1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2007-2009 Bruce Simpson. 5 * Copyright (c) 2005 Robert N. M. Watson. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote 17 * products derived from this software without specific prior written 18 * permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * IPv4 multicast socket, group, and socket option processing module. 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/protosw.h> 47 #include <sys/sysctl.h> 48 #include <sys/ktr.h> 49 #include <sys/taskqueue.h> 50 #include <sys/tree.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_dl.h> 55 #include <net/route.h> 56 #include <net/route/nhop.h> 57 #include <net/vnet.h> 58 59 #include <net/ethernet.h> 60 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_fib.h> 64 #include <netinet/in_pcb.h> 65 #include <netinet/in_var.h> 66 #include <net/if_private.h> 67 #include <netinet/ip_var.h> 68 #include <netinet/igmp_var.h> 69 70 #ifndef KTR_IGMPV3 71 #define KTR_IGMPV3 KTR_INET 72 #endif 73 74 #ifndef __SOCKUNION_DECLARED 75 union sockunion { 76 struct sockaddr_storage ss; 77 struct sockaddr sa; 78 struct sockaddr_dl sdl; 79 struct sockaddr_in sin; 80 }; 81 typedef union sockunion sockunion_t; 82 #define __SOCKUNION_DECLARED 83 #endif /* __SOCKUNION_DECLARED */ 84 85 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 86 "IPv4 multicast PCB-layer source filter"); 87 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 88 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 89 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 90 "IPv4 multicast IGMP-layer source filter"); 91 92 /* 93 * Locking: 94 * 95 * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, 96 * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 97 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 98 * it can be taken by code in net/if.c also. 99 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 100 * 101 * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly 102 * any need for in_multi itself to be virtualized -- it is bound to an ifp 103 * anyway no matter what happens. 104 */ 105 struct mtx in_multi_list_mtx; 106 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); 107 108 struct mtx in_multi_free_mtx; 109 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); 110 111 struct sx in_multi_sx; 112 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); 113 114 /* 115 * Functions with non-static linkage defined in this file should be 116 * declared in in_var.h: 117 * imo_multi_filter() 118 * in_joingroup() 119 * in_joingroup_locked() 120 * in_leavegroup() 121 * in_leavegroup_locked() 122 * and ip_var.h: 123 * inp_freemoptions() 124 * inp_getmoptions() 125 * inp_setmoptions() 126 */ 127 static void imf_commit(struct in_mfilter *); 128 static int imf_get_source(struct in_mfilter *imf, 129 const struct sockaddr_in *psin, 130 struct in_msource **); 131 static struct in_msource * 132 imf_graft(struct in_mfilter *, const uint8_t, 133 const struct sockaddr_in *); 134 static void imf_leave(struct in_mfilter *); 135 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 136 static void imf_purge(struct in_mfilter *); 137 static void imf_rollback(struct in_mfilter *); 138 static void imf_reap(struct in_mfilter *); 139 static struct in_mfilter * 140 imo_match_group(const struct ip_moptions *, 141 const struct ifnet *, const struct sockaddr *); 142 static struct in_msource * 143 imo_match_source(struct in_mfilter *, const struct sockaddr *); 144 static void ims_merge(struct ip_msource *ims, 145 const struct in_msource *lims, const int rollback); 146 static int in_getmulti(struct ifnet *, const struct in_addr *, 147 struct in_multi **); 148 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 149 const int noalloc, struct ip_msource **pims); 150 #ifdef KTR 151 static int inm_is_ifp_detached(const struct in_multi *); 152 #endif 153 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 154 static void inm_purge(struct in_multi *); 155 static void inm_reap(struct in_multi *); 156 static void inm_release(struct in_multi *); 157 static struct ip_moptions * 158 inp_findmoptions(struct inpcb *); 159 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 160 static int inp_join_group(struct inpcb *, struct sockopt *); 161 static int inp_leave_group(struct inpcb *, struct sockopt *); 162 static struct ifnet * 163 inp_lookup_mcast_ifp(const struct inpcb *, 164 const struct sockaddr_in *, const struct in_addr); 165 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 166 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 167 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 168 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 169 170 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, 171 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 172 "IPv4 multicast"); 173 174 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 175 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 176 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, 177 "Max source filters per group"); 178 179 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 180 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 181 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, 182 "Max source filters per socket"); 183 184 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 185 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 186 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 187 188 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 189 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 190 "Per-interface stack-wide source filters"); 191 192 #ifdef KTR 193 /* 194 * Inline function which wraps assertions for a valid ifp. 195 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 196 * is detached. 197 */ 198 static int __inline 199 inm_is_ifp_detached(const struct in_multi *inm) 200 { 201 struct ifnet *ifp; 202 203 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 204 ifp = inm->inm_ifma->ifma_ifp; 205 if (ifp != NULL) { 206 /* 207 * Sanity check that netinet's notion of ifp is the 208 * same as net's. 209 */ 210 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 211 } 212 213 return (ifp == NULL); 214 } 215 #endif 216 217 /* 218 * Interface detach can happen in a taskqueue thread context, so we must use a 219 * dedicated thread to avoid deadlocks when draining inm_release tasks. 220 */ 221 TASKQUEUE_DEFINE_THREAD(inm_free); 222 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); 223 static void inm_release_task(void *arg __unused, int pending __unused); 224 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL); 225 226 void 227 inm_release_wait(void *arg __unused) 228 { 229 230 /* 231 * Make sure all pending multicast addresses are freed before 232 * the VNET or network device is destroyed: 233 */ 234 taskqueue_drain(taskqueue_inm_free, &inm_free_task); 235 } 236 #ifdef VIMAGE 237 /* XXX-BZ FIXME, see D24914. */ 238 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); 239 #endif 240 241 void 242 inm_release_list_deferred(struct in_multi_head *inmh) 243 { 244 245 if (SLIST_EMPTY(inmh)) 246 return; 247 mtx_lock(&in_multi_free_mtx); 248 SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); 249 mtx_unlock(&in_multi_free_mtx); 250 taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); 251 } 252 253 void 254 inm_disconnect(struct in_multi *inm) 255 { 256 struct ifnet *ifp; 257 struct ifmultiaddr *ifma, *ll_ifma; 258 259 ifp = inm->inm_ifp; 260 IF_ADDR_WLOCK_ASSERT(ifp); 261 ifma = inm->inm_ifma; 262 263 if_ref(ifp); 264 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 265 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 266 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 267 } 268 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 269 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 270 MPASS(ifma != ll_ifma); 271 ifma->ifma_llifma = NULL; 272 MPASS(ll_ifma->ifma_llifma == NULL); 273 MPASS(ll_ifma->ifma_ifp == ifp); 274 if (--ll_ifma->ifma_refcount == 0) { 275 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 276 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 277 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 278 } 279 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 280 if_freemulti(ll_ifma); 281 } 282 } 283 } 284 285 void 286 inm_release_deferred(struct in_multi *inm) 287 { 288 struct in_multi_head tmp; 289 290 IN_MULTI_LIST_LOCK_ASSERT(); 291 MPASS(inm->inm_refcount > 0); 292 if (--inm->inm_refcount == 0) { 293 SLIST_INIT(&tmp); 294 inm_disconnect(inm); 295 inm->inm_ifma->ifma_protospec = NULL; 296 SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); 297 inm_release_list_deferred(&tmp); 298 } 299 } 300 301 static void 302 inm_release_task(void *arg __unused, int pending __unused) 303 { 304 struct in_multi_head inm_free_tmp; 305 struct in_multi *inm, *tinm; 306 307 SLIST_INIT(&inm_free_tmp); 308 mtx_lock(&in_multi_free_mtx); 309 SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); 310 mtx_unlock(&in_multi_free_mtx); 311 IN_MULTI_LOCK(); 312 SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { 313 SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); 314 MPASS(inm); 315 inm_release(inm); 316 } 317 IN_MULTI_UNLOCK(); 318 } 319 320 /* 321 * Initialize an in_mfilter structure to a known state at t0, t1 322 * with an empty source filter list. 323 */ 324 static __inline void 325 imf_init(struct in_mfilter *imf, const int st0, const int st1) 326 { 327 memset(imf, 0, sizeof(struct in_mfilter)); 328 RB_INIT(&imf->imf_sources); 329 imf->imf_st[0] = st0; 330 imf->imf_st[1] = st1; 331 } 332 333 struct in_mfilter * 334 ip_mfilter_alloc(const int mflags, const int st0, const int st1) 335 { 336 struct in_mfilter *imf; 337 338 imf = malloc(sizeof(*imf), M_INMFILTER, mflags); 339 if (imf != NULL) 340 imf_init(imf, st0, st1); 341 342 return (imf); 343 } 344 345 void 346 ip_mfilter_free(struct in_mfilter *imf) 347 { 348 349 imf_purge(imf); 350 free(imf, M_INMFILTER); 351 } 352 353 /* 354 * Function for looking up an in_multi record for an IPv4 multicast address 355 * on a given interface. ifp must be valid. If no record found, return NULL. 356 * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. 