xref: /freebsd/sys/netinet/in_pcb.c (revision 058ac3e8063366dafa634d9107642e12b038bf09)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_route.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/hash.h>
53 #include <sys/systm.h>
54 #include <sys/libkern.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/eventhandler.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 #include <vm/vm.h>
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86 
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105 
106 #include <netipsec/ipsec_support.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #define	INPCBLBGROUP_SIZMIN	8
111 #define	INPCBLBGROUP_SIZMAX	256
112 #define	INP_FREED	0x00000200	/* See in_pcb.h. */
113 
114 /*
115  * These configure the range of local port addresses assigned to
116  * "unspecified" outgoing connections/packets/whatever.
117  */
118 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
119 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
120 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
121 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
122 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
123 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
124 
125 /*
126  * Reserved ports accessible only to root. There are significant
127  * security considerations that must be accounted for when changing these,
128  * but the security benefits can be great. Please be careful.
129  */
130 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
131 VNET_DEFINE(int, ipport_reservedlow);
132 
133 /* Enable random ephemeral port allocation by default. */
134 VNET_DEFINE(int, ipport_randomized) = 1;
135 
136 #ifdef INET
137 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
138 			    struct in_addr faddr, u_int fport_arg,
139 			    struct in_addr laddr, u_int lport_arg,
140 			    int lookupflags, struct ifnet *ifp,
141 			    uint8_t numa_domain);
142 
143 #define RANGECHK(var, min, max) \
144 	if ((var) < (min)) { (var) = (min); } \
145 	else if ((var) > (max)) { (var) = (max); }
146 
147 static int
148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
149 {
150 	int error;
151 
152 	error = sysctl_handle_int(oidp, arg1, arg2, req);
153 	if (error == 0) {
154 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
160 	}
161 	return (error);
162 }
163 
164 #undef RANGECHK
165 
166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "IP Ports");
169 
170 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
171     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
172     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
173     "");
174 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
175     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
176     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
177     "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
179     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
180     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
181     "");
182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
183     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
184     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
185     "");
186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
187     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
188     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
189     "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
192     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
193     "");
194 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
195 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
196 	&VNET_NAME(ipport_reservedhigh), 0, "");
197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
198 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
200 	CTLFLAG_VNET | CTLFLAG_RW,
201 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
202 
203 #ifdef RATELIMIT
204 counter_u64_t rate_limit_new;
205 counter_u64_t rate_limit_chg;
206 counter_u64_t rate_limit_active;
207 counter_u64_t rate_limit_alloc_fail;
208 counter_u64_t rate_limit_set_ok;
209 
210 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
211     "IP Rate Limiting");
212 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
213     &rate_limit_active, "Active rate limited connections");
214 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
215    &rate_limit_alloc_fail, "Rate limited connection failures");
216 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
217    &rate_limit_set_ok, "Rate limited setting succeeded");
218 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
219    &rate_limit_new, "Total Rate limit new attempts");
220 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
221    &rate_limit_chg, "Total Rate limited change attempts");
222 
223 #endif /* RATELIMIT */
224 
225 #endif /* INET */
226 
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
229 in_pcbhashseed_init(void)
230 {
231 
232 	V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235     in_pcbhashseed_init, 0);
236 
237 static void in_pcbremhash(struct inpcb *);
238 
239 /*
240  * in_pcb.c: manage the Protocol Control Blocks.
241  *
242  * NOTE: It is assumed that most of these functions will be called with
243  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
244  * functions often modify hash chains or addresses in pcbs.
245  */
246 
247 static struct inpcblbgroup *
248 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred,
249     u_char vflag, uint16_t port, const union in_dependaddr *addr, int size,
250     uint8_t numa_domain)
251 {
252 	struct inpcblbgroup *grp;
253 	size_t bytes;
254 
255 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
256 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
257 	if (grp == NULL)
258 		return (NULL);
259 	grp->il_cred = crhold(cred);
260 	grp->il_vflag = vflag;
261 	grp->il_lport = port;
262 	grp->il_numa_domain = numa_domain;
263 	grp->il_dependladdr = *addr;
264 	grp->il_inpsiz = size;
265 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
266 	return (grp);
267 }
268 
269 static void
270 in_pcblbgroup_free_deferred(epoch_context_t ctx)
271 {
272 	struct inpcblbgroup *grp;
273 
274 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
275 	crfree(grp->il_cred);
276 	free(grp, M_PCB);
277 }
278 
279 static void
280 in_pcblbgroup_free(struct inpcblbgroup *grp)
281 {
282 
283 	CK_LIST_REMOVE(grp, il_list);
284 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
285 }
286 
287 static struct inpcblbgroup *
288 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
289     struct inpcblbgroup *old_grp, int size)
290 {
291 	struct inpcblbgroup *grp;
292 	int i;
293 
294 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag,
295 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
296 	    old_grp->il_numa_domain);
297 	if (grp == NULL)
298 		return (NULL);
299 
300 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
301 	    ("invalid new local group size %d and old local group count %d",
302 	     grp->il_inpsiz, old_grp->il_inpcnt));
303 
304 	for (i = 0; i < old_grp->il_inpcnt; ++i)
305 		grp->il_inp[i] = old_grp->il_inp[i];
306 	grp->il_inpcnt = old_grp->il_inpcnt;
307 	in_pcblbgroup_free(old_grp);
308 	return (grp);
309 }
310 
311 /*
312  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
313  * and shrink group if possible.
314  */
315 static void
316 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
317     int i)
318 {
319 	struct inpcblbgroup *grp, *new_grp;
320 
321 	grp = *grpp;
322 	for (; i + 1 < grp->il_inpcnt; ++i)
323 		grp->il_inp[i] = grp->il_inp[i + 1];
324 	grp->il_inpcnt--;
325 
326 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
327 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
328 		/* Shrink this group. */
329 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
330 		if (new_grp != NULL)
331 			*grpp = new_grp;
332 	}
333 }
334 
335 /*
336  * Add PCB to load balance group for SO_REUSEPORT_LB option.
337  */
338 static int
339 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
340 {
341 	const static struct timeval interval = { 60, 0 };
342 	static struct timeval lastprint;
343 	struct inpcbinfo *pcbinfo;
344 	struct inpcblbgrouphead *hdr;
345 	struct inpcblbgroup *grp;
346 	uint32_t idx;
347 
348 	pcbinfo = inp->inp_pcbinfo;
349 
350 	INP_WLOCK_ASSERT(inp);
351 	INP_HASH_WLOCK_ASSERT(pcbinfo);
352 
353 #ifdef INET6
354 	/*
355 	 * Don't allow IPv4 mapped INET6 wild socket.
356 	 */
357 	if ((inp->inp_vflag & INP_IPV4) &&
358 	    inp->inp_laddr.s_addr == INADDR_ANY &&
359 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
360 		return (0);
361 	}
362 #endif
363 
364 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
365 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
366 	CK_LIST_FOREACH(grp, hdr, il_list) {
367 		if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
368 		    grp->il_vflag == inp->inp_vflag &&
369 		    grp->il_lport == inp->inp_lport &&
370 		    grp->il_numa_domain == numa_domain &&
371 		    memcmp(&grp->il_dependladdr,
372 		    &inp->inp_inc.inc_ie.ie_dependladdr,
373 		    sizeof(grp->il_dependladdr)) == 0) {
374 			break;
375 		}
376 	}
377 	if (grp == NULL) {
378 		/* Create new load balance group. */
379 		grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag,
380 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
381 		    INPCBLBGROUP_SIZMIN, numa_domain);
382 		if (grp == NULL)
383 			return (ENOBUFS);
384 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
385 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
386 			if (ratecheck(&lastprint, &interval))
387 				printf("lb group port %d, limit reached\n",
388 				    ntohs(grp->il_lport));
389 			return (0);
390 		}
391 
392 		/* Expand this local group. */
393 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
394 		if (grp == NULL)
395 			return (ENOBUFS);
396 	}
397 
398 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
399 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
400 	    grp->il_inpcnt));
401 
402 	grp->il_inp[grp->il_inpcnt] = inp;
403 	grp->il_inpcnt++;
404 	return (0);
405 }
406 
407 /*
408  * Remove PCB from load balance group.
409  */
410 static void
411 in_pcbremlbgrouphash(struct inpcb *inp)
412 {
413 	struct inpcbinfo *pcbinfo;
414 	struct inpcblbgrouphead *hdr;
415 	struct inpcblbgroup *grp;
416 	int i;
417 
418 	pcbinfo = inp->inp_pcbinfo;
419 
420 	INP_WLOCK_ASSERT(inp);
421 	INP_HASH_WLOCK_ASSERT(pcbinfo);
422 
423 	hdr = &pcbinfo->ipi_lbgrouphashbase[
424 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
425 	CK_LIST_FOREACH(grp, hdr, il_list) {
426 		for (i = 0; i < grp->il_inpcnt; ++i) {
427 			if (grp->il_inp[i] != inp)
428 				continue;
429 
430 			if (grp->il_inpcnt == 1) {
431 				/* We are the last, free this local group. */
432 				in_pcblbgroup_free(grp);
433 			} else {
434 				/* Pull up inpcbs, shrink group if possible. */
435 				in_pcblbgroup_reorder(hdr, &grp, i);
436 			}
437 			return;
438 		}
439 	}
440 }
441 
442 int
443 in_pcblbgroup_numa(struct inpcb *inp, int arg)
444 {
445 	struct inpcbinfo *pcbinfo;
446 	struct inpcblbgrouphead *hdr;
447 	struct inpcblbgroup *grp;
448 	int err, i;
449 	uint8_t numa_domain;
450 
451 	switch (arg) {
452 	case TCP_REUSPORT_LB_NUMA_NODOM:
453 		numa_domain = M_NODOM;
454 		break;
455 	case TCP_REUSPORT_LB_NUMA_CURDOM:
456 		numa_domain = PCPU_GET(domain);
457 		break;
458 	default:
459 		if (arg < 0 || arg >= vm_ndomains)
460 			return (EINVAL);
461 		numa_domain = arg;
462 	}
463 
464 	err = 0;
465 	pcbinfo = inp->inp_pcbinfo;
466 	INP_WLOCK_ASSERT(inp);
467 	INP_HASH_WLOCK(pcbinfo);
468 	hdr = &pcbinfo->ipi_lbgrouphashbase[
469 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
470 	CK_LIST_FOREACH(grp, hdr, il_list) {
471 		for (i = 0; i < grp->il_inpcnt; ++i) {
472 			if (grp->il_inp[i] != inp)
473 				continue;
474 
475 			if (grp->il_numa_domain == numa_domain) {
476 				goto abort_with_hash_wlock;
477 			}
478 
479 			/* Remove it from the old group. */
480 			in_pcbremlbgrouphash(inp);
481 
482 			/* Add it to the new group based on numa domain. */
483 			in_pcbinslbgrouphash(inp, numa_domain);
484 			goto abort_with_hash_wlock;
485 		}
486 	}
487 	err = ENOENT;
488 abort_with_hash_wlock:
489 	INP_HASH_WUNLOCK(pcbinfo);
490 	return (err);
491 }
492 
493 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
494 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
495 
496 /*
497  * Initialize an inpcbinfo - a per-VNET instance of connections db.
498  */
499 void
500 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
501     u_int hash_nelements, u_int porthash_nelements)
502 {
503 
504 	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
505 	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
506 	    NULL, MTX_DEF);
507 #ifdef VIMAGE
508 	pcbinfo->ipi_vnet = curvnet;
509 #endif
510 	CK_LIST_INIT(&pcbinfo->ipi_listhead);
511 	pcbinfo->ipi_count = 0;
512 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
513 	    &pcbinfo->ipi_hashmask);
514 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
515 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
516 	    &pcbinfo->ipi_porthashmask);
517 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
518 	    &pcbinfo->ipi_lbgrouphashmask);
519 	pcbinfo->ipi_zone = pcbstor->ips_zone;
520 	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
521 	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
522 }
523 
524 /*
525  * Destroy an inpcbinfo.
