2855 *lp = inp->inp_lport; 2856 *fp = inp->inp_fport; 2857 } 2858 2859 struct inpcb * 2860 so_sotoinpcb(struct socket *so) 2861 { 2862 2863 return (sotoinpcb(so)); 2864 } 2865 2866 struct tcpcb * 2867 so_sototcpcb(struct socket *so) 2868 { 2869 2870 return (sototcpcb(so)); 2871 } 2872 2873 /* 2874 * Create an external-format (``xinpcb'') structure using the information in 2875 * the kernel-format in_pcb structure pointed to by inp. This is done to 2876 * reduce the spew of irrelevant information over this interface, to isolate 2877 * user code from changes in the kernel structure, and potentially to provide 2878 * information-hiding if we decide that some of this information should be 2879 * hidden from users. 2880 */ 2881 void 2882 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2883 { 2884 2885 bzero(xi, sizeof(*xi)); 2886 xi->xi_len = sizeof(struct xinpcb); 2887 if (inp->inp_socket) 2888 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2889 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2890 xi->inp_gencnt = inp->inp_gencnt; 2891 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2892 xi->inp_flow = inp->inp_flow; 2893 xi->inp_flowid = inp->inp_flowid; 2894 xi->inp_flowtype = inp->inp_flowtype; 2895 xi->inp_flags = inp->inp_flags; 2896 xi->inp_flags2 = inp->inp_flags2; 2897 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2898 xi->in6p_cksum = inp->in6p_cksum; 2899 xi->in6p_hops = inp->in6p_hops; 2900 xi->inp_ip_tos = inp->inp_ip_tos; 2901 xi->inp_vflag = inp->inp_vflag; 2902 xi->inp_ip_ttl = inp->inp_ip_ttl; 2903 xi->inp_ip_p = inp->inp_ip_p; 2904 xi->inp_ip_minttl = inp->inp_ip_minttl; 2905 } 2906 2907 #ifdef DDB 2908 static void 2909 db_print_indent(int indent) 2910 { 2911 int i; 2912 2913 for (i = 0; i < indent; i++) 2914 db_printf(" "); 2915 } 2916 2917 static void 2918 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2919 { 2920 char faddr_str[48], laddr_str[48]; 2921 2922 db_print_indent(indent); 2923 db_printf("%s at %p\n", name, inc); 2924 2925 indent += 2; 2926 2927 #ifdef INET6 2928 if (inc->inc_flags & INC_ISIPV6) { 2929 /* IPv6. */ 2930 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2931 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2932 } else 2933 #endif 2934 { 2935 /* IPv4. */ 2936 inet_ntoa_r(inc->inc_laddr, laddr_str); 2937 inet_ntoa_r(inc->inc_faddr, faddr_str); 2938 } 2939 db_print_indent(indent); 2940 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2941 ntohs(inc->inc_lport)); 2942 db_print_indent(indent); 2943 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2944 ntohs(inc->inc_fport)); 2945 } 2946 2947 static void 2948 db_print_inpflags(int inp_flags) 2949 { 2950 int comma; 2951 2952 comma = 0; 2953 if (inp_flags & INP_RECVOPTS) { 2954 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2955 comma = 1; 2956 } 2957 if (inp_flags & INP_RECVRETOPTS) { 2958 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2959 comma = 1; 2960 } 2961 if (inp_flags & INP_RECVDSTADDR) { 2962 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2963 comma = 1; 2964 } 2965 if (inp_flags & INP_ORIGDSTADDR) { 2966 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2967 comma = 1; 2968 } 2969 if (inp_flags & INP_HDRINCL) { 2970 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2971 comma = 1; 2972 } 2973 if (inp_flags & INP_HIGHPORT) { 2974 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2975 comma = 1; 2976 } 2977 if (inp_flags & INP_LOWPORT) { 2978 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2979 comma = 1; 2980 } 2981 if (inp_flags & INP_ANONPORT) { 2982 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2983 comma = 1; 2984 } 2985 if (inp_flags & INP_RECVIF) { 2986 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2987 comma = 1; 2988 } 2989 if (inp_flags & INP_MTUDISC) { 2990 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2991 