357 */ 358 struct in_multi * 359 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 360 { 361 struct ifmultiaddr *ifma; 362 struct in_multi *inm; 363 364 IN_MULTI_LIST_LOCK_ASSERT(); 365 IF_ADDR_LOCK_ASSERT(ifp); 366 367 CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 368 inm = inm_ifmultiaddr_get_inm(ifma); 369 if (inm == NULL) 370 continue; 371 if (inm->inm_addr.s_addr == ina.s_addr) 372 return (inm); 373 } 374 return (NULL); 375 } 376 377 /* 378 * Wrapper for inm_lookup_locked(). 379 * The IF_ADDR_LOCK will be taken on ifp and released on return. 380 */ 381 struct in_multi * 382 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 383 { 384 struct epoch_tracker et; 385 struct in_multi *inm; 386 387 IN_MULTI_LIST_LOCK_ASSERT(); 388 NET_EPOCH_ENTER(et); 389 390 inm = inm_lookup_locked(ifp, ina); 391 NET_EPOCH_EXIT(et); 392 393 return (inm); 394 } 395 396 /* 397 * Find an IPv4 multicast group entry for this ip_moptions instance 398 * which matches the specified group, and optionally an interface. 399 * Return its index into the array, or -1 if not found. 400 */ 401 static struct in_mfilter * 402 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 403 const struct sockaddr *group) 404 { 405 const struct sockaddr_in *gsin; 406 struct in_mfilter *imf; 407 struct in_multi *inm; 408 409 gsin = (const struct sockaddr_in *)group; 410 411 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 412 inm = imf->imf_inm; 413 if (inm == NULL) 414 continue; 415 if ((ifp == NULL || (inm->inm_ifp == ifp)) && 416 in_hosteq(inm->inm_addr, gsin->sin_addr)) { 417 break; 418 } 419 } 420 return (imf); 421 } 422 423 /* 424 * Find an IPv4 multicast source entry for this imo which matches 425 * the given group index for this socket, and source address. 426 * 427 * NOTE: This does not check if the entry is in-mode, merely if 428 * it exists, which may not be the desired behaviour. 429 */ 430 static struct in_msource * 431 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) 432 { 433 struct ip_msource find; 434 struct ip_msource *ims; 435 const sockunion_t *psa; 436 437 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 438 439 /* Source trees are keyed in host byte order. */ 440 psa = (const sockunion_t *)src; 441 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 442 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 443 444 return ((struct in_msource *)ims); 445 } 446 447 /* 448 * Perform filtering for multicast datagrams on a socket by group and source. 449 * 450 * Returns 0 if a datagram should be allowed through, or various error codes 451 * if the socket was not a member of the group, or the source was muted, etc. 452 */ 453 int 454 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 455 const struct sockaddr *group, const struct sockaddr *src) 456 { 457 struct in_mfilter *imf; 458 struct in_msource *ims; 459 int mode; 460 461 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 462 463 imf = imo_match_group(imo, ifp, group); 464 if (imf == NULL) 465 return (MCAST_NOTGMEMBER); 466 467 /* 468 * Check if the source was included in an (S,G) join. 469 * Allow reception on exclusive memberships by default, 470 * reject reception on inclusive memberships by default. 471 * Exclude source only if an in-mode exclude filter exists. 472 * Include source only if an in-mode include filter exists. 473 * NOTE: We are comparing group state here at IGMP t1 (now) 474 * with socket-layer t0 (since last downcall). 475 */ 476 mode = imf->imf_st[1]; 477 ims = imo_match_source(imf, src); 478 479 if ((ims == NULL && mode == MCAST_INCLUDE) || 480 (ims != NULL && ims->imsl_st[0] == MCAST_EXCLUDE)) 481 return (MCAST_NOTSMEMBER); 482 483 return (MCAST_PASS); 484 } 485 486 /* 487 * Find and return a reference to an in_multi record for (ifp, group), 488 * and bump its reference count. 489 * If one does not exist, try to allocate it, and update link-layer multicast 490 * filters on ifp to listen for group. 491 * Assumes the IN_MULTI lock is held across the call. 492 * Return 0 if successful, otherwise return an appropriate error code. 493 */ 494 static int 495 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 496 struct in_multi **pinm) 497 { 498 struct sockaddr_in gsin; 499 struct ifmultiaddr *ifma; 500 struct in_ifinfo *ii; 501 struct in_multi *inm; 502 int error; 503 504 IN_MULTI_LOCK_ASSERT(); 505 506 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 507 IN_MULTI_LIST_LOCK(); 508 inm = inm_lookup(ifp, *group); 509 if (inm != NULL) { 510 /* 511 * If we already joined this group, just bump the 512 * refcount and return it. 513 */ 514 KASSERT(inm->inm_refcount >= 1, 515 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 516 inm_acquire_locked(inm); 517 *pinm = inm; 518 } 519 IN_MULTI_LIST_UNLOCK(); 520 if (inm != NULL) 521 return (0); 522 523 memset(&gsin, 0, sizeof(gsin)); 524 gsin.sin_family = AF_INET; 525 gsin.sin_len = sizeof(struct sockaddr_in); 526 gsin.sin_addr = *group; 527 528 /* 529 * Check if a link-layer group is already associated 530 * with this network-layer group on the given ifnet. 531 */ 532 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 533 if (error != 0) 534 return (error); 535 536 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 537 IN_MULTI_LIST_LOCK(); 538 IF_ADDR_WLOCK(ifp); 539 540 /* 541 * If something other than netinet is occupying the link-layer 542 * group, print a meaningful error message and back out of 543 * the allocation. 544 * Otherwise, bump the refcount on the existing network-layer 545 * group association and return it. 546 */ 547 if (ifma->ifma_protospec != NULL) { 548 inm = (struct in_multi *)ifma->ifma_protospec; 549 #ifdef INVARIANTS 550 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 551 __func__)); 552 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 553 ("%s: ifma not AF_INET", __func__)); 554 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 555 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 556 !in_hosteq(inm->inm_addr, *group)) { 557 char addrbuf[INET_ADDRSTRLEN]; 558 559 panic("%s: ifma %p is inconsistent with %p (%s)", 560 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); 561 } 562 #endif 563 inm_acquire_locked(inm); 564 *pinm = inm; 565 goto out_locked; 566 } 567 568 IF_ADDR_WLOCK_ASSERT(ifp); 569 570 /* 571 * A new in_multi record is needed; allocate and initialize it. 572 * We DO NOT perform an IGMP join as the in_ layer may need to 573 * push an initial source list down to IGMP to support SSM. 574 * 575 * The initial source filter state is INCLUDE, {} as per the RFC. 576 */ 577 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 578 if (inm == NULL) { 579 IF_ADDR_WUNLOCK(ifp); 580 IN_MULTI_LIST_UNLOCK(); 581 if_delmulti_ifma(ifma); 582 return (ENOMEM); 583 } 584 inm->inm_addr = *group; 585 inm->inm_ifp = ifp; 586 inm->inm_igi = ii->ii_igmp; 587 inm->inm_ifma = ifma; 588 inm->inm_refcount = 1; 589 inm->inm_state = IGMP_NOT_MEMBER; 590 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 591 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 592 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 593 RB_INIT(&inm->inm_srcs); 594 595 ifma->ifma_protospec = inm; 596 597 *pinm = inm; 598 out_locked: 599 IF_ADDR_WUNLOCK(ifp); 600 IN_MULTI_LIST_UNLOCK(); 601 return (0); 602 } 603 604 /* 605 * Drop a reference to an in_multi record. 606 * 607 * If the refcount drops to 0, free the in_multi record and 608 * delete the underlying link-layer membership. 609 */ 610 static void 611 inm_release(struct in_multi *inm) 612 { 613 struct ifmultiaddr *ifma; 614 struct ifnet *ifp; 615 616 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 617 MPASS(inm->inm_refcount == 0); 618 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 619 620 ifma = inm->inm_ifma; 621 ifp = inm->inm_ifp; 622 623 /* XXX this access is not covered by IF_ADDR_LOCK */ 624 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 625 if (ifp != NULL) { 626 CURVNET_SET(ifp->if_vnet); 627 inm_purge(inm); 628 free(inm, M_IPMADDR); 629 if_delmulti_ifma_flags(ifma, 1); 630 CURVNET_RESTORE(); 631 if_rele(ifp); 632 } else { 633 inm_purge(inm); 634 free(inm, M_IPMADDR); 635 if_delmulti_ifma_flags(ifma, 1); 636 } 637 } 638 639 /* 640 * Clear recorded source entries for a group. 