xref: /freebsd/sys/netinet/in_mcast.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/tree.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/route/nhop.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  *
98  * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
99  *   IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
100  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
101  *   it can be taken by code in net/if.c also.
102  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
103  *
104  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
105  * any need for in_multi itself to be virtualized -- it is bound to an ifp
106  * anyway no matter what happens.
107  */
108 struct mtx in_multi_list_mtx;
109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
110 
111 struct mtx in_multi_free_mtx;
112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
113 
114 struct sx in_multi_sx;
115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
116 
117 int ifma_restart;
118 
119 /*
120  * Functions with non-static linkage defined in this file should be
121  * declared in in_var.h:
122  *  imo_multi_filter()
123  *  in_addmulti()
124  *  in_delmulti()
125  *  in_joingroup()
126  *  in_joingroup_locked()
127  *  in_leavegroup()
128  *  in_leavegroup_locked()
129  * and ip_var.h:
130  *  inp_freemoptions()
131  *  inp_getmoptions()
132  *  inp_setmoptions()
133  *
134  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
135  * and in_delmulti().
136  */
137 static void	imf_commit(struct in_mfilter *);
138 static int	imf_get_source(struct in_mfilter *imf,
139 		    const struct sockaddr_in *psin,
140 		    struct in_msource **);
141 static struct in_msource *
142 		imf_graft(struct in_mfilter *, const uint8_t,
143 		    const struct sockaddr_in *);
144 static void	imf_leave(struct in_mfilter *);
145 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
146 static void	imf_purge(struct in_mfilter *);
147 static void	imf_rollback(struct in_mfilter *);
148 static void	imf_reap(struct in_mfilter *);
149 static struct in_mfilter *
150 		imo_match_group(const struct ip_moptions *,
151 		    const struct ifnet *, const struct sockaddr *);
152 static struct in_msource *
153 		imo_match_source(struct in_mfilter *, const struct sockaddr *);
154 static void	ims_merge(struct ip_msource *ims,
155 		    const struct in_msource *lims, const int rollback);
156 static int	in_getmulti(struct ifnet *, const struct in_addr *,
157 		    struct in_multi **);
158 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
159 		    const int noalloc, struct ip_msource **pims);
160 #ifdef KTR
161 static int	inm_is_ifp_detached(const struct in_multi *);
162 #endif
163 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
164 static void	inm_purge(struct in_multi *);
165 static void	inm_reap(struct in_multi *);
166 static void inm_release(struct in_multi *);
167 static struct ip_moptions *
168 		inp_findmoptions(struct inpcb *);
169 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
170 static int	inp_join_group(struct inpcb *, struct sockopt *);
171 static int	inp_leave_group(struct inpcb *, struct sockopt *);
172 static struct ifnet *
173 		inp_lookup_mcast_ifp(const struct inpcb *,
174 		    const struct sockaddr_in *, const struct in_addr);
175 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
176 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
177 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
178 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
179 
180 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
181     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
182     "IPv4 multicast");
183 
184 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
185 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
186     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
187     "Max source filters per group");
188 
189 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
190 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
191     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
192     "Max source filters per socket");
193 
194 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
195 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
196     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
197 
198 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
199     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
200     "Per-interface stack-wide source filters");
201 
202 #ifdef KTR
203 /*
204  * Inline function which wraps assertions for a valid ifp.
205  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
206  * is detached.
207  */
208 static int __inline
209 inm_is_ifp_detached(const struct in_multi *inm)
210 {
211 	struct ifnet *ifp;
212 
213 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
214 	ifp = inm->inm_ifma->ifma_ifp;
215 	if (ifp != NULL) {
216 		/*
217 		 * Sanity check that netinet's notion of ifp is the
218 		 * same as net's.
219 		 */
220 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
221 	}
222 
223 	return (ifp == NULL);
224 }
225 #endif
226 
227 /*
228  * Interface detach can happen in a taskqueue thread context, so we must use a
229  * dedicated thread to avoid deadlocks when draining inm_release tasks.
230  */
231 TASKQUEUE_DEFINE_THREAD(inm_free);
232 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
233 static void inm_release_task(void *arg __unused, int pending __unused);
234 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL);
235 
236 void
237 inm_release_wait(void *arg __unused)
238 {
239 
240 	/*
241 	 * Make sure all pending multicast addresses are freed before
242 	 * the VNET or network device is destroyed:
243 	 */
244 	taskqueue_drain(taskqueue_inm_free, &inm_free_task);
245 }
246 #ifdef VIMAGE
247 /* XXX-BZ FIXME, see D24914. */
248 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL);
249 #endif
250 
251 void
252 inm_release_list_deferred(struct in_multi_head *inmh)
253 {
254 
255 	if (SLIST_EMPTY(inmh))
256 		return;
257 	mtx_lock(&in_multi_free_mtx);
258 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
259 	mtx_unlock(&in_multi_free_mtx);
260 	taskqueue_enqueue(taskqueue_inm_free, &inm_free_task);
261 }
262 
263 void
264 inm_disconnect(struct in_multi *inm)
265 {
266 	struct ifnet *ifp;
267 	struct ifmultiaddr *ifma, *ll_ifma;
268 
269 	ifp = inm->inm_ifp;
270 	IF_ADDR_WLOCK_ASSERT(ifp);
271 	ifma = inm->inm_ifma;
272 
273 	if_ref(ifp);
274 	if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
275 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
276 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
277 	}
278 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
279 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
280 		MPASS(ifma != ll_ifma);
281 		ifma->ifma_llifma = NULL;
282 		MPASS(ll_ifma->ifma_llifma == NULL);
283 		MPASS(ll_ifma->ifma_ifp == ifp);
284 		if (--ll_ifma->ifma_refcount == 0) {
285 			if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
286 				CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
287 				ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
288 			}
289 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
290 			if_freemulti(ll_ifma);
291 			ifma_restart = true;
292 		}
293 	}
294 }
295 
296 void
297 inm_release_deferred(struct in_multi *inm)
298 {
299 	struct in_multi_head tmp;
300 
301 	IN_MULTI_LIST_LOCK_ASSERT();
302 	MPASS(inm->inm_refcount > 0);
303 	if (--inm->inm_refcount == 0) {
304 		SLIST_INIT(&tmp);
305 		inm_disconnect(inm);
306 		inm->inm_ifma->ifma_protospec = NULL;
307 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
308 		inm_release_list_deferred(&tmp);
309 	}
310 }
311 
312 static void
313 inm_release_task(void *arg __unused, int pending __unused)
314 {
315 	struct in_multi_head inm_free_tmp;
316 	struct in_multi *inm, *tinm;
317 
318 	SLIST_INIT(&inm_free_tmp);
319 	mtx_lock(&in_multi_free_mtx);
320 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
321 	mtx_unlock(&in_multi_free_mtx);
322 	IN_MULTI_LOCK();
323 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
324 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
325 		MPASS(inm);
326 		inm_release(inm);
327 	}
328 	IN_MULTI_UNLOCK();
329 }
330 
331 /*
332  * Initialize an in_mfilter structure to a known state at t0, t1
333  * with an empty source filter list.
334  */
335 static __inline void
336 imf_init(struct in_mfilter *imf, const int st0, const int st1)
337 {
338 	memset(imf, 0, sizeof(struct in_mfilter));
339 	RB_INIT(&imf->imf_sources);
340 	imf->imf_st[0] = st0;
341 	imf->imf_st[1] = st1;
342 }
343 
344 struct in_mfilter *
345 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
346 {
347 	struct in_mfilter *imf;
348 
349 	imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
350 	if (imf != NULL)
351 		imf_init(imf, st0, st1);
352 
353 	return (imf);
354 }
355 
356 void
357 ip_mfilter_free(struct in_mfilter *imf)
358 {
359 
360 	imf_purge(imf);
361 	free(imf, M_INMFILTER);
362 }
363 
364 /*
365  * Function for looking up an in_multi record for an IPv4 multicast address
366  * on a given interface. ifp must be valid. If no record found, return NULL.
367  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
368  */
369 struct in_multi *
370 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
371 {
372 	struct ifmultiaddr *ifma;
373 	struct in_multi *inm;
374 
375 	IN_MULTI_LIST_LOCK_ASSERT();
376 	IF_ADDR_LOCK_ASSERT(ifp);
377 
378 	inm = NULL;
379 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
380 		if (ifma->ifma_addr->sa_family != AF_INET ||
381 			ifma->ifma_protospec == NULL)
382 			continue;
383 		inm = (struct in_multi *)ifma->ifma_protospec;
384 		if (inm->inm_addr.s_addr == ina.s_addr)
385 			break;
386 		inm = NULL;
387 	}
388 	return (inm);
389 }
390 
391 /*
392  * Wrapper for inm_lookup_locked().
393  * The IF_ADDR_LOCK will be taken on ifp and released on return.
394  */
395 struct in_multi *
396 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
397 {
398 	struct epoch_tracker et;
399 	struct in_multi *inm;
400 
401 	IN_MULTI_LIST_LOCK_ASSERT();
402 	NET_EPOCH_ENTER(et);
403 
404 	inm = inm_lookup_locked(ifp, ina);
405 	NET_EPOCH_EXIT(et);
406 
407 	return (inm);
408 }
409 
410 /*
411  * Find an IPv4 multicast group entry for this ip_moptions instance
412  * which matches the specified group, and optionally an interface.
413  * Return its index into the array, or -1 if not found.
414  */
415 static struct in_mfilter *
416 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
417     const struct sockaddr *group)
418 {
419 	const struct sockaddr_in *gsin;
420 	struct in_mfilter *imf;
421 	struct in_multi	*inm;
422 
423 	gsin = (const struct sockaddr_in *)group;
424 
425 	IP_MFILTER_FOREACH(imf, &imo->imo_head) {
426 		inm = imf->imf_inm;
427 		if (inm == NULL)
428 			continue;
429 		if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
430 		    in_hosteq(inm->inm_addr, gsin->sin_addr)) {
431 			break;
432 		}
433 	}
434 	return (imf);
435 }
436 
437 /*
438  * Find an IPv4 multicast source entry for this imo which matches
439  * the given group index for this socket, and source address.
440  *
441  * NOTE: This does not check if the entry is in-mode, merely if
442  * it exists, which may not be the desired behaviour.
443  */
444 static struct in_msource *
445 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
446 {
447 	struct ip_msource	 find;
448 	struct ip_msource	*ims;
449 	const sockunion_t	*psa;
450 
451 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
452 
453 	/* Source trees are keyed in host byte order. */
454 	psa = (const sockunion_t *)src;
455 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
456 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
457 
458 	return ((struct in_msource *)ims);
459 }
460 
461 /*
462  * Perform filtering for multicast datagrams on a socket by group and source.
463  *
464  * Returns 0 if a datagram should be allowed through, or various error codes
465  * if the socket was not a member of the group, or the source was muted, etc.
466  */
467 int
468 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
469     const struct sockaddr *group, const struct sockaddr *src)
470 {
471 	struct in_mfilter *imf;
472 	struct in_msource *ims;
473 	int mode;
474 
475 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
476 
477 	imf = imo_match_group(imo, ifp, group);
478 	if (imf == NULL)
479 		return (MCAST_NOTGMEMBER);
480 
481 	/*
482 	 * Check if the source was included in an (S,G) join.