comma = 1; 2992 } 2993 if (inp_flags & INP_RECVTTL) { 2994 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2995 comma = 1; 2996 } 2997 if (inp_flags & INP_DONTFRAG) { 2998 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2999 comma = 1; 3000 } 3001 if (inp_flags & INP_RECVTOS) { 3002 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3003 comma = 1; 3004 } 3005 if (inp_flags & IN6P_IPV6_V6ONLY) { 3006 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3007 comma = 1; 3008 } 3009 if (inp_flags & IN6P_PKTINFO) { 3010 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3011 comma = 1; 3012 } 3013 if (inp_flags & IN6P_HOPLIMIT) { 3014 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3015 comma = 1; 3016 } 3017 if (inp_flags & IN6P_HOPOPTS) { 3018 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3019 comma = 1; 3020 } 3021 if (inp_flags & IN6P_DSTOPTS) { 3022 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3023 comma = 1; 3024 } 3025 if (inp_flags & IN6P_RTHDR) { 3026 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3027 comma = 1; 3028 } 3029 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3030 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3031 comma = 1; 3032 } 3033 if (inp_flags & IN6P_TCLASS) { 3034 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3038 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3039 comma = 1; 3040 } 3041 if (inp_flags & INP_TIMEWAIT) { 3042 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3043 comma = 1; 3044 } 3045 if (inp_flags & INP_ONESBCAST) { 3046 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_flags & INP_DROPPED) { 3050 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_flags & INP_SOCKREF) { 3054 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 if (inp_flags & IN6P_RFC2292) { 3058 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3059 comma = 1; 3060 } 3061 if (inp_flags & IN6P_MTU) { 3062 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3063 comma = 1; 3064 } 3065 } 3066 3067 static void 3068 db_print_inpvflag(u_char inp_vflag) 3069 { 3070 int comma; 3071 3072 comma = 0; 3073 if (inp_vflag & INP_IPV4) { 3074 db_printf("%sINP_IPV4", comma ? ", " : ""); 3075 comma = 1; 3076 } 3077 if (inp_vflag & INP_IPV6) { 3078 db_printf("%sINP_IPV6", comma ? ", " : ""); 3079 comma = 1; 3080 } 3081 if (inp_vflag & INP_IPV6PROTO) { 3082 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3083 comma = 1; 3084 } 3085 } 3086 3087 static void 3088 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3089 { 3090 3091 db_print_indent(indent); 3092 db_printf("%s at %p\n", name, inp); 3093 3094 indent += 2; 3095 3096 db_print_indent(indent); 3097 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3098 3099 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3100 3101 db_print_indent(indent); 3102 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3103 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3104 3105 db_print_indent(indent); 3106 db_printf("inp_label: %p inp_flags: 0x%x (", 3107 inp->inp_label, inp->inp_flags); 3108 db_print_inpflags(inp->inp_flags); 3109 db_printf(")\n"); 3110 3111 db_print_indent(indent); 3112 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3113 inp->inp_vflag); 3114 db_print_inpvflag(inp->inp_vflag); 3115 db_printf(")\n"); 3116 3117 db_print_indent(indent); 3118 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3119 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3120 3121 db_print_indent(indent); 3122 #ifdef INET6 3123 if (inp->inp_vflag & INP_IPV6) { 3124 db_printf("in6p_options: %p in6p_outputopts: %p " 3125 "in6p_moptions: %p\n", inp->in6p_options, 3126 inp->in6p_outputopts, inp->in6p_moptions); 3127 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3128 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3129 inp->in6p_hops); 3130 } else 3131 #endif 