641 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 642 * FIXME: Should reap. 643 */ 644 void 645 inm_clear_recorded(struct in_multi *inm) 646 { 647 struct ip_msource *ims; 648 649 IN_MULTI_LIST_LOCK_ASSERT(); 650 651 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 652 if (ims->ims_stp) { 653 ims->ims_stp = 0; 654 --inm->inm_st[1].iss_rec; 655 } 656 } 657 KASSERT(inm->inm_st[1].iss_rec == 0, 658 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 659 } 660 661 /* 662 * Record a source as pending for a Source-Group IGMPv3 query. 663 * This lives here as it modifies the shared tree. 664 * 665 * inm is the group descriptor. 666 * naddr is the address of the source to record in network-byte order. 667 * 668 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 669 * lazy-allocate a source node in response to an SG query. 670 * Otherwise, no allocation is performed. This saves some memory 671 * with the trade-off that the source will not be reported to the 672 * router if joined in the window between the query response and 673 * the group actually being joined on the local host. 674 * 675 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 676 * This turns off the allocation of a recorded source entry if 677 * the group has not been joined. 678 * 679 * Return 0 if the source didn't exist or was already marked as recorded. 680 * Return 1 if the source was marked as recorded by this function. 681 * Return <0 if any error occurred (negated errno code). 682 */ 683 int 684 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 685 { 686 struct ip_msource find; 687 struct ip_msource *ims, *nims; 688 689 IN_MULTI_LIST_LOCK_ASSERT(); 690 691 find.ims_haddr = ntohl(naddr); 692 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 693 if (ims && ims->ims_stp) 694 return (0); 695 if (ims == NULL) { 696 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 697 return (-ENOSPC); 698 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 699 M_NOWAIT | M_ZERO); 700 if (nims == NULL) 701 return (-ENOMEM); 702 nims->ims_haddr = find.ims_haddr; 703 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 704 ++inm->inm_nsrc; 705 ims = nims; 706 } 707 708 /* 709 * Mark the source as recorded and update the recorded 710 * source count. 711 */ 712 ++ims->ims_stp; 713 ++inm->inm_st[1].iss_rec; 714 715 return (1); 716 } 717 718 /* 719 * Return a pointer to an in_msource owned by an in_mfilter, 720 * given its source address. 721 * Lazy-allocate if needed. If this is a new entry its filter state is 722 * undefined at t0. 723 * 724 * imf is the filter set being modified. 725 * haddr is the source address in *host* byte-order. 726 * 727 * SMPng: May be called with locks held; malloc must not block. 728 */ 729 static int 730 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 731 struct in_msource **plims) 732 { 733 struct ip_msource find; 734 struct ip_msource *ims, *nims; 735 struct in_msource *lims; 736 int error; 737 738 error = 0; 739 ims = NULL; 740 lims = NULL; 741 742 /* key is host byte order */ 743 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 744 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 745 lims = (struct in_msource *)ims; 746 if (lims == NULL) { 747 if (imf->imf_nsrc == in_mcast_maxsocksrc) 748 return (ENOSPC); 749 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 750 M_NOWAIT | M_ZERO); 751 if (nims == NULL) 752 return (ENOMEM); 753 lims = (struct in_msource *)nims; 754 lims->ims_haddr = find.ims_haddr; 755 lims->imsl_st[0] = MCAST_UNDEFINED; 756 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 757 ++imf->imf_nsrc; 758 } 759 760 *plims = lims; 761 762 return (error); 763 } 764 765 /* 766 * Graft a source entry into an existing socket-layer filter set, 767 * maintaining any required invariants and checking allocations. 768 * 769 * The source is marked as being in the new filter mode at t1. 770 * 771 * Return the pointer to the new node, otherwise return NULL. 772 */ 773 static struct in_msource * 774 imf_graft(struct in_mfilter *imf, const uint8_t st1, 775 const struct sockaddr_in *psin) 776 { 777 struct ip_msource *nims; 778 struct in_msource *lims; 779 780 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 781 M_NOWAIT | M_ZERO); 782 if (nims == NULL) 783 return (NULL); 784 lims = (struct in_msource *)nims; 785 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 786 lims->imsl_st[0] = MCAST_UNDEFINED; 787 lims->imsl_st[1] = st1; 788 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 789 ++imf->imf_nsrc; 790 791 return (lims); 792 } 793 794 /* 795 * Prune a source entry from an existing socket-layer filter set, 796 * maintaining any required invariants and checking allocations. 797 * 798 * The source is marked as being left at t1, it is not freed. 799 * 800 * Return 0 if no error occurred, otherwise return an errno value. 801 */ 802 static int 803 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 804 { 805 struct ip_msource find; 806 struct ip_msource *ims; 807 struct in_msource *lims; 808 809 /* key is host byte order */ 810 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 811 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 812 if (ims == NULL) 813 return (ENOENT); 814 lims = (struct in_msource *)ims; 815 lims->imsl_st[1] = MCAST_UNDEFINED; 816 return (0); 817 } 818 819 /* 820 * Revert socket-layer filter set deltas at t1 to t0 state. 821 */ 822 static void 823 imf_rollback(struct in_mfilter *imf) 824 { 825 struct ip_msource *ims, *tims; 826 struct in_msource *lims; 827 828 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 829 lims = (struct in_msource *)ims; 830 if (lims->imsl_st[0] == lims->imsl_st[1]) { 831 /* no change at t1 */ 832 continue; 833 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 834 /* revert change to existing source at t1 */ 835 lims->imsl_st[1] = lims->imsl_st[0]; 836 } else { 837 /* revert source added t1 */ 838 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 839 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 840 free(ims, M_INMFILTER); 841 imf->imf_nsrc--; 842 } 843 } 844 imf->imf_st[1] = imf->imf_st[0]; 845 } 846 847 /* 848 * Mark socket-layer filter set as INCLUDE {} at t1. 849 */ 850 static void 851 imf_leave(struct in_mfilter *imf) 852 { 853 struct ip_msource *ims; 854 struct in_msource *lims; 855 856 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 857 lims = (struct in_msource *)ims; 858 lims->imsl_st[1] = MCAST_UNDEFINED; 859 } 860 imf->imf_st[1] = MCAST_INCLUDE; 861 } 862 863 /* 864 * Mark socket-layer filter set deltas as committed. 865 */ 866 static void 867 imf_commit(struct in_mfilter *imf) 868 { 869 struct ip_msource *ims; 870 struct in_msource *lims; 871 872 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 873 lims = (struct in_msource *)ims; 874 lims->imsl_st[0] = lims->imsl_st[1]; 875 } 876 imf->imf_st[0] = imf->imf_st[1]; 877 } 878 879 /* 880 * Reap unreferenced sources from socket-layer filter set. 881 */ 882 static void 883 imf_reap(struct in_mfilter *imf) 884 { 885 struct ip_msource *ims, *tims; 886 struct in_msource *lims; 887 888 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 889 lims = (struct in_msource *)ims; 890 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 891 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 892 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 893 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 894 free(ims, M_INMFILTER); 895 imf->imf_nsrc--; 896 } 897 } 898 } 899 900 /* 901 * Purge socket-layer filter set. 902 */ 903 static void 904 imf_purge(struct in_mfilter *imf) 905 { 906 struct ip_msource *ims, *tims; 907 908 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 909 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 910 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 911 free(ims, M_INMFILTER); 912 imf->imf_nsrc--; 913 } 914 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 915 KASSERT(RB_EMPTY(&imf->imf_sources), 916 ("%s: imf_sources not empty", __func__)); 917 if (imf->imf_inm != NULL) 918 mbufq_drain(&imf->imf_inm->inm_scq); 919 } 920 921 /* 922 * Look up a source filter entry for a multicast group. 923 * 924 * inm is the group descriptor to work with. 925 * haddr is the host-byte-order IPv4 address to look up. 926 * noalloc may be non-zero to suppress allocation of sources. 927 * *pims will be set to the address of the retrieved or allocated source. 928 * 929 * SMPng: NOTE: may be called with locks held. 930 * Return 0 if successful, otherwise return a non-zero error code. 931 */ 932 static int 933 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 934 const int noalloc, struct ip_msource **pims) 935 { 936 struct ip_msource find; 937 struct ip_msource *ims, *nims; 938 939 find.ims_haddr = haddr; 940 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 941 if (ims == NULL && !noalloc) { 942 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 943 return (ENOSPC); 944 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 945 M_NOWAIT | M_ZERO); 946 if (nims == NULL) 947 return (ENOMEM); 948 nims->ims_haddr = haddr; 949 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 950 ++inm->inm_nsrc; 951 ims = nims; 952 #ifdef KTR 953 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, 954 haddr, ims); 955 #endif 956 } 957 958 *pims = ims; 959 return (0); 960 } 961 962 /* 963 * Merge socket-layer source into IGMP-layer source. 964 * If rollback is non-zero, perform the inverse of the merge. 