xref: /freebsd/sys/netinet/in_mcast.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 2007-2009 Bruce Simpson.
3  * Copyright (c) 2005 Robert N. M. Watson.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote
15  *    products derived from this software without specific prior written
16  *    permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * IPv4 multicast socket, group, and socket option processing module.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/protosw.h>
47 #include <sys/sysctl.h>
48 #include <sys/ktr.h>
49 #include <sys/taskqueue.h>
50 #include <sys/tree.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/route.h>
55 #include <net/vnet.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/igmp_var.h>
63 
64 #ifndef KTR_IGMPV3
65 #define KTR_IGMPV3 KTR_INET
66 #endif
67 
68 #ifndef __SOCKUNION_DECLARED
69 union sockunion {
70 	struct sockaddr_storage	ss;
71 	struct sockaddr		sa;
72 	struct sockaddr_dl	sdl;
73 	struct sockaddr_in	sin;
74 };
75 typedef union sockunion sockunion_t;
76 #define __SOCKUNION_DECLARED
77 #endif /* __SOCKUNION_DECLARED */
78 
79 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
80     "IPv4 multicast PCB-layer source filter");
81 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
82 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
83 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
84     "IPv4 multicast IGMP-layer source filter");
85 
86 /*
87  * Locking:
88  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
89  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
90  *   it can be taken by code in net/if.c also.
91  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
92  *
93  * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
94  * any need for in_multi itself to be virtualized -- it is bound to an ifp
95  * anyway no matter what happens.
96  */
97 struct mtx in_multi_mtx;
98 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
99 
100 /*
101  * Functions with non-static linkage defined in this file should be
102  * declared in in_var.h:
103  *  imo_multi_filter()
104  *  in_addmulti()
105  *  in_delmulti()
106  *  in_joingroup()
107  *  in_joingroup_locked()
108  *  in_leavegroup()
109  *  in_leavegroup_locked()
110  * and ip_var.h:
111  *  inp_freemoptions()
112  *  inp_getmoptions()
113  *  inp_setmoptions()
114  *
115  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
116  * and in_delmulti().
117  */
118 static void	imf_commit(struct in_mfilter *);
119 static int	imf_get_source(struct in_mfilter *imf,
120 		    const struct sockaddr_in *psin,
121 		    struct in_msource **);
122 static struct in_msource *
123 		imf_graft(struct in_mfilter *, const uint8_t,
124 		    const struct sockaddr_in *);
125 static void	imf_leave(struct in_mfilter *);
126 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
127 static void	imf_purge(struct in_mfilter *);
128 static void	imf_rollback(struct in_mfilter *);
129 static void	imf_reap(struct in_mfilter *);
130 static int	imo_grow(struct ip_moptions *);
131 static size_t	imo_match_group(const struct ip_moptions *,
132 		    const struct ifnet *, const struct sockaddr *);
133 static struct in_msource *
134 		imo_match_source(const struct ip_moptions *, const size_t,
135 		    const struct sockaddr *);
136 static void	ims_merge(struct ip_msource *ims,
137 		    const struct in_msource *lims, const int rollback);
138 static int	in_getmulti(struct ifnet *, const struct in_addr *,
139 		    struct in_multi **);
140 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
141 		    const int noalloc, struct ip_msource **pims);
142 static int	inm_is_ifp_detached(const struct in_multi *);
143 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
144 static void	inm_purge(struct in_multi *);
145 static void	inm_reap(struct in_multi *);
146 static struct ip_moptions *
147 		inp_findmoptions(struct inpcb *);
148 static void	inp_freemoptions_internal(struct ip_moptions *);
149 static void	inp_gcmoptions(void *, int);
150 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
151 static int	inp_join_group(struct inpcb *, struct sockopt *);
152 static int	inp_leave_group(struct inpcb *, struct sockopt *);
153 static struct ifnet *
154 		inp_lookup_mcast_ifp(const struct inpcb *,
155 		    const struct sockaddr_in *, const struct in_addr);
156 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
157 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
158 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
159 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
160 
161 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
162     "IPv4 multicast");
163 
164 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
165 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
166     CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
167     "Max source filters per group");
168 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
169 
170 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
171 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
172     CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
173     "Max source filters per socket");
174 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
175 
176 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
177 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
178     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
179 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
180 
181 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
182     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
183     "Per-interface stack-wide source filters");
184 
185 static STAILQ_HEAD(, ip_moptions) imo_gc_list =
186     STAILQ_HEAD_INITIALIZER(imo_gc_list);
187 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL);
188 
189 /*
190  * Inline function which wraps assertions for a valid ifp.
191  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
192  * is detached.
193  */
194 static int __inline
195 inm_is_ifp_detached(const struct in_multi *inm)
196 {
197 	struct ifnet *ifp;
198 
199 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
200 	ifp = inm->inm_ifma->ifma_ifp;
201 	if (ifp != NULL) {
202 		/*
203 		 * Sanity check that netinet's notion of ifp is the
204 		 * same as net's.
205 		 */
206 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
207 	}
208 
209 	return (ifp == NULL);
210 }
211 
212 /*
213  * Initialize an in_mfilter structure to a known state at t0, t1
214  * with an empty source filter list.
215  */
216 static __inline void
217 imf_init(struct in_mfilter *imf, const int st0, const int st1)
218 {
219 	memset(imf, 0, sizeof(struct in_mfilter));
220 	RB_INIT(&imf->imf_sources);
221 	imf->imf_st[0] = st0;
222 	imf->imf_st[1] = st1;
223 }
224 
225 /*
226  * Resize the ip_moptions vector to the next power-of-two minus 1.
227  * May be called with locks held; do not sleep.
228  */
229 static int
230 imo_grow(struct ip_moptions *imo)
231 {
232 	struct in_multi		**nmships;
233 	struct in_multi		**omships;
234 	struct in_mfilter	 *nmfilters;
235 	struct in_mfilter	 *omfilters;
236 	size_t			  idx;
237 	size_t			  newmax;
238 	size_t			  oldmax;
239 
240 	nmships = NULL;
241 	nmfilters = NULL;
242 	omships = imo->imo_membership;
243 	omfilters = imo->imo_mfilters;
244 	oldmax = imo->imo_max_memberships;
245 	newmax = ((oldmax + 1) * 2) - 1;
246 
247 	if (newmax <= IP_MAX_MEMBERSHIPS) {
248 		nmships = (struct in_multi **)realloc(omships,
249 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
250 		nmfilters = (struct in_mfilter *)realloc(omfilters,
251 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
252 		if (nmships != NULL && nmfilters != NULL) {
253 			/* Initialize newly allocated source filter heads. */
254 			for (idx = oldmax; idx < newmax; idx++) {
255 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
256 				    MCAST_EXCLUDE);
257 			}
258 			imo->imo_max_memberships = newmax;
259 			imo->imo_membership = nmships;
260 			imo->imo_mfilters = nmfilters;
261 		}
262 	}
263 
264 	if (nmships == NULL || nmfilters == NULL) {
265 		if (nmships != NULL)
266 			free(nmships, M_IPMOPTS);
267 		if (nmfilters != NULL)
268 			free(nmfilters, M_INMFILTER);
269 		return (ETOOMANYREFS);
270 	}
271 
272 	return (0);
273 }
274 
275 /*
276  * Find an IPv4 multicast group entry for this ip_moptions instance
277  * which matches the specified group, and optionally an interface.
278  * Return its index into the array, or -1 if not found.
279  */
280 static size_t
281 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
282     const struct sockaddr *group)
283 {
284 	const struct sockaddr_in *gsin;
285 	struct in_multi	**pinm;
286 	int		  idx;
287 	int		  nmships;
288 
289 	gsin = (const struct sockaddr_in *)group;
290 
291 	/* The imo_membership array may be lazy allocated. */
292 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
293 		return (-1);
294 
295 	nmships = imo->imo_num_memberships;
296 	pinm = &imo->imo_membership[0];
297 	for (idx = 0; idx < nmships; idx++, pinm++) {
298 		if (*pinm == NULL)
299 			continue;
300 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
301 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
302 			break;
303 		}
304 	}
305 	if (idx >= nmships)
306 		idx = -1;
307 
308 	return (idx);
309 }
310 
311 /*
312  * Find an IPv4 multicast source entry for this imo which matches
313  * the given group index for this socket, and source address.
314  *
315  * NOTE: This does not check if the entry is in-mode, merely if
316  * it exists, which may not be the desired behaviour.
317  */
318 static struct in_msource *
319 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
320     const struct sockaddr *src)
321 {
322 	struct ip_msource	 find;
323 	struct in_mfilter	*imf;
324 	struct ip_msource	*ims;
325 	const sockunion_t	*psa;
326 
327 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
328 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
329 	    ("%s: invalid index %d\n", __func__, (int)gidx));
330 
331 	/* The imo_mfilters array may be lazy allocated. */
332 	if (imo->imo_mfilters == NULL)
333 		return (NULL);
334 	imf = &imo->imo_mfilters[gidx];
335 
336 	/* Source trees are keyed in host byte order. */
337 	psa = (const sockunion_t *)src;
338 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
339 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
340 
341 	return ((struct in_msource *)ims);
342 }
343 
344 /*
345  * Perform filtering for multicast datagrams on a socket by group and source.
346  *
347  * Returns 0 if a datagram should be allowed through, or various error codes
348  * if the socket was not a member of the group, or the source was muted, etc.
349  */
350 int
351 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
352     const struct sockaddr *group, const struct sockaddr *src)
353 {
354 	size_t gidx;
355 	struct in_msource *ims;
356 	int mode;
357 
358 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
359 
360 	gidx = imo_match_group(imo, ifp, group);
361 	if (gidx == -1)
362 		return (MCAST_NOTGMEMBER);
363 
364 	/*
365 	 * Check if the source was included in an (S,G) join.
366 	 * Allow reception on exclusive memberships by default,
367 	 * reject reception on inclusive memberships by default.
368 	 * Exclude source only if an in-mode exclude filter exists.
369 	 * Include source only if an in-mode include filter exists.
370 	 * NOTE: We are comparing group state here at IGMP t1 (now)
371 	 * with socket-layer t0 (since last downcall).
372 	 */
373 	mode = imo->imo_mfilters[gidx].imf_st[1];
374 	ims = imo_match_source(imo, gidx, src);
375 
376 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
377 	    (ims != NULL && ims->imsl_st[0] != mode))
378 		return (MCAST_NOTSMEMBER);
379 
380 	return (MCAST_PASS);
381 }
382 
383 /*
384  * Find and return a reference to an in_multi record for (ifp, group),
385  * and bump its reference count.
386  * If one does not exist, try to allocate it, and update link-layer multicast
387  * filters on ifp to listen for group.
388  * Assumes the IN_MULTI lock is held across the call.
389  * Return 0 if successful, otherwise return an appropriate error code.
