xref: /freebsd/sys/netinet/in_mcast.c (revision d2033021a73db7b8d910c1ffc52f4d1d0def7162)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/protosw.h>
47 #include <sys/sysctl.h>
48 #include <sys/ktr.h>
49 #include <sys/taskqueue.h>
50 #include <sys/tree.h>
51 
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/route.h>
56 #include <net/route/nhop.h>
57 #include <net/vnet.h>
58 
59 #include <net/ethernet.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_fib.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_var.h>
66 #include <net/if_private.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/igmp_var.h>
69 
70 #ifndef KTR_IGMPV3
71 #define KTR_IGMPV3 KTR_INET
72 #endif
73 
74 #ifndef __SOCKUNION_DECLARED
75 union sockunion {
76 	struct sockaddr_storage	ss;
77 	struct sockaddr		sa;
78 	struct sockaddr_dl	sdl;
79 	struct sockaddr_in	sin;
80 };
81 typedef union sockunion sockunion_t;
82 #define __SOCKUNION_DECLARED
83 #endif /* __SOCKUNION_DECLARED */
84 
85 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
86     "IPv4 multicast PCB-layer source filter");
87 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
88 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
89 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
90     "IPv4 multicast IGMP-layer source filter");
91 
92 /*
93  * Locking:
94  *
95  * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
96  *   IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
97  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
98  *   it can be taken by code in net/if.c also.
99  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
100  *
101  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
102  * any need for in_multi itself to be virtualized -- it is bound to an ifp
103  * anyway no matter what happens.
104  */
105 struct mtx in_multi_list_mtx;
106 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
107 
108 struct mtx in_multi_free_mtx;
109 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
110 
111 struct sx in_multi_sx;
112 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
113 
114 /*
115  * Functions with non-static linkage defined in this file should be
116  * declared in in_var.h:
117  *  imo_multi_filter()
118  *  in_joingroup()
119  *  in_joingroup_locked()
120  *  in_leavegroup()
121  *  in_leavegroup_locked()
122  * and ip_var.h:
123  *  inp_freemoptions()
124  *  inp_getmoptions()
125  *  inp_setmoptions()
126  */
127 static void	imf_commit(struct in_mfilter *);
128 static int	imf_get_source(struct in_mfilter *imf,
129 		    const struct sockaddr_in *psin,
130 		    struct in_msource **);
131 static struct in_msource *
132 		imf_graft(struct in_mfilter *, const uint8_t,
133 		    const struct sockaddr_in *);
134 static void	imf_leave(struct in_mfilter *);
135 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
136 static void	imf_purge(struct in_mfilter *);
137 static void	imf_rollback(struct in_mfilter *);
138 static void	imf_reap(struct in_mfilter *);
139 static struct in_mfilter *
140 		imo_match_group(const struct ip_moptions *,
141 		    const struct ifnet *, const struct sockaddr *);
142 static struct in_msource *
143 		imo_match_source(struct in_mfilter *, const struct sockaddr *);
144 static void	ims_merge(struct ip_msource *ims,
145 		    const struct in_msource *lims, const int rollback);
146 static int	in_getmulti(struct ifnet *, const struct in_addr *,
147 		    struct in_multi **);
148 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
149 		    const int noalloc, struct ip_msource **pims);
150 #ifdef KTR
151 static int	inm_is_ifp_detached(const struct in_multi *);
152 #endif
153 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
154 static void	inm_purge(struct in_multi *);
155 static void	inm_reap(struct in_multi *);
156 static void inm_release(struct in_multi *);
157 static struct ip_moptions *
158 		inp_findmoptions(struct inpcb *);
159 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
160 static int	inp_join_group(struct inpcb *, struct sockopt *);
161 static int	inp_leave_group(struct inpcb *, struct sockopt *);
162 static struct ifnet *
163 		inp_lookup_mcast_ifp(const struct inpcb *,
164 		    const struct sockaddr_in *, const struct in_addr);
165 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
166 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
167 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
168 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
169 
170 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "IPv4 multicast");
173 
174 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
175 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
176     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
177     "Max source filters per group");
178 
179 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
180 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
181     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
182     "Max source filters per socket");
183 
184 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
185 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
186     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
187 
188 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
189     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
190     "Per-interface stack-wide source filters");
191 
192 #ifdef KTR
193 /*
194  * Inline function which wraps assertions for a valid ifp.
195  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
196  * is detached.
197  */
198 static int __inline
199 inm_is_ifp_detached(const struct in_multi *inm)
200 {
201 	struct ifnet *ifp;
202 
203 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
204 	ifp = inm->inm_ifma->ifma_ifp;
205 	if (ifp != NULL) {
206 		/*
207 		 * Sanity check that netinet's notion of ifp is the
208 		 * same as net's.
209 		 */
210 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
211 	}
212 
213 	return (ifp == NULL);
214 }
215 #endif
216 
217 /*
218  * Interface detach can happen in a taskqueue thread context, so we must use a
219  * dedicated thread to avoid deadlocks when draining inm_release tasks.
220  */
221 TASKQUEUE_DEFINE_THREAD(inm_free);
222 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
223 static void inm_release_task(void *arg __unused, int pending __unused);
224 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL);
225 
226 void
227 inm_release_wait(void *arg __unused)
228 {
229 
230 	/*
231 	 * Make sure all pending multicast addresses are freed before
232 	 * the VNET or network device is destroyed:
233 	 */
234 	taskqueue_drain(taskqueue_inm_free, &inm_free_task);
235 }
236 #ifdef VIMAGE
237 /* XXX-BZ FIXME, see D24914. */
238 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL);
239 #endif
240 
241 void
242 inm_release_list_deferred(struct in_multi_head *inmh)
243 {
244 
245 	if (SLIST_EMPTY(inmh))
246 		return;
247 	mtx_lock(&in_multi_free_mtx);
248 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
249 	mtx_unlock(&in_multi_free_mtx);
250 	taskqueue_enqueue(taskqueue_inm_free, &inm_free_task);
251 }
252 
253 void
254 inm_disconnect(struct in_multi *inm)
255 {
256 	struct ifnet *ifp;
257 	struct ifmultiaddr *ifma, *ll_ifma;
258 
259 	ifp = inm->inm_ifp;
260 	IF_ADDR_WLOCK_ASSERT(ifp);
261 	ifma = inm->inm_ifma;
262 
263 	if_ref(ifp);
264 	if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
265 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
266 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
267 	}
268 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
269 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
270 		MPASS(ifma != ll_ifma);
271 		ifma->ifma_llifma = NULL;
272 		MPASS(ll_ifma->ifma_llifma == NULL);
273 		MPASS(ll_ifma->ifma_ifp == ifp);
274 		if (--ll_ifma->ifma_refcount == 0) {
275 			if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
276 				CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
277 				ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
278 			}
279 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
280 			if_freemulti(ll_ifma);
281 		}
282 	}
283 }
284 
285 void
286 inm_release_deferred(struct in_multi *inm)
287 {
288 	struct in_multi_head tmp;
289 
290 	IN_MULTI_LIST_LOCK_ASSERT();
291 	MPASS(inm->inm_refcount > 0);
292 	if (--inm->inm_refcount == 0) {
293 		SLIST_INIT(&tmp);
294 		inm_disconnect(inm);
295 		inm->inm_ifma->ifma_protospec = NULL;
296 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
297 		inm_release_list_deferred(&tmp);
298 	}
299 }
300 
301 static void
302 inm_release_task(void *arg __unused, int pending __unused)
303 {
304 	struct in_multi_head inm_free_tmp;
305 	struct in_multi *inm, *tinm;
306 
307 	SLIST_INIT(&inm_free_tmp);
308 	mtx_lock(&in_multi_free_mtx);
309 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
310 	mtx_unlock(&in_multi_free_mtx);
311 	IN_MULTI_LOCK();
312 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
313 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
314 		MPASS(inm);
315 		inm_release(inm);
316 	}
317 	IN_MULTI_UNLOCK();
318 }
319 
320 /*
321  * Initialize an in_mfilter structure to a known state at t0, t1
322  * with an empty source filter list.
323  */
324 static __inline void
325 imf_init(struct in_mfilter *imf, const int st0, const int st1)
326 {
327 	memset(imf, 0, sizeof(struct in_mfilter));
328 	RB_INIT(&imf->imf_sources);
329 	imf->imf_st[0] = st0;
330 	imf->imf_st[1] = st1;
331 }
332 
333 struct in_mfilter *
334 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
335 {
336 	struct in_mfilter *imf;
337 
338 	imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
339 	if (imf != NULL)
340 		imf_init(imf, st0, st1);
341 
342 	return (imf);
343 }
344 
345 void
346 ip_mfilter_free(struct in_mfilter *imf)
347 {
348 
349 	imf_purge(imf);
350 	free(imf, M_INMFILTER);
351 }
352 
353 /*
354  * Function for looking up an in_multi record for an IPv4 multicast address
355  * on a given interface. ifp must be valid. If no record found, return NULL.
356  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
357  */
358 struct in_multi *
359 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
360 {
361 	struct ifmultiaddr *ifma;
362 	struct in_multi *inm;
363 
364 	IN_MULTI_LIST_LOCK_ASSERT();
365 	IF_ADDR_LOCK_ASSERT(ifp);
366 
367 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
368 		inm = inm_ifmultiaddr_get_inm(ifma);
369 		if (inm == NULL)
370 			continue;
371 		if (inm->inm_addr.s_addr == ina.s_addr)
372 			return (inm);
373 	}
374 	return (NULL);
375 }
376 
377 /*
378  * Wrapper for inm_lookup_locked().
379  * The IF_ADDR_LOCK will be taken on ifp and released on return.
380  */
381 struct in_multi *
382 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
383 {
384 	struct epoch_tracker et;
385 	struct in_multi *inm;
386 
387 	IN_MULTI_LIST_LOCK_ASSERT();
388 	NET_EPOCH_ENTER(et);
389 
390 	inm = inm_lookup_locked(ifp, ina);
391 	NET_EPOCH_EXIT(et);
392 
393 	return (inm);
394 }
395 
396 /*
397  * Find an IPv4 multicast group entry for this ip_moptions instance
398  * which matches the specified group, and optionally an interface.
399  * Return its index into the array, or -1 if not found.
400  */
401 static struct in_mfilter *
402 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
403     const struct sockaddr *group)
404 {
405 	const struct sockaddr_in *gsin;
406 	struct in_mfilter *imf;
407 	struct in_multi	*inm;
408 
409 	gsin = (const struct sockaddr_in *)group;
410 
411 	IP_MFILTER_FOREACH(imf, &imo->imo_head) {
412 		inm = imf->imf_inm;
413 		if (inm == NULL)
414 			continue;
415 		if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
416 		    in_hosteq(inm->inm_addr, gsin->sin_addr)) {
417 			break;
418 		}
419 	}
420 	return (imf);
421 }
422 
423 /*
424  * Find an IPv4 multicast source entry for this imo which matches
425  * the given group index for this socket, and source address.
426  *
427  * NOTE: This does not check if the entry is in-mode, merely if
428  * it exists, which may not be the desired behaviour.
429  */
430 static struct in_msource *
431 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
432 {
433 	struct ip_msource	 find;
434 	struct ip_msource	*ims;
435 	const sockunion_t	*psa;
436 
437 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
438 
439 	/* Source trees are keyed in host byte order. */
440 	psa = (const sockunion_t *)src;
441 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
442 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
443 
444 	return ((struct in_msource *)ims);
445 }
446 
447 /*
448  * Perform filtering for multicast datagrams on a socket by group and source.