483 	 * Allow reception on exclusive memberships by default,
484 	 * reject reception on inclusive memberships by default.
485 	 * Exclude source only if an in-mode exclude filter exists.
486 	 * Include source only if an in-mode include filter exists.
487 	 * NOTE: We are comparing group state here at IGMP t1 (now)
488 	 * with socket-layer t0 (since last downcall).
489 	 */
490 	mode = imf->imf_st[1];
491 	ims = imo_match_source(imf, src);
492 
493 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
494 	    (ims != NULL && ims->imsl_st[0] != mode))
495 		return (MCAST_NOTSMEMBER);
496 
497 	return (MCAST_PASS);
498 }
499 
500 /*
501  * Find and return a reference to an in_multi record for (ifp, group),
502  * and bump its reference count.
503  * If one does not exist, try to allocate it, and update link-layer multicast
504  * filters on ifp to listen for group.
505  * Assumes the IN_MULTI lock is held across the call.
506  * Return 0 if successful, otherwise return an appropriate error code.
507  */
508 static int
509 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
510     struct in_multi **pinm)
511 {
512 	struct sockaddr_in	 gsin;
513 	struct ifmultiaddr	*ifma;
514 	struct in_ifinfo	*ii;
515 	struct in_multi		*inm;
516 	int error;
517 
518 	IN_MULTI_LOCK_ASSERT();
519 
520 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
521 	IN_MULTI_LIST_LOCK();
522 	inm = inm_lookup(ifp, *group);
523 	if (inm != NULL) {
524 		/*
525 		 * If we already joined this group, just bump the
526 		 * refcount and return it.
527 		 */
528 		KASSERT(inm->inm_refcount >= 1,
529 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
530 		inm_acquire_locked(inm);
531 		*pinm = inm;
532 	}
533 	IN_MULTI_LIST_UNLOCK();
534 	if (inm != NULL)
535 		return (0);
536 
537 	memset(&gsin, 0, sizeof(gsin));
538 	gsin.sin_family = AF_INET;
539 	gsin.sin_len = sizeof(struct sockaddr_in);
540 	gsin.sin_addr = *group;
541 
542 	/*
543 	 * Check if a link-layer group is already associated
544 	 * with this network-layer group on the given ifnet.
545 	 */
546 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
547 	if (error != 0)
548 		return (error);
549 
550 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
551 	IN_MULTI_LIST_LOCK();
552 	IF_ADDR_WLOCK(ifp);
553 
554 	/*
555 	 * If something other than netinet is occupying the link-layer
556 	 * group, print a meaningful error message and back out of
557 	 * the allocation.
558 	 * Otherwise, bump the refcount on the existing network-layer
559 	 * group association and return it.
560 	 */
561 	if (ifma->ifma_protospec != NULL) {
562 		inm = (struct in_multi *)ifma->ifma_protospec;
563 #ifdef INVARIANTS
564 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
565 		    __func__));
566 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
567 		    ("%s: ifma not AF_INET", __func__));
568 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
569 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
570 		    !in_hosteq(inm->inm_addr, *group)) {
571 			char addrbuf[INET_ADDRSTRLEN];
572 
573 			panic("%s: ifma %p is inconsistent with %p (%s)",
574 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
575 		}
576 #endif
577 		inm_acquire_locked(inm);
578 		*pinm = inm;
579 		goto out_locked;
580 	}
581 
582 	IF_ADDR_WLOCK_ASSERT(ifp);
583 
584 	/*
585 	 * A new in_multi record is needed; allocate and initialize it.
586 	 * We DO NOT perform an IGMP join as the in_ layer may need to
587 	 * push an initial source list down to IGMP to support SSM.
588 	 *
589 	 * The initial source filter state is INCLUDE, {} as per the RFC.
590 	 */
591 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
592 	if (inm == NULL) {
593 		IF_ADDR_WUNLOCK(ifp);
594 		IN_MULTI_LIST_UNLOCK();
595 		if_delmulti_ifma(ifma);
596 		return (ENOMEM);
597 	}
598 	inm->inm_addr = *group;
599 	inm->inm_ifp = ifp;
600 	inm->inm_igi = ii->ii_igmp;
601 	inm->inm_ifma = ifma;
602 	inm->inm_refcount = 1;
603 	inm->inm_state = IGMP_NOT_MEMBER;
604 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
605 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
606 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
607 	RB_INIT(&inm->inm_srcs);
608 
609 	ifma->ifma_protospec = inm;
610 
611 	*pinm = inm;
612  out_locked:
613 	IF_ADDR_WUNLOCK(ifp);
614 	IN_MULTI_LIST_UNLOCK();
615 	return (0);
616 }
617 
618 /*
619  * Drop a reference to an in_multi record.
620  *
621  * If the refcount drops to 0, free the in_multi record and
622  * delete the underlying link-layer membership.
623  */
624 static void
625 inm_release(struct in_multi *inm)
626 {
627 	struct ifmultiaddr *ifma;
628 	struct ifnet *ifp;
629 
630 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
631 	MPASS(inm->inm_refcount == 0);
632 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
633 
634 	ifma = inm->inm_ifma;
635 	ifp = inm->inm_ifp;
636 
637 	/* XXX this access is not covered by IF_ADDR_LOCK */
638 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
639 	if (ifp != NULL) {
640 		CURVNET_SET(ifp->if_vnet);
641 		inm_purge(inm);
642 		free(inm, M_IPMADDR);
643 		if_delmulti_ifma_flags(ifma, 1);
644 		CURVNET_RESTORE();
645 		if_rele(ifp);
646 	} else {
647 		inm_purge(inm);
648 		free(inm, M_IPMADDR);
649 		if_delmulti_ifma_flags(ifma, 1);
650 	}
651 }
652 
653 /*
654  * Clear recorded source entries for a group.
655  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
656  * FIXME: Should reap.
657  */
658 void
659 inm_clear_recorded(struct in_multi *inm)
660 {
661 	struct ip_msource	*ims;
662 
663 	IN_MULTI_LIST_LOCK_ASSERT();
664 
665 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
666 		if (ims->ims_stp) {
667 			ims->ims_stp = 0;
668 			--inm->inm_st[1].iss_rec;
669 		}
670 	}
671 	KASSERT(inm->inm_st[1].iss_rec == 0,
672 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
673 }
674 
675 /*
676  * Record a source as pending for a Source-Group IGMPv3 query.
677  * This lives here as it modifies the shared tree.
678  *
679  * inm is the group descriptor.
680  * naddr is the address of the source to record in network-byte order.
681  *
682  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
683  * lazy-allocate a source node in response to an SG query.
684  * Otherwise, no allocation is performed. This saves some memory
685  * with the trade-off that the source will not be reported to the
686  * router if joined in the window between the query response and
687  * the group actually being joined on the local host.
688  *
689  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
690  * This turns off the allocation of a recorded source entry if
691  * the group has not been joined.
692  *
693  * Return 0 if the source didn't exist or was already marked as recorded.
694  * Return 1 if the source was marked as recorded by this function.
695  * Return <0 if any error occurred (negated errno code).
696  */
697 int
698 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
699 {
700 	struct ip_msource	 find;
701 	struct ip_msource	*ims, *nims;
702 
703 	IN_MULTI_LIST_LOCK_ASSERT();
704 
705 	find.ims_haddr = ntohl(naddr);
706 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
707 	if (ims && ims->ims_stp)
708 		return (0);
709 	if (ims == NULL) {
710 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
711 			return (-ENOSPC);
712 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
713 		    M_NOWAIT | M_ZERO);
714 		if (nims == NULL)
715 			return (-ENOMEM);
716 		nims->ims_haddr = find.ims_haddr;
717 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
718 		++inm->inm_nsrc;
719 		ims = nims;
720 	}
721 
722 	/*
723 	 * Mark the source as recorded and update the recorded
724 	 * source count.
725 	 */
726 	++ims->ims_stp;
727 	++inm->inm_st[1].iss_rec;
728 
729 	return (1);
730 }
731 
732 /*
733  * Return a pointer to an in_msource owned by an in_mfilter,
734  * given its source address.
735  * Lazy-allocate if needed. If this is a new entry its filter state is
736  * undefined at t0.
737  *
738  * imf is the filter set being modified.
739  * haddr is the source address in *host* byte-order.
740  *
741  * SMPng: May be called with locks held; malloc must not block.
742  */
743 static int
744 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
745     struct in_msource **plims)
746 {
747 	struct ip_msource	 find;
748 	struct ip_msource	*ims, *nims;
749 	struct in_msource	*lims;
750 	int			 error;
751 
752 	error = 0;
753 	ims = NULL;
754 	lims = NULL;
755 
756 	/* key is host byte order */
757 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
758 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
759 	lims = (struct in_msource *)ims;
760 	if (lims == NULL) {
761 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
762 			return (ENOSPC);
763 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
764 		    M_NOWAIT | M_ZERO);
765 		if (nims == NULL)
766 			return (ENOMEM);
767 		lims = (struct in_msource *)nims;
768 		lims->ims_haddr = find.ims_haddr;
769 		lims->imsl_st[0] = MCAST_UNDEFINED;
770 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
771 		++imf->imf_nsrc;
772 	}
773 
774 	*plims = lims;
775 
776 	return (error);
777 }
778 
779 /*
780  * Graft a source entry into an existing socket-layer filter set,
781  * maintaining any required invariants and checking allocations.
782  *
783  * The source is marked as being in the new filter mode at t1.
784  *
785  * Return the pointer to the new node, otherwise return NULL.
786  */
787 static struct in_msource *
788 imf_graft(struct in_mfilter *imf, const uint8_t st1,
789     const struct sockaddr_in *psin)
790 {
791 	struct ip_msource	*nims;
792 	struct in_msource	*lims;
793 
794 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
795 	    M_NOWAIT | M_ZERO);
796 	if (nims == NULL)
797 		return (NULL);
798 	lims = (struct in_msource *)nims;
799 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
800 	lims->imsl_st[0] = MCAST_UNDEFINED;
801 	lims->imsl_st[1] = st1;
802 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
803 	++imf->imf_nsrc;
804 
805 	return (lims);
806 }
807 
808 /*
809  * Prune a source entry from an existing socket-layer filter set,
810  * maintaining any required invariants and checking allocations.
811  *
812  * The source is marked as being left at t1, it is not freed.
813  *
814  * Return 0 if no error occurred, otherwise return an errno value.
815  */
816 static int
817 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
818 {
819 	struct ip_msource	 find;
820 	struct ip_msource	*ims;
821 	struct in_msource	*lims;
822 
823 	/* key is host byte order */
824 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
825 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
826 	if (ims == NULL)
827 		return (ENOENT);
828 	lims = (struct in_msource *)ims;
829 	lims->imsl_st[1] = MCAST_UNDEFINED;
830 	return (0);
831 }
832 
833 /*
834  * Revert socket-layer filter set deltas at t1 to t0 state.