965 */ 966 static void 967 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 968 const int rollback) 969 { 970 int n = rollback ? -1 : 1; 971 972 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 973 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", 974 __func__, n, ims->ims_haddr); 975 ims->ims_st[1].ex -= n; 976 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 977 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", 978 __func__, n, ims->ims_haddr); 979 ims->ims_st[1].in -= n; 980 } 981 982 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 983 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", 984 __func__, n, ims->ims_haddr); 985 ims->ims_st[1].ex += n; 986 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 987 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", 988 __func__, n, ims->ims_haddr); 989 ims->ims_st[1].in += n; 990 } 991 } 992 993 /* 994 * Atomically update the global in_multi state, when a membership's 995 * filter list is being updated in any way. 996 * 997 * imf is the per-inpcb-membership group filter pointer. 998 * A fake imf may be passed for in-kernel consumers. 999 * 1000 * XXX This is a candidate for a set-symmetric-difference style loop 1001 * which would eliminate the repeated lookup from root of ims nodes, 1002 * as they share the same key space. 1003 * 1004 * If any error occurred this function will back out of refcounts 1005 * and return a non-zero value. 1006 */ 1007 static int 1008 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1009 { 1010 struct ip_msource *ims, *nims; 1011 struct in_msource *lims; 1012 int schanged, error; 1013 int nsrc0, nsrc1; 1014 1015 schanged = 0; 1016 error = 0; 1017 nsrc1 = nsrc0 = 0; 1018 IN_MULTI_LIST_LOCK_ASSERT(); 1019 1020 /* 1021 * Update the source filters first, as this may fail. 1022 * Maintain count of in-mode filters at t0, t1. These are 1023 * used to work out if we transition into ASM mode or not. 1024 * Maintain a count of source filters whose state was 1025 * actually modified by this operation. 1026 */ 1027 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1028 lims = (struct in_msource *)ims; 1029 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 1030 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 1031 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 1032 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 1033 ++schanged; 1034 if (error) 1035 break; 1036 ims_merge(nims, lims, 0); 1037 } 1038 if (error) { 1039 struct ip_msource *bims; 1040 1041 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 1042 lims = (struct in_msource *)ims; 1043 if (lims->imsl_st[0] == lims->imsl_st[1]) 1044 continue; 1045 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 1046 if (bims == NULL) 1047 continue; 1048 ims_merge(bims, lims, 1); 1049 } 1050 goto out_reap; 1051 } 1052 1053 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1054 __func__, nsrc0, nsrc1); 1055 1056 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1057 if (imf->imf_st[0] == imf->imf_st[1] && 1058 imf->imf_st[1] == MCAST_INCLUDE) { 1059 if (nsrc1 == 0) { 1060 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1061 --inm->inm_st[1].iss_in; 1062 } 1063 } 1064 1065 /* Handle filter mode transition on socket. */ 1066 if (imf->imf_st[0] != imf->imf_st[1]) { 1067 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1068 __func__, imf->imf_st[0], imf->imf_st[1]); 1069 1070 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1071 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1072 --inm->inm_st[1].iss_ex; 1073 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1074 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1075 --inm->inm_st[1].iss_in; 1076 } 1077 1078 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1079 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1080 inm->inm_st[1].iss_ex++; 1081 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1082 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1083 inm->inm_st[1].iss_in++; 1084 } 1085 } 1086 1087 /* 1088 * Track inm filter state in terms of listener counts. 1089 * If there are any exclusive listeners, stack-wide 1090 * membership is exclusive. 1091 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1092 * If no listeners remain, state is undefined at t1, 1093 * and the IGMP lifecycle for this group should finish. 1094 */ 1095 if (inm->inm_st[1].iss_ex > 0) { 1096 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1097 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1098 } else if (inm->inm_st[1].iss_in > 0) { 1099 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1100 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1101 } else { 1102 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1103 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1104 } 1105 1106 /* Decrement ASM listener count on transition out of ASM mode. */ 1107 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1108 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1109 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1110 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1111 --inm->inm_st[1].iss_asm; 1112 } 1113 } 1114 1115 /* Increment ASM listener count on transition to ASM mode. */ 1116 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1117 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1118 inm->inm_st[1].iss_asm++; 1119 } 1120 1121 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1122 inm_print(inm); 1123 1124 out_reap: 1125 if (schanged > 0) { 1126 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1127 inm_reap(inm); 1128 } 1129 return (error); 1130 } 1131 1132 /* 1133 * Mark an in_multi's filter set deltas as committed. 1134 * Called by IGMP after a state change has been enqueued. 1135 */ 1136 void 1137 inm_commit(struct in_multi *inm) 1138 { 1139 struct ip_msource *ims; 1140 1141 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1142 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1143 inm_print(inm); 1144 1145 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1146 ims->ims_st[0] = ims->ims_st[1]; 1147 } 1148 inm->inm_st[0] = inm->inm_st[1]; 1149 } 1150 1151 /* 1152 * Reap unreferenced nodes from an in_multi's filter set. 1153 */ 1154 static void 1155 inm_reap(struct in_multi *inm) 1156 { 1157 struct ip_msource *ims, *tims; 1158 1159 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1160 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1161 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1162 ims->ims_stp != 0) 1163 continue; 1164 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1165 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1166 free(ims, M_IPMSOURCE); 1167 inm->inm_nsrc--; 1168 } 1169 } 1170 1171 /* 1172 * Purge all source nodes from an in_multi's filter set. 1173 */ 1174 static void 1175 inm_purge(struct in_multi *inm) 1176 { 1177 struct ip_msource *ims, *tims; 1178 1179 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1180 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1181 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1182 free(ims, M_IPMSOURCE); 1183 inm->inm_nsrc--; 1184 } 1185 } 1186 1187 /* 1188 * Join a multicast group; unlocked entry point. 1189 * 1190 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1191 * is not held. Fortunately, ifp is unlikely to have been detached 1192 * at this point, so we assume it's OK to recurse. 1193 */ 1194 int 1195 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1196 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1197 { 1198 int error; 1199 1200 IN_MULTI_LOCK(); 1201 error = in_joingroup_locked(ifp, gina, imf, pinm); 1202 IN_MULTI_UNLOCK(); 1203 1204 return (error); 1205 } 1206 1207 /* 1208 * Join a multicast group; real entry point. 1209 * 1210 * Only preserves atomicity at inm level. 1211 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1212 * 1213 * If the IGMP downcall fails, the group is not joined, and an error 1214 * code is returned. 1215 */ 1216 int 1217 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1218 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1219 { 1220 struct in_mfilter timf; 1221 struct in_multi *inm; 1222 int error; 1223 1224 IN_MULTI_LOCK_ASSERT(); 1225 IN_MULTI_LIST_UNLOCK_ASSERT(); 1226 1227 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, 1228 ntohl(gina->s_addr), ifp, ifp->if_xname); 1229 1230 error = 0; 1231 inm = NULL; 1232 1233 /* 1234 * If no imf was specified (i.e. kernel consumer), 1235 * fake one up and assume it is an ASM join. 1236 */ 1237 if (imf == NULL) { 1238 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1239 imf = &timf; 1240 } 1241 1242 error = in_getmulti(ifp, gina, &inm); 1243 if (error) { 1244 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1245 return (error); 1246 } 1247 IN_MULTI_LIST_LOCK(); 1248 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1249 error = inm_merge(inm, imf); 1250 if (error) { 1251 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1252 goto out_inm_release; 1253 } 1254 1255 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1256 error = igmp_change_state(inm); 1257 if (error) { 1258 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1259 goto out_inm_release; 1260 } 1261 1262 out_inm_release: 1263 if (error) { 1264 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1265 IF_ADDR_WLOCK(ifp); 1266 inm_release_deferred(inm); 1267 IF_ADDR_WUNLOCK(ifp); 1268 } else { 1269 *pinm = inm; 1270 } 1271 IN_MULTI_LIST_UNLOCK(); 1272 1273 return (error); 1274 } 1275 1276 /* 1277 * Leave a multicast group; unlocked entry point. 