449  *
450  * Returns 0 if a datagram should be allowed through, or various error codes
451  * if the socket was not a member of the group, or the source was muted, etc.
452  */
453 int
454 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
455     const struct sockaddr *group, const struct sockaddr *src)
456 {
457 	struct in_mfilter *imf;
458 	struct in_msource *ims;
459 	int mode;
460 
461 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
462 
463 	imf = imo_match_group(imo, ifp, group);
464 	if (imf == NULL)
465 		return (MCAST_NOTGMEMBER);
466 
467 	/*
468 	 * Check if the source was included in an (S,G) join.
469 	 * Allow reception on exclusive memberships by default,
470 	 * reject reception on inclusive memberships by default.
471 	 * Exclude source only if an in-mode exclude filter exists.
472 	 * Include source only if an in-mode include filter exists.
473 	 * NOTE: We are comparing group state here at IGMP t1 (now)
474 	 * with socket-layer t0 (since last downcall).
475 	 */
476 	mode = imf->imf_st[1];
477 	ims = imo_match_source(imf, src);
478 
479 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
480 	    (ims != NULL && ims->imsl_st[0] == MCAST_EXCLUDE))
481 		return (MCAST_NOTSMEMBER);
482 
483 	return (MCAST_PASS);
484 }
485 
486 /*
487  * Find and return a reference to an in_multi record for (ifp, group),
488  * and bump its reference count.
489  * If one does not exist, try to allocate it, and update link-layer multicast
490  * filters on ifp to listen for group.
491  * Assumes the IN_MULTI lock is held across the call.
492  * Return 0 if successful, otherwise return an appropriate error code.
493  */
494 static int
495 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
496     struct in_multi **pinm)
497 {
498 	struct sockaddr_in	 gsin;
499 	struct ifmultiaddr	*ifma;
500 	struct in_ifinfo	*ii;
501 	struct in_multi		*inm;
502 	int error;
503 
504 	IN_MULTI_LOCK_ASSERT();
505 
506 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
507 	IN_MULTI_LIST_LOCK();
508 	inm = inm_lookup(ifp, *group);
509 	if (inm != NULL) {
510 		/*
511 		 * If we already joined this group, just bump the
512 		 * refcount and return it.
513 		 */
514 		KASSERT(inm->inm_refcount >= 1,
515 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
516 		inm_acquire_locked(inm);
517 		*pinm = inm;
518 	}
519 	IN_MULTI_LIST_UNLOCK();
520 	if (inm != NULL)
521 		return (0);
522 
523 	memset(&gsin, 0, sizeof(gsin));
524 	gsin.sin_family = AF_INET;
525 	gsin.sin_len = sizeof(struct sockaddr_in);
526 	gsin.sin_addr = *group;
527 
528 	/*
529 	 * Check if a link-layer group is already associated
530 	 * with this network-layer group on the given ifnet.
531 	 */
532 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
533 	if (error != 0)
534 		return (error);
535 
536 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
537 	IN_MULTI_LIST_LOCK();
538 	IF_ADDR_WLOCK(ifp);
539 
540 	/*
541 	 * If something other than netinet is occupying the link-layer
542 	 * group, print a meaningful error message and back out of
543 	 * the allocation.
544 	 * Otherwise, bump the refcount on the existing network-layer
545 	 * group association and return it.
546 	 */
547 	if (ifma->ifma_protospec != NULL) {
548 		inm = (struct in_multi *)ifma->ifma_protospec;
549 #ifdef INVARIANTS
550 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
551 		    __func__));
552 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
553 		    ("%s: ifma not AF_INET", __func__));
554 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
555 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
556 		    !in_hosteq(inm->inm_addr, *group)) {
557 			char addrbuf[INET_ADDRSTRLEN];
558 
559 			panic("%s: ifma %p is inconsistent with %p (%s)",
560 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
561 		}
562 #endif
563 		inm_acquire_locked(inm);
564 		*pinm = inm;
565 		goto out_locked;
566 	}
567 
568 	IF_ADDR_WLOCK_ASSERT(ifp);
569 
570 	/*
571 	 * A new in_multi record is needed; allocate and initialize it.
572 	 * We DO NOT perform an IGMP join as the in_ layer may need to
573 	 * push an initial source list down to IGMP to support SSM.
574 	 *
575 	 * The initial source filter state is INCLUDE, {} as per the RFC.
576 	 */
577 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
578 	if (inm == NULL) {
579 		IF_ADDR_WUNLOCK(ifp);
580 		IN_MULTI_LIST_UNLOCK();
581 		if_delmulti_ifma(ifma);
582 		return (ENOMEM);
583 	}
584 	inm->inm_addr = *group;
585 	inm->inm_ifp = ifp;
586 	inm->inm_igi = ii->ii_igmp;
587 	inm->inm_ifma = ifma;
588 	inm->inm_refcount = 1;
589 	inm->inm_state = IGMP_NOT_MEMBER;
590 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
591 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
592 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
593 	RB_INIT(&inm->inm_srcs);
594 
595 	ifma->ifma_protospec = inm;
596 
597 	*pinm = inm;
598  out_locked:
599 	IF_ADDR_WUNLOCK(ifp);
600 	IN_MULTI_LIST_UNLOCK();
601 	return (0);
602 }
603 
604 /*
605  * Drop a reference to an in_multi record.
606  *
607  * If the refcount drops to 0, free the in_multi record and
608  * delete the underlying link-layer membership.
609  */
610 static void
611 inm_release(struct in_multi *inm)
612 {
613 	struct ifmultiaddr *ifma;
614 	struct ifnet *ifp;
615 
616 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
617 	MPASS(inm->inm_refcount == 0);
618 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
619 
620 	ifma = inm->inm_ifma;
621 	ifp = inm->inm_ifp;
622 
623 	/* XXX this access is not covered by IF_ADDR_LOCK */
624 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
625 	if (ifp != NULL) {
626 		CURVNET_SET(ifp->if_vnet);
627 		inm_purge(inm);
628 		free(inm, M_IPMADDR);
629 		if_delmulti_ifma_flags(ifma, 1);
630 		CURVNET_RESTORE();
631 		if_rele(ifp);
632 	} else {
633 		inm_purge(inm);
634 		free(inm, M_IPMADDR);
635 		if_delmulti_ifma_flags(ifma, 1);
636 	}
637 }
638 
639 /*
640  * Clear recorded source entries for a group.
641  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
642  * FIXME: Should reap.
643  */
644 void
645 inm_clear_recorded(struct in_multi *inm)
646 {
647 	struct ip_msource	*ims;
648 
649 	IN_MULTI_LIST_LOCK_ASSERT();
650 
651 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
652 		if (ims->ims_stp) {
653 			ims->ims_stp = 0;
654 			--inm->inm_st[1].iss_rec;
655 		}
656 	}
657 	KASSERT(inm->inm_st[1].iss_rec == 0,
658 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
659 }
660 
661 /*
662  * Record a source as pending for a Source-Group IGMPv3 query.
663  * This lives here as it modifies the shared tree.
664  *
665  * inm is the group descriptor.
666  * naddr is the address of the source to record in network-byte order.
667  *
668  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
669  * lazy-allocate a source node in response to an SG query.
670  * Otherwise, no allocation is performed. This saves some memory
671  * with the trade-off that the source will not be reported to the
672  * router if joined in the window between the query response and
673  * the group actually being joined on the local host.
674  *
675  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
676  * This turns off the allocation of a recorded source entry if
677  * the group has not been joined.
678  *
679  * Return 0 if the source didn't exist or was already marked as recorded.
680  * Return 1 if the source was marked as recorded by this function.
681  * Return <0 if any error occurred (negated errno code).
682  */
683 int
684 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
685 {
686 	struct ip_msource	 find;
687 	struct ip_msource	*ims, *nims;
688 
689 	IN_MULTI_LIST_LOCK_ASSERT();
690 
691 	find.ims_haddr = ntohl(naddr);
692 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
693 	if (ims && ims->ims_stp)
694 		return (0);
695 	if (ims == NULL) {
696 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
697 			return (-ENOSPC);
698 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
699 		    M_NOWAIT | M_ZERO);
700 		if (nims == NULL)
701 			return (-ENOMEM);
702 		nims->ims_haddr = find.ims_haddr;
703 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
704 		++inm->inm_nsrc;
705 		ims = nims;
706 	}
707 
708 	/*
709 	 * Mark the source as recorded and update the recorded
710 	 * source count.
711 	 */
712 	++ims->ims_stp;
713 	++inm->inm_st[1].iss_rec;
714 
715 	return (1);
716 }
717 
718 /*
719  * Return a pointer to an in_msource owned by an in_mfilter,
720  * given its source address.
721  * Lazy-allocate if needed. If this is a new entry its filter state is
722  * undefined at t0.
723  *
724  * imf is the filter set being modified.
725  * haddr is the source address in *host* byte-order.
726  *
727  * SMPng: May be called with locks held; malloc must not block.
728  */
729 static int
730 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
731     struct in_msource **plims)
732 {
733 	struct ip_msource	 find;
734 	struct ip_msource	*ims, *nims;
735 	struct in_msource	*lims;
736 	int			 error;
737 
738 	error = 0;
739 	ims = NULL;
740 	lims = NULL;
741 
742 	/* key is host byte order */
743 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
744 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
745 	lims = (struct in_msource *)ims;
746 	if (lims == NULL) {
747 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
748 			return (ENOSPC);
749 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
750 		    M_NOWAIT | M_ZERO);
751 		if (nims == NULL)
752 			return (ENOMEM);
753 		lims = (struct in_msource *)nims;
754 		lims->ims_haddr = find.ims_haddr;
755 		lims->imsl_st[0] = MCAST_UNDEFINED;
756 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
757 		++imf->imf_nsrc;
758 	}
759 
760 	*plims = lims;
761 
762 	return (error);
763 }
764 
765 /*
766  * Graft a source entry into an existing socket-layer filter set,
767  * maintaining any required invariants and checking allocations.
768  *
769  * The source is marked as being in the new filter mode at t1.
770  *
771  * Return the pointer to the new node, otherwise return NULL.
772  */
773 static struct in_msource *
774 imf_graft(struct in_mfilter *imf, const uint8_t st1,
775     const struct sockaddr_in *psin)
776 {
777 	struct ip_msource	*nims;
778 	struct in_msource	*lims;
779 
780 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
781 	    M_NOWAIT | M_ZERO);
782 	if (nims == NULL)
783 		return (NULL);
784 	lims = (struct in_msource *)nims;
785 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
786 	lims->imsl_st[0] = MCAST_UNDEFINED;
787 	lims->imsl_st[1] = st1;
788 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
789 	++imf->imf_nsrc;
790 
791 	return (lims);
792 }
793 
794 /*
795  * Prune a source entry from an existing socket-layer filter set,
796  * maintaining any required invariants and checking allocations.
797  *
798  * The source is marked as being left at t1, it is not freed.
799  *
800  * Return 0 if no error occurred, otherwise return an errno value.