390  */
391 static int
392 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
393     struct in_multi **pinm)
394 {
395 	struct sockaddr_in	 gsin;
396 	struct ifmultiaddr	*ifma;
397 	struct in_ifinfo	*ii;
398 	struct in_multi		*inm;
399 	int error;
400 
401 	IN_MULTI_LOCK_ASSERT();
402 
403 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
404 
405 	inm = inm_lookup(ifp, *group);
406 	if (inm != NULL) {
407 		/*
408 		 * If we already joined this group, just bump the
409 		 * refcount and return it.
410 		 */
411 		KASSERT(inm->inm_refcount >= 1,
412 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
413 		++inm->inm_refcount;
414 		*pinm = inm;
415 		return (0);
416 	}
417 
418 	memset(&gsin, 0, sizeof(gsin));
419 	gsin.sin_family = AF_INET;
420 	gsin.sin_len = sizeof(struct sockaddr_in);
421 	gsin.sin_addr = *group;
422 
423 	/*
424 	 * Check if a link-layer group is already associated
425 	 * with this network-layer group on the given ifnet.
426 	 */
427 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
428 	if (error != 0)
429 		return (error);
430 
431 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
432 	IF_ADDR_WLOCK(ifp);
433 
434 	/*
435 	 * If something other than netinet is occupying the link-layer
436 	 * group, print a meaningful error message and back out of
437 	 * the allocation.
438 	 * Otherwise, bump the refcount on the existing network-layer
439 	 * group association and return it.
440 	 */
441 	if (ifma->ifma_protospec != NULL) {
442 		inm = (struct in_multi *)ifma->ifma_protospec;
443 #ifdef INVARIANTS
444 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
445 		    __func__));
446 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
447 		    ("%s: ifma not AF_INET", __func__));
448 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
449 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
450 		    !in_hosteq(inm->inm_addr, *group))
451 			panic("%s: ifma %p is inconsistent with %p (%s)",
452 			    __func__, ifma, inm, inet_ntoa(*group));
453 #endif
454 		++inm->inm_refcount;
455 		*pinm = inm;
456 		IF_ADDR_WUNLOCK(ifp);
457 		return (0);
458 	}
459 
460 	IF_ADDR_WLOCK_ASSERT(ifp);
461 
462 	/*
463 	 * A new in_multi record is needed; allocate and initialize it.
464 	 * We DO NOT perform an IGMP join as the in_ layer may need to
465 	 * push an initial source list down to IGMP to support SSM.
466 	 *
467 	 * The initial source filter state is INCLUDE, {} as per the RFC.
468 	 */
469 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
470 	if (inm == NULL) {
471 		if_delmulti_ifma(ifma);
472 		IF_ADDR_WUNLOCK(ifp);
473 		return (ENOMEM);
474 	}
475 	inm->inm_addr = *group;
476 	inm->inm_ifp = ifp;
477 	inm->inm_igi = ii->ii_igmp;
478 	inm->inm_ifma = ifma;
479 	inm->inm_refcount = 1;
480 	inm->inm_state = IGMP_NOT_MEMBER;
481 
482 	/*
483 	 * Pending state-changes per group are subject to a bounds check.
484 	 */
485 	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
486 
487 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
488 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
489 	RB_INIT(&inm->inm_srcs);
490 
491 	ifma->ifma_protospec = inm;
492 
493 	*pinm = inm;
494 
495 	IF_ADDR_WUNLOCK(ifp);
496 	return (0);
497 }
498 
499 /*
500  * Drop a reference to an in_multi record.
501  *
502  * If the refcount drops to 0, free the in_multi record and
503  * delete the underlying link-layer membership.
504  */
505 void
506 inm_release_locked(struct in_multi *inm)
507 {
508 	struct ifmultiaddr *ifma;
509 
510 	IN_MULTI_LOCK_ASSERT();
511 
512 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
513 
514 	if (--inm->inm_refcount > 0) {
515 		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
516 		    inm->inm_refcount);
517 		return;
518 	}
519 
520 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
521 
522 	ifma = inm->inm_ifma;
523 
524 	/* XXX this access is not covered by IF_ADDR_LOCK */
525 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
526 	KASSERT(ifma->ifma_protospec == inm,
527 	    ("%s: ifma_protospec != inm", __func__));
528 	ifma->ifma_protospec = NULL;
529 
530 	inm_purge(inm);
531 
532 	free(inm, M_IPMADDR);
533 
534 	if_delmulti_ifma(ifma);
535 }
536 
537 /*
538  * Clear recorded source entries for a group.
539  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
540  * FIXME: Should reap.
541  */
542 void
543 inm_clear_recorded(struct in_multi *inm)
544 {
545 	struct ip_msource	*ims;
546 
547 	IN_MULTI_LOCK_ASSERT();
548 
549 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
550 		if (ims->ims_stp) {
551 			ims->ims_stp = 0;
552 			--inm->inm_st[1].iss_rec;
553 		}
554 	}
555 	KASSERT(inm->inm_st[1].iss_rec == 0,
556 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
557 }
558 
559 /*
560  * Record a source as pending for a Source-Group IGMPv3 query.
561  * This lives here as it modifies the shared tree.
562  *
563  * inm is the group descriptor.
564  * naddr is the address of the source to record in network-byte order.
565  *
566  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
567  * lazy-allocate a source node in response to an SG query.
568  * Otherwise, no allocation is performed. This saves some memory
569  * with the trade-off that the source will not be reported to the
570  * router if joined in the window between the query response and
571  * the group actually being joined on the local host.
572  *
573  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
574  * This turns off the allocation of a recorded source entry if
575  * the group has not been joined.
576  *
577  * Return 0 if the source didn't exist or was already marked as recorded.
578  * Return 1 if the source was marked as recorded by this function.
579  * Return <0 if any error occured (negated errno code).
580  */
581 int
582 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
583 {
584 	struct ip_msource	 find;
585 	struct ip_msource	*ims, *nims;
586 
587 	IN_MULTI_LOCK_ASSERT();
588 
589 	find.ims_haddr = ntohl(naddr);
590 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
591 	if (ims && ims->ims_stp)
592 		return (0);
593 	if (ims == NULL) {
594 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
595 			return (-ENOSPC);
596 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
597 		    M_NOWAIT | M_ZERO);
598 		if (nims == NULL)
599 			return (-ENOMEM);
600 		nims->ims_haddr = find.ims_haddr;
601 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
602 		++inm->inm_nsrc;
603 		ims = nims;
604 	}
605 
606 	/*
607 	 * Mark the source as recorded and update the recorded
608 	 * source count.
609 	 */
610 	++ims->ims_stp;
611 	++inm->inm_st[1].iss_rec;
612 
613 	return (1);
614 }
615 
616 /*
617  * Return a pointer to an in_msource owned by an in_mfilter,
618  * given its source address.
619  * Lazy-allocate if needed. If this is a new entry its filter state is
620  * undefined at t0.
621  *
622  * imf is the filter set being modified.
623  * haddr is the source address in *host* byte-order.
624  *
625  * SMPng: May be called with locks held; malloc must not block.
626  */
627 static int
628 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
629     struct in_msource **plims)
630 {
631 	struct ip_msource	 find;
632 	struct ip_msource	*ims, *nims;
633 	struct in_msource	*lims;
634 	int			 error;
635 
636 	error = 0;
637 	ims = NULL;
638 	lims = NULL;
639 
640 	/* key is host byte order */
641 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
642 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
643 	lims = (struct in_msource *)ims;
644 	if (lims == NULL) {
645 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
646 			return (ENOSPC);
647 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
648 		    M_NOWAIT | M_ZERO);
649 		if (nims == NULL)
650 			return (ENOMEM);
651 		lims = (struct in_msource *)nims;
652 		lims->ims_haddr = find.ims_haddr;
653 		lims->imsl_st[0] = MCAST_UNDEFINED;
654 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
655 		++imf->imf_nsrc;
656 	}
657 
658 	*plims = lims;
659 
660 	return (error);
661 }
662 
663 /*
664  * Graft a source entry into an existing socket-layer filter set,
665  * maintaining any required invariants and checking allocations.
666  *
667  * The source is marked as being in the new filter mode at t1.
668  *
669  * Return the pointer to the new node, otherwise return NULL.
670  */
671 static struct in_msource *
672 imf_graft(struct in_mfilter *imf, const uint8_t st1,
673     const struct sockaddr_in *psin)
674 {
675 	struct ip_msource	*nims;
676 	struct in_msource	*lims;
677 
678 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
679 	    M_NOWAIT | M_ZERO);
680 	if (nims == NULL)
681 		return (NULL);
682 	lims = (struct in_msource *)nims;
683 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
684 	lims->imsl_st[0] = MCAST_UNDEFINED;
685 	lims->imsl_st[1] = st1;
686 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
687 	++imf->imf_nsrc;
688 
689 	return (lims);
690 }
691 
692 /*
693  * Prune a source entry from an existing socket-layer filter set,
694  * maintaining any required invariants and checking allocations.
695  *
696  * The source is marked as being left at t1, it is not freed.
697  *
698  * Return 0 if no error occurred, otherwise return an errno value.
699  */
700 static int
701 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
702 {
703 	struct ip_msource	 find;
704 	struct ip_msource	*ims;
705 	struct in_msource	*lims;
706 
707 	/* key is host byte order */
708 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
709 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
710 	if (ims == NULL)
711 		return (ENOENT);
712 	lims = (struct in_msource *)ims;
713 	lims->imsl_st[1] = MCAST_UNDEFINED;
714 	return (0);
715 }
716 
717 /*
718  * Revert socket-layer filter set deltas at t1 to t0 state.
719  */
720 static void
721 imf_rollback(struct in_mfilter *imf)
722 {
723 	struct ip_msource	*ims, *tims;
724 	struct in_msource	*lims;
725 
726 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
727 		lims = (struct in_msource *)ims;
728 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
729 			/* no change at t1 */
730 			continue;
731 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
732 			/* revert change to existing source at t1 */
733 			lims->imsl_st[1] = lims->imsl_st[0];
734 		} else {
735 			/* revert source added t1 */
736 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
737 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
738 			free(ims, M_INMFILTER);
739 			imf->imf_nsrc--;
740 		}
741 	}
742 	imf->imf_st[1] = imf->imf_st[0];
743 }
744 
745 /*
746  * Mark socket-layer filter set as INCLUDE {} at t1.
747  */
748 static void
749 imf_leave(struct in_mfilter *imf)
750 {
751 	struct ip_msource	*ims;
752 	struct in_msource	*lims;
753 
754 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
755 		lims = (struct in_msource *)ims;
756 		lims->imsl_st[1] = MCAST_UNDEFINED;
757 	}
758 	imf->imf_st[1] = MCAST_INCLUDE;
759 }
760 
761 /*
762  * Mark socket-layer filter set deltas as committed.