526  */
527 void
528 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
529 {
530 
531 	KASSERT(pcbinfo->ipi_count == 0,
532 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
533 
534 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
535 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
536 	    pcbinfo->ipi_porthashmask);
537 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
538 	    pcbinfo->ipi_lbgrouphashmask);
539 	mtx_destroy(&pcbinfo->ipi_hash_lock);
540 	mtx_destroy(&pcbinfo->ipi_lock);
541 }
542 
543 /*
544  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
545  */
546 static void inpcb_dtor(void *, int, void *);
547 static void inpcb_fini(void *, int);
548 void
549 in_pcbstorage_init(void *arg)
550 {
551 	struct inpcbstorage *pcbstor = arg;
552 
553 	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
554 	    pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit,
555 	    inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
556 	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
557 	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
558 	uma_zone_set_smr(pcbstor->ips_portzone,
559 	    uma_zone_get_smr(pcbstor->ips_zone));
560 }
561 
562 /*
563  * Destroy a pcbstorage - used by unloadable protocols.
564  */
565 void
566 in_pcbstorage_destroy(void *arg)
567 {
568 	struct inpcbstorage *pcbstor = arg;
569 
570 	uma_zdestroy(pcbstor->ips_zone);
571 	uma_zdestroy(pcbstor->ips_portzone);
572 }
573 
574 /*
575  * Allocate a PCB and associate it with the socket.
576  * On success return with the PCB locked.
577  */
578 int
579 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
580 {
581 	struct inpcb *inp;
582 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
583 	int error;
584 #endif
585 
586 	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
587 	if (inp == NULL)
588 		return (ENOBUFS);
589 	bzero(&inp->inp_start_zero, inp_zero_size);
590 #ifdef NUMA
591 	inp->inp_numa_domain = M_NODOM;
592 #endif
593 	inp->inp_pcbinfo = pcbinfo;
594 	inp->inp_socket = so;
595 	inp->inp_cred = crhold(so->so_cred);
596 	inp->inp_inc.inc_fibnum = so->so_fibnum;
597 #ifdef MAC
598 	error = mac_inpcb_init(inp, M_NOWAIT);
599 	if (error != 0)
600 		goto out;
601 	mac_inpcb_create(so, inp);
602 #endif
603 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
604 	error = ipsec_init_pcbpolicy(inp);
605 	if (error != 0) {
606 #ifdef MAC
607 		mac_inpcb_destroy(inp);
608 #endif
609 		goto out;
610 	}
611 #endif /*IPSEC*/
612 #ifdef INET6
613 	if (INP_SOCKAF(so) == AF_INET6) {
614 		inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
615 		if (V_ip6_v6only)
616 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
617 #ifdef INET
618 		else
619 			inp->inp_vflag |= INP_IPV4;
620 #endif
621 		if (V_ip6_auto_flowlabel)
622 			inp->inp_flags |= IN6P_AUTOFLOWLABEL;
623 		inp->in6p_hops = -1;	/* use kernel default */
624 	}
625 #endif
626 #if defined(INET) && defined(INET6)
627 	else
628 #endif
629 #ifdef INET
630 		inp->inp_vflag |= INP_IPV4;
631 #endif
632 	/*
633 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
634 	 * to be cleaned up.
635 	 */
636 	inp->inp_route.ro_flags = RT_LLE_CACHE;
637 	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
638 	INP_WLOCK(inp);
639 	INP_INFO_WLOCK(pcbinfo);
640 	pcbinfo->ipi_count++;
641 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
642 	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
643 	INP_INFO_WUNLOCK(pcbinfo);
644 	so->so_pcb = inp;
645 
646 	return (0);
647 
648 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
649 out:
650 	uma_zfree_smr(pcbinfo->ipi_zone, inp);
651 	return (error);
652 #endif
653 }
654 
655 #ifdef INET
656 int
657 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
658 {
659 	int anonport, error;
660 
661 	KASSERT(nam == NULL || nam->sa_family == AF_INET,
662 	    ("%s: invalid address family for %p", __func__, nam));
663 	KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in),
664 	    ("%s: invalid address length for %p", __func__, nam));
665 	INP_WLOCK_ASSERT(inp);
666 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
667 
668 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
669 		return (EINVAL);
670 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
671 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
672 	    &inp->inp_lport, cred);
673 	if (error)
674 		return (error);
675 	if (in_pcbinshash(inp) != 0) {
676 		inp->inp_laddr.s_addr = INADDR_ANY;
677 		inp->inp_lport = 0;
678 		return (EAGAIN);
679 	}
680 	if (anonport)
681 		inp->inp_flags |= INP_ANONPORT;
682 	return (0);
683 }
684 #endif
685 
686 #if defined(INET) || defined(INET6)
687 /*
688  * Assign a local port like in_pcb_lport(), but also used with connect()
689  * and a foreign address and port.  If fsa is non-NULL, choose a local port
690  * that is unused with those, otherwise one that is completely unused.
691  * lsa can be NULL for IPv6.
692  */
693 int
694 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
695     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
696 {
697 	struct inpcbinfo *pcbinfo;
698 	struct inpcb *tmpinp;
699 	unsigned short *lastport;
700 	int count, error;
701 	u_short aux, first, last, lport;
702 #ifdef INET
703 	struct in_addr laddr, faddr;
704 #endif
705 #ifdef INET6
706 	struct in6_addr *laddr6, *faddr6;
707 #endif
708 
709 	pcbinfo = inp->inp_pcbinfo;
710 
711 	/*
712 	 * Because no actual state changes occur here, a global write lock on
713 	 * the pcbinfo isn't required.
714 	 */
715 	INP_LOCK_ASSERT(inp);
716 	INP_HASH_LOCK_ASSERT(pcbinfo);
717 
718 	if (inp->inp_flags & INP_HIGHPORT) {
719 		first = V_ipport_hifirstauto;	/* sysctl */
720 		last  = V_ipport_hilastauto;
721 		lastport = &pcbinfo->ipi_lasthi;
722 	} else if (inp->inp_flags & INP_LOWPORT) {
723 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
724 		if (error)
725 			return (error);
726 		first = V_ipport_lowfirstauto;	/* 1023 */
727 		last  = V_ipport_lowlastauto;	/* 600 */
728 		lastport = &pcbinfo->ipi_lastlow;
729 	} else {
730 		first = V_ipport_firstauto;	/* sysctl */
731 		last  = V_ipport_lastauto;
732 		lastport = &pcbinfo->ipi_lastport;
733 	}
734 
735 	/*
736 	 * Instead of having two loops further down counting up or down
737 	 * make sure that first is always <= last and go with only one
738 	 * code path implementing all logic.
739 	 */
740 	if (first > last) {
741 		aux = first;
742 		first = last;
743 		last = aux;
744 	}
745 
746 #ifdef INET
747 	laddr.s_addr = INADDR_ANY;	/* used by INET6+INET below too */
748 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
749 		if (lsa != NULL)
750 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
751 		if (fsa != NULL)
752 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
753 	}
754 #endif
755 #ifdef INET6
756 	laddr6 = NULL;
757 	if ((inp->inp_vflag & INP_IPV6) != 0) {
758 		if (lsa != NULL)
759 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
760 		if (fsa != NULL)
761 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
762 	}
763 #endif
764 
765 	tmpinp = NULL;
766 	lport = *lportp;
767 
768 	if (V_ipport_randomized)
769 		*lastport = first + (arc4random() % (last - first));
770 
771 	count = last - first;
772 
773 	do {
774 		if (count-- < 0)	/* completely used? */
775 			return (EADDRNOTAVAIL);
776 		++*lastport;
777 		if (*lastport < first || *lastport > last)
778 			*lastport = first;
779 		lport = htons(*lastport);
780 
781 		if (fsa != NULL) {
782 #ifdef INET
783 			if (lsa->sa_family == AF_INET) {
784 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
785 				    faddr, fport, laddr, lport, lookupflags,
786 				    NULL, M_NODOM);
787 			}
788 #endif
789 #ifdef INET6
790 			if (lsa->sa_family == AF_INET6) {
791 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
792 				    faddr6, fport, laddr6, lport, lookupflags,
793 				    NULL, M_NODOM);
794 			}
795 #endif
796 		} else {
797 #ifdef INET6
798 			if ((inp->inp_vflag & INP_IPV6) != 0) {
799 				tmpinp = in6_pcblookup_local(pcbinfo,
800 				    &inp->in6p_laddr, lport, lookupflags, cred);
801 #ifdef INET
802 				if (tmpinp == NULL &&
803 				    (inp->inp_vflag & INP_IPV4))
804 					tmpinp = in_pcblookup_local(pcbinfo,
805 					    laddr, lport, lookupflags, cred);
806 #endif
807 			}
808 #endif
809 #if defined(INET) && defined(INET6)
810 			else
811 #endif
812 #ifdef INET
813 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
814 				    lport, lookupflags, cred);
815 #endif
816 		}
817 	} while (tmpinp != NULL);
818 
819 	*lportp = lport;
820 
821 	return (0);
822 }
823 
824 /*
825  * Select a local port (number) to use.
826  */
827 int
828 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
829     struct ucred *cred, int lookupflags)
830 {
831 	struct sockaddr_in laddr;
832 
833 	if (laddrp) {
834 		bzero(&laddr, sizeof(laddr));
835 		laddr.sin_family = AF_INET;
836 		laddr.sin_addr = *laddrp;
837 	}
838 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
839 	    NULL, lportp, NULL, 0, cred, lookupflags));
840 }
841 
842 /*
843  * Return cached socket options.
844  */
845 int
846 inp_so_options(const struct inpcb *inp)
847 {
848 	int so_options;
849 
850 	so_options = 0;
851 
852 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
853 		so_options |= SO_REUSEPORT_LB;
854 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
855 		so_options |= SO_REUSEPORT;
856 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
857 		so_options |= SO_REUSEADDR;
858 	return (so_options);
859 }
860 #endif /* INET || INET6 */
861 
862 /*
863  * Check if a new BINDMULTI socket is allowed to be created.
864  *
865  * ni points to the new inp.
866  * oi points to the existing inp.
867  *
868  * This checks whether the existing inp also has BINDMULTI and
869  * whether the credentials match.
870  */
871 int
872 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
873 {
874 	/* Check permissions match */
875 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
876 	    (ni->inp_cred->cr_uid !=
877 	    oi->inp_cred->cr_uid))
878 		return (0);
879 
880 	/* Check the existing inp has BINDMULTI set */
881 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
882 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
883 		return (0);
884 
885 	/*
886 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
887 	 * it is and it matches the checks.
888 	 */
889 	return (1);
890 }
891 
892 #ifdef INET
893 /*
894  * Set up a bind operation on a PCB, performing port allocation
895  * as required, but do not actually modify the PCB. Callers can
896  * either complete the bind by setting inp_laddr/inp_lport and
897  * calling in_pcbinshash(), or they can just use the resulting
898  * port and address to authorise the sending of a once-off packet.
899  *
900  * On error, the values of *laddrp and *lportp are not changed.
901  */
902 int
903 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
904     u_short *lportp, struct ucred *cred)
905 {
906 	struct socket *so = inp->inp_socket;
907 	struct sockaddr_in *sin;
908 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
909 	struct in_addr laddr;
910 	u_short lport = 0;
911 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
912 	int error;
913 
914 	/*
915 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
916 	 * so that we don't have to add to the (already messy) code below.
917 	 */
918 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
919 
920 	/*
921 	 * No state changes, so read locks are sufficient here.
922 	 */
923 	INP_LOCK_ASSERT(inp);
924 	INP_HASH_LOCK_ASSERT(pcbinfo);
925 
926 	laddr.s_addr = *laddrp;
927 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
928 		return (EINVAL);
929 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
930 		lookupflags = INPLOOKUP_WILDCARD;
931 	if (nam == NULL) {
932 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
933 			return (error);
934 	} else {
935 		sin = (struct sockaddr_in *)nam;
936 		KASSERT(sin->sin_family == AF_INET,
937 		    ("%s: invalid family for address %p", __func__, sin));
938 		KASSERT(sin->sin_len == sizeof(*sin),
939 		    ("%s: invalid length for address %p", __func__, sin));
940 
941 		error = prison_local_ip4(cred, &sin->sin_addr);
942 		if (error)
943 			return (error);
944 		if (sin->sin_port != *lportp) {
945 			/* Don't allow the port to change. */
946 			if (*lportp != 0)
947 				return (EINVAL);
948 			lport = sin->sin_port;
949 		}
950 		/* NB: lport is left as 0 if the port isn't being changed. */
951 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
952 			/*
953 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
954 			 * allow complete duplication of binding if
955 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
956 			 * and a multicast address is bound on both
957 			 * new and duplicated sockets.