835  */
836 static void
837 imf_rollback(struct in_mfilter *imf)
838 {
839 	struct ip_msource	*ims, *tims;
840 	struct in_msource	*lims;
841 
842 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
843 		lims = (struct in_msource *)ims;
844 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
845 			/* no change at t1 */
846 			continue;
847 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
848 			/* revert change to existing source at t1 */
849 			lims->imsl_st[1] = lims->imsl_st[0];
850 		} else {
851 			/* revert source added t1 */
852 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
853 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
854 			free(ims, M_INMFILTER);
855 			imf->imf_nsrc--;
856 		}
857 	}
858 	imf->imf_st[1] = imf->imf_st[0];
859 }
860 
861 /*
862  * Mark socket-layer filter set as INCLUDE {} at t1.
863  */
864 static void
865 imf_leave(struct in_mfilter *imf)
866 {
867 	struct ip_msource	*ims;
868 	struct in_msource	*lims;
869 
870 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
871 		lims = (struct in_msource *)ims;
872 		lims->imsl_st[1] = MCAST_UNDEFINED;
873 	}
874 	imf->imf_st[1] = MCAST_INCLUDE;
875 }
876 
877 /*
878  * Mark socket-layer filter set deltas as committed.
879  */
880 static void
881 imf_commit(struct in_mfilter *imf)
882 {
883 	struct ip_msource	*ims;
884 	struct in_msource	*lims;
885 
886 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
887 		lims = (struct in_msource *)ims;
888 		lims->imsl_st[0] = lims->imsl_st[1];
889 	}
890 	imf->imf_st[0] = imf->imf_st[1];
891 }
892 
893 /*
894  * Reap unreferenced sources from socket-layer filter set.
895  */
896 static void
897 imf_reap(struct in_mfilter *imf)
898 {
899 	struct ip_msource	*ims, *tims;
900 	struct in_msource	*lims;
901 
902 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
903 		lims = (struct in_msource *)ims;
904 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
905 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
906 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
907 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
908 			free(ims, M_INMFILTER);
909 			imf->imf_nsrc--;
910 		}
911 	}
912 }
913 
914 /*
915  * Purge socket-layer filter set.
916  */
917 static void
918 imf_purge(struct in_mfilter *imf)
919 {
920 	struct ip_msource	*ims, *tims;
921 
922 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
923 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
924 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
925 		free(ims, M_INMFILTER);
926 		imf->imf_nsrc--;
927 	}
928 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
929 	KASSERT(RB_EMPTY(&imf->imf_sources),
930 	    ("%s: imf_sources not empty", __func__));
931 }
932 
933 /*
934  * Look up a source filter entry for a multicast group.
935  *
936  * inm is the group descriptor to work with.
937  * haddr is the host-byte-order IPv4 address to look up.
938  * noalloc may be non-zero to suppress allocation of sources.
939  * *pims will be set to the address of the retrieved or allocated source.
940  *
941  * SMPng: NOTE: may be called with locks held.
942  * Return 0 if successful, otherwise return a non-zero error code.
943  */
944 static int
945 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
946     const int noalloc, struct ip_msource **pims)
947 {
948 	struct ip_msource	 find;
949 	struct ip_msource	*ims, *nims;
950 
951 	find.ims_haddr = haddr;
952 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
953 	if (ims == NULL && !noalloc) {
954 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
955 			return (ENOSPC);
956 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
957 		    M_NOWAIT | M_ZERO);
958 		if (nims == NULL)
959 			return (ENOMEM);
960 		nims->ims_haddr = haddr;
961 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
962 		++inm->inm_nsrc;
963 		ims = nims;
964 #ifdef KTR
965 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
966 		    haddr, ims);
967 #endif
968 	}
969 
970 	*pims = ims;
971 	return (0);
972 }
973 
974 /*
975  * Merge socket-layer source into IGMP-layer source.
976  * If rollback is non-zero, perform the inverse of the merge.
977  */
978 static void
979 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
980     const int rollback)
981 {
982 	int n = rollback ? -1 : 1;
983 
984 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
985 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
986 		    __func__, n, ims->ims_haddr);
987 		ims->ims_st[1].ex -= n;
988 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
989 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
990 		    __func__, n, ims->ims_haddr);
991 		ims->ims_st[1].in -= n;
992 	}
993 
994 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
995 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
996 		    __func__, n, ims->ims_haddr);
997 		ims->ims_st[1].ex += n;
998 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
999 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
1000 		    __func__, n, ims->ims_haddr);
1001 		ims->ims_st[1].in += n;
1002 	}
1003 }
1004 
1005 /*
1006  * Atomically update the global in_multi state, when a membership's
1007  * filter list is being updated in any way.
1008  *
1009  * imf is the per-inpcb-membership group filter pointer.
1010  * A fake imf may be passed for in-kernel consumers.
1011  *
1012  * XXX This is a candidate for a set-symmetric-difference style loop
1013  * which would eliminate the repeated lookup from root of ims nodes,
1014  * as they share the same key space.
1015  *
1016  * If any error occurred this function will back out of refcounts
1017  * and return a non-zero value.
1018  */
1019 static int
1020 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1021 {
1022 	struct ip_msource	*ims, *nims;
1023 	struct in_msource	*lims;
1024 	int			 schanged, error;
1025 	int			 nsrc0, nsrc1;
1026 
1027 	schanged = 0;
1028 	error = 0;
1029 	nsrc1 = nsrc0 = 0;
1030 	IN_MULTI_LIST_LOCK_ASSERT();
1031 
1032 	/*
1033 	 * Update the source filters first, as this may fail.
1034 	 * Maintain count of in-mode filters at t0, t1. These are
1035 	 * used to work out if we transition into ASM mode or not.
1036 	 * Maintain a count of source filters whose state was
1037 	 * actually modified by this operation.
1038 	 */
1039 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1040 		lims = (struct in_msource *)ims;
1041 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1042 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1043 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1044 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1045 		++schanged;
1046 		if (error)
1047 			break;
1048 		ims_merge(nims, lims, 0);
1049 	}
1050 	if (error) {
1051 		struct ip_msource *bims;
1052 
1053 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1054 			lims = (struct in_msource *)ims;
1055 			if (lims->imsl_st[0] == lims->imsl_st[1])
1056 				continue;
1057 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1058 			if (bims == NULL)
1059 				continue;
1060 			ims_merge(bims, lims, 1);
1061 		}
1062 		goto out_reap;
1063 	}
1064 
1065 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1066 	    __func__, nsrc0, nsrc1);
1067 
1068 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1069 	if (imf->imf_st[0] == imf->imf_st[1] &&
1070 	    imf->imf_st[1] == MCAST_INCLUDE) {
1071 		if (nsrc1 == 0) {
1072 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1073 			--inm->inm_st[1].iss_in;
1074 		}
1075 	}
1076 
1077 	/* Handle filter mode transition on socket. */
1078 	if (imf->imf_st[0] != imf->imf_st[1]) {
1079 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1080 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1081 
1082 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1083 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1084 			--inm->inm_st[1].iss_ex;
1085 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1086 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1087 			--inm->inm_st[1].iss_in;
1088 		}
1089 
1090 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1091 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1092 			inm->inm_st[1].iss_ex++;
1093 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1094 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1095 			inm->inm_st[1].iss_in++;
1096 		}
1097 	}
1098 
1099 	/*
1100 	 * Track inm filter state in terms of listener counts.
1101 	 * If there are any exclusive listeners, stack-wide
1102 	 * membership is exclusive.
1103 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1104 	 * If no listeners remain, state is undefined at t1,
1105 	 * and the IGMP lifecycle for this group should finish.
1106 	 */
1107 	if (inm->inm_st[1].iss_ex > 0) {
1108 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1109 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1110 	} else if (inm->inm_st[1].iss_in > 0) {
1111 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1112 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1113 	} else {
1114 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1115 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1116 	}
1117 
1118 	/* Decrement ASM listener count on transition out of ASM mode. */
1119 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1120 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1121 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1122 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1123 			--inm->inm_st[1].iss_asm;
1124 		}
1125 	}
1126 
1127 	/* Increment ASM listener count on transition to ASM mode. */
1128 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1129 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1130 		inm->inm_st[1].iss_asm++;
1131 	}
1132 
1133 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1134 	inm_print(inm);
1135 
1136 out_reap:
1137 	if (schanged > 0) {
1138 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1139 		inm_reap(inm);
1140 	}
1141 	return (error);
1142 }
1143 
1144 /*
1145  * Mark an in_multi's filter set deltas as committed.
1146  * Called by IGMP after a state change has been enqueued.
1147  */
1148 void
1149 inm_commit(struct in_multi *inm)
1150 {
1151 	struct ip_msource	*ims;
1152 
1153 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1154 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1155 	inm_print(inm);
1156 
1157 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1158 		ims->ims_st[0] = ims->ims_st[1];
1159 	}
1160 	inm->inm_st[0] = inm->inm_st[1];
1161 }
1162 
1163 /*
1164  * Reap unreferenced nodes from an in_multi's filter set.
1165  */
1166 static void
1167 inm_reap(struct in_multi *inm)
1168 {
1169 	struct ip_msource	*ims, *tims;
1170 
1171 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1172 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1173 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1174 		    ims->ims_stp != 0)
1175 			continue;
1176 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1177 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1178 		free(ims, M_IPMSOURCE);
1179 		inm->inm_nsrc--;
1180 	}
1181 }
1182 
1183 /*
1184  * Purge all source nodes from an in_multi's filter set.
1185  */
1186 static void
1187 inm_purge(struct in_multi *inm)
1188 {
1189 	struct ip_msource	*ims, *tims;
1190 
1191 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1192 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1193 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1194 		free(ims, M_IPMSOURCE);
1195 		inm->inm_nsrc--;
1196 	}
1197 }
1198 
1199 /*
1200  * Join a multicast group; unlocked entry point.
1201  *
1202  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1203  * is not held. Fortunately, ifp is unlikely to have been detached
1204  * at this point, so we assume it's OK to recurse.
1205  */
1206 int
1207 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1208     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1209 {
1210 	int error;
1211 
1212 	IN_MULTI_LOCK();
1213 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1214 	IN_MULTI_UNLOCK();
1215 
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Join a multicast group; real entry point.
1221  *
1222  * Only preserves atomicity at inm level.
1223  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1224  *
1225  * If the IGMP downcall fails, the group is not joined, and an error
1226  * code is returned.
1227  */
1228 int
1229 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1230     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1231 {
1232 	struct in_mfilter	 timf;
1233 	struct in_multi		*inm;
1234 	int			 error;
1235 
1236 	IN_MULTI_LOCK_ASSERT();
1237 	IN_MULTI_LIST_UNLOCK_ASSERT();
1238 
1239 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1240 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1241 
1242 	error = 0;
1243 	inm = NULL;
1244 
1245 	/*
1246 	 * If no imf was specified (i.e. kernel consumer),
1247 	 * fake one up and assume it is an ASM join.
1248 	 */
1249 	if (imf == NULL) {
1250 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1251 		imf = &timf;
1252 	}
1253 
1254 	error = in_getmulti(ifp, gina, &inm);
1255 	if (error) {
1256 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1257 		return (error);
1258 	}
1259 	IN_MULTI_LIST_LOCK();
1260 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1261 	error = inm_merge(inm, imf);
1262 	if (error) {
1263 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1264 		goto out_inm_release;
1265 	}
1266 
1267 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1268 	error = igmp_change_state(inm);
1269 	if (error) {
1270 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1271 		goto out_inm_release;
1272 	}
1273 
1274  out_inm_release:
1275 	if (error) {
1276 
1277 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1278 		IF_ADDR_WLOCK(ifp);
1279 		inm_release_deferred(inm);
1280 		IF_ADDR_WUNLOCK(ifp);
1281 	} else {
1282 		*pinm = inm;
1283 	}
1284 	IN_MULTI_LIST_UNLOCK();
1285 
1286 	return (error);
1287 }
1288 
1289 /*
1290  * Leave a multicast group; unlocked entry point.