801  */
802 static int
803 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
804 {
805 	struct ip_msource	 find;
806 	struct ip_msource	*ims;
807 	struct in_msource	*lims;
808 
809 	/* key is host byte order */
810 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
811 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
812 	if (ims == NULL)
813 		return (ENOENT);
814 	lims = (struct in_msource *)ims;
815 	lims->imsl_st[1] = MCAST_UNDEFINED;
816 	return (0);
817 }
818 
819 /*
820  * Revert socket-layer filter set deltas at t1 to t0 state.
821  */
822 static void
823 imf_rollback(struct in_mfilter *imf)
824 {
825 	struct ip_msource	*ims, *tims;
826 	struct in_msource	*lims;
827 
828 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
829 		lims = (struct in_msource *)ims;
830 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
831 			/* no change at t1 */
832 			continue;
833 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
834 			/* revert change to existing source at t1 */
835 			lims->imsl_st[1] = lims->imsl_st[0];
836 		} else {
837 			/* revert source added t1 */
838 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
839 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
840 			free(ims, M_INMFILTER);
841 			imf->imf_nsrc--;
842 		}
843 	}
844 	imf->imf_st[1] = imf->imf_st[0];
845 }
846 
847 /*
848  * Mark socket-layer filter set as INCLUDE {} at t1.
849  */
850 static void
851 imf_leave(struct in_mfilter *imf)
852 {
853 	struct ip_msource	*ims;
854 	struct in_msource	*lims;
855 
856 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
857 		lims = (struct in_msource *)ims;
858 		lims->imsl_st[1] = MCAST_UNDEFINED;
859 	}
860 	imf->imf_st[1] = MCAST_INCLUDE;
861 }
862 
863 /*
864  * Mark socket-layer filter set deltas as committed.
865  */
866 static void
867 imf_commit(struct in_mfilter *imf)
868 {
869 	struct ip_msource	*ims;
870 	struct in_msource	*lims;
871 
872 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
873 		lims = (struct in_msource *)ims;
874 		lims->imsl_st[0] = lims->imsl_st[1];
875 	}
876 	imf->imf_st[0] = imf->imf_st[1];
877 }
878 
879 /*
880  * Reap unreferenced sources from socket-layer filter set.
881  */
882 static void
883 imf_reap(struct in_mfilter *imf)
884 {
885 	struct ip_msource	*ims, *tims;
886 	struct in_msource	*lims;
887 
888 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
889 		lims = (struct in_msource *)ims;
890 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
891 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
892 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
893 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
894 			free(ims, M_INMFILTER);
895 			imf->imf_nsrc--;
896 		}
897 	}
898 }
899 
900 /*
901  * Purge socket-layer filter set.
902  */
903 static void
904 imf_purge(struct in_mfilter *imf)
905 {
906 	struct ip_msource	*ims, *tims;
907 
908 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
909 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
910 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
911 		free(ims, M_INMFILTER);
912 		imf->imf_nsrc--;
913 	}
914 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
915 	KASSERT(RB_EMPTY(&imf->imf_sources),
916 	    ("%s: imf_sources not empty", __func__));
917 	if (imf->imf_inm != NULL)
918 		mbufq_drain(&imf->imf_inm->inm_scq);
919 }
920 
921 /*
922  * Look up a source filter entry for a multicast group.
923  *
924  * inm is the group descriptor to work with.
925  * haddr is the host-byte-order IPv4 address to look up.
926  * noalloc may be non-zero to suppress allocation of sources.
927  * *pims will be set to the address of the retrieved or allocated source.
928  *
929  * SMPng: NOTE: may be called with locks held.
930  * Return 0 if successful, otherwise return a non-zero error code.
931  */
932 static int
933 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
934     const int noalloc, struct ip_msource **pims)
935 {
936 	struct ip_msource	 find;
937 	struct ip_msource	*ims, *nims;
938 
939 	find.ims_haddr = haddr;
940 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
941 	if (ims == NULL && !noalloc) {
942 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
943 			return (ENOSPC);
944 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
945 		    M_NOWAIT | M_ZERO);
946 		if (nims == NULL)
947 			return (ENOMEM);
948 		nims->ims_haddr = haddr;
949 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
950 		++inm->inm_nsrc;
951 		ims = nims;
952 #ifdef KTR
953 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
954 		    haddr, ims);
955 #endif
956 	}
957 
958 	*pims = ims;
959 	return (0);
960 }
961 
962 /*
963  * Merge socket-layer source into IGMP-layer source.
964  * If rollback is non-zero, perform the inverse of the merge.
965  */
966 static void
967 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
968     const int rollback)
969 {
970 	int n = rollback ? -1 : 1;
971 
972 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
973 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
974 		    __func__, n, ims->ims_haddr);
975 		ims->ims_st[1].ex -= n;
976 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
977 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
978 		    __func__, n, ims->ims_haddr);
979 		ims->ims_st[1].in -= n;
980 	}
981 
982 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
983 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
984 		    __func__, n, ims->ims_haddr);
985 		ims->ims_st[1].ex += n;
986 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
987 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
988 		    __func__, n, ims->ims_haddr);
989 		ims->ims_st[1].in += n;
990 	}
991 }
992 
993 /*
994  * Atomically update the global in_multi state, when a membership's
995  * filter list is being updated in any way.
996  *
997  * imf is the per-inpcb-membership group filter pointer.
998  * A fake imf may be passed for in-kernel consumers.
999  *
1000  * XXX This is a candidate for a set-symmetric-difference style loop
1001  * which would eliminate the repeated lookup from root of ims nodes,
1002  * as they share the same key space.
1003  *
1004  * If any error occurred this function will back out of refcounts
1005  * and return a non-zero value.
1006  */
1007 static int
1008 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1009 {
1010 	struct ip_msource	*ims, *nims;
1011 	struct in_msource	*lims;
1012 	int			 schanged, error;
1013 	int			 nsrc0, nsrc1;
1014 
1015 	schanged = 0;
1016 	error = 0;
1017 	nsrc1 = nsrc0 = 0;
1018 	IN_MULTI_LIST_LOCK_ASSERT();
1019 
1020 	/*
1021 	 * Update the source filters first, as this may fail.
1022 	 * Maintain count of in-mode filters at t0, t1. These are
1023 	 * used to work out if we transition into ASM mode or not.
1024 	 * Maintain a count of source filters whose state was
1025 	 * actually modified by this operation.
1026 	 */
1027 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1028 		lims = (struct in_msource *)ims;
1029 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1030 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1031 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1032 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1033 		++schanged;
1034 		if (error)
1035 			break;
1036 		ims_merge(nims, lims, 0);
1037 	}
1038 	if (error) {
1039 		struct ip_msource *bims;
1040 
1041 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1042 			lims = (struct in_msource *)ims;
1043 			if (lims->imsl_st[0] == lims->imsl_st[1])
1044 				continue;
1045 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1046 			if (bims == NULL)
1047 				continue;
1048 			ims_merge(bims, lims, 1);
1049 		}
1050 		goto out_reap;
1051 	}
1052 
1053 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1054 	    __func__, nsrc0, nsrc1);
1055 
1056 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1057 	if (imf->imf_st[0] == imf->imf_st[1] &&
1058 	    imf->imf_st[1] == MCAST_INCLUDE) {
1059 		if (nsrc1 == 0) {
1060 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1061 			--inm->inm_st[1].iss_in;
1062 		}
1063 	}
1064 
1065 	/* Handle filter mode transition on socket. */
1066 	if (imf->imf_st[0] != imf->imf_st[1]) {
1067 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1068 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1069 
1070 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1071 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1072 			--inm->inm_st[1].iss_ex;
1073 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1074 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1075 			--inm->inm_st[1].iss_in;
1076 		}
1077 
1078 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1079 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1080 			inm->inm_st[1].iss_ex++;
1081 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1082 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1083 			inm->inm_st[1].iss_in++;
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Track inm filter state in terms of listener counts.
1089 	 * If there are any exclusive listeners, stack-wide
1090 	 * membership is exclusive.
1091 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1092 	 * If no listeners remain, state is undefined at t1,
1093 	 * and the IGMP lifecycle for this group should finish.
1094 	 */
1095 	if (inm->inm_st[1].iss_ex > 0) {
1096 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1097 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1098 	} else if (inm->inm_st[1].iss_in > 0) {
1099 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1100 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1101 	} else {
1102 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1103 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1104 	}
1105 
1106 	/* Decrement ASM listener count on transition out of ASM mode. */
1107 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1108 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1109 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1110 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1111 			--inm->inm_st[1].iss_asm;
1112 		}
1113 	}
1114 
1115 	/* Increment ASM listener count on transition to ASM mode. */
1116 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1117 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1118 		inm->inm_st[1].iss_asm++;
1119 	}
1120 
1121 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1122 	inm_print(inm);
1123 
1124 out_reap:
1125 	if (schanged > 0) {
1126 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1127 		inm_reap(inm);
1128 	}
1129 	return (error);
1130 }
1131 
1132 /*
1133  * Mark an in_multi's filter set deltas as committed.
1134  * Called by IGMP after a state change has been enqueued.
1135  */
1136 void
1137 inm_commit(struct in_multi *inm)
1138 {
1139 	struct ip_msource	*ims;
1140 
1141 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1142 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1143 	inm_print(inm);
1144 
1145 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1146 		ims->ims_st[0] = ims->ims_st[1];
1147 	}
1148 	inm->inm_st[0] = inm->inm_st[1];
1149 }
1150 
1151 /*
1152  * Reap unreferenced nodes from an in_multi's filter set.
1153  */
1154 static void
1155 inm_reap(struct in_multi *inm)
1156 {
1157 	struct ip_msource	*ims, *tims;
1158 
1159 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1160 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1161 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1162 		    ims->ims_stp != 0)
1163 			continue;
1164 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1165 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1166 		free(ims, M_IPMSOURCE);
1167 		inm->inm_nsrc--;
1168 	}
1169 }
1170 
1171 /*
1172  * Purge all source nodes from an in_multi's filter set.
1173  */
1174 static void
1175 inm_purge(struct in_multi *inm)
1176 {
1177 	struct ip_msource	*ims, *tims;
1178 
1179 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1180 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1181 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1182 		free(ims, M_IPMSOURCE);
1183 		inm->inm_nsrc--;
1184 	}
1185 }
1186 
1187 /*
1188  * Join a multicast group; unlocked entry point.
1189  *
1190  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1191  * is not held. Fortunately, ifp is unlikely to have been detached
1192  * at this point, so we assume it's OK to recurse.
1193  */
1194 int
1195 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1196     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1197 {
1198 	int error;
1199 
1200 	IN_MULTI_LOCK();
1201 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1202 	IN_MULTI_UNLOCK();
1203 
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Join a multicast group; real entry point.
1209  *
1210  * Only preserves atomicity at inm level.
1211  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1212  *
1213  * If the IGMP downcall fails, the group is not joined, and an error
1214  * code is returned.
1215  */
1216 int
1217 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1218     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1219 {
1220 	struct in_mfilter	 timf;
1221 	struct in_multi		*inm;
1222 	int			 error;
1223 
1224 	IN_MULTI_LOCK_ASSERT();
1225 	IN_MULTI_LIST_UNLOCK_ASSERT();
1226 
1227 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1228 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1229 
1230 	error = 0;
1231 	inm = NULL;
1232 
1233 	/*
1234 	 * If no imf was specified (i.e. kernel consumer),
1235 	 * fake one up and assume it is an ASM join.