763  */
764 static void
765 imf_commit(struct in_mfilter *imf)
766 {
767 	struct ip_msource	*ims;
768 	struct in_msource	*lims;
769 
770 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
771 		lims = (struct in_msource *)ims;
772 		lims->imsl_st[0] = lims->imsl_st[1];
773 	}
774 	imf->imf_st[0] = imf->imf_st[1];
775 }
776 
777 /*
778  * Reap unreferenced sources from socket-layer filter set.
779  */
780 static void
781 imf_reap(struct in_mfilter *imf)
782 {
783 	struct ip_msource	*ims, *tims;
784 	struct in_msource	*lims;
785 
786 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
787 		lims = (struct in_msource *)ims;
788 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
789 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
790 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
791 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
792 			free(ims, M_INMFILTER);
793 			imf->imf_nsrc--;
794 		}
795 	}
796 }
797 
798 /*
799  * Purge socket-layer filter set.
800  */
801 static void
802 imf_purge(struct in_mfilter *imf)
803 {
804 	struct ip_msource	*ims, *tims;
805 
806 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
807 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
808 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
809 		free(ims, M_INMFILTER);
810 		imf->imf_nsrc--;
811 	}
812 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
813 	KASSERT(RB_EMPTY(&imf->imf_sources),
814 	    ("%s: imf_sources not empty", __func__));
815 }
816 
817 /*
818  * Look up a source filter entry for a multicast group.
819  *
820  * inm is the group descriptor to work with.
821  * haddr is the host-byte-order IPv4 address to look up.
822  * noalloc may be non-zero to suppress allocation of sources.
823  * *pims will be set to the address of the retrieved or allocated source.
824  *
825  * SMPng: NOTE: may be called with locks held.
826  * Return 0 if successful, otherwise return a non-zero error code.
827  */
828 static int
829 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
830     const int noalloc, struct ip_msource **pims)
831 {
832 	struct ip_msource	 find;
833 	struct ip_msource	*ims, *nims;
834 #ifdef KTR
835 	struct in_addr ia;
836 #endif
837 
838 	find.ims_haddr = haddr;
839 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
840 	if (ims == NULL && !noalloc) {
841 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
842 			return (ENOSPC);
843 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
844 		    M_NOWAIT | M_ZERO);
845 		if (nims == NULL)
846 			return (ENOMEM);
847 		nims->ims_haddr = haddr;
848 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
849 		++inm->inm_nsrc;
850 		ims = nims;
851 #ifdef KTR
852 		ia.s_addr = htonl(haddr);
853 		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
854 		    inet_ntoa(ia), ims);
855 #endif
856 	}
857 
858 	*pims = ims;
859 	return (0);
860 }
861 
862 /*
863  * Merge socket-layer source into IGMP-layer source.
864  * If rollback is non-zero, perform the inverse of the merge.
865  */
866 static void
867 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
868     const int rollback)
869 {
870 	int n = rollback ? -1 : 1;
871 #ifdef KTR
872 	struct in_addr ia;
873 
874 	ia.s_addr = htonl(ims->ims_haddr);
875 #endif
876 
877 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
878 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
879 		    __func__, n, inet_ntoa(ia));
880 		ims->ims_st[1].ex -= n;
881 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
882 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
883 		    __func__, n, inet_ntoa(ia));
884 		ims->ims_st[1].in -= n;
885 	}
886 
887 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
888 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
889 		    __func__, n, inet_ntoa(ia));
890 		ims->ims_st[1].ex += n;
891 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
892 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
893 		    __func__, n, inet_ntoa(ia));
894 		ims->ims_st[1].in += n;
895 	}
896 }
897 
898 /*
899  * Atomically update the global in_multi state, when a membership's
900  * filter list is being updated in any way.
901  *
902  * imf is the per-inpcb-membership group filter pointer.
903  * A fake imf may be passed for in-kernel consumers.
904  *
905  * XXX This is a candidate for a set-symmetric-difference style loop
906  * which would eliminate the repeated lookup from root of ims nodes,
907  * as they share the same key space.
908  *
909  * If any error occurred this function will back out of refcounts
910  * and return a non-zero value.
911  */
912 static int
913 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
914 {
915 	struct ip_msource	*ims, *nims;
916 	struct in_msource	*lims;
917 	int			 schanged, error;
918 	int			 nsrc0, nsrc1;
919 
920 	schanged = 0;
921 	error = 0;
922 	nsrc1 = nsrc0 = 0;
923 
924 	/*
925 	 * Update the source filters first, as this may fail.
926 	 * Maintain count of in-mode filters at t0, t1. These are
927 	 * used to work out if we transition into ASM mode or not.
928 	 * Maintain a count of source filters whose state was
929 	 * actually modified by this operation.
930 	 */
931 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
932 		lims = (struct in_msource *)ims;
933 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
934 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
935 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
936 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
937 		++schanged;
938 		if (error)
939 			break;
940 		ims_merge(nims, lims, 0);
941 	}
942 	if (error) {
943 		struct ip_msource *bims;
944 
945 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
946 			lims = (struct in_msource *)ims;
947 			if (lims->imsl_st[0] == lims->imsl_st[1])
948 				continue;
949 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
950 			if (bims == NULL)
951 				continue;
952 			ims_merge(bims, lims, 1);
953 		}
954 		goto out_reap;
955 	}
956 
957 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
958 	    __func__, nsrc0, nsrc1);
959 
960 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
961 	if (imf->imf_st[0] == imf->imf_st[1] &&
962 	    imf->imf_st[1] == MCAST_INCLUDE) {
963 		if (nsrc1 == 0) {
964 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
965 			--inm->inm_st[1].iss_in;
966 		}
967 	}
968 
969 	/* Handle filter mode transition on socket. */
970 	if (imf->imf_st[0] != imf->imf_st[1]) {
971 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
972 		    __func__, imf->imf_st[0], imf->imf_st[1]);
973 
974 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
975 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
976 			--inm->inm_st[1].iss_ex;
977 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
978 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
979 			--inm->inm_st[1].iss_in;
980 		}
981 
982 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
983 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
984 			inm->inm_st[1].iss_ex++;
985 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
986 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
987 			inm->inm_st[1].iss_in++;
988 		}
989 	}
990 
991 	/*
992 	 * Track inm filter state in terms of listener counts.
993 	 * If there are any exclusive listeners, stack-wide
994 	 * membership is exclusive.
995 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
996 	 * If no listeners remain, state is undefined at t1,
997 	 * and the IGMP lifecycle for this group should finish.
998 	 */
999 	if (inm->inm_st[1].iss_ex > 0) {
1000 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1001 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1002 	} else if (inm->inm_st[1].iss_in > 0) {
1003 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1004 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1005 	} else {
1006 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1007 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1008 	}
1009 
1010 	/* Decrement ASM listener count on transition out of ASM mode. */
1011 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1012 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1013 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1014 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1015 			--inm->inm_st[1].iss_asm;
1016 	}
1017 
1018 	/* Increment ASM listener count on transition to ASM mode. */
1019 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1020 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1021 		inm->inm_st[1].iss_asm++;
1022 	}
1023 
1024 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1025 	inm_print(inm);
1026 
1027 out_reap:
1028 	if (schanged > 0) {
1029 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1030 		inm_reap(inm);
1031 	}
1032 	return (error);
1033 }
1034 
1035 /*
1036  * Mark an in_multi's filter set deltas as committed.
1037  * Called by IGMP after a state change has been enqueued.
1038  */
1039 void
1040 inm_commit(struct in_multi *inm)
1041 {
1042 	struct ip_msource	*ims;
1043 
1044 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1045 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1046 	inm_print(inm);
1047 
1048 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1049 		ims->ims_st[0] = ims->ims_st[1];
1050 	}
1051 	inm->inm_st[0] = inm->inm_st[1];
1052 }
1053 
1054 /*
1055  * Reap unreferenced nodes from an in_multi's filter set.
1056  */
1057 static void
1058 inm_reap(struct in_multi *inm)
1059 {
1060 	struct ip_msource	*ims, *tims;
1061 
1062 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1063 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1064 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1065 		    ims->ims_stp != 0)
1066 			continue;
1067 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1068 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1069 		free(ims, M_IPMSOURCE);
1070 		inm->inm_nsrc--;
1071 	}
1072 }
1073 
1074 /*
1075  * Purge all source nodes from an in_multi's filter set.
1076  */
1077 static void
1078 inm_purge(struct in_multi *inm)
1079 {
1080 	struct ip_msource	*ims, *tims;
1081 
1082 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1083 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1084 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1085 		free(ims, M_IPMSOURCE);
1086 		inm->inm_nsrc--;
1087 	}
1088 }
1089 
1090 /*
1091  * Join a multicast group; unlocked entry point.
1092  *
1093  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1094  * is not held. Fortunately, ifp is unlikely to have been detached
1095  * at this point, so we assume it's OK to recurse.
1096  */
1097 int
1098 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1099     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1100 {
1101 	int error;
1102 
1103 	IN_MULTI_LOCK();
1104 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1105 	IN_MULTI_UNLOCK();
1106 
1107 	return (error);
1108 }
1109 
1110 /*
1111  * Join a multicast group; real entry point.
1112  *
1113  * Only preserves atomicity at inm level.
1114  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1115  *
1116  * If the IGMP downcall fails, the group is not joined, and an error
1117  * code is returned.
1118  */
1119 int
1120 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1121     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1122 {
1123 	struct in_mfilter	 timf;
1124 	struct in_multi		*inm;
1125 	int			 error;
1126 
1127 	IN_MULTI_LOCK_ASSERT();
1128 
1129 	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1130 	    inet_ntoa(*gina), ifp, ifp->if_xname);
1131 
1132 	error = 0;
1133 	inm = NULL;
1134 
1135 	/*
1136 	 * If no imf was specified (i.e. kernel consumer),
1137 	 * fake one up and assume it is an ASM join.
1138 	 */
1139 	if (imf == NULL) {
1140 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1141 		imf = &timf;
1142 	}
1143 
1144 	error = in_getmulti(ifp, gina, &inm);
1145 	if (error) {
1146 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1147 		return (error);
1148 	}
1149 
1150 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1151 	error = inm_merge(inm, imf);
1152 	if (error) {
1153 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1154 		goto out_inm_release;
1155 	}
1156 
1157 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1158 	error = igmp_change_state(inm);
1159 	if (error) {
1160 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1161 		goto out_inm_release;
1162 	}
1163 
1164 out_inm_release:
1165 	if (error) {
1166 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1167 		inm_release_locked(inm);
1168 	} else {
1169 		*pinm = inm;
1170 	}
1171 
1172 	return (error);
1173 }
1174 
1175 /*
1176  * Leave a multicast group; unlocked entry point.
1177  */
1178 int
1179 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1180 {
1181 	int error;
1182 
1183 	IN_MULTI_LOCK();
1184 	error = in_leavegroup_locked(inm, imf);
1185 	IN_MULTI_UNLOCK();
1186 
1187 	return (error);
1188 }
1189 
1190 /*
1191  * Leave a multicast group; real entry point.
1192  * All source filters will be expunged.
1193  *
1194  * Only preserves atomicity at inm level.