958 			 */
959 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
960 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
961 			/*
962 			 * XXX: How to deal with SO_REUSEPORT_LB here?
963 			 * Treat same as SO_REUSEPORT for now.
964 			 */
965 			if ((so->so_options &
966 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
967 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
968 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
969 			sin->sin_port = 0;		/* yech... */
970 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
971 			/*
972 			 * Is the address a local IP address?
973 			 * If INP_BINDANY is set, then the socket may be bound
974 			 * to any endpoint address, local or not.
975 			 */
976 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
977 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
978 				return (EADDRNOTAVAIL);
979 		}
980 		laddr = sin->sin_addr;
981 		if (lport) {
982 			struct inpcb *t;
983 
984 			/* GROSS */
985 			if (ntohs(lport) <= V_ipport_reservedhigh &&
986 			    ntohs(lport) >= V_ipport_reservedlow &&
987 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
988 				return (EACCES);
989 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
990 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
991 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
992 				    lport, INPLOOKUP_WILDCARD, cred);
993 	/*
994 	 * XXX
995 	 * This entire block sorely needs a rewrite.
996 	 */
997 				if (t &&
998 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
999 				    (so->so_type != SOCK_STREAM ||
1000 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
1001 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
1002 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
1003 				     (t->inp_flags2 & INP_REUSEPORT) ||
1004 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
1005 				    (inp->inp_cred->cr_uid !=
1006 				     t->inp_cred->cr_uid))
1007 					return (EADDRINUSE);
1008 
1009 				/*
1010 				 * If the socket is a BINDMULTI socket, then
1011 				 * the credentials need to match and the
1012 				 * original socket also has to have been bound
1013 				 * with BINDMULTI.
1014 				 */
1015 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1016 					return (EADDRINUSE);
1017 			}
1018 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1019 			    lport, lookupflags, cred);
1020 			if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1021 			    (reuseport & inp_so_options(t)) == 0 &&
1022 			    (reuseport_lb & inp_so_options(t)) == 0) {
1023 #ifdef INET6
1024 				if (ntohl(sin->sin_addr.s_addr) !=
1025 				    INADDR_ANY ||
1026 				    ntohl(t->inp_laddr.s_addr) !=
1027 				    INADDR_ANY ||
1028 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
1029 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
1030 #endif
1031 						return (EADDRINUSE);
1032 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1033 					return (EADDRINUSE);
1034 			}
1035 		}
1036 	}
1037 	if (*lportp != 0)
1038 		lport = *lportp;
1039 	if (lport == 0) {
1040 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1041 		if (error != 0)
1042 			return (error);
1043 	}
1044 	*laddrp = laddr.s_addr;
1045 	*lportp = lport;
1046 	return (0);
1047 }
1048 
1049 /*
1050  * Connect from a socket to a specified address.
1051  * Both address and port must be specified in argument sin.
1052  * If don't have a local address for this socket yet,
1053  * then pick one.
1054  */
1055 int
1056 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred,
1057     bool rehash)
1058 {
1059 	u_short lport, fport;
1060 	in_addr_t laddr, faddr;
1061 	int anonport, error;
1062 
1063 	INP_WLOCK_ASSERT(inp);
1064 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1065 
1066 	lport = inp->inp_lport;
1067 	laddr = inp->inp_laddr.s_addr;
1068 	anonport = (lport == 0);
1069 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1070 	    NULL, cred);
1071 	if (error)
1072 		return (error);
1073 
1074 	/* Do the initial binding of the local address if required. */
1075 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1076 		KASSERT(rehash == true,
1077 		    ("Rehashing required for unbound inps"));
1078 		inp->inp_lport = lport;
1079 		inp->inp_laddr.s_addr = laddr;
1080 		if (in_pcbinshash(inp) != 0) {
1081 			inp->inp_laddr.s_addr = INADDR_ANY;
1082 			inp->inp_lport = 0;
1083 			return (EAGAIN);
1084 		}
1085 	}
1086 
1087 	/* Commit the remaining changes. */
1088 	inp->inp_lport = lport;
1089 	inp->inp_laddr.s_addr = laddr;
1090 	inp->inp_faddr.s_addr = faddr;
1091 	inp->inp_fport = fport;
1092 	if (rehash) {
1093 		in_pcbrehash(inp);
1094 	} else {
1095 		in_pcbinshash(inp);
1096 	}
1097 
1098 	if (anonport)
1099 		inp->inp_flags |= INP_ANONPORT;
1100 	return (0);
1101 }
1102 
1103 /*
1104  * Do proper source address selection on an unbound socket in case
1105  * of connect. Take jails into account as well.
1106  */
1107 int
1108 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1109     struct ucred *cred)
1110 {
1111 	struct ifaddr *ifa;
1112 	struct sockaddr *sa;
1113 	struct sockaddr_in *sin, dst;
1114 	struct nhop_object *nh;
1115 	int error;
1116 
1117 	NET_EPOCH_ASSERT();
1118 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1119 
1120 	/*
1121 	 * Bypass source address selection and use the primary jail IP
1122 	 * if requested.
1123 	 */
1124 	if (!prison_saddrsel_ip4(cred, laddr))
1125 		return (0);
1126 
1127 	error = 0;
1128 
1129 	nh = NULL;
1130 	bzero(&dst, sizeof(dst));
1131 	sin = &dst;
1132 	sin->sin_family = AF_INET;
1133 	sin->sin_len = sizeof(struct sockaddr_in);
1134 	sin->sin_addr.s_addr = faddr->s_addr;
1135 
1136 	/*
1137 	 * If route is known our src addr is taken from the i/f,
1138 	 * else punt.
1139 	 *
1140 	 * Find out route to destination.
1141 	 */
1142 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1143 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1144 		    0, NHR_NONE, 0);
1145 
1146 	/*
1147 	 * If we found a route, use the address corresponding to
1148 	 * the outgoing interface.
1149 	 *
1150 	 * Otherwise assume faddr is reachable on a directly connected
1151 	 * network and try to find a corresponding interface to take
1152 	 * the source address from.
1153 	 */
1154 	if (nh == NULL || nh->nh_ifp == NULL) {
1155 		struct in_ifaddr *ia;
1156 		struct ifnet *ifp;
1157 
1158 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1159 					inp->inp_socket->so_fibnum));
1160 		if (ia == NULL) {
1161 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1162 						inp->inp_socket->so_fibnum));
1163 		}
1164 		if (ia == NULL) {
1165 			error = ENETUNREACH;
1166 			goto done;
1167 		}
1168 
1169 		if (!prison_flag(cred, PR_IP4)) {
1170 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1171 			goto done;
1172 		}
1173 
1174 		ifp = ia->ia_ifp;
1175 		ia = NULL;
1176 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1177 			sa = ifa->ifa_addr;
1178 			if (sa->sa_family != AF_INET)
1179 				continue;
1180 			sin = (struct sockaddr_in *)sa;
1181 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1182 				ia = (struct in_ifaddr *)ifa;
1183 				break;
1184 			}
1185 		}
1186 		if (ia != NULL) {
1187 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1188 			goto done;
1189 		}
1190 
1191 		/* 3. As a last resort return the 'default' jail address. */
1192 		error = prison_get_ip4(cred, laddr);
1193 		goto done;
1194 	}
1195 
1196 	/*
1197 	 * If the outgoing interface on the route found is not
1198 	 * a loopback interface, use the address from that interface.
1199 	 * In case of jails do those three steps:
1200 	 * 1. check if the interface address belongs to the jail. If so use it.
1201 	 * 2. check if we have any address on the outgoing interface
1202 	 *    belonging to this jail. If so use it.
1203 	 * 3. as a last resort return the 'default' jail address.
1204 	 */
1205 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1206 		struct in_ifaddr *ia;
1207 		struct ifnet *ifp;
1208 
1209 		/* If not jailed, use the default returned. */
1210 		if (!prison_flag(cred, PR_IP4)) {
1211 			ia = (struct in_ifaddr *)nh->nh_ifa;
1212 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1213 			goto done;
1214 		}
1215 
1216 		/* Jailed. */
1217 		/* 1. Check if the iface address belongs to the jail. */
1218 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1219 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1220 			ia = (struct in_ifaddr *)nh->nh_ifa;
1221 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1222 			goto done;
1223 		}
1224 
1225 		/*
1226 		 * 2. Check if we have any address on the outgoing interface
1227 		 *    belonging to this jail.
1228 		 */
1229 		ia = NULL;
1230 		ifp = nh->nh_ifp;
1231 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1232 			sa = ifa->ifa_addr;
1233 			if (sa->sa_family != AF_INET)
1234 				continue;
1235 			sin = (struct sockaddr_in *)sa;
1236 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1237 				ia = (struct in_ifaddr *)ifa;
1238 				break;
1239 			}
1240 		}
1241 		if (ia != NULL) {
1242 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1243 			goto done;
1244 		}
1245 
1246 		/* 3. As a last resort return the 'default' jail address. */
1247 		error = prison_get_ip4(cred, laddr);
1248 		goto done;
1249 	}
1250 
1251 	/*
1252 	 * The outgoing interface is marked with 'loopback net', so a route
1253 	 * to ourselves is here.
1254 	 * Try to find the interface of the destination address and then
1255 	 * take the address from there. That interface is not necessarily
1256 	 * a loopback interface.
1257 	 * In case of jails, check that it is an address of the jail
1258 	 * and if we cannot find, fall back to the 'default' jail address.
1259 	 */
1260 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1261 		struct in_ifaddr *ia;
1262 
1263 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1264 					inp->inp_socket->so_fibnum));
1265 		if (ia == NULL)
1266 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1267 						inp->inp_socket->so_fibnum));
1268 		if (ia == NULL)
1269 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1270 
1271 		if (!prison_flag(cred, PR_IP4)) {
1272 			if (ia == NULL) {
1273 				error = ENETUNREACH;
1274 				goto done;
1275 			}
1276 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1277 			goto done;
1278 		}
1279 
1280 		/* Jailed. */
1281 		if (ia != NULL) {
1282 			struct ifnet *ifp;
1283 
1284 			ifp = ia->ia_ifp;
1285 			ia = NULL;
1286 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1287 				sa = ifa->ifa_addr;
1288 				if (sa->sa_family != AF_INET)
1289 					continue;
1290 				sin = (struct sockaddr_in *)sa;
1291 				if (prison_check_ip4(cred,
1292 				    &sin->sin_addr) == 0) {
1293 					ia = (struct in_ifaddr *)ifa;
1294 					break;
1295 				}
1296 			}
1297 			if (ia != NULL) {
1298 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1299 				goto done;
1300 			}
1301 		}
1302 
1303 		/* 3. As a last resort return the 'default' jail address. */
1304 		error = prison_get_ip4(cred, laddr);
1305 		goto done;
1306 	}
1307 
1308 done:
1309 	return (error);
1310 }
1311 
1312 /*
1313  * Set up for a connect from a socket to the specified address.
1314  * On entry, *laddrp and *lportp should contain the current local
1315  * address and port for the PCB; these are updated to the values
1316  * that should be placed in inp_laddr and inp_lport to complete
1317  * the connect.
1318  *
1319  * On success, *faddrp and *fportp will be set to the remote address
1320  * and port. These are not updated in the error case.
1321  *
1322  * If the operation fails because the connection already exists,
1323  * *oinpp will be set to the PCB of that connection so that the
1324  * caller can decide to override it. In all other cases, *oinpp
1325  * is set to NULL.
1326  */
1327 int
1328 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1329     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1330     struct inpcb **oinpp, struct ucred *cred)
1331 {
1332 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1333 	struct in_ifaddr *ia;
1334 	struct inpcb *oinp;
1335 	struct in_addr laddr, faddr;
1336 	u_short lport, fport;
1337 	int error;
1338 
1339 	KASSERT(sin->sin_family == AF_INET,
1340 	    ("%s: invalid address family for %p", __func__, sin));
1341 	KASSERT(sin->sin_len == sizeof(*sin),
1342 	    ("%s: invalid address length for %p", __func__, sin));
1343 
1344 	/*
1345 	 * Because a global state change doesn't actually occur here, a read
1346 	 * lock is sufficient.