1236 	 */
1237 	if (imf == NULL) {
1238 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1239 		imf = &timf;
1240 	}
1241 
1242 	error = in_getmulti(ifp, gina, &inm);
1243 	if (error) {
1244 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1245 		return (error);
1246 	}
1247 	IN_MULTI_LIST_LOCK();
1248 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1249 	error = inm_merge(inm, imf);
1250 	if (error) {
1251 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1252 		goto out_inm_release;
1253 	}
1254 
1255 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1256 	error = igmp_change_state(inm);
1257 	if (error) {
1258 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1259 		goto out_inm_release;
1260 	}
1261 
1262  out_inm_release:
1263 	if (error) {
1264 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1265 		IF_ADDR_WLOCK(ifp);
1266 		inm_release_deferred(inm);
1267 		IF_ADDR_WUNLOCK(ifp);
1268 	} else {
1269 		*pinm = inm;
1270 	}
1271 	IN_MULTI_LIST_UNLOCK();
1272 
1273 	return (error);
1274 }
1275 
1276 /*
1277  * Leave a multicast group; unlocked entry point.
1278  */
1279 int
1280 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1281 {
1282 	int error;
1283 
1284 	IN_MULTI_LOCK();
1285 	error = in_leavegroup_locked(inm, imf);
1286 	IN_MULTI_UNLOCK();
1287 
1288 	return (error);
1289 }
1290 
1291 /*
1292  * Leave a multicast group; real entry point.
1293  * All source filters will be expunged.
1294  *
1295  * Only preserves atomicity at inm level.
1296  *
1297  * Holding the write lock for the INP which contains imf
1298  * is highly advisable. We can't assert for it as imf does not
1299  * contain a back-pointer to the owning inp.
1300  *
1301  * Note: This is not the same as inm_release(*) as this function also
1302  * makes a state change downcall into IGMP.
1303  */
1304 int
1305 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1306 {
1307 	struct in_mfilter	 timf;
1308 	int			 error;
1309 
1310 	IN_MULTI_LOCK_ASSERT();
1311 	IN_MULTI_LIST_UNLOCK_ASSERT();
1312 
1313 	error = 0;
1314 
1315 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1316 	    inm, ntohl(inm->inm_addr.s_addr),
1317 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1318 	    imf);
1319 
1320 	/*
1321 	 * If no imf was specified (i.e. kernel consumer),
1322 	 * fake one up and assume it is an ASM join.
1323 	 */
1324 	if (imf == NULL) {
1325 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1326 		imf = &timf;
1327 	}
1328 
1329 	/*
1330 	 * Begin state merge transaction at IGMP layer.
1331 	 *
1332 	 * As this particular invocation should not cause any memory
1333 	 * to be allocated, and there is no opportunity to roll back
1334 	 * the transaction, it MUST NOT fail.
1335 	 */
1336 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1337 	IN_MULTI_LIST_LOCK();
1338 	error = inm_merge(inm, imf);
1339 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1340 
1341 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1342 	CURVNET_SET(inm->inm_ifp->if_vnet);
1343 	error = igmp_change_state(inm);
1344 	IF_ADDR_WLOCK(inm->inm_ifp);
1345 	inm_release_deferred(inm);
1346 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1347 	IN_MULTI_LIST_UNLOCK();
1348 	CURVNET_RESTORE();
1349 	if (error)
1350 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1351 
1352 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1353 
1354 	return (error);
1355 }
1356 
1357 /*#ifndef BURN_BRIDGES*/
1358 
1359 /*
1360  * Block or unblock an ASM multicast source on an inpcb.
1361  * This implements the delta-based API described in RFC 3678.
1362  *
1363  * The delta-based API applies only to exclusive-mode memberships.
1364  * An IGMP downcall will be performed.
1365  *
1366  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1367  *
1368  * Return 0 if successful, otherwise return an appropriate error code.
1369  */
1370 static int
1371 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1372 {
1373 	struct epoch_tracker		 et;
1374 	struct group_source_req		 gsr;
1375 	sockunion_t			*gsa, *ssa;
1376 	struct ifnet			*ifp;
1377 	struct in_mfilter		*imf;
1378 	struct ip_moptions		*imo;
1379 	struct in_msource		*ims;
1380 	struct in_multi			*inm;
1381 	uint16_t			 fmode;
1382 	int				 error, doblock;
1383 
1384 	ifp = NULL;
1385 	error = 0;
1386 	doblock = 0;
1387 
1388 	memset(&gsr, 0, sizeof(struct group_source_req));
1389 	gsa = (sockunion_t *)&gsr.gsr_group;
1390 	ssa = (sockunion_t *)&gsr.gsr_source;
1391 
1392 	switch (sopt->sopt_name) {
1393 	case IP_BLOCK_SOURCE:
1394 	case IP_UNBLOCK_SOURCE: {
1395 		struct ip_mreq_source	 mreqs;
1396 
1397 		error = sooptcopyin(sopt, &mreqs,
1398 		    sizeof(struct ip_mreq_source),
1399 		    sizeof(struct ip_mreq_source));
1400 		if (error)
1401 			return (error);
1402 
1403 		gsa->sin.sin_family = AF_INET;
1404 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1405 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1406 
1407 		ssa->sin.sin_family = AF_INET;
1408 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1409 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1410 
1411 		if (!in_nullhost(mreqs.imr_interface)) {
1412 			NET_EPOCH_ENTER(et);
1413 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1414 			/* XXXGL: ifref? */
1415 			NET_EPOCH_EXIT(et);
1416 		}
1417 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1418 			doblock = 1;
1419 
1420 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1421 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1422 		break;
1423 	    }
1424 
1425 	case MCAST_BLOCK_SOURCE:
1426 	case MCAST_UNBLOCK_SOURCE:
1427 		error = sooptcopyin(sopt, &gsr,
1428 		    sizeof(struct group_source_req),
1429 		    sizeof(struct group_source_req));
1430 		if (error)
1431 			return (error);
1432 
1433 		if (gsa->sin.sin_family != AF_INET ||
1434 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1435 			return (EINVAL);
1436 
1437 		if (ssa->sin.sin_family != AF_INET ||
1438 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1439 			return (EINVAL);
1440 
1441 		NET_EPOCH_ENTER(et);
1442 		ifp = ifnet_byindex(gsr.gsr_interface);
1443 		NET_EPOCH_EXIT(et);
1444 		if (ifp == NULL)
1445 			return (EADDRNOTAVAIL);
1446 
1447 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1448 			doblock = 1;
1449 		break;
1450 
1451 	default:
1452 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1453 		    __func__, sopt->sopt_name);
1454 		return (EOPNOTSUPP);
1455 		break;
1456 	}
1457 
1458 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1459 		return (EINVAL);
1460 
1461 	IN_MULTI_LOCK();
1462 
1463 	/*
1464 	 * Check if we are actually a member of this group.
1465 	 */
1466 	imo = inp_findmoptions(inp);
1467 	imf = imo_match_group(imo, ifp, &gsa->sa);
1468 	if (imf == NULL) {
1469 		error = EADDRNOTAVAIL;
1470 		goto out_inp_locked;
1471 	}
1472 	inm = imf->imf_inm;
1473 
1474 	/*
1475 	 * Attempting to use the delta-based API on an
1476 	 * non exclusive-mode membership is an error.
1477 	 */
1478 	fmode = imf->imf_st[0];
1479 	if (fmode != MCAST_EXCLUDE) {
1480 		error = EINVAL;
1481 		goto out_inp_locked;
1482 	}
1483 
1484 	/*
1485 	 * Deal with error cases up-front:
1486 	 *  Asked to block, but already blocked; or
1487 	 *  Asked to unblock, but nothing to unblock.
1488 	 * If adding a new block entry, allocate it.
1489 	 */
1490 	ims = imo_match_source(imf, &ssa->sa);
1491 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1492 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1493 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1494 		error = EADDRNOTAVAIL;
1495 		goto out_inp_locked;
1496 	}
1497 
1498 	INP_WLOCK_ASSERT(inp);
1499 
1500 	/*
1501 	 * Begin state merge transaction at socket layer.
1502 	 */
1503 	if (doblock) {
1504 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1505 		ims = imf_graft(imf, fmode, &ssa->sin);
1506 		if (ims == NULL)
1507 			error = ENOMEM;
1508 	} else {
1509 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1510 		error = imf_prune(imf, &ssa->sin);
1511 	}
1512 
1513 	if (error) {
1514 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1515 		goto out_imf_rollback;
1516 	}
1517 
1518 	/*
1519 	 * Begin state merge transaction at IGMP layer.
1520 	 */
1521 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1522 	IN_MULTI_LIST_LOCK();
1523 	error = inm_merge(inm, imf);
1524 	if (error) {
1525 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1526 		IN_MULTI_LIST_UNLOCK();
1527 		goto out_imf_rollback;
1528 	}
1529 
1530 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1531 	error = igmp_change_state(inm);
1532 	IN_MULTI_LIST_UNLOCK();
1533 	if (error)
1534 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1535 
1536 out_imf_rollback:
1537 	if (error)
1538 		imf_rollback(imf);
1539 	else
1540 		imf_commit(imf);
1541 
1542 	imf_reap(imf);
1543 
1544 out_inp_locked:
1545 	INP_WUNLOCK(inp);
1546 	IN_MULTI_UNLOCK();
1547 	return (error);
1548 }
1549 
1550 /*
1551  * Given an inpcb, return its multicast options structure pointer.  Accepts
1552  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1553  *
1554  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1555  * SMPng: NOTE: Returns with the INP write lock held.
1556  */
1557 static struct ip_moptions *
1558 inp_findmoptions(struct inpcb *inp)
1559 {
1560 	struct ip_moptions	 *imo;
1561 
1562 	INP_WLOCK(inp);
1563 	if (inp->inp_moptions != NULL)
1564 		return (inp->inp_moptions);
1565 
1566 	INP_WUNLOCK(inp);
1567 
1568 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1569 
1570 	imo->imo_multicast_ifp = NULL;
1571 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1572 	imo->imo_multicast_vif = -1;
1573 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1574 	imo->imo_multicast_loop = in_mcast_loop;
1575 	STAILQ_INIT(&imo->imo_head);
1576 
1577 	INP_WLOCK(inp);
1578 	if (inp->inp_moptions != NULL) {
1579 		free(imo, M_IPMOPTS);
1580 		return (inp->inp_moptions);
1581 	}
1582 	inp->inp_moptions = imo;
1583 	return (imo);
1584 }
1585 
1586 void
1587 inp_freemoptions(struct ip_moptions *imo)
1588 {
1589 	struct in_mfilter *imf;
1590 	struct in_multi *inm;
1591 	struct ifnet *ifp;
1592 
1593 	if (imo == NULL)
1594 		return;
1595 
1596 	while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1597 		ip_mfilter_remove(&imo->imo_head, imf);
1598 
1599 		imf_leave(imf);
1600 		if ((inm = imf->imf_inm) != NULL) {
1601 			if ((ifp = inm->inm_ifp) != NULL) {
1602 				CURVNET_SET(ifp->if_vnet);
1603 				(void)in_leavegroup(inm, imf);
1604 				CURVNET_RESTORE();
1605 			} else {
1606 				(void)in_leavegroup(inm, imf);
1607 			}
1608 		}
1609 		ip_mfilter_free(imf);
1610 	}
1611 	free(imo, M_IPMOPTS);
1612 }
1613 
1614 /*
1615  * Atomically get source filters on a socket for an IPv4 multicast group.