1195  *
1196  * Holding the write lock for the INP which contains imf
1197  * is highly advisable. We can't assert for it as imf does not
1198  * contain a back-pointer to the owning inp.
1199  *
1200  * Note: This is not the same as inm_release(*) as this function also
1201  * makes a state change downcall into IGMP.
1202  */
1203 int
1204 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1205 {
1206 	struct in_mfilter	 timf;
1207 	int			 error;
1208 
1209 	error = 0;
1210 
1211 	IN_MULTI_LOCK_ASSERT();
1212 
1213 	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1214 	    inm, inet_ntoa(inm->inm_addr),
1215 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1216 	    imf);
1217 
1218 	/*
1219 	 * If no imf was specified (i.e. kernel consumer),
1220 	 * fake one up and assume it is an ASM join.
1221 	 */
1222 	if (imf == NULL) {
1223 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1224 		imf = &timf;
1225 	}
1226 
1227 	/*
1228 	 * Begin state merge transaction at IGMP layer.
1229 	 *
1230 	 * As this particular invocation should not cause any memory
1231 	 * to be allocated, and there is no opportunity to roll back
1232 	 * the transaction, it MUST NOT fail.
1233 	 */
1234 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1235 	error = inm_merge(inm, imf);
1236 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1237 
1238 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1239 	error = igmp_change_state(inm);
1240 	if (error)
1241 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1242 
1243 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1244 	inm_release_locked(inm);
1245 
1246 	return (error);
1247 }
1248 
1249 /*#ifndef BURN_BRIDGES*/
1250 /*
1251  * Join an IPv4 multicast group in (*,G) exclusive mode.
1252  * The group must be a 224.0.0.0/24 link-scope group.
1253  * This KPI is for legacy kernel consumers only.
1254  */
1255 struct in_multi *
1256 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1257 {
1258 	struct in_multi *pinm;
1259 	int error;
1260 
1261 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1262 	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1263 
1264 	error = in_joingroup(ifp, ap, NULL, &pinm);
1265 	if (error != 0)
1266 		pinm = NULL;
1267 
1268 	return (pinm);
1269 }
1270 
1271 /*
1272  * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1273  * This KPI is for legacy kernel consumers only.
1274  */
1275 void
1276 in_delmulti(struct in_multi *inm)
1277 {
1278 
1279 	(void)in_leavegroup(inm, NULL);
1280 }
1281 /*#endif*/
1282 
1283 /*
1284  * Block or unblock an ASM multicast source on an inpcb.
1285  * This implements the delta-based API described in RFC 3678.
1286  *
1287  * The delta-based API applies only to exclusive-mode memberships.
1288  * An IGMP downcall will be performed.
1289  *
1290  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1291  *
1292  * Return 0 if successful, otherwise return an appropriate error code.
1293  */
1294 static int
1295 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1296 {
1297 	struct group_source_req		 gsr;
1298 	sockunion_t			*gsa, *ssa;
1299 	struct ifnet			*ifp;
1300 	struct in_mfilter		*imf;
1301 	struct ip_moptions		*imo;
1302 	struct in_msource		*ims;
1303 	struct in_multi			*inm;
1304 	size_t				 idx;
1305 	uint16_t			 fmode;
1306 	int				 error, doblock;
1307 
1308 	ifp = NULL;
1309 	error = 0;
1310 	doblock = 0;
1311 
1312 	memset(&gsr, 0, sizeof(struct group_source_req));
1313 	gsa = (sockunion_t *)&gsr.gsr_group;
1314 	ssa = (sockunion_t *)&gsr.gsr_source;
1315 
1316 	switch (sopt->sopt_name) {
1317 	case IP_BLOCK_SOURCE:
1318 	case IP_UNBLOCK_SOURCE: {
1319 		struct ip_mreq_source	 mreqs;
1320 
1321 		error = sooptcopyin(sopt, &mreqs,
1322 		    sizeof(struct ip_mreq_source),
1323 		    sizeof(struct ip_mreq_source));
1324 		if (error)
1325 			return (error);
1326 
1327 		gsa->sin.sin_family = AF_INET;
1328 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1329 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1330 
1331 		ssa->sin.sin_family = AF_INET;
1332 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1333 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1334 
1335 		if (!in_nullhost(mreqs.imr_interface))
1336 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1337 
1338 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1339 			doblock = 1;
1340 
1341 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1342 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1343 		break;
1344 	    }
1345 
1346 	case MCAST_BLOCK_SOURCE:
1347 	case MCAST_UNBLOCK_SOURCE:
1348 		error = sooptcopyin(sopt, &gsr,
1349 		    sizeof(struct group_source_req),
1350 		    sizeof(struct group_source_req));
1351 		if (error)
1352 			return (error);
1353 
1354 		if (gsa->sin.sin_family != AF_INET ||
1355 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1356 			return (EINVAL);
1357 
1358 		if (ssa->sin.sin_family != AF_INET ||
1359 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1360 			return (EINVAL);
1361 
1362 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1363 			return (EADDRNOTAVAIL);
1364 
1365 		ifp = ifnet_byindex(gsr.gsr_interface);
1366 
1367 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1368 			doblock = 1;
1369 		break;
1370 
1371 	default:
1372 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1373 		    __func__, sopt->sopt_name);
1374 		return (EOPNOTSUPP);
1375 		break;
1376 	}
1377 
1378 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1379 		return (EINVAL);
1380 
1381 	/*
1382 	 * Check if we are actually a member of this group.
1383 	 */
1384 	imo = inp_findmoptions(inp);
1385 	idx = imo_match_group(imo, ifp, &gsa->sa);
1386 	if (idx == -1 || imo->imo_mfilters == NULL) {
1387 		error = EADDRNOTAVAIL;
1388 		goto out_inp_locked;
1389 	}
1390 
1391 	KASSERT(imo->imo_mfilters != NULL,
1392 	    ("%s: imo_mfilters not allocated", __func__));
1393 	imf = &imo->imo_mfilters[idx];
1394 	inm = imo->imo_membership[idx];
1395 
1396 	/*
1397 	 * Attempting to use the delta-based API on an
1398 	 * non exclusive-mode membership is an error.
1399 	 */
1400 	fmode = imf->imf_st[0];
1401 	if (fmode != MCAST_EXCLUDE) {
1402 		error = EINVAL;
1403 		goto out_inp_locked;
1404 	}
1405 
1406 	/*
1407 	 * Deal with error cases up-front:
1408 	 *  Asked to block, but already blocked; or
1409 	 *  Asked to unblock, but nothing to unblock.
1410 	 * If adding a new block entry, allocate it.
1411 	 */
1412 	ims = imo_match_source(imo, idx, &ssa->sa);
1413 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1414 		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1415 		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1416 		error = EADDRNOTAVAIL;
1417 		goto out_inp_locked;
1418 	}
1419 
1420 	INP_WLOCK_ASSERT(inp);
1421 
1422 	/*
1423 	 * Begin state merge transaction at socket layer.
1424 	 */
1425 	if (doblock) {
1426 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1427 		ims = imf_graft(imf, fmode, &ssa->sin);
1428 		if (ims == NULL)
1429 			error = ENOMEM;
1430 	} else {
1431 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1432 		error = imf_prune(imf, &ssa->sin);
1433 	}
1434 
1435 	if (error) {
1436 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1437 		goto out_imf_rollback;
1438 	}
1439 
1440 	/*
1441 	 * Begin state merge transaction at IGMP layer.
1442 	 */
1443 	IN_MULTI_LOCK();
1444 
1445 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1446 	error = inm_merge(inm, imf);
1447 	if (error) {
1448 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1449 		goto out_imf_rollback;
1450 	}
1451 
1452 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1453 	error = igmp_change_state(inm);
1454 	if (error)
1455 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1456 
1457 	IN_MULTI_UNLOCK();
1458 
1459 out_imf_rollback:
1460 	if (error)
1461 		imf_rollback(imf);
1462 	else
1463 		imf_commit(imf);
1464 
1465 	imf_reap(imf);
1466 
1467 out_inp_locked:
1468 	INP_WUNLOCK(inp);
1469 	return (error);
1470 }
1471 
1472 /*
1473  * Given an inpcb, return its multicast options structure pointer.  Accepts
1474  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1475  *
1476  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1477  * SMPng: NOTE: Returns with the INP write lock held.
1478  */
1479 static struct ip_moptions *
1480 inp_findmoptions(struct inpcb *inp)
1481 {
1482 	struct ip_moptions	 *imo;
1483 	struct in_multi		**immp;
1484 	struct in_mfilter	 *imfp;
1485 	size_t			  idx;
1486 
1487 	INP_WLOCK(inp);
1488 	if (inp->inp_moptions != NULL)
1489 		return (inp->inp_moptions);
1490 
1491 	INP_WUNLOCK(inp);
1492 
1493 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1494 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1495 	    M_WAITOK | M_ZERO);
1496 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1497 	    M_INMFILTER, M_WAITOK);
1498 
1499 	imo->imo_multicast_ifp = NULL;
1500 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1501 	imo->imo_multicast_vif = -1;
1502 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1503 	imo->imo_multicast_loop = in_mcast_loop;
1504 	imo->imo_num_memberships = 0;
1505 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1506 	imo->imo_membership = immp;
1507 
1508 	/* Initialize per-group source filters. */
1509 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1510 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1511 	imo->imo_mfilters = imfp;
1512 
1513 	INP_WLOCK(inp);
1514 	if (inp->inp_moptions != NULL) {
1515 		free(imfp, M_INMFILTER);
1516 		free(immp, M_IPMOPTS);
1517 		free(imo, M_IPMOPTS);
1518 		return (inp->inp_moptions);
1519 	}
1520 	inp->inp_moptions = imo;
1521 	return (imo);
1522 }
1523 
1524 /*
1525  * Discard the IP multicast options (and source filters).  To minimize
1526  * the amount of work done while holding locks such as the INP's
1527  * pcbinfo lock (which is used in the receive path), the free
1528  * operation is performed asynchronously in a separate task.
1529  *
1530  * SMPng: NOTE: assumes INP write lock is held.