1291  */
1292 int
1293 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1294 {
1295 	int error;
1296 
1297 	IN_MULTI_LOCK();
1298 	error = in_leavegroup_locked(inm, imf);
1299 	IN_MULTI_UNLOCK();
1300 
1301 	return (error);
1302 }
1303 
1304 /*
1305  * Leave a multicast group; real entry point.
1306  * All source filters will be expunged.
1307  *
1308  * Only preserves atomicity at inm level.
1309  *
1310  * Holding the write lock for the INP which contains imf
1311  * is highly advisable. We can't assert for it as imf does not
1312  * contain a back-pointer to the owning inp.
1313  *
1314  * Note: This is not the same as inm_release(*) as this function also
1315  * makes a state change downcall into IGMP.
1316  */
1317 int
1318 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1319 {
1320 	struct in_mfilter	 timf;
1321 	int			 error;
1322 
1323 	IN_MULTI_LOCK_ASSERT();
1324 	IN_MULTI_LIST_UNLOCK_ASSERT();
1325 
1326 	error = 0;
1327 
1328 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1329 	    inm, ntohl(inm->inm_addr.s_addr),
1330 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1331 	    imf);
1332 
1333 	/*
1334 	 * If no imf was specified (i.e. kernel consumer),
1335 	 * fake one up and assume it is an ASM join.
1336 	 */
1337 	if (imf == NULL) {
1338 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1339 		imf = &timf;
1340 	}
1341 
1342 	/*
1343 	 * Begin state merge transaction at IGMP layer.
1344 	 *
1345 	 * As this particular invocation should not cause any memory
1346 	 * to be allocated, and there is no opportunity to roll back
1347 	 * the transaction, it MUST NOT fail.
1348 	 */
1349 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1350 	IN_MULTI_LIST_LOCK();
1351 	error = inm_merge(inm, imf);
1352 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1353 
1354 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1355 	CURVNET_SET(inm->inm_ifp->if_vnet);
1356 	error = igmp_change_state(inm);
1357 	IF_ADDR_WLOCK(inm->inm_ifp);
1358 	inm_release_deferred(inm);
1359 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1360 	IN_MULTI_LIST_UNLOCK();
1361 	CURVNET_RESTORE();
1362 	if (error)
1363 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1364 
1365 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1366 
1367 	return (error);
1368 }
1369 
1370 /*#ifndef BURN_BRIDGES*/
1371 /*
1372  * Join an IPv4 multicast group in (*,G) exclusive mode.
1373  * The group must be a 224.0.0.0/24 link-scope group.
1374  * This KPI is for legacy kernel consumers only.
1375  */
1376 struct in_multi *
1377 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1378 {
1379 	struct in_multi *pinm;
1380 	int error;
1381 #ifdef INVARIANTS
1382 	char addrbuf[INET_ADDRSTRLEN];
1383 #endif
1384 
1385 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1386 	    ("%s: %s not in 224.0.0.0/24", __func__,
1387 	    inet_ntoa_r(*ap, addrbuf)));
1388 
1389 	error = in_joingroup(ifp, ap, NULL, &pinm);
1390 	if (error != 0)
1391 		pinm = NULL;
1392 
1393 	return (pinm);
1394 }
1395 
1396 /*
1397  * Block or unblock an ASM multicast source on an inpcb.
1398  * This implements the delta-based API described in RFC 3678.
1399  *
1400  * The delta-based API applies only to exclusive-mode memberships.
1401  * An IGMP downcall will be performed.
1402  *
1403  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1404  *
1405  * Return 0 if successful, otherwise return an appropriate error code.
1406  */
1407 static int
1408 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1409 {
1410 	struct group_source_req		 gsr;
1411 	struct rm_priotracker		 in_ifa_tracker;
1412 	sockunion_t			*gsa, *ssa;
1413 	struct ifnet			*ifp;
1414 	struct in_mfilter		*imf;
1415 	struct ip_moptions		*imo;
1416 	struct in_msource		*ims;
1417 	struct in_multi			*inm;
1418 	uint16_t			 fmode;
1419 	int				 error, doblock;
1420 
1421 	ifp = NULL;
1422 	error = 0;
1423 	doblock = 0;
1424 
1425 	memset(&gsr, 0, sizeof(struct group_source_req));
1426 	gsa = (sockunion_t *)&gsr.gsr_group;
1427 	ssa = (sockunion_t *)&gsr.gsr_source;
1428 
1429 	switch (sopt->sopt_name) {
1430 	case IP_BLOCK_SOURCE:
1431 	case IP_UNBLOCK_SOURCE: {
1432 		struct ip_mreq_source	 mreqs;
1433 
1434 		error = sooptcopyin(sopt, &mreqs,
1435 		    sizeof(struct ip_mreq_source),
1436 		    sizeof(struct ip_mreq_source));
1437 		if (error)
1438 			return (error);
1439 
1440 		gsa->sin.sin_family = AF_INET;
1441 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1442 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1443 
1444 		ssa->sin.sin_family = AF_INET;
1445 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1446 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1447 
1448 		if (!in_nullhost(mreqs.imr_interface)) {
1449 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1450 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1451 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1452 		}
1453 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1454 			doblock = 1;
1455 
1456 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1457 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1458 		break;
1459 	    }
1460 
1461 	case MCAST_BLOCK_SOURCE:
1462 	case MCAST_UNBLOCK_SOURCE:
1463 		error = sooptcopyin(sopt, &gsr,
1464 		    sizeof(struct group_source_req),
1465 		    sizeof(struct group_source_req));
1466 		if (error)
1467 			return (error);
1468 
1469 		if (gsa->sin.sin_family != AF_INET ||
1470 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1471 			return (EINVAL);
1472 
1473 		if (ssa->sin.sin_family != AF_INET ||
1474 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1475 			return (EINVAL);
1476 
1477 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1478 			return (EADDRNOTAVAIL);
1479 
1480 		ifp = ifnet_byindex(gsr.gsr_interface);
1481 
1482 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1483 			doblock = 1;
1484 		break;
1485 
1486 	default:
1487 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1488 		    __func__, sopt->sopt_name);
1489 		return (EOPNOTSUPP);
1490 		break;
1491 	}
1492 
1493 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1494 		return (EINVAL);
1495 
1496 	IN_MULTI_LOCK();
1497 
1498 	/*
1499 	 * Check if we are actually a member of this group.
1500 	 */
1501 	imo = inp_findmoptions(inp);
1502 	imf = imo_match_group(imo, ifp, &gsa->sa);
1503 	if (imf == NULL) {
1504 		error = EADDRNOTAVAIL;
1505 		goto out_inp_locked;
1506 	}
1507 	inm = imf->imf_inm;
1508 
1509 	/*
1510 	 * Attempting to use the delta-based API on an
1511 	 * non exclusive-mode membership is an error.
1512 	 */
1513 	fmode = imf->imf_st[0];
1514 	if (fmode != MCAST_EXCLUDE) {
1515 		error = EINVAL;
1516 		goto out_inp_locked;
1517 	}
1518 
1519 	/*
1520 	 * Deal with error cases up-front:
1521 	 *  Asked to block, but already blocked; or
1522 	 *  Asked to unblock, but nothing to unblock.
1523 	 * If adding a new block entry, allocate it.
1524 	 */
1525 	ims = imo_match_source(imf, &ssa->sa);
1526 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1527 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1528 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1529 		error = EADDRNOTAVAIL;
1530 		goto out_inp_locked;
1531 	}
1532 
1533 	INP_WLOCK_ASSERT(inp);
1534 
1535 	/*
1536 	 * Begin state merge transaction at socket layer.
1537 	 */
1538 	if (doblock) {
1539 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1540 		ims = imf_graft(imf, fmode, &ssa->sin);
1541 		if (ims == NULL)
1542 			error = ENOMEM;
1543 	} else {
1544 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1545 		error = imf_prune(imf, &ssa->sin);
1546 	}
1547 
1548 	if (error) {
1549 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1550 		goto out_imf_rollback;
1551 	}
1552 
1553 	/*
1554 	 * Begin state merge transaction at IGMP layer.
1555 	 */
1556 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1557 	IN_MULTI_LIST_LOCK();
1558 	error = inm_merge(inm, imf);
1559 	if (error) {
1560 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1561 		IN_MULTI_LIST_UNLOCK();
1562 		goto out_imf_rollback;
1563 	}
1564 
1565 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1566 	error = igmp_change_state(inm);
1567 	IN_MULTI_LIST_UNLOCK();
1568 	if (error)
1569 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1570 
1571 out_imf_rollback:
1572 	if (error)
1573 		imf_rollback(imf);
1574 	else
1575 		imf_commit(imf);
1576 
1577 	imf_reap(imf);
1578 
1579 out_inp_locked:
1580 	INP_WUNLOCK(inp);
1581 	IN_MULTI_UNLOCK();
1582 	return (error);
1583 }
1584 
1585 /*
1586  * Given an inpcb, return its multicast options structure pointer.  Accepts
1587  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1588  *
1589  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1590  * SMPng: NOTE: Returns with the INP write lock held.
1591  */
1592 static struct ip_moptions *
1593 inp_findmoptions(struct inpcb *inp)
1594 {
1595 	struct ip_moptions	 *imo;
1596 
1597 	INP_WLOCK(inp);
1598 	if (inp->inp_moptions != NULL)
1599 		return (inp->inp_moptions);
1600 
1601 	INP_WUNLOCK(inp);
1602 
1603 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1604 
1605 	imo->imo_multicast_ifp = NULL;
1606 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1607 	imo->imo_multicast_vif = -1;
1608 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1609 	imo->imo_multicast_loop = in_mcast_loop;
1610 	STAILQ_INIT(&imo->imo_head);
1611 
1612 	INP_WLOCK(inp);
1613 	if (inp->inp_moptions != NULL) {
1614 		free(imo, M_IPMOPTS);
1615 		return (inp->inp_moptions);
1616 	}
1617 	inp->inp_moptions = imo;
1618 	return (imo);
1619 }
1620 
1621 static void
1622 inp_gcmoptions(struct ip_moptions *imo)
1623 {
1624 	struct in_mfilter *imf;
1625 	struct in_multi *inm;
1626 	struct ifnet *ifp;
1627 
1628 	while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1629 		ip_mfilter_remove(&imo->imo_head, imf);
1630 
1631 		imf_leave(imf);
1632 		if ((inm = imf->imf_inm) != NULL) {
1633 			if ((ifp = inm->inm_ifp) != NULL) {
1634 				CURVNET_SET(ifp->if_vnet);
1635 				(void)in_leavegroup(inm, imf);
1636 				CURVNET_RESTORE();
1637 			} else {
1638 				(void)in_leavegroup(inm, imf);
1639 			}
1640 		}
1641 		ip_mfilter_free(imf);
1642 	}
1643 	free(imo, M_IPMOPTS);
1644 }
1645 
1646 /*
1647  * Discard the IP multicast options (and source filters).  To minimize
1648  * the amount of work done while holding locks such as the INP's
1649  * pcbinfo lock (which is used in the receive path), the free
1650  * operation is deferred to the epoch callback task.