1616  * Called with INP lock held; returns with lock released.
1617  */
1618 static int
1619 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1620 {
1621 	struct epoch_tracker	 et;
1622 	struct __msfilterreq	 msfr;
1623 	sockunion_t		*gsa;
1624 	struct ifnet		*ifp;
1625 	struct ip_moptions	*imo;
1626 	struct in_mfilter	*imf;
1627 	struct ip_msource	*ims;
1628 	struct in_msource	*lims;
1629 	struct sockaddr_in	*psin;
1630 	struct sockaddr_storage	*ptss;
1631 	struct sockaddr_storage	*tss;
1632 	int			 error;
1633 	size_t			 nsrcs, ncsrcs;
1634 
1635 	INP_WLOCK_ASSERT(inp);
1636 
1637 	imo = inp->inp_moptions;
1638 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1639 
1640 	INP_WUNLOCK(inp);
1641 
1642 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1643 	    sizeof(struct __msfilterreq));
1644 	if (error)
1645 		return (error);
1646 
1647 	NET_EPOCH_ENTER(et);
1648 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1649 	NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifnet pointer left */
1650 	if (ifp == NULL)
1651 		return (EINVAL);
1652 
1653 	INP_WLOCK(inp);
1654 
1655 	/*
1656 	 * Lookup group on the socket.
1657 	 */
1658 	gsa = (sockunion_t *)&msfr.msfr_group;
1659 	imf = imo_match_group(imo, ifp, &gsa->sa);
1660 	if (imf == NULL) {
1661 		INP_WUNLOCK(inp);
1662 		return (EADDRNOTAVAIL);
1663 	}
1664 
1665 	/*
1666 	 * Ignore memberships which are in limbo.
1667 	 */
1668 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1669 		INP_WUNLOCK(inp);
1670 		return (EAGAIN);
1671 	}
1672 	msfr.msfr_fmode = imf->imf_st[1];
1673 
1674 	/*
1675 	 * If the user specified a buffer, copy out the source filter
1676 	 * entries to userland gracefully.
1677 	 * We only copy out the number of entries which userland
1678 	 * has asked for, but we always tell userland how big the
1679 	 * buffer really needs to be.
1680 	 */
1681 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1682 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1683 	tss = NULL;
1684 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1685 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1686 		    M_TEMP, M_NOWAIT | M_ZERO);
1687 		if (tss == NULL) {
1688 			INP_WUNLOCK(inp);
1689 			return (ENOBUFS);
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * Count number of sources in-mode at t0.
1695 	 * If buffer space exists and remains, copy out source entries.
1696 	 */
1697 	nsrcs = msfr.msfr_nsrcs;
1698 	ncsrcs = 0;
1699 	ptss = tss;
1700 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1701 		lims = (struct in_msource *)ims;
1702 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1703 		    lims->imsl_st[0] != imf->imf_st[0])
1704 			continue;
1705 		++ncsrcs;
1706 		if (tss != NULL && nsrcs > 0) {
1707 			psin = (struct sockaddr_in *)ptss;
1708 			psin->sin_family = AF_INET;
1709 			psin->sin_len = sizeof(struct sockaddr_in);
1710 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1711 			psin->sin_port = 0;
1712 			++ptss;
1713 			--nsrcs;
1714 		}
1715 	}
1716 
1717 	INP_WUNLOCK(inp);
1718 
1719 	if (tss != NULL) {
1720 		error = copyout(tss, msfr.msfr_srcs,
1721 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1722 		free(tss, M_TEMP);
1723 		if (error)
1724 			return (error);
1725 	}
1726 
1727 	msfr.msfr_nsrcs = ncsrcs;
1728 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1729 
1730 	return (error);
1731 }
1732 
1733 /*
1734  * Return the IP multicast options in response to user getsockopt().
1735  */
1736 int
1737 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1738 {
1739 	struct ip_mreqn		 mreqn;
1740 	struct ip_moptions	*imo;
1741 	struct ifnet		*ifp;
1742 	struct in_ifaddr	*ia;
1743 	int			 error, optval;
1744 	u_char			 coptval;
1745 
1746 	INP_WLOCK(inp);
1747 	imo = inp->inp_moptions;
1748 	/* If socket is neither of type SOCK_RAW or SOCK_DGRAM reject it. */
1749 	if (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1750 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) {
1751 		INP_WUNLOCK(inp);
1752 		return (EOPNOTSUPP);
1753 	}
1754 
1755 	error = 0;
1756 	switch (sopt->sopt_name) {
1757 	case IP_MULTICAST_VIF:
1758 		if (imo != NULL)
1759 			optval = imo->imo_multicast_vif;
1760 		else
1761 			optval = -1;
1762 		INP_WUNLOCK(inp);
1763 		error = sooptcopyout(sopt, &optval, sizeof(int));
1764 		break;
1765 
1766 	case IP_MULTICAST_IF:
1767 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1768 		if (imo != NULL) {
1769 			ifp = imo->imo_multicast_ifp;
1770 			if (!in_nullhost(imo->imo_multicast_addr)) {
1771 				mreqn.imr_address = imo->imo_multicast_addr;
1772 			} else if (ifp != NULL) {
1773 				struct epoch_tracker et;
1774 
1775 				mreqn.imr_ifindex = ifp->if_index;
1776 				NET_EPOCH_ENTER(et);
1777 				IFP_TO_IA(ifp, ia);
1778 				if (ia != NULL)
1779 					mreqn.imr_address =
1780 					    IA_SIN(ia)->sin_addr;
1781 				NET_EPOCH_EXIT(et);
1782 			}
1783 		}
1784 		INP_WUNLOCK(inp);
1785 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1786 			error = sooptcopyout(sopt, &mreqn,
1787 			    sizeof(struct ip_mreqn));
1788 		} else {
1789 			error = sooptcopyout(sopt, &mreqn.imr_address,
1790 			    sizeof(struct in_addr));
1791 		}
1792 		break;
1793 
1794 	case IP_MULTICAST_TTL:
1795 		if (imo == NULL)
1796 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1797 		else
1798 			optval = coptval = imo->imo_multicast_ttl;
1799 		INP_WUNLOCK(inp);
1800 		if (sopt->sopt_valsize == sizeof(u_char))
1801 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1802 		else
1803 			error = sooptcopyout(sopt, &optval, sizeof(int));
1804 		break;
1805 
1806 	case IP_MULTICAST_LOOP:
1807 		if (imo == NULL)
1808 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1809 		else
1810 			optval = coptval = imo->imo_multicast_loop;
1811 		INP_WUNLOCK(inp);
1812 		if (sopt->sopt_valsize == sizeof(u_char))
1813 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1814 		else
1815 			error = sooptcopyout(sopt, &optval, sizeof(int));
1816 		break;
1817 
1818 	case IP_MSFILTER:
1819 		if (imo == NULL) {
1820 			error = EADDRNOTAVAIL;
1821 			INP_WUNLOCK(inp);
1822 		} else {
1823 			error = inp_get_source_filters(inp, sopt);
1824 		}
1825 		break;
1826 
1827 	default:
1828 		INP_WUNLOCK(inp);
1829 		error = ENOPROTOOPT;
1830 		break;
1831 	}
1832 
1833 	INP_UNLOCK_ASSERT(inp);
1834 
1835 	return (error);
1836 }
1837 
1838 /*
1839  * Look up the ifnet to use for a multicast group membership,
1840  * given the IPv4 address of an interface, and the IPv4 group address.
1841  *
1842  * This routine exists to support legacy multicast applications
1843  * which do not understand that multicast memberships are scoped to
1844  * specific physical links in the networking stack, or which need
1845  * to join link-scope groups before IPv4 addresses are configured.
1846  *
1847  * Use this socket's current FIB number for any required FIB lookup.
1848  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1849  * and use its ifp; usually, this points to the default next-hop.
1850  *
1851  * If the FIB lookup fails, attempt to use the first non-loopback
1852  * interface with multicast capability in the system as a
1853  * last resort. The legacy IPv4 ASM API requires that we do
1854  * this in order to allow groups to be joined when the routing
1855  * table has not yet been populated during boot.
1856  *
1857  * Returns NULL if no ifp could be found, otherwise return referenced ifp.
1858  *
1859  * FUTURE: Implement IPv4 source-address selection.
1860  */
1861 static struct ifnet *
1862 inp_lookup_mcast_ifp(const struct inpcb *inp,
1863     const struct sockaddr_in *gsin, const struct in_addr ina)
1864 {
1865 	struct ifnet *ifp;
1866 	struct nhop_object *nh;
1867 
1868 	NET_EPOCH_ASSERT();
1869 	KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__));
1870 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1871 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1872 	    ("%s: not multicast", __func__));
1873 
1874 	ifp = NULL;
1875 	if (!in_nullhost(ina)) {
1876 		INADDR_TO_IFP(ina, ifp);
1877 		if (ifp != NULL)
1878 			if_ref(ifp);
1879 	} else {
1880 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0);
1881 		if (nh != NULL) {
1882 			ifp = nh->nh_ifp;
1883 			if_ref(ifp);
1884 		} else {
1885 			struct in_ifaddr *ia;
1886 			struct ifnet *mifp;
1887 
1888 			mifp = NULL;
1889 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1890 				mifp = ia->ia_ifp;
1891 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1892 				     (mifp->if_flags & IFF_MULTICAST)) {
1893 					ifp = mifp;
1894 					if_ref(ifp);
1895 					break;
1896 				}
1897 			}
1898 		}
1899 	}
1900 
1901 	return (ifp);
1902 }
1903 
1904 /*
1905  * Join an IPv4 multicast group, possibly with a source.