1347 	 */
1348 	NET_EPOCH_ASSERT();
1349 	INP_LOCK_ASSERT(inp);
1350 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1351 
1352 	if (oinpp != NULL)
1353 		*oinpp = NULL;
1354 	if (sin->sin_port == 0)
1355 		return (EADDRNOTAVAIL);
1356 	laddr.s_addr = *laddrp;
1357 	lport = *lportp;
1358 	faddr = sin->sin_addr;
1359 	fport = sin->sin_port;
1360 #ifdef ROUTE_MPATH
1361 	if (CALC_FLOWID_OUTBOUND) {
1362 		uint32_t hash_val, hash_type;
1363 
1364 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1365 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1366 
1367 		inp->inp_flowid = hash_val;
1368 		inp->inp_flowtype = hash_type;
1369 	}
1370 #endif
1371 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1372 		/*
1373 		 * If the destination address is INADDR_ANY,
1374 		 * use the primary local address.
1375 		 * If the supplied address is INADDR_BROADCAST,
1376 		 * and the primary interface supports broadcast,
1377 		 * choose the broadcast address for that interface.
1378 		 */
1379 		if (faddr.s_addr == INADDR_ANY) {
1380 			faddr =
1381 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1382 			if ((error = prison_get_ip4(cred, &faddr)) != 0)
1383 				return (error);
1384 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1385 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1386 			    IFF_BROADCAST)
1387 				faddr = satosin(&CK_STAILQ_FIRST(
1388 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1389 		}
1390 	}
1391 	if (laddr.s_addr == INADDR_ANY) {
1392 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1393 		/*
1394 		 * If the destination address is multicast and an outgoing
1395 		 * interface has been set as a multicast option, prefer the
1396 		 * address of that interface as our source address.
1397 		 */
1398 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1399 		    inp->inp_moptions != NULL) {
1400 			struct ip_moptions *imo;
1401 			struct ifnet *ifp;
1402 
1403 			imo = inp->inp_moptions;
1404 			if (imo->imo_multicast_ifp != NULL) {
1405 				ifp = imo->imo_multicast_ifp;
1406 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1407 					if (ia->ia_ifp == ifp &&
1408 					    prison_check_ip4(cred,
1409 					    &ia->ia_addr.sin_addr) == 0)
1410 						break;
1411 				}
1412 				if (ia == NULL)
1413 					error = EADDRNOTAVAIL;
1414 				else {
1415 					laddr = ia->ia_addr.sin_addr;
1416 					error = 0;
1417 				}
1418 			}
1419 		}
1420 		if (error)
1421 			return (error);
1422 	}
1423 
1424 	if (lport != 0) {
1425 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1426 		    fport, laddr, lport, 0, NULL, M_NODOM);
1427 		if (oinp != NULL) {
1428 			if (oinpp != NULL)
1429 				*oinpp = oinp;
1430 			return (EADDRINUSE);
1431 		}
1432 	} else {
1433 		struct sockaddr_in lsin, fsin;
1434 
1435 		bzero(&lsin, sizeof(lsin));
1436 		bzero(&fsin, sizeof(fsin));
1437 		lsin.sin_family = AF_INET;
1438 		lsin.sin_addr = laddr;
1439 		fsin.sin_family = AF_INET;
1440 		fsin.sin_addr = faddr;
1441 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1442 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1443 		    INPLOOKUP_WILDCARD);
1444 		if (error)
1445 			return (error);
1446 	}
1447 	*laddrp = laddr.s_addr;
1448 	*lportp = lport;
1449 	*faddrp = faddr.s_addr;
1450 	*fportp = fport;
1451 	return (0);
1452 }
1453 
1454 void
1455 in_pcbdisconnect(struct inpcb *inp)
1456 {
1457 
1458 	INP_WLOCK_ASSERT(inp);
1459 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1460 
1461 	inp->inp_faddr.s_addr = INADDR_ANY;
1462 	inp->inp_fport = 0;
1463 	in_pcbrehash(inp);
1464 }
1465 #endif /* INET */
1466 
1467 /*
1468  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1469  * For most protocols, this will be invoked immediately prior to calling
1470  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1471  * socket, in which case in_pcbfree() is deferred.
1472  */
1473 void
1474 in_pcbdetach(struct inpcb *inp)
1475 {
1476 
1477 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1478 
1479 #ifdef RATELIMIT
1480 	if (inp->inp_snd_tag != NULL)
1481 		in_pcbdetach_txrtlmt(inp);
1482 #endif
1483 	inp->inp_socket->so_pcb = NULL;
1484 	inp->inp_socket = NULL;
1485 }
1486 
1487 /*
1488  * inpcb hash lookups are protected by SMR section.
1489  *
1490  * Once desired pcb has been found, switching from SMR section to a pcb
1491  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1492  * here because SMR is a critical section.
1493  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1494  */
1495 static inline void
1496 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1497 {
1498 
1499 	lock == INPLOOKUP_RLOCKPCB ?
1500 	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1501 }
1502 
1503 static inline void
1504 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1505 {
1506 
1507 	lock == INPLOOKUP_RLOCKPCB ?
1508 	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1509 }
1510 
1511 static inline int
1512 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1513 {
1514 
1515 	return (lock == INPLOOKUP_RLOCKPCB ?
1516 	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1517 }
1518 
1519 static inline bool
1520 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1521 {
1522 
1523 	return (lock == INPLOOKUP_RLOCKPCB ?
1524 	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1525 }
1526 
1527 static inline bool
1528 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1529 {
1530 
1531 	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1532 	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1533 
1534 	if (__predict_true(inp_trylock(inp, lock))) {
1535 		if (__predict_false(inp->inp_flags & ignflags)) {
1536 			smr_exit(inp->inp_pcbinfo->ipi_smr);
1537 			inp_unlock(inp, lock);
1538 			return (false);
1539 		}
1540 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1541 		return (true);
1542 	}
1543 
1544 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1545 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1546 		inp_lock(inp, lock);
1547 		if (__predict_false(in_pcbrele(inp, lock)))
1548 			return (false);
1549 		/*
1550 		 * inp acquired through refcount & lock for sure didn't went
1551 		 * through uma_zfree().  However, it may have already went
1552 		 * through in_pcbfree() and has another reference, that
1553 		 * prevented its release by our in_pcbrele().
1554 		 */
1555 		if (__predict_false(inp->inp_flags & ignflags)) {
1556 			inp_unlock(inp, lock);
1557 			return (false);
1558 		}
1559 		return (true);
1560 	} else {
1561 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1562 		return (false);
1563 	}
1564 }
1565 
1566 bool
1567 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1568 {
1569 
1570 	/*
1571 	 * in_pcblookup() family of functions ignore not only freed entries,
1572 	 * that may be found due to lockless access to the hash, but dropped
1573 	 * entries, too.
1574 	 */
1575 	return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1576 }
1577 
1578 /*
1579  * inp_next() - inpcb hash/list traversal iterator
1580  *
1581  * Requires initialized struct inpcb_iterator for context.
1582  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1583  *
1584  * - Iterator can have either write-lock or read-lock semantics, that can not
1585  *   be changed later.
1586  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1587  *   a single hash slot.  Note: only rip_input() does the latter.
1588  * - Iterator may have optional bool matching function.  The matching function
1589  *   will be executed for each inpcb in the SMR context, so it can not acquire
1590  *   locks and can safely access only immutable fields of inpcb.
1591  *
1592  * A fresh initialized iterator has NULL inpcb in its context and that
1593  * means that inp_next() call would return the very first inpcb on the list
1594  * locked with desired semantic.  In all following calls the context pointer
1595  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1596  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1597  * and write NULL to its context.  After end of traversal an iterator can be
1598  * reused.
1599  *
1600  * List traversals have the following features/constraints:
1601  * - New entries won't be seen, as they are always added to the head of a list.
1602  * - Removed entries won't stop traversal as long as they are not added to
1603  *   a different list. This is violated by in_pcbrehash().
1604  */
1605 #define	II_LIST_FIRST(ipi, hash)					\
1606 		(((hash) == INP_ALL_LIST) ?				\
1607 		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1608 		    CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)]))
1609 #define	II_LIST_NEXT(inp, hash)						\
1610 		(((hash) == INP_ALL_LIST) ?				\
1611 		    CK_LIST_NEXT((inp), inp_list) :			\
1612 		    CK_LIST_NEXT((inp), inp_hash))
1613 #define	II_LOCK_ASSERT(inp, lock)					\
1614 		rw_assert(&(inp)->inp_lock,				\
1615 		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1616 struct inpcb *
1617 inp_next(struct inpcb_iterator *ii)
1618 {
1619 	const struct inpcbinfo *ipi = ii->ipi;
1620 	inp_match_t *match = ii->match;
1621 	void *ctx = ii->ctx;
1622 	inp_lookup_t lock = ii->lock;
1623 	int hash = ii->hash;
1624 	struct inpcb *inp;
1625 
1626 	if (ii->inp == NULL) {		/* First call. */
1627 		smr_enter(ipi->ipi_smr);
1628 		/* This is unrolled CK_LIST_FOREACH(). */
1629 		for (inp = II_LIST_FIRST(ipi, hash);
1630 		    inp != NULL;
1631 		    inp = II_LIST_NEXT(inp, hash)) {
1632 			if (match != NULL && (match)(inp, ctx) == false)
1633 				continue;
1634 			if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1635 				break;
1636 			else {
1637 				smr_enter(ipi->ipi_smr);
1638 				MPASS(inp != II_LIST_FIRST(ipi, hash));
1639 				inp = II_LIST_FIRST(ipi, hash);
1640 				if (inp == NULL)
1641 					break;
1642 			}
1643 		}
1644 
1645 		if (inp == NULL)
1646 			smr_exit(ipi->ipi_smr);
1647 		else
1648 			ii->inp = inp;
1649 
1650 		return (inp);
1651 	}
1652 
1653 	/* Not a first call. */
1654 	smr_enter(ipi->ipi_smr);
1655 restart:
1656 	inp = ii->inp;
1657 	II_LOCK_ASSERT(inp, lock);
1658 next:
1659 	inp = II_LIST_NEXT(inp, hash);
1660 	if (inp == NULL) {
1661 		smr_exit(ipi->ipi_smr);
1662 		goto found;
1663 	}
1664 
1665 	if (match != NULL && (match)(inp, ctx) == false)
1666 		goto next;
1667 
1668 	if (__predict_true(inp_trylock(inp, lock))) {
1669 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1670 			/*
1671 			 * Entries are never inserted in middle of a list, thus
1672 			 * as long as we are in SMR, we can continue traversal.
1673 			 * Jump to 'restart' should yield in the same result,
1674 			 * but could produce unnecessary looping.  Could this
1675 			 * looping be unbound?
1676 			 */
1677 			inp_unlock(inp, lock);
1678 			goto next;
1679 		} else {
1680 			smr_exit(ipi->ipi_smr);
1681 			goto found;
1682 		}
1683 	}
1684 
1685 	/*
1686 	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1687 	 * SMR section we can no longer jump to 'next', and our only stable
1688 	 * anchoring point is ii->inp, which we keep locked for this case, so
1689 	 * we jump to 'restart'.
1690 	 */
1691 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1692 		smr_exit(ipi->ipi_smr);
1693 		inp_lock(inp, lock);
1694 		if (__predict_false(in_pcbrele(inp, lock))) {
1695 			smr_enter(ipi->ipi_smr);
1696 			goto restart;
1697 		}
1698 		/*
1699 		 * See comment in inp_smr_lock().
1700 		 */
1701 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1702 			inp_unlock(inp, lock);
1703 			smr_enter(ipi->ipi_smr);
1704 			goto restart;
1705 		}
1706 	} else
1707 		goto next;
1708 
1709 found:
1710 	inp_unlock(ii->inp, lock);
1711 	ii->inp = inp;
1712 
1713 	return (ii->inp);
1714 }
1715 
1716 /*
1717  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1718  * stability of an inpcb pointer despite the inpcb lock being released or
1719  * SMR section exited.