1651  */
1652 void
1653 inp_freemoptions(struct ip_moptions *imo)
1654 {
1655 	if (imo == NULL)
1656 		return;
1657 	inp_gcmoptions(imo);
1658 }
1659 
1660 /*
1661  * Atomically get source filters on a socket for an IPv4 multicast group.
1662  * Called with INP lock held; returns with lock released.
1663  */
1664 static int
1665 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1666 {
1667 	struct __msfilterreq	 msfr;
1668 	sockunion_t		*gsa;
1669 	struct ifnet		*ifp;
1670 	struct ip_moptions	*imo;
1671 	struct in_mfilter	*imf;
1672 	struct ip_msource	*ims;
1673 	struct in_msource	*lims;
1674 	struct sockaddr_in	*psin;
1675 	struct sockaddr_storage	*ptss;
1676 	struct sockaddr_storage	*tss;
1677 	int			 error;
1678 	size_t			 nsrcs, ncsrcs;
1679 
1680 	INP_WLOCK_ASSERT(inp);
1681 
1682 	imo = inp->inp_moptions;
1683 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1684 
1685 	INP_WUNLOCK(inp);
1686 
1687 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1688 	    sizeof(struct __msfilterreq));
1689 	if (error)
1690 		return (error);
1691 
1692 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1693 		return (EINVAL);
1694 
1695 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1696 	if (ifp == NULL)
1697 		return (EINVAL);
1698 
1699 	INP_WLOCK(inp);
1700 
1701 	/*
1702 	 * Lookup group on the socket.
1703 	 */
1704 	gsa = (sockunion_t *)&msfr.msfr_group;
1705 	imf = imo_match_group(imo, ifp, &gsa->sa);
1706 	if (imf == NULL) {
1707 		INP_WUNLOCK(inp);
1708 		return (EADDRNOTAVAIL);
1709 	}
1710 
1711 	/*
1712 	 * Ignore memberships which are in limbo.
1713 	 */
1714 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1715 		INP_WUNLOCK(inp);
1716 		return (EAGAIN);
1717 	}
1718 	msfr.msfr_fmode = imf->imf_st[1];
1719 
1720 	/*
1721 	 * If the user specified a buffer, copy out the source filter
1722 	 * entries to userland gracefully.
1723 	 * We only copy out the number of entries which userland
1724 	 * has asked for, but we always tell userland how big the
1725 	 * buffer really needs to be.
1726 	 */
1727 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1728 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1729 	tss = NULL;
1730 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1731 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1732 		    M_TEMP, M_NOWAIT | M_ZERO);
1733 		if (tss == NULL) {
1734 			INP_WUNLOCK(inp);
1735 			return (ENOBUFS);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Count number of sources in-mode at t0.
1741 	 * If buffer space exists and remains, copy out source entries.
1742 	 */
1743 	nsrcs = msfr.msfr_nsrcs;
1744 	ncsrcs = 0;
1745 	ptss = tss;
1746 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1747 		lims = (struct in_msource *)ims;
1748 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1749 		    lims->imsl_st[0] != imf->imf_st[0])
1750 			continue;
1751 		++ncsrcs;
1752 		if (tss != NULL && nsrcs > 0) {
1753 			psin = (struct sockaddr_in *)ptss;
1754 			psin->sin_family = AF_INET;
1755 			psin->sin_len = sizeof(struct sockaddr_in);
1756 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1757 			psin->sin_port = 0;
1758 			++ptss;
1759 			--nsrcs;
1760 		}
1761 	}
1762 
1763 	INP_WUNLOCK(inp);
1764 
1765 	if (tss != NULL) {
1766 		error = copyout(tss, msfr.msfr_srcs,
1767 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1768 		free(tss, M_TEMP);
1769 		if (error)
1770 			return (error);
1771 	}
1772 
1773 	msfr.msfr_nsrcs = ncsrcs;
1774 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1775 
1776 	return (error);
1777 }
1778 
1779 /*
1780  * Return the IP multicast options in response to user getsockopt().
1781  */
1782 int
1783 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1784 {
1785 	struct rm_priotracker	 in_ifa_tracker;
1786 	struct ip_mreqn		 mreqn;
1787 	struct ip_moptions	*imo;
1788 	struct ifnet		*ifp;
1789 	struct in_ifaddr	*ia;
1790 	int			 error, optval;
1791 	u_char			 coptval;
1792 
1793 	INP_WLOCK(inp);
1794 	imo = inp->inp_moptions;
1795 	/*
1796 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1797 	 * or is a divert socket, reject it.
1798 	 */
1799 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1800 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1801 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1802 		INP_WUNLOCK(inp);
1803 		return (EOPNOTSUPP);
1804 	}
1805 
1806 	error = 0;
1807 	switch (sopt->sopt_name) {
1808 	case IP_MULTICAST_VIF:
1809 		if (imo != NULL)
1810 			optval = imo->imo_multicast_vif;
1811 		else
1812 			optval = -1;
1813 		INP_WUNLOCK(inp);
1814 		error = sooptcopyout(sopt, &optval, sizeof(int));
1815 		break;
1816 
1817 	case IP_MULTICAST_IF:
1818 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1819 		if (imo != NULL) {
1820 			ifp = imo->imo_multicast_ifp;
1821 			if (!in_nullhost(imo->imo_multicast_addr)) {
1822 				mreqn.imr_address = imo->imo_multicast_addr;
1823 			} else if (ifp != NULL) {
1824 				struct epoch_tracker et;
1825 
1826 				mreqn.imr_ifindex = ifp->if_index;
1827 				NET_EPOCH_ENTER(et);
1828 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1829 				if (ia != NULL)
1830 					mreqn.imr_address =
1831 					    IA_SIN(ia)->sin_addr;
1832 				NET_EPOCH_EXIT(et);
1833 			}
1834 		}
1835 		INP_WUNLOCK(inp);
1836 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1837 			error = sooptcopyout(sopt, &mreqn,
1838 			    sizeof(struct ip_mreqn));
1839 		} else {
1840 			error = sooptcopyout(sopt, &mreqn.imr_address,
1841 			    sizeof(struct in_addr));
1842 		}
1843 		break;
1844 
1845 	case IP_MULTICAST_TTL:
1846 		if (imo == NULL)
1847 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1848 		else
1849 			optval = coptval = imo->imo_multicast_ttl;
1850 		INP_WUNLOCK(inp);
1851 		if (sopt->sopt_valsize == sizeof(u_char))
1852 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1853 		else
1854 			error = sooptcopyout(sopt, &optval, sizeof(int));
1855 		break;
1856 
1857 	case IP_MULTICAST_LOOP:
1858 		if (imo == NULL)
1859 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1860 		else
1861 			optval = coptval = imo->imo_multicast_loop;
1862 		INP_WUNLOCK(inp);
1863 		if (sopt->sopt_valsize == sizeof(u_char))
1864 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1865 		else
1866 			error = sooptcopyout(sopt, &optval, sizeof(int));
1867 		break;
1868 
1869 	case IP_MSFILTER:
1870 		if (imo == NULL) {
1871 			error = EADDRNOTAVAIL;
1872 			INP_WUNLOCK(inp);
1873 		} else {
1874 			error = inp_get_source_filters(inp, sopt);
1875 		}
1876 		break;
1877 
1878 	default:
1879 		INP_WUNLOCK(inp);
1880 		error = ENOPROTOOPT;
1881 		break;
1882 	}
1883 
1884 	INP_UNLOCK_ASSERT(inp);
1885 
1886 	return (error);
1887 }
1888 
1889 /*
1890  * Look up the ifnet to use for a multicast group membership,
1891  * given the IPv4 address of an interface, and the IPv4 group address.
1892  *
1893  * This routine exists to support legacy multicast applications
1894  * which do not understand that multicast memberships are scoped to
1895  * specific physical links in the networking stack, or which need
1896  * to join link-scope groups before IPv4 addresses are configured.
1897  *
1898  * If inp is non-NULL, use this socket's current FIB number for any
1899  * required FIB lookup.
1900  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1901  * and use its ifp; usually, this points to the default next-hop.
1902  *
1903  * If the FIB lookup fails, attempt to use the first non-loopback
1904  * interface with multicast capability in the system as a
1905  * last resort. The legacy IPv4 ASM API requires that we do
1906  * this in order to allow groups to be joined when the routing
1907  * table has not yet been populated during boot.
1908  *
1909  * Returns NULL if no ifp could be found.
1910  *
1911  * FUTURE: Implement IPv4 source-address selection.
1912  */
1913 static struct ifnet *
1914 inp_lookup_mcast_ifp(const struct inpcb *inp,
1915     const struct sockaddr_in *gsin, const struct in_addr ina)
1916 {
1917 	struct rm_priotracker in_ifa_tracker;
1918 	struct ifnet *ifp;
1919 	struct nhop_object *nh;
1920 	uint32_t fibnum;
1921 
1922 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1923 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1924 	    ("%s: not multicast", __func__));
1925 
1926 	ifp = NULL;
1927 	if (!in_nullhost(ina)) {
1928 		IN_IFADDR_RLOCK(&in_ifa_tracker);
1929 		INADDR_TO_IFP(ina, ifp);
1930 		IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1931 	} else {
1932 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1933 		nh = fib4_lookup(fibnum, gsin->sin_addr, 0, 0, 0);
1934 		if (nh != NULL)
1935 			ifp = nh->nh_ifp;
1936 		else {
1937 			struct in_ifaddr *ia;
1938 			struct ifnet *mifp;
1939 
1940 			mifp = NULL;
1941 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1942 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1943 				mifp = ia->ia_ifp;
1944 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1945 				     (mifp->if_flags & IFF_MULTICAST)) {
1946 					ifp = mifp;
1947 					break;
1948 				}
1949 			}
1950 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1951 		}
1952 	}
1953 
1954 	return (ifp);
1955 }
1956 
1957 /*
1958  * Join an IPv4 multicast group, possibly with a source.