1906  */
1907 static int
1908 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1909 {
1910 	struct group_source_req		 gsr;
1911 	sockunion_t			*gsa, *ssa;
1912 	struct ifnet			*ifp;
1913 	struct in_mfilter		*imf;
1914 	struct ip_moptions		*imo;
1915 	struct in_multi			*inm;
1916 	struct in_msource		*lims;
1917 	struct epoch_tracker		 et;
1918 	int				 error, is_new;
1919 
1920 	ifp = NULL;
1921 	lims = NULL;
1922 	error = 0;
1923 
1924 	memset(&gsr, 0, sizeof(struct group_source_req));
1925 	gsa = (sockunion_t *)&gsr.gsr_group;
1926 	gsa->ss.ss_family = AF_UNSPEC;
1927 	ssa = (sockunion_t *)&gsr.gsr_source;
1928 	ssa->ss.ss_family = AF_UNSPEC;
1929 
1930 	switch (sopt->sopt_name) {
1931 	case IP_ADD_MEMBERSHIP: {
1932 		struct ip_mreqn mreqn;
1933 
1934 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1935 			error = sooptcopyin(sopt, &mreqn,
1936 			    sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1937 		else
1938 			error = sooptcopyin(sopt, &mreqn,
1939 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1940 		if (error)
1941 			return (error);
1942 
1943 		gsa->sin.sin_family = AF_INET;
1944 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1945 		gsa->sin.sin_addr = mreqn.imr_multiaddr;
1946 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1947 			return (EINVAL);
1948 
1949 		NET_EPOCH_ENTER(et);
1950 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
1951 		    mreqn.imr_ifindex != 0)
1952 			ifp = ifnet_byindex_ref(mreqn.imr_ifindex);
1953 		else
1954 			ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1955 			    mreqn.imr_address);
1956 		NET_EPOCH_EXIT(et);
1957 		break;
1958 	}
1959 	case IP_ADD_SOURCE_MEMBERSHIP: {
1960 		struct ip_mreq_source	 mreqs;
1961 
1962 		error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
1963 			    sizeof(struct ip_mreq_source));
1964 		if (error)
1965 			return (error);
1966 
1967 		gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
1968 		gsa->sin.sin_len = ssa->sin.sin_len =
1969 		    sizeof(struct sockaddr_in);
1970 
1971 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1972 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1973 			return (EINVAL);
1974 
1975 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1976 
1977 		NET_EPOCH_ENTER(et);
1978 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1979 		    mreqs.imr_interface);
1980 		NET_EPOCH_EXIT(et);
1981 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1982 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1983 		break;
1984 	}
1985 
1986 	case MCAST_JOIN_GROUP:
1987 	case MCAST_JOIN_SOURCE_GROUP:
1988 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1989 			error = sooptcopyin(sopt, &gsr,
1990 			    sizeof(struct group_req),
1991 			    sizeof(struct group_req));
1992 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1993 			error = sooptcopyin(sopt, &gsr,
1994 			    sizeof(struct group_source_req),
1995 			    sizeof(struct group_source_req));
1996 		}
1997 		if (error)
1998 			return (error);
1999 
2000 		if (gsa->sin.sin_family != AF_INET ||
2001 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2002 			return (EINVAL);
2003 
2004 		/*
2005 		 * Overwrite the port field if present, as the sockaddr
2006 		 * being copied in may be matched with a binary comparison.
2007 		 */
2008 		gsa->sin.sin_port = 0;
2009 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2010 			if (ssa->sin.sin_family != AF_INET ||
2011 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2012 				return (EINVAL);
2013 			ssa->sin.sin_port = 0;
2014 		}
2015 
2016 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2017 			return (EINVAL);
2018 
2019 		NET_EPOCH_ENTER(et);
2020 		ifp = ifnet_byindex_ref(gsr.gsr_interface);
2021 		NET_EPOCH_EXIT(et);
2022 		if (ifp == NULL)
2023 			return (EADDRNOTAVAIL);
2024 		break;
2025 
2026 	default:
2027 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2028 		    __func__, sopt->sopt_name);
2029 		return (EOPNOTSUPP);
2030 		break;
2031 	}
2032 
2033 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2034 		if (ifp != NULL)
2035 			if_rele(ifp);
2036 		return (EADDRNOTAVAIL);
2037 	}
2038 
2039 	IN_MULTI_LOCK();
2040 
2041 	/*
2042 	 * Find the membership in the membership list.
2043 	 */
2044 	imo = inp_findmoptions(inp);
2045 	imf = imo_match_group(imo, ifp, &gsa->sa);
2046 	if (imf == NULL) {
2047 		is_new = 1;
2048 		inm = NULL;
2049 
2050 		if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2051 			error = ENOMEM;
2052 			goto out_inp_locked;
2053 		}
2054 	} else {
2055 		is_new = 0;
2056 		inm = imf->imf_inm;
2057 
2058 		if (ssa->ss.ss_family != AF_UNSPEC) {
2059 			/*
2060 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2061 			 * is an error. On an existing inclusive membership,
2062 			 * it just adds the source to the filter list.
2063 			 */
2064 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2065 				error = EINVAL;
2066 				goto out_inp_locked;
2067 			}
2068 			/*
2069 			 * Throw out duplicates.
2070 			 *
2071 			 * XXX FIXME: This makes a naive assumption that
2072 			 * even if entries exist for *ssa in this imf,
2073 			 * they will be rejected as dupes, even if they
2074 			 * are not valid in the current mode (in-mode).
2075 			 *
2076 			 * in_msource is transactioned just as for anything
2077 			 * else in SSM -- but note naive use of inm_graft()
2078 			 * below for allocating new filter entries.
2079 			 *
2080 			 * This is only an issue if someone mixes the
2081 			 * full-state SSM API with the delta-based API,
2082 			 * which is discouraged in the relevant RFCs.
2083 			 */
2084 			lims = imo_match_source(imf, &ssa->sa);
2085 			if (lims != NULL /*&&
2086 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2087 				error = EADDRNOTAVAIL;
2088 				goto out_inp_locked;
2089 			}
2090 		} else {
2091 			/*
2092 			 * MCAST_JOIN_GROUP on an existing exclusive
2093 			 * membership is an error; return EADDRINUSE
2094 			 * to preserve 4.4BSD API idempotence, and
2095 			 * avoid tedious detour to code below.
2096 			 * NOTE: This is bending RFC 3678 a bit.
2097 			 *
2098 			 * On an existing inclusive membership, this is also
2099 			 * an error; if you want to change filter mode,
2100 			 * you must use the userland API setsourcefilter().
2101 			 * XXX We don't reject this for imf in UNDEFINED
2102 			 * state at t1, because allocation of a filter
2103 			 * is atomic with allocation of a membership.
2104 			 */
2105 			error = EINVAL;
2106 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2107 				error = EADDRINUSE;
2108 			goto out_inp_locked;
2109 		}
2110 	}
2111 
2112 	/*
2113 	 * Begin state merge transaction at socket layer.
2114 	 */
2115 	INP_WLOCK_ASSERT(inp);
2116 
2117 	/*
2118 	 * Graft new source into filter list for this inpcb's
2119 	 * membership of the group. The in_multi may not have
2120 	 * been allocated yet if this is a new membership, however,
2121 	 * the in_mfilter slot will be allocated and must be initialized.
2122 	 *
2123 	 * Note: Grafting of exclusive mode filters doesn't happen
2124 	 * in this path.
2125 	 * XXX: Should check for non-NULL lims (node exists but may
2126 	 * not be in-mode) for interop with full-state API.
2127 	 */
2128 	if (ssa->ss.ss_family != AF_UNSPEC) {
2129 		/* Membership starts in IN mode */
2130 		if (is_new) {
2131 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2132 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2133 			if (imf == NULL) {
2134 				error = ENOMEM;
2135 				goto out_inp_locked;
2136 			}
2137 		} else {
2138 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2139 		}
2140 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2141 		if (lims == NULL) {
2142 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2143 			    __func__);
2144 			error = ENOMEM;
2145 			goto out_inp_locked;
2146 		}
2147 	} else {
2148 		/* No address specified; Membership starts in EX mode */
2149 		if (is_new) {
2150 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2151 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2152 			if (imf == NULL) {
2153 				error = ENOMEM;
2154 				goto out_inp_locked;
2155 			}
2156 		}
2157 	}
2158 
2159 	/*
2160 	 * Begin state merge transaction at IGMP layer.
2161 	 */
2162 	if (is_new) {
2163 		in_pcbref(inp);
2164 		INP_WUNLOCK(inp);
2165 
2166 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2167 		    &imf->imf_inm);
2168 
2169 		INP_WLOCK(inp);
2170 		if (in_pcbrele_wlocked(inp)) {
2171 			error = ENXIO;
2172 			goto out_inp_unlocked;
2173 		}
2174 		if (error) {
2175                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2176                             __func__);
2177 			goto out_inp_locked;
2178 		}
2179 		/*
2180 		 * NOTE: Refcount from in_joingroup_locked()
2181 		 * is protecting membership.
2182 		 */
2183 		ip_mfilter_insert(&imo->imo_head, imf);
2184 	} else {
2185 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2186 		IN_MULTI_LIST_LOCK();
2187 		error = inm_merge(inm, imf);
2188 		if (error) {
2189 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2190 				 __func__);
2191 			IN_MULTI_LIST_UNLOCK();
2192 			imf_rollback(imf);
2193 			imf_reap(imf);
2194 			goto out_inp_locked;
2195 		}
2196 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2197 		error = igmp_change_state(inm);
2198 		IN_MULTI_LIST_UNLOCK();
2199 		if (error) {
2200 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2201 			    __func__);
2202 			imf_rollback(imf);
2203 			imf_reap(imf);
2204 			goto out_inp_locked;
2205 		}
2206 	}
2207 
2208 	imf_commit(imf);
2209 	imf = NULL;
2210 
2211 out_inp_locked:
2212 	INP_WUNLOCK(inp);
2213 out_inp_unlocked:
2214 	IN_MULTI_UNLOCK();
2215 
2216 	if (is_new && imf) {
2217 		if (imf->imf_inm != NULL) {
2218 			IN_MULTI_LIST_LOCK();
2219 			IF_ADDR_WLOCK(ifp);
2220 			inm_release_deferred(imf->imf_inm);
2221 			IF_ADDR_WUNLOCK(ifp);
2222 			IN_MULTI_LIST_UNLOCK();
2223 		}
2224 		ip_mfilter_free(imf);
2225 	}
2226 	if_rele(ifp);
2227 	return (error);
2228 }
2229 
2230 /*
2231  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2232  */
2233 static int
2234 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2235 {
2236 	struct epoch_tracker		 et;
2237 	struct group_source_req		 gsr;
2238 	struct ip_mreq_source		 mreqs;
2239 	sockunion_t			*gsa, *ssa;
2240 	struct ifnet			*ifp;
2241 	struct in_mfilter		*imf;
2242 	struct ip_moptions		*imo;
2243 	struct in_msource		*ims;
2244 	struct in_multi			*inm;
2245 	int				 error;
2246 	bool				 is_final;
2247 
2248 	ifp = NULL;
2249 	error = 0;
2250 	is_final = true;
2251 
2252 	memset(&gsr, 0, sizeof(struct group_source_req));
2253 	gsa = (sockunion_t *)&gsr.gsr_group;
2254 	gsa->ss.ss_family = AF_UNSPEC;
2255 	ssa = (sockunion_t *)&gsr.gsr_source;
2256 	ssa->ss.ss_family = AF_UNSPEC;
2257 
2258 	switch (sopt->sopt_name) {
2259 	case IP_DROP_MEMBERSHIP:
2260 	case IP_DROP_SOURCE_MEMBERSHIP:
2261 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2262 			error = sooptcopyin(sopt, &mreqs,
2263 			    sizeof(struct ip_mreq),
2264 			    sizeof(struct ip_mreq));
2265 			/*
2266 			 * Swap interface and sourceaddr arguments,
2267 			 * as ip_mreq and ip_mreq_source are laid
2268 			 * out differently.
2269 			 */
2270 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2271 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2272 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2273 			error = sooptcopyin(sopt, &mreqs,
2274 			    sizeof(struct ip_mreq_source),
2275 			    sizeof(struct ip_mreq_source));
2276 		}
2277 		if (error)
2278 			return (error);
2279 
2280 		gsa->sin.sin_family = AF_INET;
2281 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2282 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2283 
2284 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2285 			ssa->sin.sin_family = AF_INET;
2286 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2287 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2288 		}
2289 
2290 		/*
2291 		 * Attempt to look up hinted ifp from interface address.
2292 		 * Fallthrough with null ifp iff lookup fails, to
2293 		 * preserve 4.4BSD mcast API idempotence.
2294 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2295 		 * using an IPv4 address as a key is racy.