1720  *
1721  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1722  */
1723 void
1724 in_pcbref(struct inpcb *inp)
1725 {
1726 	u_int old __diagused;
1727 
1728 	old = refcount_acquire(&inp->inp_refcount);
1729 	KASSERT(old > 0, ("%s: refcount 0", __func__));
1730 }
1731 
1732 /*
1733  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1734  * freeing the pcb, if the reference was very last.
1735  */
1736 bool
1737 in_pcbrele_rlocked(struct inpcb *inp)
1738 {
1739 
1740 	INP_RLOCK_ASSERT(inp);
1741 
1742 	if (refcount_release(&inp->inp_refcount) == 0)
1743 		return (false);
1744 
1745 	MPASS(inp->inp_flags & INP_FREED);
1746 	MPASS(inp->inp_socket == NULL);
1747 	MPASS(inp->inp_in_hpts == 0);
1748 	INP_RUNLOCK(inp);
1749 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1750 	return (true);
1751 }
1752 
1753 bool
1754 in_pcbrele_wlocked(struct inpcb *inp)
1755 {
1756 
1757 	INP_WLOCK_ASSERT(inp);
1758 
1759 	if (refcount_release(&inp->inp_refcount) == 0)
1760 		return (false);
1761 
1762 	MPASS(inp->inp_flags & INP_FREED);
1763 	MPASS(inp->inp_socket == NULL);
1764 	MPASS(inp->inp_in_hpts == 0);
1765 	INP_WUNLOCK(inp);
1766 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1767 	return (true);
1768 }
1769 
1770 /*
1771  * Unconditionally schedule an inpcb to be freed by decrementing its
1772  * reference count, which should occur only after the inpcb has been detached
1773  * from its socket.  If another thread holds a temporary reference (acquired
1774  * using in_pcbref()) then the free is deferred until that reference is
1775  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1776  *  Almost all work, including removal from global lists, is done in this
1777  * context, where the pcbinfo lock is held.
1778  */
1779 void
1780 in_pcbfree(struct inpcb *inp)
1781 {
1782 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1783 #ifdef INET
1784 	struct ip_moptions *imo;
1785 #endif
1786 #ifdef INET6
1787 	struct ip6_moptions *im6o;
1788 #endif
1789 
1790 	INP_WLOCK_ASSERT(inp);
1791 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1792 	KASSERT((inp->inp_flags & INP_FREED) == 0,
1793 	    ("%s: called twice for pcb %p", __func__, inp));
1794 
1795 	inp->inp_flags |= INP_FREED;
1796 	INP_INFO_WLOCK(pcbinfo);
1797 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1798 	pcbinfo->ipi_count--;
1799 	CK_LIST_REMOVE(inp, inp_list);
1800 	INP_INFO_WUNLOCK(pcbinfo);
1801 
1802 	if (inp->inp_flags & INP_INHASHLIST)
1803 		in_pcbremhash(inp);
1804 
1805 	RO_INVALIDATE_CACHE(&inp->inp_route);
1806 #ifdef MAC
1807 	mac_inpcb_destroy(inp);
1808 #endif
1809 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1810 	if (inp->inp_sp != NULL)
1811 		ipsec_delete_pcbpolicy(inp);
1812 #endif
1813 #ifdef INET
1814 	if (inp->inp_options)
1815 		(void)m_free(inp->inp_options);
1816 	imo = inp->inp_moptions;
1817 #endif
1818 #ifdef INET6
1819 	if (inp->inp_vflag & INP_IPV6PROTO) {
1820 		ip6_freepcbopts(inp->in6p_outputopts);
1821 		im6o = inp->in6p_moptions;
1822 	} else
1823 		im6o = NULL;
1824 #endif
1825 
1826 	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1827 		INP_WUNLOCK(inp);
1828 	}
1829 #ifdef INET6
1830 	ip6_freemoptions(im6o);
1831 #endif
1832 #ifdef INET
1833 	inp_freemoptions(imo);
1834 #endif
1835 	/* Destruction is finalized in inpcb_dtor(). */
1836 }
1837 
1838 static void
1839 inpcb_dtor(void *mem, int size, void *arg)
1840 {
1841 	struct inpcb *inp = mem;
1842 
1843 	crfree(inp->inp_cred);
1844 #ifdef INVARIANTS
1845 	inp->inp_cred = NULL;
1846 #endif
1847 }
1848 
1849 /*
1850  * Different protocols initialize their inpcbs differently - giving
1851  * different name to the lock.  But they all are disposed the same.
1852  */
1853 static void
1854 inpcb_fini(void *mem, int size)
1855 {
1856 	struct inpcb *inp = mem;
1857 
1858 	INP_LOCK_DESTROY(inp);
1859 }
1860 
1861 /*
1862  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1863  * port reservation, and preventing it from being returned by inpcb lookups.
1864  *
1865  * It is used by TCP to mark an inpcb as unused and avoid future packet
1866  * delivery or event notification when a socket remains open but TCP has
1867  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1868  * or a RST on the wire, and allows the port binding to be reused while still
1869  * maintaining the invariant that so_pcb always points to a valid inpcb until
1870  * in_pcbdetach().
1871  *
1872  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1873  * in_pcbnotifyall() and in_pcbpurgeif0()?
1874  */
1875 void
1876 in_pcbdrop(struct inpcb *inp)
1877 {
1878 
1879 	INP_WLOCK_ASSERT(inp);
1880 #ifdef INVARIANTS
1881 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1882 		MPASS(inp->inp_refcount > 1);
1883 #endif
1884 
1885 	inp->inp_flags |= INP_DROPPED;
1886 	if (inp->inp_flags & INP_INHASHLIST)
1887 		in_pcbremhash(inp);
1888 }
1889 
1890 #ifdef INET
1891 /*
1892  * Common routines to return the socket addresses associated with inpcbs.
1893  */
1894 struct sockaddr *
1895 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1896 {
1897 	struct sockaddr_in *sin;
1898 
1899 	sin = malloc(sizeof *sin, M_SONAME,
1900 		M_WAITOK | M_ZERO);
1901 	sin->sin_family = AF_INET;
1902 	sin->sin_len = sizeof(*sin);
1903 	sin->sin_addr = *addr_p;
1904 	sin->sin_port = port;
1905 
1906 	return (struct sockaddr *)sin;
1907 }
1908 
1909 int
1910 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1911 {
1912 	struct inpcb *inp;
1913 	struct in_addr addr;
1914 	in_port_t port;
1915 
1916 	inp = sotoinpcb(so);
1917 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1918 
1919 	INP_RLOCK(inp);
1920 	port = inp->inp_lport;
1921 	addr = inp->inp_laddr;
1922 	INP_RUNLOCK(inp);
1923 
1924 	*nam = in_sockaddr(port, &addr);
1925 	return 0;
1926 }
1927 
1928 int
1929 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1930 {
1931 	struct inpcb *inp;
1932 	struct in_addr addr;
1933 	in_port_t port;
1934 
1935 	inp = sotoinpcb(so);
1936 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1937 
1938 	INP_RLOCK(inp);
1939 	port = inp->inp_fport;
1940 	addr = inp->inp_faddr;
1941 	INP_RUNLOCK(inp);
1942 
1943 	*nam = in_sockaddr(port, &addr);
1944 	return 0;
1945 }
1946 
1947 void
1948 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1949     struct inpcb *(*notify)(struct inpcb *, int))
1950 {
1951 	struct inpcb *inp, *inp_temp;
1952 
1953 	INP_INFO_WLOCK(pcbinfo);
1954 	CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) {
1955 		INP_WLOCK(inp);
1956 #ifdef INET6
1957 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1958 			INP_WUNLOCK(inp);
1959 			continue;
1960 		}
1961 #endif
1962 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1963 		    inp->inp_socket == NULL) {
1964 			INP_WUNLOCK(inp);
1965 			continue;
1966 		}
1967 		if ((*notify)(inp, errno))
1968 			INP_WUNLOCK(inp);
1969 	}
1970 	INP_INFO_WUNLOCK(pcbinfo);
1971 }
1972 
1973 static bool
1974 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1975 {
1976 
1977 	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1978 		return (true);
1979 	else
1980 		return (false);
1981 }
1982 
1983 void
1984 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1985 {
1986 	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1987 	    inp_v4_multi_match, NULL);
1988 	struct inpcb *inp;
1989 	struct in_multi *inm;
1990 	struct in_mfilter *imf;
1991 	struct ip_moptions *imo;
1992 
1993 	IN_MULTI_LOCK_ASSERT();
1994 
1995 	while ((inp = inp_next(&inpi)) != NULL) {
1996 		INP_WLOCK_ASSERT(inp);
1997 
1998 		imo = inp->inp_moptions;
1999 		/*
2000 		 * Unselect the outgoing interface if it is being
2001 		 * detached.
2002 		 */
2003 		if (imo->imo_multicast_ifp == ifp)
2004 			imo->imo_multicast_ifp = NULL;
2005 
2006 		/*
2007 		 * Drop multicast group membership if we joined
2008 		 * through the interface being detached.
2009 		 *
2010 		 * XXX This can all be deferred to an epoch_call
2011 		 */
2012 restart:
2013 		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
2014 			if ((inm = imf->imf_inm) == NULL)
2015 				continue;
2016 			if (inm->inm_ifp != ifp)
2017 				continue;
2018 			ip_mfilter_remove(&imo->imo_head, imf);
2019 			in_leavegroup_locked(inm, NULL);
2020 			ip_mfilter_free(imf);
2021 			goto restart;
2022 		}
2023 	}
2024 }
2025 
2026 /*
2027  * Lookup a PCB based on the local address and port.  Caller must hold the
2028  * hash lock.  No inpcb locks or references are acquired.
2029  */
2030 #define INP_LOOKUP_MAPPED_PCB_COST	3
2031 struct inpcb *
2032 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2033     u_short lport, int lookupflags, struct ucred *cred)
2034 {
2035 	struct inpcb *inp;
2036 #ifdef INET6
2037 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
2038 #else
2039 	int matchwild = 3;
2040 #endif
2041 	int wildcard;
2042 
2043 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2044 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2045 	INP_HASH_LOCK_ASSERT(pcbinfo);
2046 
2047 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
2048 		struct inpcbhead *head;
2049 		/*
2050 		 * Look for an unconnected (wildcard foreign addr) PCB that
2051 		 * matches the local address and port we're looking for.
2052 		 */
2053 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
2054 		    pcbinfo->ipi_hashmask)];
2055 		CK_LIST_FOREACH(inp, head, inp_hash) {
2056 #ifdef INET6
2057 			/* XXX inp locking */
2058 			if ((inp->inp_vflag & INP_IPV4) == 0)
2059 				continue;
2060 #endif
2061 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
2062 			    inp->inp_laddr.s_addr == laddr.s_addr &&
2063 			    inp->inp_lport == lport) {
2064 				/*
2065 				 * Found?
2066 				 */
2067 				if (prison_equal_ip4(cred->cr_prison,
2068 				    inp->inp_cred->cr_prison))
2069 					return (inp);
2070 			}
2071 		}
2072 		/*
2073 		 * Not found.
2074 		 */
2075 		return (NULL);
2076 	} else {
2077 		struct inpcbporthead *porthash;
2078 		struct inpcbport *phd;
2079 		struct inpcb *match = NULL;
2080 		/*
2081 		 * Best fit PCB lookup.
2082 		 *
2083 		 * First see if this local port is in use by looking on the
2084 		 * port hash list.
2085 		 */
2086 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2087 		    pcbinfo->ipi_porthashmask)];
2088 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2089 			if (phd->phd_port == lport)
2090 				break;
2091 		}
2092 		if (phd != NULL) {
2093 			/*
2094 			 * Port is in use by one or more PCBs. Look for best
2095 			 * fit.