1959  */
1960 static int
1961 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1962 {
1963 	struct group_source_req		 gsr;
1964 	sockunion_t			*gsa, *ssa;
1965 	struct ifnet			*ifp;
1966 	struct in_mfilter		*imf;
1967 	struct ip_moptions		*imo;
1968 	struct in_multi			*inm;
1969 	struct in_msource		*lims;
1970 	int				 error, is_new;
1971 
1972 	ifp = NULL;
1973 	lims = NULL;
1974 	error = 0;
1975 
1976 	memset(&gsr, 0, sizeof(struct group_source_req));
1977 	gsa = (sockunion_t *)&gsr.gsr_group;
1978 	gsa->ss.ss_family = AF_UNSPEC;
1979 	ssa = (sockunion_t *)&gsr.gsr_source;
1980 	ssa->ss.ss_family = AF_UNSPEC;
1981 
1982 	switch (sopt->sopt_name) {
1983 	case IP_ADD_MEMBERSHIP: {
1984 		struct ip_mreqn mreqn;
1985 
1986 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1987 			error = sooptcopyin(sopt, &mreqn,
1988 			    sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1989 		else
1990 			error = sooptcopyin(sopt, &mreqn,
1991 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1992 		if (error)
1993 			return (error);
1994 
1995 		gsa->sin.sin_family = AF_INET;
1996 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1997 		gsa->sin.sin_addr = mreqn.imr_multiaddr;
1998 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1999 			return (EINVAL);
2000 
2001 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
2002 		    mreqn.imr_ifindex != 0)
2003 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2004 		else
2005 			ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2006 			    mreqn.imr_address);
2007 		break;
2008 	}
2009 	case IP_ADD_SOURCE_MEMBERSHIP: {
2010 		struct ip_mreq_source	 mreqs;
2011 
2012 		error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
2013 			    sizeof(struct ip_mreq_source));
2014 		if (error)
2015 			return (error);
2016 
2017 		gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
2018 		gsa->sin.sin_len = ssa->sin.sin_len =
2019 		    sizeof(struct sockaddr_in);
2020 
2021 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2022 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2023 			return (EINVAL);
2024 
2025 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2026 
2027 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2028 		    mreqs.imr_interface);
2029 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2030 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2031 		break;
2032 	}
2033 
2034 	case MCAST_JOIN_GROUP:
2035 	case MCAST_JOIN_SOURCE_GROUP:
2036 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2037 			error = sooptcopyin(sopt, &gsr,
2038 			    sizeof(struct group_req),
2039 			    sizeof(struct group_req));
2040 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2041 			error = sooptcopyin(sopt, &gsr,
2042 			    sizeof(struct group_source_req),
2043 			    sizeof(struct group_source_req));
2044 		}
2045 		if (error)
2046 			return (error);
2047 
2048 		if (gsa->sin.sin_family != AF_INET ||
2049 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2050 			return (EINVAL);
2051 
2052 		/*
2053 		 * Overwrite the port field if present, as the sockaddr
2054 		 * being copied in may be matched with a binary comparison.
2055 		 */
2056 		gsa->sin.sin_port = 0;
2057 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2058 			if (ssa->sin.sin_family != AF_INET ||
2059 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2060 				return (EINVAL);
2061 			ssa->sin.sin_port = 0;
2062 		}
2063 
2064 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2065 			return (EINVAL);
2066 
2067 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2068 			return (EADDRNOTAVAIL);
2069 		ifp = ifnet_byindex(gsr.gsr_interface);
2070 		break;
2071 
2072 	default:
2073 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2074 		    __func__, sopt->sopt_name);
2075 		return (EOPNOTSUPP);
2076 		break;
2077 	}
2078 
2079 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2080 		return (EADDRNOTAVAIL);
2081 
2082 	IN_MULTI_LOCK();
2083 
2084 	/*
2085 	 * Find the membership in the membership list.
2086 	 */
2087 	imo = inp_findmoptions(inp);
2088 	imf = imo_match_group(imo, ifp, &gsa->sa);
2089 	if (imf == NULL) {
2090 		is_new = 1;
2091 		inm = NULL;
2092 
2093 		if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2094 			error = ENOMEM;
2095 			goto out_inp_locked;
2096 		}
2097 	} else {
2098 		is_new = 0;
2099 		inm = imf->imf_inm;
2100 
2101 		if (ssa->ss.ss_family != AF_UNSPEC) {
2102 			/*
2103 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2104 			 * is an error. On an existing inclusive membership,
2105 			 * it just adds the source to the filter list.
2106 			 */
2107 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2108 				error = EINVAL;
2109 				goto out_inp_locked;
2110 			}
2111 			/*
2112 			 * Throw out duplicates.
2113 			 *
2114 			 * XXX FIXME: This makes a naive assumption that
2115 			 * even if entries exist for *ssa in this imf,
2116 			 * they will be rejected as dupes, even if they
2117 			 * are not valid in the current mode (in-mode).
2118 			 *
2119 			 * in_msource is transactioned just as for anything
2120 			 * else in SSM -- but note naive use of inm_graft()
2121 			 * below for allocating new filter entries.
2122 			 *
2123 			 * This is only an issue if someone mixes the
2124 			 * full-state SSM API with the delta-based API,
2125 			 * which is discouraged in the relevant RFCs.
2126 			 */
2127 			lims = imo_match_source(imf, &ssa->sa);
2128 			if (lims != NULL /*&&
2129 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2130 				error = EADDRNOTAVAIL;
2131 				goto out_inp_locked;
2132 			}
2133 		} else {
2134 			/*
2135 			 * MCAST_JOIN_GROUP on an existing exclusive
2136 			 * membership is an error; return EADDRINUSE
2137 			 * to preserve 4.4BSD API idempotence, and
2138 			 * avoid tedious detour to code below.
2139 			 * NOTE: This is bending RFC 3678 a bit.
2140 			 *
2141 			 * On an existing inclusive membership, this is also
2142 			 * an error; if you want to change filter mode,
2143 			 * you must use the userland API setsourcefilter().
2144 			 * XXX We don't reject this for imf in UNDEFINED
2145 			 * state at t1, because allocation of a filter
2146 			 * is atomic with allocation of a membership.
2147 			 */
2148 			error = EINVAL;
2149 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2150 				error = EADDRINUSE;
2151 			goto out_inp_locked;
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * Begin state merge transaction at socket layer.
2157 	 */
2158 	INP_WLOCK_ASSERT(inp);
2159 
2160 	/*
2161 	 * Graft new source into filter list for this inpcb's
2162 	 * membership of the group. The in_multi may not have
2163 	 * been allocated yet if this is a new membership, however,
2164 	 * the in_mfilter slot will be allocated and must be initialized.
2165 	 *
2166 	 * Note: Grafting of exclusive mode filters doesn't happen
2167 	 * in this path.
2168 	 * XXX: Should check for non-NULL lims (node exists but may
2169 	 * not be in-mode) for interop with full-state API.
2170 	 */
2171 	if (ssa->ss.ss_family != AF_UNSPEC) {
2172 		/* Membership starts in IN mode */
2173 		if (is_new) {
2174 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2175 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2176 			if (imf == NULL) {
2177 				error = ENOMEM;
2178 				goto out_inp_locked;
2179 			}
2180 		} else {
2181 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2182 		}
2183 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2184 		if (lims == NULL) {
2185 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2186 			    __func__);
2187 			error = ENOMEM;
2188 			goto out_inp_locked;
2189 		}
2190 	} else {
2191 		/* No address specified; Membership starts in EX mode */
2192 		if (is_new) {
2193 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2194 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2195 			if (imf == NULL) {
2196 				error = ENOMEM;
2197 				goto out_inp_locked;
2198 			}
2199 		}
2200 	}
2201 
2202 	/*
2203 	 * Begin state merge transaction at IGMP layer.
2204 	 */
2205 	if (is_new) {
2206 		in_pcbref(inp);
2207 		INP_WUNLOCK(inp);
2208 
2209 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2210 		    &imf->imf_inm);
2211 
2212 		INP_WLOCK(inp);
2213 		if (in_pcbrele_wlocked(inp)) {
2214 			error = ENXIO;
2215 			goto out_inp_unlocked;
2216 		}
2217 		if (error) {
2218                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2219                             __func__);
2220 			goto out_inp_locked;
2221 		}
2222 		/*
2223 		 * NOTE: Refcount from in_joingroup_locked()
2224 		 * is protecting membership.
2225 		 */
2226 		ip_mfilter_insert(&imo->imo_head, imf);
2227 	} else {
2228 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2229 		IN_MULTI_LIST_LOCK();
2230 		error = inm_merge(inm, imf);
2231 		if (error) {
2232 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2233 				 __func__);
2234 			IN_MULTI_LIST_UNLOCK();
2235 			imf_rollback(imf);
2236 			imf_reap(imf);
2237 			goto out_inp_locked;
2238 		}
2239 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2240 		error = igmp_change_state(inm);
2241 		IN_MULTI_LIST_UNLOCK();
2242 		if (error) {
2243 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2244 			    __func__);
2245 			imf_rollback(imf);
2246 			imf_reap(imf);
2247 			goto out_inp_locked;
2248 		}
2249 	}
2250 
2251 	imf_commit(imf);
2252 	imf = NULL;
2253 
2254 out_inp_locked:
2255 	INP_WUNLOCK(inp);
2256 out_inp_unlocked:
2257 	IN_MULTI_UNLOCK();
2258 
2259 	if (is_new && imf) {
2260 		if (imf->imf_inm != NULL) {
2261 			IN_MULTI_LIST_LOCK();
2262 			IF_ADDR_WLOCK(ifp);
2263 			inm_release_deferred(imf->imf_inm);
2264 			IF_ADDR_WUNLOCK(ifp);
2265 			IN_MULTI_LIST_UNLOCK();
2266 		}
2267 		ip_mfilter_free(imf);
2268 	}
2269 	return (error);
2270 }
2271 
2272 /*
2273  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2274  */
2275 static int
2276 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2277 {
2278 	struct group_source_req		 gsr;
2279 	struct ip_mreq_source		 mreqs;
2280 	struct rm_priotracker		 in_ifa_tracker;
2281 	sockunion_t			*gsa, *ssa;
2282 	struct ifnet			*ifp;
2283 	struct in_mfilter		*imf;
2284 	struct ip_moptions		*imo;
2285 	struct in_msource		*ims;
2286 	struct in_multi			*inm;
2287 	int				 error;
2288 	bool				 is_final;
2289 
2290 	ifp = NULL;
2291 	error = 0;
2292 	is_final = true;
2293 
2294 	memset(&gsr, 0, sizeof(struct group_source_req));
2295 	gsa = (sockunion_t *)&gsr.gsr_group;
2296 	gsa->ss.ss_family = AF_UNSPEC;
2297 	ssa = (sockunion_t *)&gsr.gsr_source;
2298 	ssa->ss.ss_family = AF_UNSPEC;
2299 
2300 	switch (sopt->sopt_name) {
2301 	case IP_DROP_MEMBERSHIP:
2302 	case IP_DROP_SOURCE_MEMBERSHIP:
2303 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2304 			error = sooptcopyin(sopt, &mreqs,
2305 			    sizeof(struct ip_mreq),
2306 			    sizeof(struct ip_mreq));
2307 			/*
2308 			 * Swap interface and sourceaddr arguments,
2309 			 * as ip_mreq and ip_mreq_source are laid
2310 			 * out differently.
2311 			 */
2312 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2313 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2314 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2315 			error = sooptcopyin(sopt, &mreqs,
2316 			    sizeof(struct ip_mreq_source),
2317 			    sizeof(struct ip_mreq_source));
2318 		}
2319 		if (error)
2320 			return (error);
2321 
2322 		gsa->sin.sin_family = AF_INET;
2323 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2324 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2325 
2326 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2327 			ssa->sin.sin_family = AF_INET;
2328 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2329 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2330 		}
2331 
2332 		/*
2333 		 * Attempt to look up hinted ifp from interface address.
2334 		 * Fallthrough with null ifp iff lookup fails, to
2335 		 * preserve 4.4BSD mcast API idempotence.
2336 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2337 		 * using an IPv4 address as a key is racy.