2296 		 */
2297 		if (!in_nullhost(mreqs.imr_interface)) {
2298 			NET_EPOCH_ENTER(et);
2299 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2300 			/* XXXGL ifref? */
2301 			NET_EPOCH_EXIT(et);
2302 		}
2303 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2304 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2305 
2306 		break;
2307 
2308 	case MCAST_LEAVE_GROUP:
2309 	case MCAST_LEAVE_SOURCE_GROUP:
2310 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2311 			error = sooptcopyin(sopt, &gsr,
2312 			    sizeof(struct group_req),
2313 			    sizeof(struct group_req));
2314 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2315 			error = sooptcopyin(sopt, &gsr,
2316 			    sizeof(struct group_source_req),
2317 			    sizeof(struct group_source_req));
2318 		}
2319 		if (error)
2320 			return (error);
2321 
2322 		if (gsa->sin.sin_family != AF_INET ||
2323 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2324 			return (EINVAL);
2325 
2326 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2327 			if (ssa->sin.sin_family != AF_INET ||
2328 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2329 				return (EINVAL);
2330 		}
2331 
2332 		NET_EPOCH_ENTER(et);
2333 		ifp = ifnet_byindex(gsr.gsr_interface);
2334 		NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2335 		if (ifp == NULL)
2336 			return (EADDRNOTAVAIL);
2337 		break;
2338 
2339 	default:
2340 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2341 		    __func__, sopt->sopt_name);
2342 		return (EOPNOTSUPP);
2343 		break;
2344 	}
2345 
2346 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2347 		return (EINVAL);
2348 
2349 	IN_MULTI_LOCK();
2350 
2351 	/*
2352 	 * Find the membership in the membership list.
2353 	 */
2354 	imo = inp_findmoptions(inp);
2355 	imf = imo_match_group(imo, ifp, &gsa->sa);
2356 	if (imf == NULL) {
2357 		error = EADDRNOTAVAIL;
2358 		goto out_inp_locked;
2359 	}
2360 	inm = imf->imf_inm;
2361 
2362 	if (ssa->ss.ss_family != AF_UNSPEC)
2363 		is_final = false;
2364 
2365 	/*
2366 	 * Begin state merge transaction at socket layer.
2367 	 */
2368 	INP_WLOCK_ASSERT(inp);
2369 
2370 	/*
2371 	 * If we were instructed only to leave a given source, do so.
2372 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2373 	 */
2374 	if (is_final) {
2375 		ip_mfilter_remove(&imo->imo_head, imf);
2376 		imf_leave(imf);
2377 
2378 		/*
2379 		 * Give up the multicast address record to which
2380 		 * the membership points.
2381 		 */
2382 		(void) in_leavegroup_locked(imf->imf_inm, imf);
2383 	} else {
2384 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2385 			error = EADDRNOTAVAIL;
2386 			goto out_inp_locked;
2387 		}
2388 		ims = imo_match_source(imf, &ssa->sa);
2389 		if (ims == NULL) {
2390 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2391 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2392 			error = EADDRNOTAVAIL;
2393 			goto out_inp_locked;
2394 		}
2395 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2396 		error = imf_prune(imf, &ssa->sin);
2397 		if (error) {
2398 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2399 			    __func__);
2400 			goto out_inp_locked;
2401 		}
2402 	}
2403 
2404 	/*
2405 	 * Begin state merge transaction at IGMP layer.
2406 	 */
2407 	if (!is_final) {
2408 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2409 		IN_MULTI_LIST_LOCK();
2410 		error = inm_merge(inm, imf);
2411 		if (error) {
2412 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2413 			    __func__);
2414 			IN_MULTI_LIST_UNLOCK();
2415 			imf_rollback(imf);
2416 			imf_reap(imf);
2417 			goto out_inp_locked;
2418 		}
2419 
2420 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2421 		error = igmp_change_state(inm);
2422 		IN_MULTI_LIST_UNLOCK();
2423 		if (error) {
2424 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2425 			    __func__);
2426 			imf_rollback(imf);
2427 			imf_reap(imf);
2428 			goto out_inp_locked;
2429 		}
2430 	}
2431 	imf_commit(imf);
2432 	imf_reap(imf);
2433 
2434 out_inp_locked:
2435 	INP_WUNLOCK(inp);
2436 
2437 	if (is_final && imf)
2438 		ip_mfilter_free(imf);
2439 
2440 	IN_MULTI_UNLOCK();
2441 	return (error);
2442 }
2443 
2444 /*
2445  * Select the interface for transmitting IPv4 multicast datagrams.
2446  *
2447  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2448  * may be passed to this socket option. An address of INADDR_ANY or an
2449  * interface index of 0 is used to remove a previous selection.
2450  * When no interface is selected, one is chosen for every send.
2451  */
2452 static int
2453 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2454 {
2455 	struct in_addr		 addr;
2456 	struct ip_mreqn		 mreqn;
2457 	struct ifnet		*ifp;
2458 	struct ip_moptions	*imo;
2459 	int			 error;
2460 
2461 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2462 		/*
2463 		 * An interface index was specified using the
2464 		 * Linux-derived ip_mreqn structure.
2465 		 */
2466 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2467 		    sizeof(struct ip_mreqn));
2468 		if (error)
2469 			return (error);
2470 
2471 		if (mreqn.imr_ifindex < 0)
2472 			return (EINVAL);
2473 
2474 		if (mreqn.imr_ifindex == 0) {
2475 			ifp = NULL;
2476 		} else {
2477 			struct epoch_tracker et;
2478 
2479 			NET_EPOCH_ENTER(et);
2480 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2481 			NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2482 			if (ifp == NULL)
2483 				return (EADDRNOTAVAIL);
2484 		}
2485 	} else {
2486 		/*
2487 		 * An interface was specified by IPv4 address.
2488 		 * This is the traditional BSD usage.
2489 		 */
2490 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2491 		    sizeof(struct in_addr));
2492 		if (error)
2493 			return (error);
2494 		if (in_nullhost(addr)) {
2495 			ifp = NULL;
2496 		} else {
2497 			struct epoch_tracker et;
2498 
2499 			NET_EPOCH_ENTER(et);
2500 			INADDR_TO_IFP(addr, ifp);
2501 			/* XXXGL ifref? */
2502 			NET_EPOCH_EXIT(et);
2503 			if (ifp == NULL)
2504 				return (EADDRNOTAVAIL);
2505 		}
2506 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2507 		    ntohl(addr.s_addr));
2508 	}
2509 
2510 	/* Reject interfaces which do not support multicast. */
2511 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2512 		return (EOPNOTSUPP);
2513 
2514 	imo = inp_findmoptions(inp);
2515 	imo->imo_multicast_ifp = ifp;
2516 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2517 	INP_WUNLOCK(inp);
2518 
2519 	return (0);
2520 }
2521 
2522 /*
2523  * Atomically set source filters on a socket for an IPv4 multicast group.
2524  *
2525  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2526  */
2527 static int
2528 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2529 {
2530 	struct epoch_tracker	 et;
2531 	struct __msfilterreq	 msfr;
2532 	sockunion_t		*gsa;
2533 	struct ifnet		*ifp;
2534 	struct in_mfilter	*imf;
2535 	struct ip_moptions	*imo;
2536 	struct in_multi		*inm;
2537 	int			 error;
2538 
2539 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2540 	    sizeof(struct __msfilterreq));
2541 	if (error)
2542 		return (error);
2543 
2544 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2545 		return (ENOBUFS);
2546 
2547 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2548 	     msfr.msfr_fmode != MCAST_INCLUDE))
2549 		return (EINVAL);
2550 
2551 	if (msfr.msfr_group.ss_family != AF_INET ||
2552 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2553 		return (EINVAL);
2554 
2555 	gsa = (sockunion_t *)&msfr.msfr_group;
2556 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2557 		return (EINVAL);
2558 
2559 	gsa->sin.sin_port = 0;	/* ignore port */
2560 
2561 	NET_EPOCH_ENTER(et);
2562 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2563 	NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2564 	if (ifp == NULL)
2565 		return (EADDRNOTAVAIL);
2566 
2567 	IN_MULTI_LOCK();
2568 
2569 	/*
2570 	 * Take the INP write lock.
2571 	 * Check if this socket is a member of this group.
2572 	 */
2573 	imo = inp_findmoptions(inp);
2574 	imf = imo_match_group(imo, ifp, &gsa->sa);
2575 	if (imf == NULL) {
2576 		error = EADDRNOTAVAIL;
2577 		goto out_inp_locked;
2578 	}
2579 	inm = imf->imf_inm;
2580 
2581 	/*
2582 	 * Begin state merge transaction at socket layer.
2583 	 */
2584 	INP_WLOCK_ASSERT(inp);
2585 
2586 	imf->imf_st[1] = msfr.msfr_fmode;
2587 
2588 	/*
2589 	 * Apply any new source filters, if present.
2590 	 * Make a copy of the user-space source vector so
2591 	 * that we may copy them with a single copyin. This
2592 	 * allows us to deal with page faults up-front.
2593 	 */
2594 	if (msfr.msfr_nsrcs > 0) {
2595 		struct in_msource	*lims;
2596 		struct sockaddr_in	*psin;
2597 		struct sockaddr_storage	*kss, *pkss;
2598 		int			 i;
2599 
2600 		INP_WUNLOCK(inp);
2601 
2602 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2603 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2604 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2605 		    M_TEMP, M_WAITOK);
2606 		error = copyin(msfr.msfr_srcs, kss,
2607 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2608 		if (error) {
2609 			free(kss, M_TEMP);
2610 			return (error);
2611 		}
2612 
2613 		INP_WLOCK(inp);
2614 
2615 		/*
2616 		 * Mark all source filters as UNDEFINED at t1.
2617 		 * Restore new group filter mode, as imf_leave()
2618 		 * will set it to INCLUDE.
2619 		 */
2620 		imf_leave(imf);
2621 		imf->imf_st[1] = msfr.msfr_fmode;
2622 
2623 		/*
2624 		 * Update socket layer filters at t1, lazy-allocating
2625 		 * new entries. This saves a bunch of memory at the
2626 		 * cost of one RB_FIND() per source entry; duplicate
2627 		 * entries in the msfr_nsrcs vector are ignored.
2628 		 * If we encounter an error, rollback transaction.
2629 		 *
2630 		 * XXX This too could be replaced with a set-symmetric
2631 		 * difference like loop to avoid walking from root
2632 		 * every time, as the key space is common.
2633 		 */
2634 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2635 			psin = (struct sockaddr_in *)pkss;
2636 			if (psin->sin_family != AF_INET) {
2637 				error = EAFNOSUPPORT;
2638 				break;
2639 			}
2640 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2641 				error = EINVAL;
2642 				break;
2643 			}
2644 			error = imf_get_source(imf, psin, &lims);
2645 			if (error)
2646 				break;
2647 			lims->imsl_st[1] = imf->imf_st[1];
2648 		}
2649 		free(kss, M_TEMP);
2650 	}
2651 
2652 	if (error)
2653 		goto out_imf_rollback;
2654 
2655 	INP_WLOCK_ASSERT(inp);
2656 
2657 	/*
2658 	 * Begin state merge transaction at IGMP layer.