1531  */
1532 void
1533 inp_freemoptions(struct ip_moptions *imo)
1534 {
1535 
1536 	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1537 	IN_MULTI_LOCK();
1538 	STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link);
1539 	IN_MULTI_UNLOCK();
1540 	taskqueue_enqueue(taskqueue_thread, &imo_gc_task);
1541 }
1542 
1543 static void
1544 inp_freemoptions_internal(struct ip_moptions *imo)
1545 {
1546 	struct in_mfilter	*imf;
1547 	size_t			 idx, nmships;
1548 
1549 	nmships = imo->imo_num_memberships;
1550 	for (idx = 0; idx < nmships; ++idx) {
1551 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1552 		if (imf)
1553 			imf_leave(imf);
1554 		(void)in_leavegroup(imo->imo_membership[idx], imf);
1555 		if (imf)
1556 			imf_purge(imf);
1557 	}
1558 
1559 	if (imo->imo_mfilters)
1560 		free(imo->imo_mfilters, M_INMFILTER);
1561 	free(imo->imo_membership, M_IPMOPTS);
1562 	free(imo, M_IPMOPTS);
1563 }
1564 
1565 static void
1566 inp_gcmoptions(void *context, int pending)
1567 {
1568 	struct ip_moptions *imo;
1569 
1570 	IN_MULTI_LOCK();
1571 	while (!STAILQ_EMPTY(&imo_gc_list)) {
1572 		imo = STAILQ_FIRST(&imo_gc_list);
1573 		STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link);
1574 		IN_MULTI_UNLOCK();
1575 		inp_freemoptions_internal(imo);
1576 		IN_MULTI_LOCK();
1577 	}
1578 	IN_MULTI_UNLOCK();
1579 }
1580 
1581 /*
1582  * Atomically get source filters on a socket for an IPv4 multicast group.
1583  * Called with INP lock held; returns with lock released.
1584  */
1585 static int
1586 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1587 {
1588 	struct __msfilterreq	 msfr;
1589 	sockunion_t		*gsa;
1590 	struct ifnet		*ifp;
1591 	struct ip_moptions	*imo;
1592 	struct in_mfilter	*imf;
1593 	struct ip_msource	*ims;
1594 	struct in_msource	*lims;
1595 	struct sockaddr_in	*psin;
1596 	struct sockaddr_storage	*ptss;
1597 	struct sockaddr_storage	*tss;
1598 	int			 error;
1599 	size_t			 idx, nsrcs, ncsrcs;
1600 
1601 	INP_WLOCK_ASSERT(inp);
1602 
1603 	imo = inp->inp_moptions;
1604 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1605 
1606 	INP_WUNLOCK(inp);
1607 
1608 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1609 	    sizeof(struct __msfilterreq));
1610 	if (error)
1611 		return (error);
1612 
1613 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1614 		return (EINVAL);
1615 
1616 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1617 	if (ifp == NULL)
1618 		return (EINVAL);
1619 
1620 	INP_WLOCK(inp);
1621 
1622 	/*
1623 	 * Lookup group on the socket.
1624 	 */
1625 	gsa = (sockunion_t *)&msfr.msfr_group;
1626 	idx = imo_match_group(imo, ifp, &gsa->sa);
1627 	if (idx == -1 || imo->imo_mfilters == NULL) {
1628 		INP_WUNLOCK(inp);
1629 		return (EADDRNOTAVAIL);
1630 	}
1631 	imf = &imo->imo_mfilters[idx];
1632 
1633 	/*
1634 	 * Ignore memberships which are in limbo.
1635 	 */
1636 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1637 		INP_WUNLOCK(inp);
1638 		return (EAGAIN);
1639 	}
1640 	msfr.msfr_fmode = imf->imf_st[1];
1641 
1642 	/*
1643 	 * If the user specified a buffer, copy out the source filter
1644 	 * entries to userland gracefully.
1645 	 * We only copy out the number of entries which userland
1646 	 * has asked for, but we always tell userland how big the
1647 	 * buffer really needs to be.
1648 	 */
1649 	tss = NULL;
1650 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1651 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1652 		    M_TEMP, M_NOWAIT | M_ZERO);
1653 		if (tss == NULL) {
1654 			INP_WUNLOCK(inp);
1655 			return (ENOBUFS);
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * Count number of sources in-mode at t0.
1661 	 * If buffer space exists and remains, copy out source entries.
1662 	 */
1663 	nsrcs = msfr.msfr_nsrcs;
1664 	ncsrcs = 0;
1665 	ptss = tss;
1666 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1667 		lims = (struct in_msource *)ims;
1668 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1669 		    lims->imsl_st[0] != imf->imf_st[0])
1670 			continue;
1671 		++ncsrcs;
1672 		if (tss != NULL && nsrcs > 0) {
1673 			psin = (struct sockaddr_in *)ptss;
1674 			psin->sin_family = AF_INET;
1675 			psin->sin_len = sizeof(struct sockaddr_in);
1676 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1677 			psin->sin_port = 0;
1678 			++ptss;
1679 			--nsrcs;
1680 		}
1681 	}
1682 
1683 	INP_WUNLOCK(inp);
1684 
1685 	if (tss != NULL) {
1686 		error = copyout(tss, msfr.msfr_srcs,
1687 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1688 		free(tss, M_TEMP);
1689 		if (error)
1690 			return (error);
1691 	}
1692 
1693 	msfr.msfr_nsrcs = ncsrcs;
1694 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1695 
1696 	return (error);
1697 }
1698 
1699 /*
1700  * Return the IP multicast options in response to user getsockopt().
1701  */
1702 int
1703 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1704 {
1705 	struct ip_mreqn		 mreqn;
1706 	struct ip_moptions	*imo;
1707 	struct ifnet		*ifp;
1708 	struct in_ifaddr	*ia;
1709 	int			 error, optval;
1710 	u_char			 coptval;
1711 
1712 	INP_WLOCK(inp);
1713 	imo = inp->inp_moptions;
1714 	/*
1715 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1716 	 * or is a divert socket, reject it.
1717 	 */
1718 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1719 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1720 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1721 		INP_WUNLOCK(inp);
1722 		return (EOPNOTSUPP);
1723 	}
1724 
1725 	error = 0;
1726 	switch (sopt->sopt_name) {
1727 	case IP_MULTICAST_VIF:
1728 		if (imo != NULL)
1729 			optval = imo->imo_multicast_vif;
1730 		else
1731 			optval = -1;
1732 		INP_WUNLOCK(inp);
1733 		error = sooptcopyout(sopt, &optval, sizeof(int));
1734 		break;
1735 
1736 	case IP_MULTICAST_IF:
1737 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1738 		if (imo != NULL) {
1739 			ifp = imo->imo_multicast_ifp;
1740 			if (!in_nullhost(imo->imo_multicast_addr)) {
1741 				mreqn.imr_address = imo->imo_multicast_addr;
1742 			} else if (ifp != NULL) {
1743 				mreqn.imr_ifindex = ifp->if_index;
1744 				IFP_TO_IA(ifp, ia);
1745 				if (ia != NULL) {
1746 					mreqn.imr_address =
1747 					    IA_SIN(ia)->sin_addr;
1748 					ifa_free(&ia->ia_ifa);
1749 				}
1750 			}
1751 		}
1752 		INP_WUNLOCK(inp);
1753 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1754 			error = sooptcopyout(sopt, &mreqn,
1755 			    sizeof(struct ip_mreqn));
1756 		} else {
1757 			error = sooptcopyout(sopt, &mreqn.imr_address,
1758 			    sizeof(struct in_addr));
1759 		}
1760 		break;
1761 
1762 	case IP_MULTICAST_TTL:
1763 		if (imo == 0)
1764 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1765 		else
1766 			optval = coptval = imo->imo_multicast_ttl;
1767 		INP_WUNLOCK(inp);
1768 		if (sopt->sopt_valsize == sizeof(u_char))
1769 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1770 		else
1771 			error = sooptcopyout(sopt, &optval, sizeof(int));
1772 		break;
1773 
1774 	case IP_MULTICAST_LOOP:
1775 		if (imo == 0)
1776 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1777 		else
1778 			optval = coptval = imo->imo_multicast_loop;
1779 		INP_WUNLOCK(inp);
1780 		if (sopt->sopt_valsize == sizeof(u_char))
1781 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1782 		else
1783 			error = sooptcopyout(sopt, &optval, sizeof(int));
1784 		break;
1785 
1786 	case IP_MSFILTER:
1787 		if (imo == NULL) {
1788 			error = EADDRNOTAVAIL;
1789 			INP_WUNLOCK(inp);
1790 		} else {
1791 			error = inp_get_source_filters(inp, sopt);
1792 		}
1793 		break;
1794 
1795 	default:
1796 		INP_WUNLOCK(inp);
1797 		error = ENOPROTOOPT;
1798 		break;
1799 	}
1800 
1801 	INP_UNLOCK_ASSERT(inp);
1802 
1803 	return (error);
1804 }
1805 
1806 /*
1807  * Look up the ifnet to use for a multicast group membership,
1808  * given the IPv4 address of an interface, and the IPv4 group address.
1809  *
1810  * This routine exists to support legacy multicast applications
1811  * which do not understand that multicast memberships are scoped to
1812  * specific physical links in the networking stack, or which need
1813  * to join link-scope groups before IPv4 addresses are configured.
1814  *
1815  * If inp is non-NULL, use this socket's current FIB number for any
1816  * required FIB lookup.
1817  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1818  * and use its ifp; usually, this points to the default next-hop.
1819  *
1820  * If the FIB lookup fails, attempt to use the first non-loopback
1821  * interface with multicast capability in the system as a
1822  * last resort. The legacy IPv4 ASM API requires that we do
1823  * this in order to allow groups to be joined when the routing
1824  * table has not yet been populated during boot.
1825  *
1826  * Returns NULL if no ifp could be found.
1827  *
1828  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1829  * FUTURE: Implement IPv4 source-address selection.
1830  */
1831 static struct ifnet *
1832 inp_lookup_mcast_ifp(const struct inpcb *inp,
1833     const struct sockaddr_in *gsin, const struct in_addr ina)
1834 {
1835 	struct ifnet *ifp;
1836 
1837 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1838 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1839 	    ("%s: not multicast", __func__));
1840 
1841 	ifp = NULL;
1842 	if (!in_nullhost(ina)) {
1843 		INADDR_TO_IFP(ina, ifp);
1844 	} else {
1845 		struct route ro;
1846 
1847 		ro.ro_rt = NULL;
1848 		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1849 		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1850 		if (ro.ro_rt != NULL) {
1851 			ifp = ro.ro_rt->rt_ifp;
1852 			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1853 			RTFREE(ro.ro_rt);
1854 		} else {
1855 			struct in_ifaddr *ia;
1856 			struct ifnet *mifp;
1857 
1858 			mifp = NULL;
1859 			IN_IFADDR_RLOCK();
1860 			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1861 				mifp = ia->ia_ifp;
1862 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1863 				     (mifp->if_flags & IFF_MULTICAST)) {
1864 					ifp = mifp;
1865 					break;
1866 				}
1867 			}
1868 			IN_IFADDR_RUNLOCK();
1869 		}
1870 	}
1871 
1872 	return (ifp);
1873 }
1874 
1875 /*
1876  * Join an IPv4 multicast group, possibly with a source.