2338 		 */
2339 		if (!in_nullhost(mreqs.imr_interface)) {
2340 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2341 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2342 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2343 		}
2344 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2345 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2346 
2347 		break;
2348 
2349 	case MCAST_LEAVE_GROUP:
2350 	case MCAST_LEAVE_SOURCE_GROUP:
2351 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2352 			error = sooptcopyin(sopt, &gsr,
2353 			    sizeof(struct group_req),
2354 			    sizeof(struct group_req));
2355 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2356 			error = sooptcopyin(sopt, &gsr,
2357 			    sizeof(struct group_source_req),
2358 			    sizeof(struct group_source_req));
2359 		}
2360 		if (error)
2361 			return (error);
2362 
2363 		if (gsa->sin.sin_family != AF_INET ||
2364 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2365 			return (EINVAL);
2366 
2367 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2368 			if (ssa->sin.sin_family != AF_INET ||
2369 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2370 				return (EINVAL);
2371 		}
2372 
2373 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2374 			return (EADDRNOTAVAIL);
2375 
2376 		ifp = ifnet_byindex(gsr.gsr_interface);
2377 
2378 		if (ifp == NULL)
2379 			return (EADDRNOTAVAIL);
2380 		break;
2381 
2382 	default:
2383 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2384 		    __func__, sopt->sopt_name);
2385 		return (EOPNOTSUPP);
2386 		break;
2387 	}
2388 
2389 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2390 		return (EINVAL);
2391 
2392 	IN_MULTI_LOCK();
2393 
2394 	/*
2395 	 * Find the membership in the membership list.
2396 	 */
2397 	imo = inp_findmoptions(inp);
2398 	imf = imo_match_group(imo, ifp, &gsa->sa);
2399 	if (imf == NULL) {
2400 		error = EADDRNOTAVAIL;
2401 		goto out_inp_locked;
2402 	}
2403 	inm = imf->imf_inm;
2404 
2405 	if (ssa->ss.ss_family != AF_UNSPEC)
2406 		is_final = false;
2407 
2408 	/*
2409 	 * Begin state merge transaction at socket layer.
2410 	 */
2411 	INP_WLOCK_ASSERT(inp);
2412 
2413 	/*
2414 	 * If we were instructed only to leave a given source, do so.
2415 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2416 	 */
2417 	if (is_final) {
2418 		ip_mfilter_remove(&imo->imo_head, imf);
2419 		imf_leave(imf);
2420 
2421 		/*
2422 		 * Give up the multicast address record to which
2423 		 * the membership points.
2424 		 */
2425 		(void) in_leavegroup_locked(imf->imf_inm, imf);
2426 	} else {
2427 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2428 			error = EADDRNOTAVAIL;
2429 			goto out_inp_locked;
2430 		}
2431 		ims = imo_match_source(imf, &ssa->sa);
2432 		if (ims == NULL) {
2433 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2434 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2435 			error = EADDRNOTAVAIL;
2436 			goto out_inp_locked;
2437 		}
2438 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2439 		error = imf_prune(imf, &ssa->sin);
2440 		if (error) {
2441 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2442 			    __func__);
2443 			goto out_inp_locked;
2444 		}
2445 	}
2446 
2447 	/*
2448 	 * Begin state merge transaction at IGMP layer.
2449 	 */
2450 	if (!is_final) {
2451 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2452 		IN_MULTI_LIST_LOCK();
2453 		error = inm_merge(inm, imf);
2454 		if (error) {
2455 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2456 			    __func__);
2457 			IN_MULTI_LIST_UNLOCK();
2458 			imf_rollback(imf);
2459 			imf_reap(imf);
2460 			goto out_inp_locked;
2461 		}
2462 
2463 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2464 		error = igmp_change_state(inm);
2465 		IN_MULTI_LIST_UNLOCK();
2466 		if (error) {
2467 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2468 			    __func__);
2469 			imf_rollback(imf);
2470 			imf_reap(imf);
2471 			goto out_inp_locked;
2472 		}
2473 	}
2474 	imf_commit(imf);
2475 	imf_reap(imf);
2476 
2477 out_inp_locked:
2478 	INP_WUNLOCK(inp);
2479 
2480 	if (is_final && imf)
2481 		ip_mfilter_free(imf);
2482 
2483 	IN_MULTI_UNLOCK();
2484 	return (error);
2485 }
2486 
2487 /*
2488  * Select the interface for transmitting IPv4 multicast datagrams.
2489  *
2490  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2491  * may be passed to this socket option. An address of INADDR_ANY or an
2492  * interface index of 0 is used to remove a previous selection.
2493  * When no interface is selected, one is chosen for every send.
2494  */
2495 static int
2496 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2497 {
2498 	struct rm_priotracker	 in_ifa_tracker;
2499 	struct in_addr		 addr;
2500 	struct ip_mreqn		 mreqn;
2501 	struct ifnet		*ifp;
2502 	struct ip_moptions	*imo;
2503 	int			 error;
2504 
2505 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2506 		/*
2507 		 * An interface index was specified using the
2508 		 * Linux-derived ip_mreqn structure.
2509 		 */
2510 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2511 		    sizeof(struct ip_mreqn));
2512 		if (error)
2513 			return (error);
2514 
2515 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2516 			return (EINVAL);
2517 
2518 		if (mreqn.imr_ifindex == 0) {
2519 			ifp = NULL;
2520 		} else {
2521 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2522 			if (ifp == NULL)
2523 				return (EADDRNOTAVAIL);
2524 		}
2525 	} else {
2526 		/*
2527 		 * An interface was specified by IPv4 address.
2528 		 * This is the traditional BSD usage.
2529 		 */
2530 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2531 		    sizeof(struct in_addr));
2532 		if (error)
2533 			return (error);
2534 		if (in_nullhost(addr)) {
2535 			ifp = NULL;
2536 		} else {
2537 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2538 			INADDR_TO_IFP(addr, ifp);
2539 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2540 			if (ifp == NULL)
2541 				return (EADDRNOTAVAIL);
2542 		}
2543 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2544 		    ntohl(addr.s_addr));
2545 	}
2546 
2547 	/* Reject interfaces which do not support multicast. */
2548 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2549 		return (EOPNOTSUPP);
2550 
2551 	imo = inp_findmoptions(inp);
2552 	imo->imo_multicast_ifp = ifp;
2553 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2554 	INP_WUNLOCK(inp);
2555 
2556 	return (0);
2557 }
2558 
2559 /*
2560  * Atomically set source filters on a socket for an IPv4 multicast group.
2561  *
2562  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2563  */
2564 static int
2565 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2566 {
2567 	struct __msfilterreq	 msfr;
2568 	sockunion_t		*gsa;
2569 	struct ifnet		*ifp;
2570 	struct in_mfilter	*imf;
2571 	struct ip_moptions	*imo;
2572 	struct in_multi		*inm;
2573 	int			 error;
2574 
2575 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2576 	    sizeof(struct __msfilterreq));
2577 	if (error)
2578 		return (error);
2579 
2580 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2581 		return (ENOBUFS);
2582 
2583 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2584 	     msfr.msfr_fmode != MCAST_INCLUDE))
2585 		return (EINVAL);
2586 
2587 	if (msfr.msfr_group.ss_family != AF_INET ||
2588 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2589 		return (EINVAL);
2590 
2591 	gsa = (sockunion_t *)&msfr.msfr_group;
2592 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2593 		return (EINVAL);
2594 
2595 	gsa->sin.sin_port = 0;	/* ignore port */
2596 
2597 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2598 		return (EADDRNOTAVAIL);
2599 
2600 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2601 	if (ifp == NULL)
2602 		return (EADDRNOTAVAIL);
2603 
2604 	IN_MULTI_LOCK();
2605 
2606 	/*
2607 	 * Take the INP write lock.
2608 	 * Check if this socket is a member of this group.
2609 	 */
2610 	imo = inp_findmoptions(inp);
2611 	imf = imo_match_group(imo, ifp, &gsa->sa);
2612 	if (imf == NULL) {
2613 		error = EADDRNOTAVAIL;
2614 		goto out_inp_locked;
2615 	}
2616 	inm = imf->imf_inm;
2617 
2618 	/*
2619 	 * Begin state merge transaction at socket layer.
2620 	 */
2621 	INP_WLOCK_ASSERT(inp);
2622 
2623 	imf->imf_st[1] = msfr.msfr_fmode;
2624 
2625 	/*
2626 	 * Apply any new source filters, if present.
2627 	 * Make a copy of the user-space source vector so
2628 	 * that we may copy them with a single copyin. This
2629 	 * allows us to deal with page faults up-front.
2630 	 */
2631 	if (msfr.msfr_nsrcs > 0) {
2632 		struct in_msource	*lims;
2633 		struct sockaddr_in	*psin;
2634 		struct sockaddr_storage	*kss, *pkss;
2635 		int			 i;
2636 
2637 		INP_WUNLOCK(inp);
2638 
2639 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2640 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2641 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2642 		    M_TEMP, M_WAITOK);
2643 		error = copyin(msfr.msfr_srcs, kss,
2644 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2645 		if (error) {
2646 			free(kss, M_TEMP);
2647 			return (error);
2648 		}
2649 
2650 		INP_WLOCK(inp);
2651 
2652 		/*
2653 		 * Mark all source filters as UNDEFINED at t1.
2654 		 * Restore new group filter mode, as imf_leave()
2655 		 * will set it to INCLUDE.
2656 		 */
2657 		imf_leave(imf);
2658 		imf->imf_st[1] = msfr.msfr_fmode;
2659 
2660 		/*
2661 		 * Update socket layer filters at t1, lazy-allocating
2662 		 * new entries. This saves a bunch of memory at the
2663 		 * cost of one RB_FIND() per source entry; duplicate
2664 		 * entries in the msfr_nsrcs vector are ignored.
2665 		 * If we encounter an error, rollback transaction.
2666 		 *
2667 		 * XXX This too could be replaced with a set-symmetric
2668 		 * difference like loop to avoid walking from root
2669 		 * every time, as the key space is common.
2670 		 */
2671 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2672 			psin = (struct sockaddr_in *)pkss;
2673 			if (psin->sin_family != AF_INET) {
2674 				error = EAFNOSUPPORT;
2675 				break;
2676 			}
2677 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2678 				error = EINVAL;
2679 				break;
2680 			}
2681 			error = imf_get_source(imf, psin, &lims);
2682 			if (error)
2683 				break;
2684 			lims->imsl_st[1] = imf->imf_st[1];
2685 		}
2686 		free(kss, M_TEMP);
2687 	}
2688 
2689 	if (error)
2690 		goto out_imf_rollback;
2691 
2692 	INP_WLOCK_ASSERT(inp);
2693 
2694 	/*
2695 	 * Begin state merge transaction at IGMP layer.
2696 	 */
2697 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2698 	IN_MULTI_LIST_LOCK();
2699 	error = inm_merge(inm, imf);
2700 	if (error) {
2701 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2702 		IN_MULTI_LIST_UNLOCK();
2703 		goto out_imf_rollback;
2704 	}
2705 
2706 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2707 	error = igmp_change_state(inm);
2708 	IN_MULTI_LIST_UNLOCK();
2709 	if (error)
2710 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2711 
2712 out_imf_rollback:
2713 	if (error)
2714 		imf_rollback(imf);
2715 	else
2716 		imf_commit(imf);
2717 
2718 	imf_reap(imf);
2719 
2720 out_inp_locked:
2721 	INP_WUNLOCK(inp);
2722 	IN_MULTI_UNLOCK();
2723 	return (error);
2724 }
2725 
2726 /*
2727  * Set the IP multicast options in response to user setsockopt().