2659 	 */
2660 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2661 	IN_MULTI_LIST_LOCK();
2662 	error = inm_merge(inm, imf);
2663 	if (error) {
2664 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2665 		IN_MULTI_LIST_UNLOCK();
2666 		goto out_imf_rollback;
2667 	}
2668 
2669 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2670 	error = igmp_change_state(inm);
2671 	IN_MULTI_LIST_UNLOCK();
2672 	if (error)
2673 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2674 
2675 out_imf_rollback:
2676 	if (error)
2677 		imf_rollback(imf);
2678 	else
2679 		imf_commit(imf);
2680 
2681 	imf_reap(imf);
2682 
2683 out_inp_locked:
2684 	INP_WUNLOCK(inp);
2685 	IN_MULTI_UNLOCK();
2686 	return (error);
2687 }
2688 
2689 /*
2690  * Set the IP multicast options in response to user setsockopt().
2691  *
2692  * Many of the socket options handled in this function duplicate the
2693  * functionality of socket options in the regular unicast API. However,
2694  * it is not possible to merge the duplicate code, because the idempotence
2695  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2696  * the effects of these options must be treated as separate and distinct.
2697  *
2698  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2699  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2700  * is refactored to no longer use vifs.
2701  */
2702 int
2703 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2704 {
2705 	struct ip_moptions	*imo;
2706 	int			 error;
2707 
2708 	error = 0;
2709 
2710 	/* If socket is neither of type SOCK_RAW or SOCK_DGRAM, reject it. */
2711 	if (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2712 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)
2713 		return (EOPNOTSUPP);
2714 
2715 	switch (sopt->sopt_name) {
2716 	case IP_MULTICAST_VIF: {
2717 		int vifi;
2718 		/*
2719 		 * Select a multicast VIF for transmission.
2720 		 * Only useful if multicast forwarding is active.
2721 		 */
2722 		if (legal_vif_num == NULL) {
2723 			error = EOPNOTSUPP;
2724 			break;
2725 		}
2726 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2727 		if (error)
2728 			break;
2729 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2730 			error = EINVAL;
2731 			break;
2732 		}
2733 		imo = inp_findmoptions(inp);
2734 		imo->imo_multicast_vif = vifi;
2735 		INP_WUNLOCK(inp);
2736 		break;
2737 	}
2738 
2739 	case IP_MULTICAST_IF:
2740 		error = inp_set_multicast_if(inp, sopt);
2741 		break;
2742 
2743 	case IP_MULTICAST_TTL: {
2744 		u_char ttl;
2745 
2746 		/*
2747 		 * Set the IP time-to-live for outgoing multicast packets.
2748 		 * The original multicast API required a char argument,
2749 		 * which is inconsistent with the rest of the socket API.
2750 		 * We allow either a char or an int.
2751 		 */
2752 		if (sopt->sopt_valsize == sizeof(u_char)) {
2753 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2754 			    sizeof(u_char));
2755 			if (error)
2756 				break;
2757 		} else {
2758 			u_int ittl;
2759 
2760 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2761 			    sizeof(u_int));
2762 			if (error)
2763 				break;
2764 			if (ittl > 255) {
2765 				error = EINVAL;
2766 				break;
2767 			}
2768 			ttl = (u_char)ittl;
2769 		}
2770 		imo = inp_findmoptions(inp);
2771 		imo->imo_multicast_ttl = ttl;
2772 		INP_WUNLOCK(inp);
2773 		break;
2774 	}
2775 
2776 	case IP_MULTICAST_LOOP: {
2777 		u_char loop;
2778 
2779 		/*
2780 		 * Set the loopback flag for outgoing multicast packets.
2781 		 * Must be zero or one.  The original multicast API required a
2782 		 * char argument, which is inconsistent with the rest
2783 		 * of the socket API.  We allow either a char or an int.
2784 		 */
2785 		if (sopt->sopt_valsize == sizeof(u_char)) {
2786 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2787 			    sizeof(u_char));
2788 			if (error)
2789 				break;
2790 		} else {
2791 			u_int iloop;
2792 
2793 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2794 					    sizeof(u_int));
2795 			if (error)
2796 				break;
2797 			loop = (u_char)iloop;
2798 		}
2799 		imo = inp_findmoptions(inp);
2800 		imo->imo_multicast_loop = !!loop;
2801 		INP_WUNLOCK(inp);
2802 		break;
2803 	}
2804 
2805 	case IP_ADD_MEMBERSHIP:
2806 	case IP_ADD_SOURCE_MEMBERSHIP:
2807 	case MCAST_JOIN_GROUP:
2808 	case MCAST_JOIN_SOURCE_GROUP:
2809 		error = inp_join_group(inp, sopt);
2810 		break;
2811 
2812 	case IP_DROP_MEMBERSHIP:
2813 	case IP_DROP_SOURCE_MEMBERSHIP:
2814 	case MCAST_LEAVE_GROUP:
2815 	case MCAST_LEAVE_SOURCE_GROUP:
2816 		error = inp_leave_group(inp, sopt);
2817 		break;
2818 
2819 	case IP_BLOCK_SOURCE:
2820 	case IP_UNBLOCK_SOURCE:
2821 	case MCAST_BLOCK_SOURCE:
2822 	case MCAST_UNBLOCK_SOURCE:
2823 		error = inp_block_unblock_source(inp, sopt);
2824 		break;
2825 
2826 	case IP_MSFILTER:
2827 		error = inp_set_source_filters(inp, sopt);
2828 		break;
2829 
2830 	default:
2831 		error = EOPNOTSUPP;
2832 		break;
2833 	}
2834 
2835 	INP_UNLOCK_ASSERT(inp);
2836 
2837 	return (error);
2838 }
2839 
2840 /*
2841  * Expose IGMP's multicast filter mode and source list(s) to userland,
2842  * keyed by (ifindex, group).
2843  * The filter mode is written out as a uint32_t, followed by
2844  * 0..n of struct in_addr.
2845  * For use by ifmcstat(8).
2846  * SMPng: NOTE: unlocked read of ifindex space.
2847  */
2848 static int
2849 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2850 {
2851 	struct in_addr			 src, group;
2852 	struct epoch_tracker		 et;
2853 	struct ifnet			*ifp;
2854 	struct ifmultiaddr		*ifma;
2855 	struct in_multi			*inm;
2856 	struct ip_msource		*ims;
2857 	int				*name;
2858 	int				 retval;
2859 	u_int				 namelen;
2860 	uint32_t			 fmode, ifindex;
2861 
2862 	name = (int *)arg1;
2863 	namelen = arg2;
2864 
2865 	if (req->newptr != NULL)
2866 		return (EPERM);
2867 
2868 	if (namelen != 2)
2869 		return (EINVAL);
2870 
2871 	group.s_addr = name[1];
2872 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2873 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2874 		    __func__, ntohl(group.s_addr));
2875 		return (EINVAL);
2876 	}
2877 
2878 	ifindex = name[0];
2879 	NET_EPOCH_ENTER(et);
2880 	ifp = ifnet_byindex(ifindex);
2881 	if (ifp == NULL) {
2882 		NET_EPOCH_EXIT(et);
2883 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2884 		    __func__, ifindex);
2885 		return (ENOENT);
2886 	}
2887 
2888 	retval = sysctl_wire_old_buffer(req,
2889 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2890 	if (retval) {
2891 		NET_EPOCH_EXIT(et);
2892 		return (retval);
2893 	}
2894 
2895 	IN_MULTI_LIST_LOCK();
2896 
2897 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2898 		inm = inm_ifmultiaddr_get_inm(ifma);
2899 		if (inm == NULL)
2900 			continue;
2901 		if (!in_hosteq(inm->inm_addr, group))
2902 			continue;
2903 		fmode = inm->inm_st[1].iss_fmode;
2904 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2905 		if (retval != 0)
2906 			break;
2907 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2908 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2909 			    ims->ims_haddr);
2910 			/*
2911 			 * Only copy-out sources which are in-mode.
2912 			 */
2913 			if (fmode != ims_get_mode(inm, ims, 1)) {
2914 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2915 				    __func__);
2916 				continue;
2917 			}
2918 			src.s_addr = htonl(ims->ims_haddr);
2919 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2920 			if (retval != 0)
2921 				break;
2922 		}
2923 	}
2924 
2925 	IN_MULTI_LIST_UNLOCK();
2926 	NET_EPOCH_EXIT(et);
2927 
2928 	return (retval);
2929 }
2930 
2931 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2932 
2933 static const char *inm_modestrs[] = {
2934 	[MCAST_UNDEFINED] = "un",
2935 	[MCAST_INCLUDE] = "in",
2936 	[MCAST_EXCLUDE] = "ex",
2937 };
2938 _Static_assert(MCAST_UNDEFINED == 0 &&
2939 	       MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
2940 	       "inm_modestrs: no longer matches #defines");
2941 
2942 static const char *
2943 inm_mode_str(const int mode)
2944 {
2945 
2946 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2947 		return (inm_modestrs[mode]);
2948 	return ("??");
2949 }
2950 
2951 static const char *inm_statestrs[] = {
2952 	[IGMP_NOT_MEMBER] = "not-member",
2953 	[IGMP_SILENT_MEMBER] = "silent",
2954 	[IGMP_REPORTING_MEMBER] = "reporting",
2955 	[IGMP_IDLE_MEMBER] = "idle",
2956 	[IGMP_LAZY_MEMBER] = "lazy",
2957 	[IGMP_SLEEPING_MEMBER] = "sleeping",
2958 	[IGMP_AWAKENING_MEMBER] = "awakening",
2959 	[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
2960 	[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
2961 	[IGMP_LEAVING_MEMBER] = "leaving",
2962 };
2963 _Static_assert(IGMP_NOT_MEMBER == 0 &&
2964 	       IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
2965 	       "inm_statetrs: no longer matches #defines");
2966 
2967 static const char *
2968 inm_state_str(const int state)
2969 {
2970 
2971 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2972 		return (inm_statestrs[state]);
2973 	return ("??");
2974 }
2975 
2976 /*
2977  * Dump an in_multi structure to the console.
2978  */
2979 void
2980 inm_print(const struct in_multi *inm)
2981 {
2982 	int t;
2983 	char addrbuf[INET_ADDRSTRLEN];
2984 
2985 	if ((ktr_mask & KTR_IGMPV3) == 0)
2986 		return;
2987 
2988 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2989 	printf("addr %s ifp %p(%s) ifma %p\n",
2990 	    inet_ntoa_r(inm->inm_addr, addrbuf),
2991 	    inm->inm_ifp,
2992 	    inm->inm_ifp->if_xname,
2993 	    inm->inm_ifma);
2994 	printf("timer %u state %s refcount %u scq.len %u\n",
2995 	    inm->inm_timer,
2996 	    inm_state_str(inm->inm_state),
2997 	    inm->inm_refcount,
2998 	    inm->inm_scq.mq_len);
2999 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3000 	    inm->inm_igi,
3001 	    inm->inm_nsrc,
3002 	    inm->inm_sctimer,
3003 	    inm->inm_scrv);
3004 	for (t = 0; t < 2; t++) {
3005 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3006 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3007 		    inm->inm_st[t].iss_asm,
3008 		    inm->inm_st[t].iss_ex,
3009 		    inm->inm_st[t].iss_in,
3010 		    inm->inm_st[t].iss_rec);
3011 	}
3012 	printf("%s: --- end inm %p ---\n", __func__, inm);
3013 }
3014 
3015 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3016 
3017 void
3018 inm_print(const struct in_multi *inm)
3019 {
3020 
3021 }
3022 
3023 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3024 
3025 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3026