1877  */
1878 static int
1879 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1880 {
1881 	struct group_source_req		 gsr;
1882 	sockunion_t			*gsa, *ssa;
1883 	struct ifnet			*ifp;
1884 	struct in_mfilter		*imf;
1885 	struct ip_moptions		*imo;
1886 	struct in_multi			*inm;
1887 	struct in_msource		*lims;
1888 	size_t				 idx;
1889 	int				 error, is_new;
1890 
1891 	ifp = NULL;
1892 	imf = NULL;
1893 	lims = NULL;
1894 	error = 0;
1895 	is_new = 0;
1896 
1897 	memset(&gsr, 0, sizeof(struct group_source_req));
1898 	gsa = (sockunion_t *)&gsr.gsr_group;
1899 	gsa->ss.ss_family = AF_UNSPEC;
1900 	ssa = (sockunion_t *)&gsr.gsr_source;
1901 	ssa->ss.ss_family = AF_UNSPEC;
1902 
1903 	switch (sopt->sopt_name) {
1904 	case IP_ADD_MEMBERSHIP:
1905 	case IP_ADD_SOURCE_MEMBERSHIP: {
1906 		struct ip_mreq_source	 mreqs;
1907 
1908 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1909 			error = sooptcopyin(sopt, &mreqs,
1910 			    sizeof(struct ip_mreq),
1911 			    sizeof(struct ip_mreq));
1912 			/*
1913 			 * Do argument switcharoo from ip_mreq into
1914 			 * ip_mreq_source to avoid using two instances.
1915 			 */
1916 			mreqs.imr_interface = mreqs.imr_sourceaddr;
1917 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1918 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1919 			error = sooptcopyin(sopt, &mreqs,
1920 			    sizeof(struct ip_mreq_source),
1921 			    sizeof(struct ip_mreq_source));
1922 		}
1923 		if (error)
1924 			return (error);
1925 
1926 		gsa->sin.sin_family = AF_INET;
1927 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1928 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1929 
1930 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1931 			ssa->sin.sin_family = AF_INET;
1932 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1933 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1934 		}
1935 
1936 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1937 			return (EINVAL);
1938 
1939 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1940 		    mreqs.imr_interface);
1941 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1942 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1943 		break;
1944 	}
1945 
1946 	case MCAST_JOIN_GROUP:
1947 	case MCAST_JOIN_SOURCE_GROUP:
1948 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1949 			error = sooptcopyin(sopt, &gsr,
1950 			    sizeof(struct group_req),
1951 			    sizeof(struct group_req));
1952 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1953 			error = sooptcopyin(sopt, &gsr,
1954 			    sizeof(struct group_source_req),
1955 			    sizeof(struct group_source_req));
1956 		}
1957 		if (error)
1958 			return (error);
1959 
1960 		if (gsa->sin.sin_family != AF_INET ||
1961 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1962 			return (EINVAL);
1963 
1964 		/*
1965 		 * Overwrite the port field if present, as the sockaddr
1966 		 * being copied in may be matched with a binary comparison.
1967 		 */
1968 		gsa->sin.sin_port = 0;
1969 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1970 			if (ssa->sin.sin_family != AF_INET ||
1971 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1972 				return (EINVAL);
1973 			ssa->sin.sin_port = 0;
1974 		}
1975 
1976 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1977 			return (EINVAL);
1978 
1979 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1980 			return (EADDRNOTAVAIL);
1981 		ifp = ifnet_byindex(gsr.gsr_interface);
1982 		break;
1983 
1984 	default:
1985 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1986 		    __func__, sopt->sopt_name);
1987 		return (EOPNOTSUPP);
1988 		break;
1989 	}
1990 
1991 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1992 		return (EADDRNOTAVAIL);
1993 
1994 	imo = inp_findmoptions(inp);
1995 	idx = imo_match_group(imo, ifp, &gsa->sa);
1996 	if (idx == -1) {
1997 		is_new = 1;
1998 	} else {
1999 		inm = imo->imo_membership[idx];
2000 		imf = &imo->imo_mfilters[idx];
2001 		if (ssa->ss.ss_family != AF_UNSPEC) {
2002 			/*
2003 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2004 			 * is an error. On an existing inclusive membership,
2005 			 * it just adds the source to the filter list.
2006 			 */
2007 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2008 				error = EINVAL;
2009 				goto out_inp_locked;
2010 			}
2011 			/*
2012 			 * Throw out duplicates.
2013 			 *
2014 			 * XXX FIXME: This makes a naive assumption that
2015 			 * even if entries exist for *ssa in this imf,
2016 			 * they will be rejected as dupes, even if they
2017 			 * are not valid in the current mode (in-mode).
2018 			 *
2019 			 * in_msource is transactioned just as for anything
2020 			 * else in SSM -- but note naive use of inm_graft()
2021 			 * below for allocating new filter entries.
2022 			 *
2023 			 * This is only an issue if someone mixes the
2024 			 * full-state SSM API with the delta-based API,
2025 			 * which is discouraged in the relevant RFCs.
2026 			 */
2027 			lims = imo_match_source(imo, idx, &ssa->sa);
2028 			if (lims != NULL /*&&
2029 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2030 				error = EADDRNOTAVAIL;
2031 				goto out_inp_locked;
2032 			}
2033 		} else {
2034 			/*
2035 			 * MCAST_JOIN_GROUP on an existing exclusive
2036 			 * membership is an error; return EADDRINUSE
2037 			 * to preserve 4.4BSD API idempotence, and
2038 			 * avoid tedious detour to code below.
2039 			 * NOTE: This is bending RFC 3678 a bit.
2040 			 *
2041 			 * On an existing inclusive membership, this is also
2042 			 * an error; if you want to change filter mode,
2043 			 * you must use the userland API setsourcefilter().
2044 			 * XXX We don't reject this for imf in UNDEFINED
2045 			 * state at t1, because allocation of a filter
2046 			 * is atomic with allocation of a membership.
2047 			 */
2048 			error = EINVAL;
2049 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2050 				error = EADDRINUSE;
2051 			goto out_inp_locked;
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * Begin state merge transaction at socket layer.
2057 	 */
2058 	INP_WLOCK_ASSERT(inp);
2059 
2060 	if (is_new) {
2061 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2062 			error = imo_grow(imo);
2063 			if (error)
2064 				goto out_inp_locked;
2065 		}
2066 		/*
2067 		 * Allocate the new slot upfront so we can deal with
2068 		 * grafting the new source filter in same code path
2069 		 * as for join-source on existing membership.
2070 		 */
2071 		idx = imo->imo_num_memberships;
2072 		imo->imo_membership[idx] = NULL;
2073 		imo->imo_num_memberships++;
2074 		KASSERT(imo->imo_mfilters != NULL,
2075 		    ("%s: imf_mfilters vector was not allocated", __func__));
2076 		imf = &imo->imo_mfilters[idx];
2077 		KASSERT(RB_EMPTY(&imf->imf_sources),
2078 		    ("%s: imf_sources not empty", __func__));
2079 	}
2080 
2081 	/*
2082 	 * Graft new source into filter list for this inpcb's
2083 	 * membership of the group. The in_multi may not have
2084 	 * been allocated yet if this is a new membership, however,
2085 	 * the in_mfilter slot will be allocated and must be initialized.
2086 	 *
2087 	 * Note: Grafting of exclusive mode filters doesn't happen
2088 	 * in this path.
2089 	 * XXX: Should check for non-NULL lims (node exists but may
2090 	 * not be in-mode) for interop with full-state API.
2091 	 */
2092 	if (ssa->ss.ss_family != AF_UNSPEC) {
2093 		/* Membership starts in IN mode */
2094 		if (is_new) {
2095 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2096 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2097 		} else {
2098 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2099 		}
2100 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2101 		if (lims == NULL) {
2102 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2103 			    __func__);
2104 			error = ENOMEM;
2105 			goto out_imo_free;
2106 		}
2107 	} else {
2108 		/* No address specified; Membership starts in EX mode */
2109 		if (is_new) {
2110 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2111 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * Begin state merge transaction at IGMP layer.
2117 	 */
2118 	IN_MULTI_LOCK();
2119 
2120 	if (is_new) {
2121 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2122 		    &inm);
2123 		if (error)
2124 			goto out_imo_free;
2125 		imo->imo_membership[idx] = inm;
2126 	} else {
2127 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2128 		error = inm_merge(inm, imf);
2129 		if (error) {
2130 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2131 			    __func__);
2132 			goto out_imf_rollback;
2133 		}
2134 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2135 		error = igmp_change_state(inm);
2136 		if (error) {
2137 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2138 			    __func__);
2139 			goto out_imf_rollback;
2140 		}
2141 	}
2142 
2143 	IN_MULTI_UNLOCK();
2144 
2145 out_imf_rollback:
2146 	INP_WLOCK_ASSERT(inp);
2147 	if (error) {
2148 		imf_rollback(imf);
2149 		if (is_new)
2150 			imf_purge(imf);
2151 		else
2152 			imf_reap(imf);
2153 	} else {
2154 		imf_commit(imf);
2155 	}
2156 
2157 out_imo_free:
2158 	if (error && is_new) {
2159 		imo->imo_membership[idx] = NULL;
2160 		--imo->imo_num_memberships;
2161 	}
2162 
2163 out_inp_locked:
2164 	INP_WUNLOCK(inp);
2165 	return (error);
2166 }
2167 
2168 /*
2169  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2170  */
2171 static int
2172 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2173 {
2174 	struct group_source_req		 gsr;
2175 	struct ip_mreq_source		 mreqs;
2176 	sockunion_t			*gsa, *ssa;
2177 	struct ifnet			*ifp;
2178 	struct in_mfilter		*imf;
2179 	struct ip_moptions		*imo;
2180 	struct in_msource		*ims;
2181 	struct in_multi			*inm;
2182 	size_t				 idx;
2183 	int				 error, is_final;
2184 
2185 	ifp = NULL;
2186 	error = 0;
2187 	is_final = 1;
2188 
2189 	memset(&gsr, 0, sizeof(struct group_source_req));
2190 	gsa = (sockunion_t *)&gsr.gsr_group;
2191 	gsa->ss.ss_family = AF_UNSPEC;
2192 	ssa = (sockunion_t *)&gsr.gsr_source;
2193 	ssa->ss.ss_family = AF_UNSPEC;
2194 
2195 	switch (sopt->sopt_name) {
2196 	case IP_DROP_MEMBERSHIP:
2197 	case IP_DROP_SOURCE_MEMBERSHIP:
2198 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2199 			error = sooptcopyin(sopt, &mreqs,
2200 			    sizeof(struct ip_mreq),
2201 			    sizeof(struct ip_mreq));
2202 			/*
2203 			 * Swap interface and sourceaddr arguments,
2204 			 * as ip_mreq and ip_mreq_source are laid
2205 			 * out differently.
2206 			 */
2207 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2208 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2209 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2210 			error = sooptcopyin(sopt, &mreqs,
2211 			    sizeof(struct ip_mreq_source),
2212 			    sizeof(struct ip_mreq_source));
2213 		}
2214 		if (error)
2215 			return (error);
2216 
2217 		gsa->sin.sin_family = AF_INET;
2218 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2219 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2220 
2221 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2222 			ssa->sin.sin_family = AF_INET;
2223 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2224 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2225 		}
2226 
2227 		/*
2228 		 * Attempt to look up hinted ifp from interface address.