1278 */ 1279 int 1280 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1281 { 1282 int error; 1283 1284 IN_MULTI_LOCK(); 1285 error = in_leavegroup_locked(inm, imf); 1286 IN_MULTI_UNLOCK(); 1287 1288 return (error); 1289 } 1290 1291 /* 1292 * Leave a multicast group; real entry point. 1293 * All source filters will be expunged. 1294 * 1295 * Only preserves atomicity at inm level. 1296 * 1297 * Holding the write lock for the INP which contains imf 1298 * is highly advisable. We can't assert for it as imf does not 1299 * contain a back-pointer to the owning inp. 1300 * 1301 * Note: This is not the same as inm_release(*) as this function also 1302 * makes a state change downcall into IGMP. 1303 */ 1304 int 1305 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1306 { 1307 struct in_mfilter timf; 1308 int error; 1309 1310 IN_MULTI_LOCK_ASSERT(); 1311 IN_MULTI_LIST_UNLOCK_ASSERT(); 1312 1313 error = 0; 1314 1315 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, 1316 inm, ntohl(inm->inm_addr.s_addr), 1317 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1318 imf); 1319 1320 /* 1321 * If no imf was specified (i.e. kernel consumer), 1322 * fake one up and assume it is an ASM join. 1323 */ 1324 if (imf == NULL) { 1325 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1326 imf = &timf; 1327 } 1328 1329 /* 1330 * Begin state merge transaction at IGMP layer. 1331 * 1332 * As this particular invocation should not cause any memory 1333 * to be allocated, and there is no opportunity to roll back 1334 * the transaction, it MUST NOT fail. 1335 */ 1336 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1337 IN_MULTI_LIST_LOCK(); 1338 error = inm_merge(inm, imf); 1339 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1340 1341 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1342 CURVNET_SET(inm->inm_ifp->if_vnet); 1343 error = igmp_change_state(inm); 1344 IF_ADDR_WLOCK(inm->inm_ifp); 1345 inm_release_deferred(inm); 1346 IF_ADDR_WUNLOCK(inm->inm_ifp); 1347 IN_MULTI_LIST_UNLOCK(); 1348 CURVNET_RESTORE(); 1349 if (error) 1350 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1351 1352 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1353 1354 return (error); 1355 } 1356 1357 /*#ifndef BURN_BRIDGES*/ 1358 1359 /* 1360 * Block or unblock an ASM multicast source on an inpcb. 1361 * This implements the delta-based API described in RFC 3678. 1362 * 1363 * The delta-based API applies only to exclusive-mode memberships. 1364 * An IGMP downcall will be performed. 1365 * 1366 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1367 * 1368 * Return 0 if successful, otherwise return an appropriate error code. 1369 */ 1370 static int 1371 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1372 { 1373 struct epoch_tracker et; 1374 struct group_source_req gsr; 1375 sockunion_t *gsa, *ssa; 1376 struct ifnet *ifp; 1377 struct in_mfilter *imf; 1378 struct ip_moptions *imo; 1379 struct in_msource *ims; 1380 struct in_multi *inm; 1381 uint16_t fmode; 1382 int error, doblock; 1383 1384 ifp = NULL; 1385 error = 0; 1386 doblock = 0; 1387 1388 memset(&gsr, 0, sizeof(struct group_source_req)); 1389 gsa = (sockunion_t *)&gsr.gsr_group; 1390 ssa = (sockunion_t *)&gsr.gsr_source; 1391 1392 switch (sopt->sopt_name) { 1393 case IP_BLOCK_SOURCE: 1394 case IP_UNBLOCK_SOURCE: { 1395 struct ip_mreq_source mreqs; 1396 1397 error = sooptcopyin(sopt, &mreqs, 1398 sizeof(struct ip_mreq_source), 1399 sizeof(struct ip_mreq_source)); 1400 if (error) 1401 return (error); 1402 1403 gsa->sin.sin_family = AF_INET; 1404 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1405 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1406 1407 ssa->sin.sin_family = AF_INET; 1408 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1409 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1410 1411 if (!in_nullhost(mreqs.imr_interface)) { 1412 NET_EPOCH_ENTER(et); 1413 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1414 /* XXXGL: ifref? */ 1415 NET_EPOCH_EXIT(et); 1416 } 1417 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1418 doblock = 1; 1419 1420 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1421 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1422 break; 1423 } 1424 1425 case MCAST_BLOCK_SOURCE: 1426 case MCAST_UNBLOCK_SOURCE: 1427 error = sooptcopyin(sopt, &gsr, 1428 sizeof(struct group_source_req), 1429 sizeof(struct group_source_req)); 1430 if (error) 1431 return (error); 1432 1433 if (gsa->sin.sin_family != AF_INET || 1434 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1435 return (EINVAL); 1436 1437 if (ssa->sin.sin_family != AF_INET || 1438 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1439 return (EINVAL); 1440 1441 NET_EPOCH_ENTER(et); 1442 ifp = ifnet_byindex(gsr.gsr_interface); 1443 NET_EPOCH_EXIT(et); 1444 if (ifp == NULL) 1445 return (EADDRNOTAVAIL); 1446 1447 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1448 doblock = 1; 1449 break; 1450 1451 default: 1452 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1453 __func__, sopt->sopt_name); 1454 return (EOPNOTSUPP); 1455 break; 1456 } 1457 1458 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1459 return (EINVAL); 1460 1461 IN_MULTI_LOCK(); 1462 1463 /* 1464 * Check if we are actually a member of this group. 1465 */ 1466 imo = inp_findmoptions(inp); 1467 imf = imo_match_group(imo, ifp, &gsa->sa); 1468 if (imf == NULL) { 1469 error = EADDRNOTAVAIL; 1470 goto out_inp_locked; 1471 } 1472 inm = imf->imf_inm; 1473 1474 /* 1475 * Attempting to use the delta-based API on an 1476 * non exclusive-mode membership is an error. 1477 */ 1478 fmode = imf->imf_st[0]; 1479 if (fmode != MCAST_EXCLUDE) { 1480 error = EINVAL; 1481 goto out_inp_locked; 1482 } 1483 1484 /* 1485 * Deal with error cases up-front: 1486 * Asked to block, but already blocked; or 1487 * Asked to unblock, but nothing to unblock. 1488 * If adding a new block entry, allocate it. 1489 */ 1490 ims = imo_match_source(imf, &ssa->sa); 1491 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1492 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, 1493 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); 1494 error = EADDRNOTAVAIL; 1495 goto out_inp_locked; 1496 } 1497 1498 INP_WLOCK_ASSERT(inp); 1499 1500 /* 1501 * Begin state merge transaction at socket layer. 1502 */ 1503 if (doblock) { 1504 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1505 ims = imf_graft(imf, fmode, &ssa->sin); 1506 if (ims == NULL) 1507 error = ENOMEM; 1508 } else { 1509 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1510 error = imf_prune(imf, &ssa->sin); 1511 } 1512 1513 if (error) { 1514 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1515 goto out_imf_rollback; 1516 } 1517 1518 /* 1519 * Begin state merge transaction at IGMP layer. 1520 */ 1521 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1522 IN_MULTI_LIST_LOCK(); 1523 error = inm_merge(inm, imf); 1524 if (error) { 1525 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1526 IN_MULTI_LIST_UNLOCK(); 1527 goto out_imf_rollback; 1528 } 1529 1530 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1531 error = igmp_change_state(inm); 1532 IN_MULTI_LIST_UNLOCK(); 1533 if (error) 1534 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1535 1536 out_imf_rollback: 1537 if (error) 1538 imf_rollback(imf); 1539 else 1540 imf_commit(imf); 1541 1542 imf_reap(imf); 1543 1544 out_inp_locked: 1545 INP_WUNLOCK(inp); 1546 IN_MULTI_UNLOCK(); 1547 return (error); 1548 } 1549 1550 /* 1551 * Given an inpcb, return its multicast options structure pointer. Accepts 1552 * an unlocked inpcb pointer, but will return it locked. May sleep. 1553 * 1554 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1555 * SMPng: NOTE: Returns with the INP write lock held. 1556 */ 1557 static struct ip_moptions * 1558 inp_findmoptions(struct inpcb *inp) 1559 { 1560 struct ip_moptions *imo; 1561 1562 INP_WLOCK(inp); 1563 if (inp->inp_moptions != NULL) 1564 return (inp->inp_moptions); 1565 1566 INP_WUNLOCK(inp); 1567 1568 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1569 1570 imo->imo_multicast_ifp = NULL; 1571 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1572 imo->imo_multicast_vif = -1; 1573 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1574 imo->imo_multicast_loop = in_mcast_loop; 1575 STAILQ_INIT(&imo->imo_head); 1576 1577 INP_WLOCK(inp); 1578 if (inp->inp_moptions != NULL) { 1579 free(imo, M_IPMOPTS); 1580 return (inp->inp_moptions); 1581 } 1582 inp->inp_moptions = imo; 1583 return (imo); 1584 } 1585 1586 void 1587 inp_freemoptions(struct ip_moptions *imo) 1588 { 1589 struct in_mfilter *imf; 1590 struct in_multi *inm; 1591 struct ifnet *ifp; 1592 1593 if (imo == NULL) 1594 return; 1595 1596 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { 1597 ip_mfilter_remove(&imo->imo_head, imf); 1598 1599 imf_leave(imf); 1600 if ((inm = imf->imf_inm) != NULL) { 1601 if ((ifp = inm->inm_ifp) != NULL) { 1602 CURVNET_SET(ifp->if_vnet); 1603 (void)in_leavegroup(inm, imf); 1604 CURVNET_RESTORE(); 1605 } else { 1606 (void)in_leavegroup(inm, imf); 1607 } 1608 } 1609 ip_mfilter_free(imf); 1610 } 1611 free(imo, M_IPMOPTS); 1612 } 1613 1614 /* 1615 * Atomically get source filters on a socket for an IPv4 multicast group. 1616 * Called with INP lock held; returns with lock released. 