3132 { 3133 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3134 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3135 inp->inp_options, inp->inp_moptions); 3136 } 3137 3138 db_print_indent(indent); 3139 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3140 (uintmax_t)inp->inp_gencnt); 3141 } 3142 3143 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3144 { 3145 struct inpcb *inp; 3146 3147 if (!have_addr) { 3148 db_printf("usage: show inpcb <addr>\n"); 3149 return; 3150 } 3151 inp = (struct inpcb *)addr; 3152 3153 db_print_inpcb(inp, "inpcb", 0); 3154 } 3155 #endif /* DDB */ 3156 3157 #ifdef RATELIMIT 3158 /* 3159 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3160 * if any. 3161 */ 3162 int 3163 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3164 { 3165 union if_snd_tag_modify_params params = { 3166 .rate_limit.max_rate = max_pacing_rate, 3167 }; 3168 struct m_snd_tag *mst; 3169 struct ifnet *ifp; 3170 int error; 3171 3172 mst = inp->inp_snd_tag; 3173 if (mst == NULL) 3174 return (EINVAL); 3175 3176 ifp = mst->ifp; 3177 if (ifp == NULL) 3178 return (EINVAL); 3179 3180 if (ifp->if_snd_tag_modify == NULL) { 3181 error = EOPNOTSUPP; 3182 } else { 3183 error = ifp->if_snd_tag_modify(mst, ¶ms); 3184 } 3185 return (error); 3186 } 3187 3188 /* 3189 * Query existing TX rate limit based on the existing 3190 * "inp->inp_snd_tag", if any. 3191 */ 3192 int 3193 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3194 { 3195 union if_snd_tag_query_params params = { }; 3196 struct m_snd_tag *mst; 3197 struct ifnet *ifp; 3198 int error; 3199 3200 mst = inp->inp_snd_tag; 3201 if (mst == NULL) 3202 return (EINVAL); 3203 3204 ifp = mst->ifp; 3205 if (ifp == NULL) 3206 return (EINVAL); 3207 3208 if (ifp->if_snd_tag_query == NULL) { 3209 error = EOPNOTSUPP; 3210 } else { 3211 error = ifp->if_snd_tag_query(mst, ¶ms); 3212 if (error == 0 && p_max_pacing_rate != NULL) 3213 *p_max_pacing_rate = params.rate_limit.max_rate; 3214 } 3215 return (error); 3216 } 3217 3218 /* 3219 * Query existing TX queue level based on the existing 3220 * "inp->inp_snd_tag", if any. 3221 */ 3222 int 3223 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3224 { 3225 union if_snd_tag_query_params params = { }; 3226 struct m_snd_tag *mst; 3227 struct ifnet *ifp; 3228 int error; 3229 3230 mst = inp->inp_snd_tag; 3231 if (mst == NULL) 3232 return (EINVAL); 3233 3234 ifp = mst->ifp; 3235 if (ifp == NULL) 3236 return (EINVAL); 3237 3238 if (ifp->if_snd_tag_query == NULL) 3239 return (EOPNOTSUPP); 3240 3241 error = ifp->if_snd_tag_query(mst, ¶ms); 3242 if (error == 0 && p_txqueue_level != NULL) 3243 *p_txqueue_level = params.rate_limit.queue_level; 3244 return (error); 3245 } 3246 3247 /* 3248 * Allocate a new TX rate limit send tag from the network interface 3249 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3250 */ 3251 int 3252 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3253 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3254 { 3255 union if_snd_tag_alloc_params params = { 3256 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3257 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3258 .rate_limit.hdr.flowid = flowid, 3259 .rate_limit.hdr.flowtype = flowtype, 3260 .rate_limit.max_rate = max_pacing_rate, 3261 }; 3262 int error; 3263 3264 INP_WLOCK_ASSERT(inp); 3265 3266 if (inp->inp_snd_tag != NULL) 3267 return (EINVAL); 3268 3269 if (ifp->if_snd_tag_alloc == NULL) { 3270 error = EOPNOTSUPP; 3271 } else { 3272 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3273 3274 /* 3275 * At success increment the refcount on 3276 * the send tag's network interface: 3277 */ 3278 if (error == 0) 3279 if_ref(inp->inp_snd_tag->ifp); 3280 } 3281 return (error); 3282 } 3283 3284 /* 3285 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3286 * if any: 3287 */ 3288 void 3289 in_pcbdetach_txrtlmt(struct inpcb *inp) 3290 { 3291 struct m_snd_tag *mst; 3292 struct ifnet *ifp; 3293 3294 INP_WLOCK_ASSERT(inp); 3295 3296 mst = inp->inp_snd_tag; 3297 inp->inp_snd_tag = NULL; 3298 3299 if (mst == NULL) 3300 return; 3301 3302 ifp = mst->ifp; 3303 if (ifp == NULL) 3304 return; 3305 3306 /* 3307 * If the device was detached while we still had reference(s) 3308 * on the ifp, we assume if_snd_tag_free() was replaced with 3309 * stubs. 