2229 		 * Fallthrough with null ifp iff lookup fails, to
2230 		 * preserve 4.4BSD mcast API idempotence.
2231 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2232 		 * using an IPv4 address as a key is racy.
2233 		 */
2234 		if (!in_nullhost(mreqs.imr_interface))
2235 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2236 
2237 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2238 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2239 
2240 		break;
2241 
2242 	case MCAST_LEAVE_GROUP:
2243 	case MCAST_LEAVE_SOURCE_GROUP:
2244 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2245 			error = sooptcopyin(sopt, &gsr,
2246 			    sizeof(struct group_req),
2247 			    sizeof(struct group_req));
2248 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2249 			error = sooptcopyin(sopt, &gsr,
2250 			    sizeof(struct group_source_req),
2251 			    sizeof(struct group_source_req));
2252 		}
2253 		if (error)
2254 			return (error);
2255 
2256 		if (gsa->sin.sin_family != AF_INET ||
2257 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2258 			return (EINVAL);
2259 
2260 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2261 			if (ssa->sin.sin_family != AF_INET ||
2262 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2263 				return (EINVAL);
2264 		}
2265 
2266 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2267 			return (EADDRNOTAVAIL);
2268 
2269 		ifp = ifnet_byindex(gsr.gsr_interface);
2270 
2271 		if (ifp == NULL)
2272 			return (EADDRNOTAVAIL);
2273 		break;
2274 
2275 	default:
2276 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2277 		    __func__, sopt->sopt_name);
2278 		return (EOPNOTSUPP);
2279 		break;
2280 	}
2281 
2282 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2283 		return (EINVAL);
2284 
2285 	/*
2286 	 * Find the membership in the membership array.
2287 	 */
2288 	imo = inp_findmoptions(inp);
2289 	idx = imo_match_group(imo, ifp, &gsa->sa);
2290 	if (idx == -1) {
2291 		error = EADDRNOTAVAIL;
2292 		goto out_inp_locked;
2293 	}
2294 	inm = imo->imo_membership[idx];
2295 	imf = &imo->imo_mfilters[idx];
2296 
2297 	if (ssa->ss.ss_family != AF_UNSPEC)
2298 		is_final = 0;
2299 
2300 	/*
2301 	 * Begin state merge transaction at socket layer.
2302 	 */
2303 	INP_WLOCK_ASSERT(inp);
2304 
2305 	/*
2306 	 * If we were instructed only to leave a given source, do so.
2307 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2308 	 */
2309 	if (is_final) {
2310 		imf_leave(imf);
2311 	} else {
2312 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2313 			error = EADDRNOTAVAIL;
2314 			goto out_inp_locked;
2315 		}
2316 		ims = imo_match_source(imo, idx, &ssa->sa);
2317 		if (ims == NULL) {
2318 			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2319 			    inet_ntoa(ssa->sin.sin_addr), "not ");
2320 			error = EADDRNOTAVAIL;
2321 			goto out_inp_locked;
2322 		}
2323 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2324 		error = imf_prune(imf, &ssa->sin);
2325 		if (error) {
2326 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2327 			    __func__);
2328 			goto out_inp_locked;
2329 		}
2330 	}
2331 
2332 	/*
2333 	 * Begin state merge transaction at IGMP layer.
2334 	 */
2335 	IN_MULTI_LOCK();
2336 
2337 	if (is_final) {
2338 		/*
2339 		 * Give up the multicast address record to which
2340 		 * the membership points.
2341 		 */
2342 		(void)in_leavegroup_locked(inm, imf);
2343 	} else {
2344 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2345 		error = inm_merge(inm, imf);
2346 		if (error) {
2347 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2348 			    __func__);
2349 			goto out_imf_rollback;
2350 		}
2351 
2352 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2353 		error = igmp_change_state(inm);
2354 		if (error) {
2355 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2356 			    __func__);
2357 		}
2358 	}
2359 
2360 	IN_MULTI_UNLOCK();
2361 
2362 out_imf_rollback:
2363 	if (error)
2364 		imf_rollback(imf);
2365 	else
2366 		imf_commit(imf);
2367 
2368 	imf_reap(imf);
2369 
2370 	if (is_final) {
2371 		/* Remove the gap in the membership and filter array. */
2372 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2373 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2374 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2375 		}
2376 		imo->imo_num_memberships--;
2377 	}
2378 
2379 out_inp_locked:
2380 	INP_WUNLOCK(inp);
2381 	return (error);
2382 }
2383 
2384 /*
2385  * Select the interface for transmitting IPv4 multicast datagrams.
2386  *
2387  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2388  * may be passed to this socket option. An address of INADDR_ANY or an
2389  * interface index of 0 is used to remove a previous selection.
2390  * When no interface is selected, one is chosen for every send.
2391  */
2392 static int
2393 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2394 {
2395 	struct in_addr		 addr;
2396 	struct ip_mreqn		 mreqn;
2397 	struct ifnet		*ifp;
2398 	struct ip_moptions	*imo;
2399 	int			 error;
2400 
2401 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2402 		/*
2403 		 * An interface index was specified using the
2404 		 * Linux-derived ip_mreqn structure.
2405 		 */
2406 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2407 		    sizeof(struct ip_mreqn));
2408 		if (error)
2409 			return (error);
2410 
2411 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2412 			return (EINVAL);
2413 
2414 		if (mreqn.imr_ifindex == 0) {
2415 			ifp = NULL;
2416 		} else {
2417 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2418 			if (ifp == NULL)
2419 				return (EADDRNOTAVAIL);
2420 		}
2421 	} else {
2422 		/*
2423 		 * An interface was specified by IPv4 address.
2424 		 * This is the traditional BSD usage.
2425 		 */
2426 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2427 		    sizeof(struct in_addr));
2428 		if (error)
2429 			return (error);
2430 		if (in_nullhost(addr)) {
2431 			ifp = NULL;
2432 		} else {
2433 			INADDR_TO_IFP(addr, ifp);
2434 			if (ifp == NULL)
2435 				return (EADDRNOTAVAIL);
2436 		}
2437 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2438 		    inet_ntoa(addr));
2439 	}
2440 
2441 	/* Reject interfaces which do not support multicast. */
2442 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2443 		return (EOPNOTSUPP);
2444 
2445 	imo = inp_findmoptions(inp);
2446 	imo->imo_multicast_ifp = ifp;
2447 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2448 	INP_WUNLOCK(inp);
2449 
2450 	return (0);
2451 }
2452 
2453 /*
2454  * Atomically set source filters on a socket for an IPv4 multicast group.
2455  *
2456  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2457  */
2458 static int
2459 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2460 {
2461 	struct __msfilterreq	 msfr;
2462 	sockunion_t		*gsa;
2463 	struct ifnet		*ifp;
2464 	struct in_mfilter	*imf;
2465 	struct ip_moptions	*imo;
2466 	struct in_multi		*inm;
2467 	size_t			 idx;
2468 	int			 error;
2469 
2470 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2471 	    sizeof(struct __msfilterreq));
2472 	if (error)
2473 		return (error);
2474 
2475 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2476 		return (ENOBUFS);
2477 
2478 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2479 	     msfr.msfr_fmode != MCAST_INCLUDE))
2480 		return (EINVAL);
2481 
2482 	if (msfr.msfr_group.ss_family != AF_INET ||
2483 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2484 		return (EINVAL);
2485 
2486 	gsa = (sockunion_t *)&msfr.msfr_group;
2487 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2488 		return (EINVAL);
2489 
2490 	gsa->sin.sin_port = 0;	/* ignore port */
2491 
2492 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2493 		return (EADDRNOTAVAIL);
2494 
2495 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2496 	if (ifp == NULL)
2497 		return (EADDRNOTAVAIL);
2498 
2499 	/*
2500 	 * Take the INP write lock.
2501 	 * Check if this socket is a member of this group.
2502 	 */
2503 	imo = inp_findmoptions(inp);
2504 	idx = imo_match_group(imo, ifp, &gsa->sa);
2505 	if (idx == -1 || imo->imo_mfilters == NULL) {
2506 		error = EADDRNOTAVAIL;
2507 		goto out_inp_locked;
2508 	}
2509 	inm = imo->imo_membership[idx];
2510 	imf = &imo->imo_mfilters[idx];
2511 
2512 	/*
2513 	 * Begin state merge transaction at socket layer.
2514 	 */
2515 	INP_WLOCK_ASSERT(inp);
2516 
2517 	imf->imf_st[1] = msfr.msfr_fmode;
2518 
2519 	/*
2520 	 * Apply any new source filters, if present.
2521 	 * Make a copy of the user-space source vector so
2522 	 * that we may copy them with a single copyin. This
2523 	 * allows us to deal with page faults up-front.
2524 	 */
2525 	if (msfr.msfr_nsrcs > 0) {
2526 		struct in_msource	*lims;
2527 		struct sockaddr_in	*psin;
2528 		struct sockaddr_storage	*kss, *pkss;
2529 		int			 i;
2530 
2531 		INP_WUNLOCK(inp);
2532 
2533 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2534 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2535 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2536 		    M_TEMP, M_WAITOK);
2537 		error = copyin(msfr.msfr_srcs, kss,
2538 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2539 		if (error) {
2540 			free(kss, M_TEMP);
2541 			return (error);
2542 		}
2543 
2544 		INP_WLOCK(inp);
2545 
2546 		/*
2547 		 * Mark all source filters as UNDEFINED at t1.
2548 		 * Restore new group filter mode, as imf_leave()
2549 		 * will set it to INCLUDE.
2550 		 */
2551 		imf_leave(imf);
2552 		imf->imf_st[1] = msfr.msfr_fmode;
2553 
2554 		/*
2555 		 * Update socket layer filters at t1, lazy-allocating
2556 		 * new entries. This saves a bunch of memory at the
2557 		 * cost of one RB_FIND() per source entry; duplicate
2558 		 * entries in the msfr_nsrcs vector are ignored.
2559 		 * If we encounter an error, rollback transaction.
2560 		 *
2561 		 * XXX This too could be replaced with a set-symmetric
2562 		 * difference like loop to avoid walking from root
2563 		 * every time, as the key space is common.
2564 		 */
2565 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2566 			psin = (struct sockaddr_in *)pkss;
2567 			if (psin->sin_family != AF_INET) {
2568 				error = EAFNOSUPPORT;
2569 				break;
2570 			}
2571 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2572 				error = EINVAL;
2573 				break;
2574 			}
2575 			error = imf_get_source(imf, psin, &lims);
2576 			if (error)
2577 				break;
2578 			lims->imsl_st[1] = imf->imf_st[1];
2579 		}
2580 		free(kss, M_TEMP);
2581 	}
2582 
2583 	if (error)
2584 		goto out_imf_rollback;
2585 
2586 	INP_WLOCK_ASSERT(inp);
2587 	IN_MULTI_LOCK();
2588 
2589 	/*
2590 	 * Begin state merge transaction at IGMP layer.