1617 */ 1618 static int 1619 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1620 { 1621 struct epoch_tracker et; 1622 struct __msfilterreq msfr; 1623 sockunion_t *gsa; 1624 struct ifnet *ifp; 1625 struct ip_moptions *imo; 1626 struct in_mfilter *imf; 1627 struct ip_msource *ims; 1628 struct in_msource *lims; 1629 struct sockaddr_in *psin; 1630 struct sockaddr_storage *ptss; 1631 struct sockaddr_storage *tss; 1632 int error; 1633 size_t nsrcs, ncsrcs; 1634 1635 INP_WLOCK_ASSERT(inp); 1636 1637 imo = inp->inp_moptions; 1638 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1639 1640 INP_WUNLOCK(inp); 1641 1642 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1643 sizeof(struct __msfilterreq)); 1644 if (error) 1645 return (error); 1646 1647 NET_EPOCH_ENTER(et); 1648 ifp = ifnet_byindex(msfr.msfr_ifindex); 1649 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifnet pointer left */ 1650 if (ifp == NULL) 1651 return (EINVAL); 1652 1653 INP_WLOCK(inp); 1654 1655 /* 1656 * Lookup group on the socket. 1657 */ 1658 gsa = (sockunion_t *)&msfr.msfr_group; 1659 imf = imo_match_group(imo, ifp, &gsa->sa); 1660 if (imf == NULL) { 1661 INP_WUNLOCK(inp); 1662 return (EADDRNOTAVAIL); 1663 } 1664 1665 /* 1666 * Ignore memberships which are in limbo. 1667 */ 1668 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1669 INP_WUNLOCK(inp); 1670 return (EAGAIN); 1671 } 1672 msfr.msfr_fmode = imf->imf_st[1]; 1673 1674 /* 1675 * If the user specified a buffer, copy out the source filter 1676 * entries to userland gracefully. 1677 * We only copy out the number of entries which userland 1678 * has asked for, but we always tell userland how big the 1679 * buffer really needs to be. 1680 */ 1681 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1682 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1683 tss = NULL; 1684 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1685 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1686 M_TEMP, M_NOWAIT | M_ZERO); 1687 if (tss == NULL) { 1688 INP_WUNLOCK(inp); 1689 return (ENOBUFS); 1690 } 1691 } 1692 1693 /* 1694 * Count number of sources in-mode at t0. 1695 * If buffer space exists and remains, copy out source entries. 1696 */ 1697 nsrcs = msfr.msfr_nsrcs; 1698 ncsrcs = 0; 1699 ptss = tss; 1700 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1701 lims = (struct in_msource *)ims; 1702 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1703 lims->imsl_st[0] != imf->imf_st[0]) 1704 continue; 1705 ++ncsrcs; 1706 if (tss != NULL && nsrcs > 0) { 1707 psin = (struct sockaddr_in *)ptss; 1708 psin->sin_family = AF_INET; 1709 psin->sin_len = sizeof(struct sockaddr_in); 1710 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1711 psin->sin_port = 0; 1712 ++ptss; 1713 --nsrcs; 1714 } 1715 } 1716 1717 INP_WUNLOCK(inp); 1718 1719 if (tss != NULL) { 1720 error = copyout(tss, msfr.msfr_srcs, 1721 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1722 free(tss, M_TEMP); 1723 if (error) 1724 return (error); 1725 } 1726 1727 msfr.msfr_nsrcs = ncsrcs; 1728 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1729 1730 return (error); 1731 } 1732 1733 /* 1734 * Return the IP multicast options in response to user getsockopt(). 1735 */ 1736 int 1737 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1738 { 1739 struct ip_mreqn mreqn; 1740 struct ip_moptions *imo; 1741 struct ifnet *ifp; 1742 struct in_ifaddr *ia; 1743 int error, optval; 1744 u_char coptval; 1745 1746 INP_WLOCK(inp); 1747 imo = inp->inp_moptions; 1748 /* If socket is neither of type SOCK_RAW or SOCK_DGRAM reject it. */ 1749 if (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1750 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) { 1751 INP_WUNLOCK(inp); 1752 return (EOPNOTSUPP); 1753 } 1754 1755 error = 0; 1756 switch (sopt->sopt_name) { 1757 case IP_MULTICAST_VIF: 1758 if (imo != NULL) 1759 optval = imo->imo_multicast_vif; 1760 else 1761 optval = -1; 1762 INP_WUNLOCK(inp); 1763 error = sooptcopyout(sopt, &optval, sizeof(int)); 1764 break; 1765 1766 case IP_MULTICAST_IF: 1767 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1768 if (imo != NULL) { 1769 ifp = imo->imo_multicast_ifp; 1770 if (!in_nullhost(imo->imo_multicast_addr)) { 1771 mreqn.imr_address = imo->imo_multicast_addr; 1772 } else if (ifp != NULL) { 1773 struct epoch_tracker et; 1774 1775 mreqn.imr_ifindex = ifp->if_index; 1776 NET_EPOCH_ENTER(et); 1777 IFP_TO_IA(ifp, ia); 1778 if (ia != NULL) 1779 mreqn.imr_address = 1780 IA_SIN(ia)->sin_addr; 1781 NET_EPOCH_EXIT(et); 1782 } 1783 } 1784 INP_WUNLOCK(inp); 1785 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1786 error = sooptcopyout(sopt, &mreqn, 1787 sizeof(struct ip_mreqn)); 1788 } else { 1789 error = sooptcopyout(sopt, &mreqn.imr_address, 1790 sizeof(struct in_addr)); 1791 } 1792 break; 1793 1794 case IP_MULTICAST_TTL: 1795 if (imo == NULL) 1796 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1797 else 1798 optval = coptval = imo->imo_multicast_ttl; 1799 INP_WUNLOCK(inp); 1800 if (sopt->sopt_valsize == sizeof(u_char)) 1801 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1802 else 1803 error = sooptcopyout(sopt, &optval, sizeof(int)); 1804 break; 1805 1806 case IP_MULTICAST_LOOP: 1807 if (imo == NULL) 1808 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1809 else 1810 optval = coptval = imo->imo_multicast_loop; 1811 INP_WUNLOCK(inp); 1812 if (sopt->sopt_valsize == sizeof(u_char)) 1813 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1814 else 1815 error = sooptcopyout(sopt, &optval, sizeof(int)); 1816 break; 1817 1818 case IP_MSFILTER: 1819 if (imo == NULL) { 1820 error = EADDRNOTAVAIL; 1821 INP_WUNLOCK(inp); 1822 } else { 1823 error = inp_get_source_filters(inp, sopt); 1824 } 1825 break; 1826 1827 default: 1828 INP_WUNLOCK(inp); 1829 error = ENOPROTOOPT; 1830 break; 1831 } 1832 1833 INP_UNLOCK_ASSERT(inp); 1834 1835 return (error); 1836 } 1837 1838 /* 1839 * Look up the ifnet to use for a multicast group membership, 1840 * given the IPv4 address of an interface, and the IPv4 group address. 1841 * 1842 * This routine exists to support legacy multicast applications 1843 * which do not understand that multicast memberships are scoped to 1844 * specific physical links in the networking stack, or which need 1845 * to join link-scope groups before IPv4 addresses are configured. 1846 * 1847 * Use this socket's current FIB number for any required FIB lookup. 1848 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1849 * and use its ifp; usually, this points to the default next-hop. 1850 * 1851 * If the FIB lookup fails, attempt to use the first non-loopback 1852 * interface with multicast capability in the system as a 1853 * last resort. The legacy IPv4 ASM API requires that we do 1854 * this in order to allow groups to be joined when the routing 1855 * table has not yet been populated during boot. 1856 * 1857 * Returns NULL if no ifp could be found, otherwise return referenced ifp. 1858 * 1859 * FUTURE: Implement IPv4 source-address selection. 1860 */ 1861 static struct ifnet * 1862 inp_lookup_mcast_ifp(const struct inpcb *inp, 1863 const struct sockaddr_in *gsin, const struct in_addr ina) 1864 { 1865 struct ifnet *ifp; 1866 struct nhop_object *nh; 1867 1868 NET_EPOCH_ASSERT(); 1869 KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__)); 1870 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1871 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1872 ("%s: not multicast", __func__)); 1873 1874 ifp = NULL; 1875 if (!in_nullhost(ina)) { 1876 INADDR_TO_IFP(ina, ifp); 1877 if (ifp != NULL) 1878 if_ref(ifp); 1879 } else { 1880 nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0); 1881 if (nh != NULL) { 1882 ifp = nh->nh_ifp; 1883 if_ref(ifp); 1884 } else { 1885 struct in_ifaddr *ia; 1886 struct ifnet *mifp; 1887 1888 mifp = NULL; 1889 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1890 mifp = ia->ia_ifp; 1891 if (!(mifp->if_flags & IFF_LOOPBACK) && 1892 (mifp->if_flags & IFF_MULTICAST)) { 1893 ifp = mifp; 1894 if_ref(ifp); 1895 break; 1896 } 1897 } 1898 } 1899 } 1900 1901 return (ifp); 1902 } 1903 1904 /* 1905 * Join an IPv4 multicast group, possibly with a source. 