2096 			 */
2097 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2098 				wildcard = 0;
2099 				if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2100 				    cred->cr_prison))
2101 					continue;
2102 #ifdef INET6
2103 				/* XXX inp locking */
2104 				if ((inp->inp_vflag & INP_IPV4) == 0)
2105 					continue;
2106 				/*
2107 				 * We never select the PCB that has
2108 				 * INP_IPV6 flag and is bound to :: if
2109 				 * we have another PCB which is bound
2110 				 * to 0.0.0.0.  If a PCB has the
2111 				 * INP_IPV6 flag, then we set its cost
2112 				 * higher than IPv4 only PCBs.
2113 				 *
2114 				 * Note that the case only happens
2115 				 * when a socket is bound to ::, under
2116 				 * the condition that the use of the
2117 				 * mapped address is allowed.
2118 				 */
2119 				if ((inp->inp_vflag & INP_IPV6) != 0)
2120 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2121 #endif
2122 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2123 					wildcard++;
2124 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2125 					if (laddr.s_addr == INADDR_ANY)
2126 						wildcard++;
2127 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2128 						continue;
2129 				} else {
2130 					if (laddr.s_addr != INADDR_ANY)
2131 						wildcard++;
2132 				}
2133 				if (wildcard < matchwild) {
2134 					match = inp;
2135 					matchwild = wildcard;
2136 					if (matchwild == 0)
2137 						break;
2138 				}
2139 			}
2140 		}
2141 		return (match);
2142 	}
2143 }
2144 #undef INP_LOOKUP_MAPPED_PCB_COST
2145 
2146 static bool
2147 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2148 {
2149 	return (domain == M_NODOM || domain == grp->il_numa_domain);
2150 }
2151 
2152 static struct inpcb *
2153 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2154     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2155     uint16_t fport, int lookupflags, int domain)
2156 {
2157 	const struct inpcblbgrouphead *hdr;
2158 	struct inpcblbgroup *grp;
2159 	struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2160 
2161 	INP_HASH_LOCK_ASSERT(pcbinfo);
2162 
2163 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2164 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2165 
2166 	/*
2167 	 * Search for an LB group match based on the following criteria:
2168 	 * - prefer jailed groups to non-jailed groups
2169 	 * - prefer exact source address matches to wildcard matches
2170 	 * - prefer groups bound to the specified NUMA domain
2171 	 */
2172 	jail_exact = jail_wild = local_exact = local_wild = NULL;
2173 	CK_LIST_FOREACH(grp, hdr, il_list) {
2174 		bool injail;
2175 
2176 #ifdef INET6
2177 		if (!(grp->il_vflag & INP_IPV4))
2178 			continue;
2179 #endif
2180 		if (grp->il_lport != lport)
2181 			continue;
2182 
2183 		injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2184 		if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2185 		    laddr) != 0)
2186 			continue;
2187 
2188 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2189 			if (injail) {
2190 				jail_exact = grp;
2191 				if (in_pcblookup_lb_numa_match(grp, domain))
2192 					/* This is a perfect match. */
2193 					goto out;
2194 			} else if (local_exact == NULL ||
2195 			    in_pcblookup_lb_numa_match(grp, domain)) {
2196 				local_exact = grp;
2197 			}
2198 		} else if (grp->il_laddr.s_addr == INADDR_ANY &&
2199 		    (lookupflags & INPLOOKUP_WILDCARD) != 0) {
2200 			if (injail) {
2201 				if (jail_wild == NULL ||
2202 				    in_pcblookup_lb_numa_match(grp, domain))
2203 					jail_wild = grp;
2204 			} else if (local_wild == NULL ||
2205 			    in_pcblookup_lb_numa_match(grp, domain)) {
2206 				local_wild = grp;
2207 			}
2208 		}
2209 	}
2210 
2211 	if (jail_exact != NULL)
2212 		grp = jail_exact;
2213 	else if (jail_wild != NULL)
2214 		grp = jail_wild;
2215 	else if (local_exact != NULL)
2216 		grp = local_exact;
2217 	else
2218 		grp = local_wild;
2219 	if (grp == NULL)
2220 		return (NULL);
2221 out:
2222 	return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
2223 	    grp->il_inpcnt]);
2224 }
2225 
2226 /*
2227  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2228  * that the caller has either locked the hash list, which usually happens
2229  * for bind(2) operations, or is in SMR section, which happens when sorting
2230  * out incoming packets.
2231  */
2232 static struct inpcb *
2233 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2234     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2235     struct ifnet *ifp, uint8_t numa_domain)
2236 {
2237 	struct inpcbhead *head;
2238 	struct inpcb *inp, *tmpinp;
2239 	u_short fport = fport_arg, lport = lport_arg;
2240 
2241 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2242 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2243 	INP_HASH_LOCK_ASSERT(pcbinfo);
2244 
2245 	/*
2246 	 * First look for an exact match.
2247 	 */
2248 	tmpinp = NULL;
2249 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport,
2250 	    pcbinfo->ipi_hashmask)];
2251 	CK_LIST_FOREACH(inp, head, inp_hash) {
2252 #ifdef INET6
2253 		/* XXX inp locking */
2254 		if ((inp->inp_vflag & INP_IPV4) == 0)
2255 			continue;
2256 #endif
2257 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2258 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2259 		    inp->inp_fport == fport &&
2260 		    inp->inp_lport == lport) {
2261 			/*
2262 			 * XXX We should be able to directly return
2263 			 * the inp here, without any checks.
2264 			 * Well unless both bound with SO_REUSEPORT?
2265 			 */
2266 			if (prison_flag(inp->inp_cred, PR_IP4))
2267 				return (inp);
2268 			if (tmpinp == NULL)
2269 				tmpinp = inp;
2270 		}
2271 	}
2272 	if (tmpinp != NULL)
2273 		return (tmpinp);
2274 
2275 	/*
2276 	 * Then look for a wildcard match, if requested.
2277 	 */
2278 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2279 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2280 #ifdef INET6
2281 		struct inpcb *local_wild_mapped = NULL;
2282 #endif
2283 		struct inpcb *jail_wild = NULL;
2284 		int injail;
2285 
2286 		/*
2287 		 * First see if an LB group matches the request before scanning
2288 		 * all sockets on this port.
2289 		 */
2290 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2291 		    fport, lookupflags, numa_domain);
2292 		if (inp != NULL)
2293 			return (inp);
2294 
2295 		/*
2296 		 * Order of socket selection - we always prefer jails.
2297 		 *      1. jailed, non-wild.
2298 		 *      2. jailed, wild.
2299 		 *      3. non-jailed, non-wild.
2300 		 *      4. non-jailed, wild.
2301 		 */
2302 
2303 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
2304 		    pcbinfo->ipi_hashmask)];
2305 		CK_LIST_FOREACH(inp, head, inp_hash) {
2306 #ifdef INET6
2307 			/* XXX inp locking */
2308 			if ((inp->inp_vflag & INP_IPV4) == 0)
2309 				continue;
2310 #endif
2311 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2312 			    inp->inp_lport != lport)
2313 				continue;
2314 
2315 			injail = prison_flag(inp->inp_cred, PR_IP4);
2316 			if (injail) {
2317 				if (prison_check_ip4_locked(
2318 				    inp->inp_cred->cr_prison, &laddr) != 0)
2319 					continue;
2320 			} else {
2321 				if (local_exact != NULL)
2322 					continue;
2323 			}
2324 
2325 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2326 				if (injail)
2327 					return (inp);
2328 				else
2329 					local_exact = inp;
2330 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2331 #ifdef INET6
2332 				/* XXX inp locking, NULL check */
2333 				if (inp->inp_vflag & INP_IPV6PROTO)
2334 					local_wild_mapped = inp;
2335 				else
2336 #endif
2337 					if (injail)
2338 						jail_wild = inp;
2339 					else
2340 						local_wild = inp;
2341 			}
2342 		} /* LIST_FOREACH */
2343 		if (jail_wild != NULL)
2344 			return (jail_wild);
2345 		if (local_exact != NULL)
2346 			return (local_exact);
2347 		if (local_wild != NULL)
2348 			return (local_wild);
2349 #ifdef INET6
2350 		if (local_wild_mapped != NULL)
2351 			return (local_wild_mapped);
2352 #endif
2353 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2354 
2355 	return (NULL);
2356 }
2357 
2358 /*
2359  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2360  * hash list lock, and will return the inpcb locked (i.e., requires
2361  * INPLOOKUP_LOCKPCB).
2362  */
2363 static struct inpcb *
2364 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2365     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2366     struct ifnet *ifp, uint8_t numa_domain)
2367 {
2368 	struct inpcb *inp;
2369 
2370 	smr_enter(pcbinfo->ipi_smr);
2371 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2372 	    lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain);
2373 	if (inp != NULL) {
2374 		if (__predict_false(inp_smr_lock(inp,
2375 		    (lookupflags & INPLOOKUP_LOCKMASK)) == false))
2376 			inp = NULL;
2377 	} else
2378 		smr_exit(pcbinfo->ipi_smr);
2379 
2380 	return (inp);
2381 }
2382 
2383 /*
2384  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2385  * from which a pre-calculated hash value may be extracted.
2386  */
2387 struct inpcb *
2388 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2389     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2390 {
2391 
2392 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2393 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2394 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2395 	    ("%s: LOCKPCB not set", __func__));
2396 
2397 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2398 	    lookupflags, ifp, M_NODOM));
2399 }
2400 
2401 struct inpcb *
2402 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2403     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2404     struct ifnet *ifp, struct mbuf *m)
2405 {
2406 
2407 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2408 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2409 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2410 	    ("%s: LOCKPCB not set", __func__));
2411 
2412 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2413 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
2414 }
2415 #endif /* INET */
2416 
2417 /*
2418  * Insert PCB onto various hash lists.
2419  */
2420 int
2421 in_pcbinshash(struct inpcb *inp)
2422 {
2423 	struct inpcbhead *pcbhash;
2424 	struct inpcbporthead *pcbporthash;
2425 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2426 	struct inpcbport *phd;
2427 
2428 	INP_WLOCK_ASSERT(inp);
2429 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2430 
2431 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2432 	    ("in_pcbinshash: INP_INHASHLIST"));
2433 
2434 #ifdef INET6
2435 	if (inp->inp_vflag & INP_IPV6)
2436 		pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
2437 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2438 	else
2439 #endif
2440 		pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
2441 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2442 
2443 	pcbporthash = &pcbinfo->ipi_porthashbase[
2444 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2445 
2446 	/*
2447 	 * Add entry to load balance group.
2448 	 * Only do this if SO_REUSEPORT_LB is set.
2449 	 */
2450 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) {
2451 		int error = in_pcbinslbgrouphash(inp, M_NODOM);
2452 		if (error != 0)
2453 			return (error);
2454 	}
2455 
2456 	/*
2457 	 * Go through port list and look for a head for this lport.
2458 	 */
2459 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2460 		if (phd->phd_port == inp->inp_lport)
2461 			break;
2462 	}
2463 
2464 	/*
2465 	 * If none exists, malloc one and tack it on.
2466 	 */
2467 	if (phd == NULL) {
2468 		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2469 		if (phd == NULL) {
2470 			if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
2471 				in_pcbremlbgrouphash(inp);
2472 			return (ENOMEM);
2473 		}
2474 		phd->phd_port = inp->inp_lport;
2475 		CK_LIST_INIT(&phd->phd_pcblist);
2476 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2477 	}
2478 	inp->inp_phd = phd;
2479 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2480 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2481 	inp->inp_flags |= INP_INHASHLIST;
2482 
2483 	return (0);
2484 }
2485 
2486 static void
2487 in_pcbremhash(struct inpcb *inp)
2488 {
2489 	struct inpcbport *phd = inp->inp_phd;
2490 
2491 	INP_WLOCK_ASSERT(inp);
2492 	MPASS(inp->inp_flags & INP_INHASHLIST);
2493 
2494 	INP_HASH_WLOCK(inp->inp_pcbinfo);
2495 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
2496 		in_pcbremlbgrouphash(inp);
2497 	CK_LIST_REMOVE(inp, inp_hash);
2498 	CK_LIST_REMOVE(inp, inp_portlist);
2499 	if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2500 		CK_LIST_REMOVE(phd, phd_hash);
2501 		uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2502 	}
2503 	INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2504 	inp->inp_flags &= ~INP_INHASHLIST;
2505 }
2506 
2507 /*
2508  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2509  * changed. NOTE: This does not handle the case of the lport changing (the
2510  * hashed port list would have to be updated as well), so the lport must
2511  * not change after in_pcbinshash() has been called.