2591 	 */
2592 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2593 	error = inm_merge(inm, imf);
2594 	if (error) {
2595 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2596 		goto out_imf_rollback;
2597 	}
2598 
2599 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2600 	error = igmp_change_state(inm);
2601 	if (error)
2602 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2603 
2604 	IN_MULTI_UNLOCK();
2605 
2606 out_imf_rollback:
2607 	if (error)
2608 		imf_rollback(imf);
2609 	else
2610 		imf_commit(imf);
2611 
2612 	imf_reap(imf);
2613 
2614 out_inp_locked:
2615 	INP_WUNLOCK(inp);
2616 	return (error);
2617 }
2618 
2619 /*
2620  * Set the IP multicast options in response to user setsockopt().
2621  *
2622  * Many of the socket options handled in this function duplicate the
2623  * functionality of socket options in the regular unicast API. However,
2624  * it is not possible to merge the duplicate code, because the idempotence
2625  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2626  * the effects of these options must be treated as separate and distinct.
2627  *
2628  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2629  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2630  * is refactored to no longer use vifs.
2631  */
2632 int
2633 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2634 {
2635 	struct ip_moptions	*imo;
2636 	int			 error;
2637 
2638 	error = 0;
2639 
2640 	/*
2641 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2642 	 * or is a divert socket, reject it.
2643 	 */
2644 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2645 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2646 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2647 		return (EOPNOTSUPP);
2648 
2649 	switch (sopt->sopt_name) {
2650 	case IP_MULTICAST_VIF: {
2651 		int vifi;
2652 		/*
2653 		 * Select a multicast VIF for transmission.
2654 		 * Only useful if multicast forwarding is active.
2655 		 */
2656 		if (legal_vif_num == NULL) {
2657 			error = EOPNOTSUPP;
2658 			break;
2659 		}
2660 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2661 		if (error)
2662 			break;
2663 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2664 			error = EINVAL;
2665 			break;
2666 		}
2667 		imo = inp_findmoptions(inp);
2668 		imo->imo_multicast_vif = vifi;
2669 		INP_WUNLOCK(inp);
2670 		break;
2671 	}
2672 
2673 	case IP_MULTICAST_IF:
2674 		error = inp_set_multicast_if(inp, sopt);
2675 		break;
2676 
2677 	case IP_MULTICAST_TTL: {
2678 		u_char ttl;
2679 
2680 		/*
2681 		 * Set the IP time-to-live for outgoing multicast packets.
2682 		 * The original multicast API required a char argument,
2683 		 * which is inconsistent with the rest of the socket API.
2684 		 * We allow either a char or an int.
2685 		 */
2686 		if (sopt->sopt_valsize == sizeof(u_char)) {
2687 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2688 			    sizeof(u_char));
2689 			if (error)
2690 				break;
2691 		} else {
2692 			u_int ittl;
2693 
2694 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2695 			    sizeof(u_int));
2696 			if (error)
2697 				break;
2698 			if (ittl > 255) {
2699 				error = EINVAL;
2700 				break;
2701 			}
2702 			ttl = (u_char)ittl;
2703 		}
2704 		imo = inp_findmoptions(inp);
2705 		imo->imo_multicast_ttl = ttl;
2706 		INP_WUNLOCK(inp);
2707 		break;
2708 	}
2709 
2710 	case IP_MULTICAST_LOOP: {
2711 		u_char loop;
2712 
2713 		/*
2714 		 * Set the loopback flag for outgoing multicast packets.
2715 		 * Must be zero or one.  The original multicast API required a
2716 		 * char argument, which is inconsistent with the rest
2717 		 * of the socket API.  We allow either a char or an int.
2718 		 */
2719 		if (sopt->sopt_valsize == sizeof(u_char)) {
2720 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2721 			    sizeof(u_char));
2722 			if (error)
2723 				break;
2724 		} else {
2725 			u_int iloop;
2726 
2727 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2728 					    sizeof(u_int));
2729 			if (error)
2730 				break;
2731 			loop = (u_char)iloop;
2732 		}
2733 		imo = inp_findmoptions(inp);
2734 		imo->imo_multicast_loop = !!loop;
2735 		INP_WUNLOCK(inp);
2736 		break;
2737 	}
2738 
2739 	case IP_ADD_MEMBERSHIP:
2740 	case IP_ADD_SOURCE_MEMBERSHIP:
2741 	case MCAST_JOIN_GROUP:
2742 	case MCAST_JOIN_SOURCE_GROUP:
2743 		error = inp_join_group(inp, sopt);
2744 		break;
2745 
2746 	case IP_DROP_MEMBERSHIP:
2747 	case IP_DROP_SOURCE_MEMBERSHIP:
2748 	case MCAST_LEAVE_GROUP:
2749 	case MCAST_LEAVE_SOURCE_GROUP:
2750 		error = inp_leave_group(inp, sopt);
2751 		break;
2752 
2753 	case IP_BLOCK_SOURCE:
2754 	case IP_UNBLOCK_SOURCE:
2755 	case MCAST_BLOCK_SOURCE:
2756 	case MCAST_UNBLOCK_SOURCE:
2757 		error = inp_block_unblock_source(inp, sopt);
2758 		break;
2759 
2760 	case IP_MSFILTER:
2761 		error = inp_set_source_filters(inp, sopt);
2762 		break;
2763 
2764 	default:
2765 		error = EOPNOTSUPP;
2766 		break;
2767 	}
2768 
2769 	INP_UNLOCK_ASSERT(inp);
2770 
2771 	return (error);
2772 }
2773 
2774 /*
2775  * Expose IGMP's multicast filter mode and source list(s) to userland,
2776  * keyed by (ifindex, group).
2777  * The filter mode is written out as a uint32_t, followed by
2778  * 0..n of struct in_addr.
2779  * For use by ifmcstat(8).
2780  * SMPng: NOTE: unlocked read of ifindex space.
2781  */
2782 static int
2783 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2784 {
2785 	struct in_addr			 src, group;
2786 	struct ifnet			*ifp;
2787 	struct ifmultiaddr		*ifma;
2788 	struct in_multi			*inm;
2789 	struct ip_msource		*ims;
2790 	int				*name;
2791 	int				 retval;
2792 	u_int				 namelen;
2793 	uint32_t			 fmode, ifindex;
2794 
2795 	name = (int *)arg1;
2796 	namelen = arg2;
2797 
2798 	if (req->newptr != NULL)
2799 		return (EPERM);
2800 
2801 	if (namelen != 2)
2802 		return (EINVAL);
2803 
2804 	ifindex = name[0];
2805 	if (ifindex <= 0 || ifindex > V_if_index) {
2806 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2807 		    __func__, ifindex);
2808 		return (ENOENT);
2809 	}
2810 
2811 	group.s_addr = name[1];
2812 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2813 		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2814 		    __func__, inet_ntoa(group));
2815 		return (EINVAL);
2816 	}
2817 
2818 	ifp = ifnet_byindex(ifindex);
2819 	if (ifp == NULL) {
2820 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2821 		    __func__, ifindex);
2822 		return (ENOENT);
2823 	}
2824 
2825 	retval = sysctl_wire_old_buffer(req,
2826 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2827 	if (retval)
2828 		return (retval);
2829 
2830 	IN_MULTI_LOCK();
2831 
2832 	IF_ADDR_RLOCK(ifp);
2833 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2834 		if (ifma->ifma_addr->sa_family != AF_INET ||
2835 		    ifma->ifma_protospec == NULL)
2836 			continue;
2837 		inm = (struct in_multi *)ifma->ifma_protospec;
2838 		if (!in_hosteq(inm->inm_addr, group))
2839 			continue;
2840 		fmode = inm->inm_st[1].iss_fmode;
2841 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2842 		if (retval != 0)
2843 			break;
2844 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2845 #ifdef KTR
2846 			struct in_addr ina;
2847 			ina.s_addr = htonl(ims->ims_haddr);
2848 			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2849 			    inet_ntoa(ina));
2850 #endif
2851 			/*
2852 			 * Only copy-out sources which are in-mode.
2853 			 */
2854 			if (fmode != ims_get_mode(inm, ims, 1)) {
2855 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2856 				    __func__);
2857 				continue;
2858 			}
2859 			src.s_addr = htonl(ims->ims_haddr);
2860 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2861 			if (retval != 0)
2862 				break;
2863 		}
2864 	}
2865 	IF_ADDR_RUNLOCK(ifp);
2866 
2867 	IN_MULTI_UNLOCK();
2868 
2869 	return (retval);
2870 }
2871 
2872 #ifdef KTR
2873 
2874 static const char *inm_modestrs[] = { "un", "in", "ex" };
2875 
2876 static const char *
2877 inm_mode_str(const int mode)
2878 {
2879 
2880 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2881 		return (inm_modestrs[mode]);
2882 	return ("??");
2883 }
2884 
2885 static const char *inm_statestrs[] = {
2886 	"not-member",
2887 	"silent",
2888 	"idle",
2889 	"lazy",
2890 	"sleeping",
2891 	"awakening",
2892 	"query-pending",
2893 	"sg-query-pending",
2894 	"leaving"
2895 };
2896 
2897 static const char *
2898 inm_state_str(const int state)
2899 {
2900 
2901 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2902 		return (inm_statestrs[state]);
2903 	return ("??");
2904 }
2905 
2906 /*
2907  * Dump an in_multi structure to the console.
2908  */
2909 void
2910 inm_print(const struct in_multi *inm)
2911 {
2912 	int t;
2913 
2914 	if ((ktr_mask & KTR_IGMPV3) == 0)
2915 		return;
2916 
2917 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2918 	printf("addr %s ifp %p(%s) ifma %p\n",
2919 	    inet_ntoa(inm->inm_addr),
2920 	    inm->inm_ifp,
2921 	    inm->inm_ifp->if_xname,
2922 	    inm->inm_ifma);
2923 	printf("timer %u state %s refcount %u scq.len %u\n",
2924 	    inm->inm_timer,
2925 	    inm_state_str(inm->inm_state),
2926 	    inm->inm_refcount,
2927 	    inm->inm_scq.ifq_len);
2928 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2929 	    inm->inm_igi,
2930 	    inm->inm_nsrc,
2931 	    inm->inm_sctimer,
2932 	    inm->inm_scrv);
2933 	for (t = 0; t < 2; t++) {
2934 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2935 		    inm_mode_str(inm->inm_st[t].iss_fmode),
2936 		    inm->inm_st[t].iss_asm,
2937 		    inm->inm_st[t].iss_ex,
2938 		    inm->inm_st[t].iss_in,
2939 		    inm->inm_st[t].iss_rec);
2940 	}
2941 	printf("%s: --- end inm %p ---\n", __func__, inm);
2942 }
2943 
2944 #else /* !KTR */
2945 
2946 void
2947 inm_print(const struct in_multi *inm)
2948 {
2949 
2950 }
2951 
2952 #endif /* KTR */
2953 
2954 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2955