1906 */ 1907 static int 1908 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1909 { 1910 struct group_source_req gsr; 1911 sockunion_t *gsa, *ssa; 1912 struct ifnet *ifp; 1913 struct in_mfilter *imf; 1914 struct ip_moptions *imo; 1915 struct in_multi *inm; 1916 struct in_msource *lims; 1917 struct epoch_tracker et; 1918 int error, is_new; 1919 1920 ifp = NULL; 1921 lims = NULL; 1922 error = 0; 1923 1924 memset(&gsr, 0, sizeof(struct group_source_req)); 1925 gsa = (sockunion_t *)&gsr.gsr_group; 1926 gsa->ss.ss_family = AF_UNSPEC; 1927 ssa = (sockunion_t *)&gsr.gsr_source; 1928 ssa->ss.ss_family = AF_UNSPEC; 1929 1930 switch (sopt->sopt_name) { 1931 case IP_ADD_MEMBERSHIP: { 1932 struct ip_mreqn mreqn; 1933 1934 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) 1935 error = sooptcopyin(sopt, &mreqn, 1936 sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); 1937 else 1938 error = sooptcopyin(sopt, &mreqn, 1939 sizeof(struct ip_mreq), sizeof(struct ip_mreq)); 1940 if (error) 1941 return (error); 1942 1943 gsa->sin.sin_family = AF_INET; 1944 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1945 gsa->sin.sin_addr = mreqn.imr_multiaddr; 1946 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1947 return (EINVAL); 1948 1949 NET_EPOCH_ENTER(et); 1950 if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && 1951 mreqn.imr_ifindex != 0) 1952 ifp = ifnet_byindex_ref(mreqn.imr_ifindex); 1953 else 1954 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1955 mreqn.imr_address); 1956 NET_EPOCH_EXIT(et); 1957 break; 1958 } 1959 case IP_ADD_SOURCE_MEMBERSHIP: { 1960 struct ip_mreq_source mreqs; 1961 1962 error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), 1963 sizeof(struct ip_mreq_source)); 1964 if (error) 1965 return (error); 1966 1967 gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; 1968 gsa->sin.sin_len = ssa->sin.sin_len = 1969 sizeof(struct sockaddr_in); 1970 1971 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1972 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1973 return (EINVAL); 1974 1975 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1976 1977 NET_EPOCH_ENTER(et); 1978 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1979 mreqs.imr_interface); 1980 NET_EPOCH_EXIT(et); 1981 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1982 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1983 break; 1984 } 1985 1986 case MCAST_JOIN_GROUP: 1987 case MCAST_JOIN_SOURCE_GROUP: 1988 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1989 error = sooptcopyin(sopt, &gsr, 1990 sizeof(struct group_req), 1991 sizeof(struct group_req)); 1992 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1993 error = sooptcopyin(sopt, &gsr, 1994 sizeof(struct group_source_req), 1995 sizeof(struct group_source_req)); 1996 } 1997 if (error) 1998 return (error); 1999 2000 if (gsa->sin.sin_family != AF_INET || 2001 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2002 return (EINVAL); 2003 2004 /* 2005 * Overwrite the port field if present, as the sockaddr 2006 * being copied in may be matched with a binary comparison. 2007 */ 2008 gsa->sin.sin_port = 0; 2009 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2010 if (ssa->sin.sin_family != AF_INET || 2011 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2012 return (EINVAL); 2013 ssa->sin.sin_port = 0; 2014 } 2015 2016 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2017 return (EINVAL); 2018 2019 NET_EPOCH_ENTER(et); 2020 ifp = ifnet_byindex_ref(gsr.gsr_interface); 2021 NET_EPOCH_EXIT(et); 2022 if (ifp == NULL) 2023 return (EADDRNOTAVAIL); 2024 break; 2025 2026 default: 2027 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2028 __func__, sopt->sopt_name); 2029 return (EOPNOTSUPP); 2030 break; 2031 } 2032 2033 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2034 if (ifp != NULL) 2035 if_rele(ifp); 2036 return (EADDRNOTAVAIL); 2037 } 2038 2039 IN_MULTI_LOCK(); 2040 2041 /* 2042 * Find the membership in the membership list. 2043 */ 2044 imo = inp_findmoptions(inp); 2045 imf = imo_match_group(imo, ifp, &gsa->sa); 2046 if (imf == NULL) { 2047 is_new = 1; 2048 inm = NULL; 2049 2050 if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { 2051 error = ENOMEM; 2052 goto out_inp_locked; 2053 } 2054 } else { 2055 is_new = 0; 2056 inm = imf->imf_inm; 2057 2058 if (ssa->ss.ss_family != AF_UNSPEC) { 2059 /* 2060 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2061 * is an error. On an existing inclusive membership, 2062 * it just adds the source to the filter list. 2063 */ 2064 if (imf->imf_st[1] != MCAST_INCLUDE) { 2065 error = EINVAL; 2066 goto out_inp_locked; 2067 } 2068 /* 2069 * Throw out duplicates. 2070 * 2071 * XXX FIXME: This makes a naive assumption that 2072 * even if entries exist for *ssa in this imf, 2073 * they will be rejected as dupes, even if they 2074 * are not valid in the current mode (in-mode). 2075 * 2076 * in_msource is transactioned just as for anything 2077 * else in SSM -- but note naive use of inm_graft() 2078 * below for allocating new filter entries. 2079 * 2080 * This is only an issue if someone mixes the 2081 * full-state SSM API with the delta-based API, 2082 * which is discouraged in the relevant RFCs. 2083 */ 2084 lims = imo_match_source(imf, &ssa->sa); 2085 if (lims != NULL /*&& 2086 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2087 error = EADDRNOTAVAIL; 2088 goto out_inp_locked; 2089 } 2090 } else { 2091 /* 2092 * MCAST_JOIN_GROUP on an existing exclusive 2093 * membership is an error; return EADDRINUSE 2094 * to preserve 4.4BSD API idempotence, and 2095 * avoid tedious detour to code below. 2096 * NOTE: This is bending RFC 3678 a bit. 2097 * 2098 * On an existing inclusive membership, this is also 2099 * an error; if you want to change filter mode, 2100 * you must use the userland API setsourcefilter(). 2101 * XXX We don't reject this for imf in UNDEFINED 2102 * state at t1, because allocation of a filter 2103 * is atomic with allocation of a membership. 2104 */ 2105 error = EINVAL; 2106 if (imf->imf_st[1] == MCAST_EXCLUDE) 2107 error = EADDRINUSE; 2108 goto out_inp_locked; 2109 } 2110 } 2111 2112 /* 2113 * Begin state merge transaction at socket layer. 2114 */ 2115 INP_WLOCK_ASSERT(inp); 2116 2117 /* 2118 * Graft new source into filter list for this inpcb's 2119 * membership of the group. The in_multi may not have 2120 * been allocated yet if this is a new membership, however, 2121 * the in_mfilter slot will be allocated and must be initialized. 2122 * 2123 * Note: Grafting of exclusive mode filters doesn't happen 2124 * in this path. 2125 * XXX: Should check for non-NULL lims (node exists but may 2126 * not be in-mode) for interop with full-state API. 2127 */ 2128 if (ssa->ss.ss_family != AF_UNSPEC) { 2129 /* Membership starts in IN mode */ 2130 if (is_new) { 2131 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2132 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2133 if (imf == NULL) { 2134 error = ENOMEM; 2135 goto out_inp_locked; 2136 } 2137 } else { 2138 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2139 } 2140 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2141 if (lims == NULL) { 2142 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2143 __func__); 2144 error = ENOMEM; 2145 goto out_inp_locked; 2146 } 2147 } else { 2148 /* No address specified; Membership starts in EX mode */ 2149 if (is_new) { 2150 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2151 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2152 if (imf == NULL) { 2153 error = ENOMEM; 2154 goto out_inp_locked; 2155 } 2156 } 2157 } 2158 2159 /* 2160 * Begin state merge transaction at IGMP layer. 2161 */ 2162 if (is_new) { 2163 in_pcbref(inp); 2164 INP_WUNLOCK(inp); 2165 2166 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2167 &imf->imf_inm); 2168 2169 INP_WLOCK(inp); 2170 if (in_pcbrele_wlocked(inp)) { 2171 error = ENXIO; 2172 goto out_inp_unlocked; 2173 } 2174 if (error) { 2175 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2176 __func__); 2177 goto out_inp_locked; 2178 } 2179 /* 2180 * NOTE: Refcount from in_joingroup_locked() 2181 * is protecting membership. 2182 */ 2183 ip_mfilter_insert(&imo->imo_head, imf); 2184 } else { 2185 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2186 IN_MULTI_LIST_LOCK(); 2187 error = inm_merge(inm, imf); 2188 if (error) { 2189 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2190 __func__); 2191 IN_MULTI_LIST_UNLOCK(); 2192 imf_rollback(imf); 2193 imf_reap(imf); 2194 goto out_inp_locked; 2195 } 2196 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2197 error = igmp_change_state(inm); 2198 IN_MULTI_LIST_UNLOCK(); 2199 if (error) { 2200 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2201 __func__); 2202 imf_rollback(imf); 2203 imf_reap(imf); 2204 goto out_inp_locked; 2205 } 2206 } 2207 2208 imf_commit(imf); 2209 imf = NULL; 2210 2211 out_inp_locked: 2212 INP_WUNLOCK(inp); 2213 out_inp_unlocked: 2214 IN_MULTI_UNLOCK(); 2215 2216 if (is_new && imf) { 2217 if (imf->imf_inm != NULL) { 2218 IN_MULTI_LIST_LOCK(); 2219 IF_ADDR_WLOCK(ifp); 2220 inm_release_deferred(imf->imf_inm); 2221 IF_ADDR_WUNLOCK(ifp); 2222 IN_MULTI_LIST_UNLOCK(); 2223 } 2224 ip_mfilter_free(imf); 2225 } 2226 if_rele(ifp); 2227 return (error); 2228 } 2229 2230 /* 2231 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2232 */ 2233 static int 2234 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2235 { 2236 struct epoch_tracker et; 2237 struct group_source_req gsr; 2238 struct ip_mreq_source mreqs; 2239 sockunion_t *gsa, *ssa; 2240 struct ifnet *ifp; 2241 struct in_mfilter *imf; 2242 struct ip_moptions *imo; 2243 struct in_msource *ims; 2244 struct in_multi *inm; 2245 int error; 2246 bool is_final; 2247 2248 ifp = NULL; 2249 error = 0; 2250 is_final = true; 2251 2252 memset(&gsr, 0, sizeof(struct group_source_req)); 2253 gsa = (sockunion_t *)&gsr.gsr_group; 2254 gsa->ss.ss_family = AF_UNSPEC; 2255 ssa = (sockunion_t *)&gsr.gsr_source; 2256 ssa->ss.ss_family = AF_UNSPEC; 2257 2258 switch (sopt->sopt_name) { 2259 case IP_DROP_MEMBERSHIP: 2260 case IP_DROP_SOURCE_MEMBERSHIP: 2261 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2262 error = sooptcopyin(sopt, &mreqs, 2263 sizeof(struct ip_mreq), 2264 sizeof(struct ip_mreq)); 2265 /* 2266 * Swap interface and sourceaddr arguments, 2267 * as ip_mreq and ip_mreq_source are laid 2268 * out differently. 