2512  *
2513  * XXXGL: a race between this function and SMR-protected hash iterator
2514  * will lead to iterator traversing a possibly wrong hash list. However,
2515  * this race should have been here since change from rwlock to epoch.
2516  */
2517 void
2518 in_pcbrehash(struct inpcb *inp)
2519 {
2520 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2521 	struct inpcbhead *head;
2522 
2523 	INP_WLOCK_ASSERT(inp);
2524 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2525 
2526 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2527 	    ("in_pcbrehash: !INP_INHASHLIST"));
2528 
2529 #ifdef INET6
2530 	if (inp->inp_vflag & INP_IPV6)
2531 		head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
2532 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2533 	else
2534 #endif
2535 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
2536 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2537 
2538 	CK_LIST_REMOVE(inp, inp_hash);
2539 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2540 }
2541 
2542 /*
2543  * Check for alternatives when higher level complains
2544  * about service problems.  For now, invalidate cached
2545  * routing information.  If the route was created dynamically
2546  * (by a redirect), time to try a default gateway again.
2547  */
2548 void
2549 in_losing(struct inpcb *inp)
2550 {
2551 
2552 	RO_INVALIDATE_CACHE(&inp->inp_route);
2553 	return;
2554 }
2555 
2556 /*
2557  * A set label operation has occurred at the socket layer, propagate the
2558  * label change into the in_pcb for the socket.
2559  */
2560 void
2561 in_pcbsosetlabel(struct socket *so)
2562 {
2563 #ifdef MAC
2564 	struct inpcb *inp;
2565 
2566 	inp = sotoinpcb(so);
2567 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2568 
2569 	INP_WLOCK(inp);
2570 	SOCK_LOCK(so);
2571 	mac_inpcb_sosetlabel(so, inp);
2572 	SOCK_UNLOCK(so);
2573 	INP_WUNLOCK(inp);
2574 #endif
2575 }
2576 
2577 void
2578 inp_wlock(struct inpcb *inp)
2579 {
2580 
2581 	INP_WLOCK(inp);
2582 }
2583 
2584 void
2585 inp_wunlock(struct inpcb *inp)
2586 {
2587 
2588 	INP_WUNLOCK(inp);
2589 }
2590 
2591 void
2592 inp_rlock(struct inpcb *inp)
2593 {
2594 
2595 	INP_RLOCK(inp);
2596 }
2597 
2598 void
2599 inp_runlock(struct inpcb *inp)
2600 {
2601 
2602 	INP_RUNLOCK(inp);
2603 }
2604 
2605 #ifdef INVARIANT_SUPPORT
2606 void
2607 inp_lock_assert(struct inpcb *inp)
2608 {
2609 
2610 	INP_WLOCK_ASSERT(inp);
2611 }
2612 
2613 void
2614 inp_unlock_assert(struct inpcb *inp)
2615 {
2616 
2617 	INP_UNLOCK_ASSERT(inp);
2618 }
2619 #endif
2620 
2621 void
2622 inp_apply_all(struct inpcbinfo *pcbinfo,
2623     void (*func)(struct inpcb *, void *), void *arg)
2624 {
2625 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2626 	    INPLOOKUP_WLOCKPCB);
2627 	struct inpcb *inp;
2628 
2629 	while ((inp = inp_next(&inpi)) != NULL)
2630 		func(inp, arg);
2631 }
2632 
2633 struct socket *
2634 inp_inpcbtosocket(struct inpcb *inp)
2635 {
2636 
2637 	INP_WLOCK_ASSERT(inp);
2638 	return (inp->inp_socket);
2639 }
2640 
2641 struct tcpcb *
2642 inp_inpcbtotcpcb(struct inpcb *inp)
2643 {
2644 
2645 	INP_WLOCK_ASSERT(inp);
2646 	return ((struct tcpcb *)inp->inp_ppcb);
2647 }
2648 
2649 int
2650 inp_ip_tos_get(const struct inpcb *inp)
2651 {
2652 
2653 	return (inp->inp_ip_tos);
2654 }
2655 
2656 void
2657 inp_ip_tos_set(struct inpcb *inp, int val)
2658 {
2659 
2660 	inp->inp_ip_tos = val;
2661 }
2662 
2663 void
2664 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2665     uint32_t *faddr, uint16_t *fp)
2666 {
2667 
2668 	INP_LOCK_ASSERT(inp);
2669 	*laddr = inp->inp_laddr.s_addr;
2670 	*faddr = inp->inp_faddr.s_addr;
2671 	*lp = inp->inp_lport;
2672 	*fp = inp->inp_fport;
2673 }
2674 
2675 struct inpcb *
2676 so_sotoinpcb(struct socket *so)
2677 {
2678 
2679 	return (sotoinpcb(so));
2680 }
2681 
2682 /*
2683  * Create an external-format (``xinpcb'') structure using the information in
2684  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2685  * reduce the spew of irrelevant information over this interface, to isolate
2686  * user code from changes in the kernel structure, and potentially to provide
2687  * information-hiding if we decide that some of this information should be
2688  * hidden from users.
2689  */
2690 void
2691 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2692 {
2693 
2694 	bzero(xi, sizeof(*xi));
2695 	xi->xi_len = sizeof(struct xinpcb);
2696 	if (inp->inp_socket)
2697 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2698 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2699 	xi->inp_gencnt = inp->inp_gencnt;
2700 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2701 	xi->inp_flow = inp->inp_flow;
2702 	xi->inp_flowid = inp->inp_flowid;
2703 	xi->inp_flowtype = inp->inp_flowtype;
2704 	xi->inp_flags = inp->inp_flags;
2705 	xi->inp_flags2 = inp->inp_flags2;
2706 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2707 	xi->in6p_cksum = inp->in6p_cksum;
2708 	xi->in6p_hops = inp->in6p_hops;
2709 	xi->inp_ip_tos = inp->inp_ip_tos;
2710 	xi->inp_vflag = inp->inp_vflag;
2711 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2712 	xi->inp_ip_p = inp->inp_ip_p;
2713 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2714 }
2715 
2716 int
2717 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2718     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2719 {
2720 	struct sockopt sopt;
2721 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2722 	    INPLOOKUP_WLOCKPCB);
2723 	struct inpcb *inp;
2724 	struct sockopt_parameters *params;
2725 	struct socket *so;
2726 	int error;
2727 	char buf[1024];
2728 
2729 	if (req->oldptr != NULL || req->oldlen != 0)
2730 		return (EINVAL);
2731 	if (req->newptr == NULL)
2732 		return (EPERM);
2733 	if (req->newlen > sizeof(buf))
2734 		return (ENOMEM);
2735 	error = SYSCTL_IN(req, buf, req->newlen);
2736 	if (error != 0)
2737 		return (error);
2738 	if (req->newlen < sizeof(struct sockopt_parameters))
2739 		return (EINVAL);
2740 	params = (struct sockopt_parameters *)buf;
2741 	sopt.sopt_level = params->sop_level;
2742 	sopt.sopt_name = params->sop_optname;
2743 	sopt.sopt_dir = SOPT_SET;
2744 	sopt.sopt_val = params->sop_optval;
2745 	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2746 	sopt.sopt_td = NULL;
2747 #ifdef INET6
2748 	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2749 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2750 			params->sop_inc.inc6_laddr.s6_addr16[1] =
2751 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2752 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2753 			params->sop_inc.inc6_faddr.s6_addr16[1] =
2754 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2755 	}
2756 #endif
2757 	if (params->sop_inc.inc_lport != htons(0)) {
2758 		if (params->sop_inc.inc_fport == htons(0))
2759 			inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport,
2760 			    pcbinfo->ipi_hashmask);
2761 		else
2762 #ifdef INET6
2763 			if (params->sop_inc.inc_flags & INC_ISIPV6)
2764 				inpi.hash = INP6_PCBHASH(
2765 				    &params->sop_inc.inc6_faddr,
2766 				    params->sop_inc.inc_lport,
2767 				    params->sop_inc.inc_fport,
2768 				    pcbinfo->ipi_hashmask);
2769 			else
2770 #endif
2771 				inpi.hash = INP_PCBHASH(
2772 				    &params->sop_inc.inc_faddr,
2773 				    params->sop_inc.inc_lport,
2774 				    params->sop_inc.inc_fport,
2775 				    pcbinfo->ipi_hashmask);
2776 	}
2777 	while ((inp = inp_next(&inpi)) != NULL)
2778 		if (inp->inp_gencnt == params->sop_id) {
2779 			if (inp->inp_flags & INP_DROPPED) {
2780 				INP_WUNLOCK(inp);
2781 				return (ECONNRESET);
2782 			}
2783 			so = inp->inp_socket;
2784 			KASSERT(so != NULL, ("inp_socket == NULL"));
2785 			soref(so);
2786 			error = (*ctloutput_set)(inp, &sopt);
2787 			sorele(so);
2788 			break;
2789 		}
2790 	if (inp == NULL)
2791 		error = ESRCH;
2792 	return (error);
2793 }
2794 
2795 #ifdef DDB
2796 static void
2797 db_print_indent(int indent)
2798 {
2799 	int i;
2800 
2801 	for (i = 0; i < indent; i++)
2802 		db_printf(" ");
2803 }
2804 
2805 static void
2806 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2807 {
2808 	char faddr_str[48], laddr_str[48];
2809 
2810 	db_print_indent(indent);
2811 	db_printf("%s at %p\n", name, inc);
2812 
2813 	indent += 2;
2814 
2815 #ifdef INET6
2816 	if (inc->inc_flags & INC_ISIPV6) {
2817 		/* IPv6. */
2818 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2819 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2820 	} else
2821 #endif
2822 	{
2823 		/* IPv4. */
2824 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2825 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2826 	}
2827 	db_print_indent(indent);
2828 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2829 	    ntohs(inc->inc_lport));
2830 	db_print_indent(indent);
2831 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2832 	    ntohs(inc->inc_fport));
2833 }
2834 
2835 static void
2836 db_print_inpflags(int inp_flags)
2837 {
2838 	int comma;
2839 
2840 	comma = 0;
2841 	if (inp_flags & INP_RECVOPTS) {
2842 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2843 		comma = 1;
2844 	}
2845 	if (inp_flags & INP_RECVRETOPTS) {
2846 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2847 		comma = 1;
2848 	}
2849 	if (inp_flags & INP_RECVDSTADDR) {
2850 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2851 		comma = 1;
2852 	}
2853 	if (inp_flags & INP_ORIGDSTADDR) {
2854 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2855 		comma = 1;
2856 	}
2857 	if (inp_flags & INP_HDRINCL) {
2858 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2859 		comma = 1;
2860 	}
2861 	if (inp_flags & INP_HIGHPORT) {
2862 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2863 		comma = 1;
2864 	}
2865 	if (inp_flags & INP_LOWPORT) {
2866 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2867 		comma = 1;
2868 	}
2869 	if (inp_flags & INP_ANONPORT) {
2870 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2871 		comma = 1;
2872 	}
2873 	if (inp_flags & INP_RECVIF) {
2874 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2875 		comma = 1;
2876 	}
2877 	if (inp_flags & INP_MTUDISC) {
2878 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2879 		comma = 1;
2880 	}
2881 	if (inp_flags & INP_RECVTTL) {
2882 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2883 		comma = 1;
2884 	}
2885 	if (inp_flags & INP_DONTFRAG) {
2886 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2887 		comma = 1;
2888 	}
2889 	if (inp_flags & INP_RECVTOS) {
2890 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2891 		comma = 1;
2892 	}
2893 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2894 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2895 		comma = 1;
2896 	}
2897 	if (inp_flags & IN6P_PKTINFO) {
2898 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2899 		comma = 1;
2900 	}
2901 	if (inp_flags & IN6P_HOPLIMIT) {
2902 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2903 		comma = 1;
2904 	}
2905 	if (inp_flags & IN6P_HOPOPTS) {
2906 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2907 		comma = 1;
2908 	}
2909 	if (inp_flags & IN6P_DSTOPTS) {
2910 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2911 		comma = 1;
2912 	}
2913 	if (inp_flags & IN6P_RTHDR) {
2914 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2915 		comma = 1;
2916 	}
2917 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2918 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2919 		comma = 1;
2920 	}
2921 	if (inp_flags & IN6P_TCLASS) {
2922 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2923 		comma = 1;
2924 	}
2925 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2926 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2927 		comma = 1;
2928 	}
2929 	if (inp_flags & INP_ONESBCAST) {
2930 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2931 		comma  = 1;
2932 	}
2933 	if (inp_flags & INP_DROPPED) {
2934 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2935 		comma  = 1;
2936 	}
2937 	if (inp_flags & INP_SOCKREF) {
2938 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2939 		comma  = 1;
2940 	}
2941 	if (inp_flags & IN6P_RFC2292) {
2942 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2943 		comma = 1;
2944 	}
2945 	if (inp_flags & IN6P_MTU) {
2946 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2947 		comma = 1;
2948 	}
2949 }
2950 
2951 static void
2952 db_print_inpvflag(u_char inp_vflag)
2953 {
2954 	int comma;
2955 
2956 	comma = 0;
2957 	if (inp_vflag & INP_IPV4) {
2958 		db_printf("%sINP_IPV4", comma ? ", " : "");
2959 		comma  = 1;
2960 	}
2961 	if (inp_vflag & INP_IPV6) {
2962 		db_printf("%sINP_IPV6", comma ? ", " : "");
2963 		comma  = 1;
2964 	}
2965 	if (inp_vflag & INP_IPV6PROTO) {
2966 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2967 		comma  = 1;
2968 	}
2969 }
2970 
2971 static void
2972 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2973 {
2974 
2975 	db_print_indent(indent);
2976 	db_printf("%s at %p\n", name, inp);
2977 
2978 	indent += 2;
2979 
2980 	db_print_indent(indent);
2981 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2982 
2983 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2984 
2985 	db_print_indent(indent);
2986 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2987 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2988 
2989 	db_print_indent(indent);
2990 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2991 	   inp->inp_label, inp->inp_flags);
2992 	db_print_inpflags(inp->inp_flags);
2993 	db_printf(")\n");
2994 
2995 	db_print_indent(indent);
2996 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2997 	    inp->inp_vflag);
2998 	db_print_inpvflag(inp->inp_vflag);
2999 	db_printf(")\n");
3000 
3001 	db_print_indent(indent);
3002 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3003 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3004 
3005 	db_print_indent(indent);
3006 #ifdef INET6
3007 	if (inp->inp_vflag & INP_IPV6) {
3008 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3009 		    "in6p_moptions: %p\n", inp->in6p_options,
3010 		    inp->in6p_outputopts, inp->in6p_moptions);
3011 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3012 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3013 		    inp->in6p_hops);
3014 	} else
3015 #endif
3016 	{
3017 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3018 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3019 		    inp->inp_options, inp->inp_moptions);
3020 	}
3021 
3022 	db_print_indent(indent);
3023 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3024 	    (uintmax_t)inp->inp_gencnt);
3025 }
3026 
3027 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3028 {
3029 	struct inpcb *inp;
3030 
3031 	if (!have_addr) {
3032 		db_printf("usage: show inpcb <addr>\n");
3033 		return;
3034 	}
3035 	inp = (struct inpcb *)addr;
3036 
3037 	db_print_inpcb(inp, "inpcb", 0);
3038 }
3039 #endif /* DDB */
3040 
3041 #ifdef RATELIMIT
3042 /*
3043  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3044  * if any.