2728  *
2729  * Many of the socket options handled in this function duplicate the
2730  * functionality of socket options in the regular unicast API. However,
2731  * it is not possible to merge the duplicate code, because the idempotence
2732  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2733  * the effects of these options must be treated as separate and distinct.
2734  *
2735  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2736  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2737  * is refactored to no longer use vifs.
2738  */
2739 int
2740 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2741 {
2742 	struct ip_moptions	*imo;
2743 	int			 error;
2744 	struct epoch_tracker	et;
2745 
2746 	error = 0;
2747 
2748 	/*
2749 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2750 	 * or is a divert socket, reject it.
2751 	 */
2752 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2753 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2754 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2755 		return (EOPNOTSUPP);
2756 
2757 	switch (sopt->sopt_name) {
2758 	case IP_MULTICAST_VIF: {
2759 		int vifi;
2760 		/*
2761 		 * Select a multicast VIF for transmission.
2762 		 * Only useful if multicast forwarding is active.
2763 		 */
2764 		if (legal_vif_num == NULL) {
2765 			error = EOPNOTSUPP;
2766 			break;
2767 		}
2768 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2769 		if (error)
2770 			break;
2771 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2772 			error = EINVAL;
2773 			break;
2774 		}
2775 		imo = inp_findmoptions(inp);
2776 		imo->imo_multicast_vif = vifi;
2777 		INP_WUNLOCK(inp);
2778 		break;
2779 	}
2780 
2781 	case IP_MULTICAST_IF:
2782 		error = inp_set_multicast_if(inp, sopt);
2783 		break;
2784 
2785 	case IP_MULTICAST_TTL: {
2786 		u_char ttl;
2787 
2788 		/*
2789 		 * Set the IP time-to-live for outgoing multicast packets.
2790 		 * The original multicast API required a char argument,
2791 		 * which is inconsistent with the rest of the socket API.
2792 		 * We allow either a char or an int.
2793 		 */
2794 		if (sopt->sopt_valsize == sizeof(u_char)) {
2795 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2796 			    sizeof(u_char));
2797 			if (error)
2798 				break;
2799 		} else {
2800 			u_int ittl;
2801 
2802 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2803 			    sizeof(u_int));
2804 			if (error)
2805 				break;
2806 			if (ittl > 255) {
2807 				error = EINVAL;
2808 				break;
2809 			}
2810 			ttl = (u_char)ittl;
2811 		}
2812 		imo = inp_findmoptions(inp);
2813 		imo->imo_multicast_ttl = ttl;
2814 		INP_WUNLOCK(inp);
2815 		break;
2816 	}
2817 
2818 	case IP_MULTICAST_LOOP: {
2819 		u_char loop;
2820 
2821 		/*
2822 		 * Set the loopback flag for outgoing multicast packets.
2823 		 * Must be zero or one.  The original multicast API required a
2824 		 * char argument, which is inconsistent with the rest
2825 		 * of the socket API.  We allow either a char or an int.
2826 		 */
2827 		if (sopt->sopt_valsize == sizeof(u_char)) {
2828 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2829 			    sizeof(u_char));
2830 			if (error)
2831 				break;
2832 		} else {
2833 			u_int iloop;
2834 
2835 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2836 					    sizeof(u_int));
2837 			if (error)
2838 				break;
2839 			loop = (u_char)iloop;
2840 		}
2841 		imo = inp_findmoptions(inp);
2842 		imo->imo_multicast_loop = !!loop;
2843 		INP_WUNLOCK(inp);
2844 		break;
2845 	}
2846 
2847 	case IP_ADD_MEMBERSHIP:
2848 	case IP_ADD_SOURCE_MEMBERSHIP:
2849 	case MCAST_JOIN_GROUP:
2850 	case MCAST_JOIN_SOURCE_GROUP:
2851 		NET_EPOCH_ENTER(et);
2852 		error = inp_join_group(inp, sopt);
2853 		NET_EPOCH_EXIT(et);
2854 		break;
2855 
2856 	case IP_DROP_MEMBERSHIP:
2857 	case IP_DROP_SOURCE_MEMBERSHIP:
2858 	case MCAST_LEAVE_GROUP:
2859 	case MCAST_LEAVE_SOURCE_GROUP:
2860 		error = inp_leave_group(inp, sopt);
2861 		break;
2862 
2863 	case IP_BLOCK_SOURCE:
2864 	case IP_UNBLOCK_SOURCE:
2865 	case MCAST_BLOCK_SOURCE:
2866 	case MCAST_UNBLOCK_SOURCE:
2867 		error = inp_block_unblock_source(inp, sopt);
2868 		break;
2869 
2870 	case IP_MSFILTER:
2871 		error = inp_set_source_filters(inp, sopt);
2872 		break;
2873 
2874 	default:
2875 		error = EOPNOTSUPP;
2876 		break;
2877 	}
2878 
2879 	INP_UNLOCK_ASSERT(inp);
2880 
2881 	return (error);
2882 }
2883 
2884 /*
2885  * Expose IGMP's multicast filter mode and source list(s) to userland,
2886  * keyed by (ifindex, group).
2887  * The filter mode is written out as a uint32_t, followed by
2888  * 0..n of struct in_addr.
2889  * For use by ifmcstat(8).
2890  * SMPng: NOTE: unlocked read of ifindex space.
2891  */
2892 static int
2893 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2894 {
2895 	struct in_addr			 src, group;
2896 	struct epoch_tracker		 et;
2897 	struct ifnet			*ifp;
2898 	struct ifmultiaddr		*ifma;
2899 	struct in_multi			*inm;
2900 	struct ip_msource		*ims;
2901 	int				*name;
2902 	int				 retval;
2903 	u_int				 namelen;
2904 	uint32_t			 fmode, ifindex;
2905 
2906 	name = (int *)arg1;
2907 	namelen = arg2;
2908 
2909 	if (req->newptr != NULL)
2910 		return (EPERM);
2911 
2912 	if (namelen != 2)
2913 		return (EINVAL);
2914 
2915 	ifindex = name[0];
2916 	if (ifindex <= 0 || ifindex > V_if_index) {
2917 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2918 		    __func__, ifindex);
2919 		return (ENOENT);
2920 	}
2921 
2922 	group.s_addr = name[1];
2923 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2924 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2925 		    __func__, ntohl(group.s_addr));
2926 		return (EINVAL);
2927 	}
2928 
2929 	NET_EPOCH_ENTER(et);
2930 	ifp = ifnet_byindex(ifindex);
2931 	if (ifp == NULL) {
2932 		NET_EPOCH_EXIT(et);
2933 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2934 		    __func__, ifindex);
2935 		return (ENOENT);
2936 	}
2937 
2938 	retval = sysctl_wire_old_buffer(req,
2939 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2940 	if (retval) {
2941 		NET_EPOCH_EXIT(et);
2942 		return (retval);
2943 	}
2944 
2945 	IN_MULTI_LIST_LOCK();
2946 
2947 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2948 		if (ifma->ifma_addr->sa_family != AF_INET ||
2949 		    ifma->ifma_protospec == NULL)
2950 			continue;
2951 		inm = (struct in_multi *)ifma->ifma_protospec;
2952 		if (!in_hosteq(inm->inm_addr, group))
2953 			continue;
2954 		fmode = inm->inm_st[1].iss_fmode;
2955 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2956 		if (retval != 0)
2957 			break;
2958 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2959 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2960 			    ims->ims_haddr);
2961 			/*
2962 			 * Only copy-out sources which are in-mode.
2963 			 */
2964 			if (fmode != ims_get_mode(inm, ims, 1)) {
2965 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2966 				    __func__);
2967 				continue;
2968 			}
2969 			src.s_addr = htonl(ims->ims_haddr);
2970 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2971 			if (retval != 0)
2972 				break;
2973 		}
2974 	}
2975 
2976 	IN_MULTI_LIST_UNLOCK();
2977 	NET_EPOCH_EXIT(et);
2978 
2979 	return (retval);
2980 }
2981 
2982 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2983 
2984 static const char *inm_modestrs[] = {
2985 	[MCAST_UNDEFINED] = "un",
2986 	[MCAST_INCLUDE] = "in",
2987 	[MCAST_EXCLUDE] = "ex",
2988 };
2989 _Static_assert(MCAST_UNDEFINED == 0 &&
2990 	       MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
2991 	       "inm_modestrs: no longer matches #defines");
2992 
2993 static const char *
2994 inm_mode_str(const int mode)
2995 {
2996 
2997 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2998 		return (inm_modestrs[mode]);
2999 	return ("??");
3000 }
3001 
3002 static const char *inm_statestrs[] = {
3003 	[IGMP_NOT_MEMBER] = "not-member",
3004 	[IGMP_SILENT_MEMBER] = "silent",
3005 	[IGMP_REPORTING_MEMBER] = "reporting",
3006 	[IGMP_IDLE_MEMBER] = "idle",
3007 	[IGMP_LAZY_MEMBER] = "lazy",
3008 	[IGMP_SLEEPING_MEMBER] = "sleeping",
3009 	[IGMP_AWAKENING_MEMBER] = "awakening",
3010 	[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
3011 	[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
3012 	[IGMP_LEAVING_MEMBER] = "leaving",
3013 };
3014 _Static_assert(IGMP_NOT_MEMBER == 0 &&
3015 	       IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
3016 	       "inm_statetrs: no longer matches #defines");
3017 
3018 static const char *
3019 inm_state_str(const int state)
3020 {
3021 
3022 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3023 		return (inm_statestrs[state]);
3024 	return ("??");
3025 }
3026 
3027 /*
3028  * Dump an in_multi structure to the console.
3029  */
3030 void
3031 inm_print(const struct in_multi *inm)
3032 {
3033 	int t;
3034 	char addrbuf[INET_ADDRSTRLEN];
3035 
3036 	if ((ktr_mask & KTR_IGMPV3) == 0)
3037 		return;
3038 
3039 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3040 	printf("addr %s ifp %p(%s) ifma %p\n",
3041 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3042 	    inm->inm_ifp,
3043 	    inm->inm_ifp->if_xname,
3044 	    inm->inm_ifma);
3045 	printf("timer %u state %s refcount %u scq.len %u\n",
3046 	    inm->inm_timer,
3047 	    inm_state_str(inm->inm_state),
3048 	    inm->inm_refcount,
3049 	    inm->inm_scq.mq_len);
3050 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3051 	    inm->inm_igi,
3052 	    inm->inm_nsrc,
3053 	    inm->inm_sctimer,
3054 	    inm->inm_scrv);
3055 	for (t = 0; t < 2; t++) {
3056 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3057 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3058 		    inm->inm_st[t].iss_asm,
3059 		    inm->inm_st[t].iss_ex,
3060 		    inm->inm_st[t].iss_in,
3061 		    inm->inm_st[t].iss_rec);
3062 	}
3063 	printf("%s: --- end inm %p ---\n", __func__, inm);
3064 }
3065 
3066 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3067 
3068 void
3069 inm_print(const struct in_multi *inm)
3070 {
3071 
3072 }
3073 
3074 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3075 
3076 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3077