3310 */ 3311 ifp->if_snd_tag_free(mst); 3312 3313 /* release reference count on network interface */ 3314 if_rele(ifp); 3315 } 3316 3317 /* 3318 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3319 * is set in the fast path and will attach/detach/modify the TX rate 3320 * limit send tag based on the socket's so_max_pacing_rate value. 3321 */ 3322 void 3323 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3324 { 3325 struct socket *socket; 3326 uint32_t max_pacing_rate; 3327 bool did_upgrade; 3328 int error; 3329 3330 if (inp == NULL) 3331 return; 3332 3333 socket = inp->inp_socket; 3334 if (socket == NULL) 3335 return; 3336 3337 if (!INP_WLOCKED(inp)) { 3338 /* 3339 * NOTE: If the write locking fails, we need to bail 3340 * out and use the non-ratelimited ring for the 3341 * transmit until there is a new chance to get the 3342 * write lock. 3343 */ 3344 if (!INP_TRY_UPGRADE(inp)) 3345 return; 3346 did_upgrade = 1; 3347 } else { 3348 did_upgrade = 0; 3349 } 3350 3351 /* 3352 * NOTE: The so_max_pacing_rate value is read unlocked, 3353 * because atomic updates are not required since the variable 3354 * is checked at every mbuf we send. It is assumed that the 3355 * variable read itself will be atomic. 3356 */ 3357 max_pacing_rate = socket->so_max_pacing_rate; 3358 3359 /* 3360 * NOTE: When attaching to a network interface a reference is 3361 * made to ensure the network interface doesn't go away until 3362 * all ratelimit connections are gone. The network interface 3363 * pointers compared below represent valid network interfaces, 3364 * except when comparing towards NULL. 3365 */ 3366 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3367 error = 0; 3368 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3369 if (inp->inp_snd_tag != NULL) 3370 in_pcbdetach_txrtlmt(inp); 3371 error = 0; 3372 } else if (inp->inp_snd_tag == NULL) { 3373 /* 3374 * In order to utilize packet pacing with RSS, we need 3375 * to wait until there is a valid RSS hash before we 3376 * can proceed: 3377 */ 3378 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3379 error = EAGAIN; 3380 } else { 3381 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3382 mb->m_pkthdr.flowid, max_pacing_rate); 3383 } 3384 } else { 3385 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3386 } 3387 if (error == 0 || error == EOPNOTSUPP) 3388 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3389 if (did_upgrade) 3390 INP_DOWNGRADE(inp); 3391 } 3392 3393 /* 3394 * Track route changes for TX rate limiting. 3395 */ 3396 void 3397 in_pcboutput_eagain(struct inpcb *inp) 3398 { 3399 struct socket *socket; 3400 bool did_upgrade; 3401 3402 if (inp == NULL) 3403 return; 3404 3405 socket = inp->inp_socket; 3406 if (socket == NULL) 3407 return; 3408 3409 if (inp->inp_snd_tag == NULL) 3410 return; 3411 3412 if (!INP_WLOCKED(inp)) { 3413 /* 3414 * NOTE: If the write locking fails, we need to bail 3415 * out and use the non-ratelimited ring for the 3416 * transmit until there is a new chance to get the 3417 * write lock. 3418 */ 3419 if (!INP_TRY_UPGRADE(inp)) 3420 return; 3421 did_upgrade = 1; 3422 } else { 3423 did_upgrade = 0; 3424 } 3425 3426 /* detach rate limiting */ 3427 in_pcbdetach_txrtlmt(inp); 3428 3429 /* make sure new mbuf send tag allocation is made */ 3430 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3431 3432 if (did_upgrade) 3433 INP_DOWNGRADE(inp); 3434 } 3435 #endif /* RATELIMIT */ 3436