3045  */
3046 int
3047 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3048 {
3049 	union if_snd_tag_modify_params params = {
3050 		.rate_limit.max_rate = max_pacing_rate,
3051 		.rate_limit.flags = M_NOWAIT,
3052 	};
3053 	struct m_snd_tag *mst;
3054 	int error;
3055 
3056 	mst = inp->inp_snd_tag;
3057 	if (mst == NULL)
3058 		return (EINVAL);
3059 
3060 	if (mst->sw->snd_tag_modify == NULL) {
3061 		error = EOPNOTSUPP;
3062 	} else {
3063 		error = mst->sw->snd_tag_modify(mst, &params);
3064 	}
3065 	return (error);
3066 }
3067 
3068 /*
3069  * Query existing TX rate limit based on the existing
3070  * "inp->inp_snd_tag", if any.
3071  */
3072 int
3073 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3074 {
3075 	union if_snd_tag_query_params params = { };
3076 	struct m_snd_tag *mst;
3077 	int error;
3078 
3079 	mst = inp->inp_snd_tag;
3080 	if (mst == NULL)
3081 		return (EINVAL);
3082 
3083 	if (mst->sw->snd_tag_query == NULL) {
3084 		error = EOPNOTSUPP;
3085 	} else {
3086 		error = mst->sw->snd_tag_query(mst, &params);
3087 		if (error == 0 && p_max_pacing_rate != NULL)
3088 			*p_max_pacing_rate = params.rate_limit.max_rate;
3089 	}
3090 	return (error);
3091 }
3092 
3093 /*
3094  * Query existing TX queue level based on the existing
3095  * "inp->inp_snd_tag", if any.
3096  */
3097 int
3098 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3099 {
3100 	union if_snd_tag_query_params params = { };
3101 	struct m_snd_tag *mst;
3102 	int error;
3103 
3104 	mst = inp->inp_snd_tag;
3105 	if (mst == NULL)
3106 		return (EINVAL);
3107 
3108 	if (mst->sw->snd_tag_query == NULL)
3109 		return (EOPNOTSUPP);
3110 
3111 	error = mst->sw->snd_tag_query(mst, &params);
3112 	if (error == 0 && p_txqueue_level != NULL)
3113 		*p_txqueue_level = params.rate_limit.queue_level;
3114 	return (error);
3115 }
3116 
3117 /*
3118  * Allocate a new TX rate limit send tag from the network interface
3119  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3120  */
3121 int
3122 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3123     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3124 
3125 {
3126 	union if_snd_tag_alloc_params params = {
3127 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3128 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3129 		.rate_limit.hdr.flowid = flowid,
3130 		.rate_limit.hdr.flowtype = flowtype,
3131 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3132 		.rate_limit.max_rate = max_pacing_rate,
3133 		.rate_limit.flags = M_NOWAIT,
3134 	};
3135 	int error;
3136 
3137 	INP_WLOCK_ASSERT(inp);
3138 
3139 	/*
3140 	 * If there is already a send tag, or the INP is being torn
3141 	 * down, allocating a new send tag is not allowed. Else send
3142 	 * tags may leak.
3143 	 */
3144 	if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3145 		return (EINVAL);
3146 
3147 	error = m_snd_tag_alloc(ifp, &params, st);
3148 #ifdef INET
3149 	if (error == 0) {
3150 		counter_u64_add(rate_limit_set_ok, 1);
3151 		counter_u64_add(rate_limit_active, 1);
3152 	} else if (error != EOPNOTSUPP)
3153 		  counter_u64_add(rate_limit_alloc_fail, 1);
3154 #endif
3155 	return (error);
3156 }
3157 
3158 void
3159 in_pcbdetach_tag(struct m_snd_tag *mst)
3160 {
3161 
3162 	m_snd_tag_rele(mst);
3163 #ifdef INET
3164 	counter_u64_add(rate_limit_active, -1);
3165 #endif
3166 }
3167 
3168 /*
3169  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3170  * if any:
3171  */
3172 void
3173 in_pcbdetach_txrtlmt(struct inpcb *inp)
3174 {
3175 	struct m_snd_tag *mst;
3176 
3177 	INP_WLOCK_ASSERT(inp);
3178 
3179 	mst = inp->inp_snd_tag;
3180 	inp->inp_snd_tag = NULL;
3181 
3182 	if (mst == NULL)
3183 		return;
3184 
3185 	m_snd_tag_rele(mst);
3186 #ifdef INET
3187 	counter_u64_add(rate_limit_active, -1);
3188 #endif
3189 }
3190 
3191 int
3192 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3193 {
3194 	int error;
3195 
3196 	/*
3197 	 * If the existing send tag is for the wrong interface due to
3198 	 * a route change, first drop the existing tag.  Set the
3199 	 * CHANGED flag so that we will keep trying to allocate a new
3200 	 * tag if we fail to allocate one this time.
3201 	 */
3202 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3203 		in_pcbdetach_txrtlmt(inp);
3204 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3205 	}
3206 
3207 	/*
3208 	 * NOTE: When attaching to a network interface a reference is
3209 	 * made to ensure the network interface doesn't go away until
3210 	 * all ratelimit connections are gone. The network interface
3211 	 * pointers compared below represent valid network interfaces,
3212 	 * except when comparing towards NULL.
3213 	 */
3214 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3215 		error = 0;
3216 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3217 		if (inp->inp_snd_tag != NULL)
3218 			in_pcbdetach_txrtlmt(inp);
3219 		error = 0;
3220 	} else if (inp->inp_snd_tag == NULL) {
3221 		/*
3222 		 * In order to utilize packet pacing with RSS, we need
3223 		 * to wait until there is a valid RSS hash before we
3224 		 * can proceed:
3225 		 */
3226 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3227 			error = EAGAIN;
3228 		} else {
3229 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3230 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3231 		}
3232 	} else {
3233 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3234 	}
3235 	if (error == 0 || error == EOPNOTSUPP)
3236 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3237 
3238 	return (error);
3239 }
3240 
3241 /*
3242  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3243  * is set in the fast path and will attach/detach/modify the TX rate
3244  * limit send tag based on the socket's so_max_pacing_rate value.
3245  */
3246 void
3247 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3248 {
3249 	struct socket *socket;
3250 	uint32_t max_pacing_rate;
3251 	bool did_upgrade;
3252 
3253 	if (inp == NULL)
3254 		return;
3255 
3256 	socket = inp->inp_socket;
3257 	if (socket == NULL)
3258 		return;
3259 
3260 	if (!INP_WLOCKED(inp)) {
3261 		/*
3262 		 * NOTE: If the write locking fails, we need to bail
3263 		 * out and use the non-ratelimited ring for the
3264 		 * transmit until there is a new chance to get the
3265 		 * write lock.
3266 		 */
3267 		if (!INP_TRY_UPGRADE(inp))
3268 			return;
3269 		did_upgrade = 1;
3270 	} else {
3271 		did_upgrade = 0;
3272 	}
3273 
3274 	/*
3275 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3276 	 * because atomic updates are not required since the variable
3277 	 * is checked at every mbuf we send. It is assumed that the
3278 	 * variable read itself will be atomic.
3279 	 */
3280 	max_pacing_rate = socket->so_max_pacing_rate;
3281 
3282 	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3283 
3284 	if (did_upgrade)
3285 		INP_DOWNGRADE(inp);
3286 }
3287 
3288 /*
3289  * Track route changes for TX rate limiting.
3290  */
3291 void
3292 in_pcboutput_eagain(struct inpcb *inp)
3293 {
3294 	bool did_upgrade;
3295 
3296 	if (inp == NULL)
3297 		return;
3298 
3299 	if (inp->inp_snd_tag == NULL)
3300 		return;
3301 
3302 	if (!INP_WLOCKED(inp)) {
3303 		/*
3304 		 * NOTE: If the write locking fails, we need to bail
3305 		 * out and use the non-ratelimited ring for the
3306 		 * transmit until there is a new chance to get the
3307 		 * write lock.
3308 		 */
3309 		if (!INP_TRY_UPGRADE(inp))
3310 			return;
3311 		did_upgrade = 1;
3312 	} else {
3313 		did_upgrade = 0;
3314 	}
3315 
3316 	/* detach rate limiting */
3317 	in_pcbdetach_txrtlmt(inp);
3318 
3319 	/* make sure new mbuf send tag allocation is made */
3320 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3321 
3322 	if (did_upgrade)
3323 		INP_DOWNGRADE(inp);
3324 }
3325 
3326 #ifdef INET
3327 static void
3328 rl_init(void *st)
3329 {
3330 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3331 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3332 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3333 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3334 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3335 }
3336 
3337 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3338 #endif
3339 #endif /* RATELIMIT */
3340