2269 */ 2270 mreqs.imr_interface = mreqs.imr_sourceaddr; 2271 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2272 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2273 error = sooptcopyin(sopt, &mreqs, 2274 sizeof(struct ip_mreq_source), 2275 sizeof(struct ip_mreq_source)); 2276 } 2277 if (error) 2278 return (error); 2279 2280 gsa->sin.sin_family = AF_INET; 2281 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2282 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2283 2284 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2285 ssa->sin.sin_family = AF_INET; 2286 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2287 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2288 } 2289 2290 /* 2291 * Attempt to look up hinted ifp from interface address. 2292 * Fallthrough with null ifp iff lookup fails, to 2293 * preserve 4.4BSD mcast API idempotence. 2294 * XXX NOTE WELL: The RFC 3678 API is preferred because 2295 * using an IPv4 address as a key is racy. 2296 */ 2297 if (!in_nullhost(mreqs.imr_interface)) { 2298 NET_EPOCH_ENTER(et); 2299 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2300 /* XXXGL ifref? */ 2301 NET_EPOCH_EXIT(et); 2302 } 2303 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2304 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2305 2306 break; 2307 2308 case MCAST_LEAVE_GROUP: 2309 case MCAST_LEAVE_SOURCE_GROUP: 2310 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2311 error = sooptcopyin(sopt, &gsr, 2312 sizeof(struct group_req), 2313 sizeof(struct group_req)); 2314 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2315 error = sooptcopyin(sopt, &gsr, 2316 sizeof(struct group_source_req), 2317 sizeof(struct group_source_req)); 2318 } 2319 if (error) 2320 return (error); 2321 2322 if (gsa->sin.sin_family != AF_INET || 2323 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2324 return (EINVAL); 2325 2326 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2327 if (ssa->sin.sin_family != AF_INET || 2328 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2329 return (EINVAL); 2330 } 2331 2332 NET_EPOCH_ENTER(et); 2333 ifp = ifnet_byindex(gsr.gsr_interface); 2334 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 2335 if (ifp == NULL) 2336 return (EADDRNOTAVAIL); 2337 break; 2338 2339 default: 2340 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2341 __func__, sopt->sopt_name); 2342 return (EOPNOTSUPP); 2343 break; 2344 } 2345 2346 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2347 return (EINVAL); 2348 2349 IN_MULTI_LOCK(); 2350 2351 /* 2352 * Find the membership in the membership list. 2353 */ 2354 imo = inp_findmoptions(inp); 2355 imf = imo_match_group(imo, ifp, &gsa->sa); 2356 if (imf == NULL) { 2357 error = EADDRNOTAVAIL; 2358 goto out_inp_locked; 2359 } 2360 inm = imf->imf_inm; 2361 2362 if (ssa->ss.ss_family != AF_UNSPEC) 2363 is_final = false; 2364 2365 /* 2366 * Begin state merge transaction at socket layer. 2367 */ 2368 INP_WLOCK_ASSERT(inp); 2369 2370 /* 2371 * If we were instructed only to leave a given source, do so. 2372 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2373 */ 2374 if (is_final) { 2375 ip_mfilter_remove(&imo->imo_head, imf); 2376 imf_leave(imf); 2377 2378 /* 2379 * Give up the multicast address record to which 2380 * the membership points. 2381 */ 2382 (void) in_leavegroup_locked(imf->imf_inm, imf); 2383 } else { 2384 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2385 error = EADDRNOTAVAIL; 2386 goto out_inp_locked; 2387 } 2388 ims = imo_match_source(imf, &ssa->sa); 2389 if (ims == NULL) { 2390 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", 2391 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); 2392 error = EADDRNOTAVAIL; 2393 goto out_inp_locked; 2394 } 2395 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2396 error = imf_prune(imf, &ssa->sin); 2397 if (error) { 2398 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2399 __func__); 2400 goto out_inp_locked; 2401 } 2402 } 2403 2404 /* 2405 * Begin state merge transaction at IGMP layer. 2406 */ 2407 if (!is_final) { 2408 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2409 IN_MULTI_LIST_LOCK(); 2410 error = inm_merge(inm, imf); 2411 if (error) { 2412 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2413 __func__); 2414 IN_MULTI_LIST_UNLOCK(); 2415 imf_rollback(imf); 2416 imf_reap(imf); 2417 goto out_inp_locked; 2418 } 2419 2420 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2421 error = igmp_change_state(inm); 2422 IN_MULTI_LIST_UNLOCK(); 2423 if (error) { 2424 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2425 __func__); 2426 imf_rollback(imf); 2427 imf_reap(imf); 2428 goto out_inp_locked; 2429 } 2430 } 2431 imf_commit(imf); 2432 imf_reap(imf); 2433 2434 out_inp_locked: 2435 INP_WUNLOCK(inp); 2436 2437 if (is_final && imf) 2438 ip_mfilter_free(imf); 2439 2440 IN_MULTI_UNLOCK(); 2441 return (error); 2442 } 2443 2444 /* 2445 * Select the interface for transmitting IPv4 multicast datagrams. 2446 * 2447 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2448 * may be passed to this socket option. An address of INADDR_ANY or an 2449 * interface index of 0 is used to remove a previous selection. 2450 * When no interface is selected, one is chosen for every send. 2451 */ 2452 static int 2453 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2454 { 2455 struct in_addr addr; 2456 struct ip_mreqn mreqn; 2457 struct ifnet *ifp; 2458 struct ip_moptions *imo; 2459 int error; 2460 2461 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2462 /* 2463 * An interface index was specified using the 2464 * Linux-derived ip_mreqn structure. 2465 */ 2466 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2467 sizeof(struct ip_mreqn)); 2468 if (error) 2469 return (error); 2470 2471 if (mreqn.imr_ifindex < 0) 2472 return (EINVAL); 2473 2474 if (mreqn.imr_ifindex == 0) { 2475 ifp = NULL; 2476 } else { 2477 struct epoch_tracker et; 2478 2479 NET_EPOCH_ENTER(et); 2480 ifp = ifnet_byindex(mreqn.imr_ifindex); 2481 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 2482 if (ifp == NULL) 2483 return (EADDRNOTAVAIL); 2484 } 2485 } else { 2486 /* 2487 * An interface was specified by IPv4 address. 2488 * This is the traditional BSD usage. 2489 */ 2490 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2491 sizeof(struct in_addr)); 2492 if (error) 2493 return (error); 2494 if (in_nullhost(addr)) { 2495 ifp = NULL; 2496 } else { 2497 struct epoch_tracker et; 2498 2499 NET_EPOCH_ENTER(et); 2500 INADDR_TO_IFP(addr, ifp); 2501 /* XXXGL ifref? */ 2502 NET_EPOCH_EXIT(et); 2503 if (ifp == NULL) 2504 return (EADDRNOTAVAIL); 2505 } 2506 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, 2507 ntohl(addr.s_addr)); 2508 } 2509 2510 /* Reject interfaces which do not support multicast. */ 2511 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2512 return (EOPNOTSUPP); 2513 2514 imo = inp_findmoptions(inp); 2515 imo->imo_multicast_ifp = ifp; 2516 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2517 INP_WUNLOCK(inp); 2518 2519 return (0); 2520 } 2521 2522 /* 2523 * Atomically set source filters on a socket for an IPv4 multicast group. 2524 * 2525 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2526 */ 2527 static int 2528 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2529 { 2530 struct epoch_tracker et; 2531 struct __msfilterreq msfr; 2532 sockunion_t *gsa; 2533 struct ifnet *ifp; 2534 struct in_mfilter *imf; 2535 struct ip_moptions *imo; 2536 struct in_multi *inm; 2537 int error; 2538 2539 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2540 sizeof(struct __msfilterreq)); 2541 if (error) 2542 return (error); 2543 2544 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2545 return (ENOBUFS); 2546 2547 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2548 msfr.msfr_fmode != MCAST_INCLUDE)) 2549 return (EINVAL); 2550 2551 if (msfr.msfr_group.ss_family != AF_INET || 2552 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2553 return (EINVAL); 2554 2555 gsa = (sockunion_t *)&msfr.msfr_group; 2556 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2557 return (EINVAL); 2558 2559 gsa->sin.sin_port = 0; /* ignore port */ 2560 2561 NET_EPOCH_ENTER(et); 2562 ifp = ifnet_byindex(msfr.msfr_ifindex); 2563 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 2564 if (ifp == NULL) 2565 return (EADDRNOTAVAIL); 2566 2567 IN_MULTI_LOCK(); 2568 2569 /* 2570 * Take the INP write lock. 2571 * Check if this socket is a member of this group. 2572 */ 2573 imo = inp_findmoptions(inp); 2574 imf = imo_match_group(imo, ifp, &gsa->sa); 2575 if (imf == NULL) { 2576 error = EADDRNOTAVAIL; 2577 goto out_inp_locked; 2578 } 2579 inm = imf->imf_inm; 2580 2581 /* 2582 * Begin state merge transaction at socket layer. 2583 */ 2584 INP_WLOCK_ASSERT(inp); 2585 2586 imf->imf_st[1] = msfr.msfr_fmode; 2587 2588 /* 2589 * Apply any new source filters, if present. 2590 * Make a copy of the user-space source vector so 2591 * that we may copy them with a single copyin. This 2592 * allows us to deal with page faults up-front. 2593 */ 2594 if (msfr.msfr_nsrcs > 0) { 2595 struct in_msource *lims; 2596 struct sockaddr_in *psin; 2597 struct sockaddr_storage *kss, *pkss; 2598 int i; 2599 2600 INP_WUNLOCK(inp); 2601 2602 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2603 __func__, (unsigned long)msfr.msfr_nsrcs); 2604 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2605 M_TEMP, M_WAITOK); 2606 error = copyin(msfr.msfr_srcs, kss, 2607 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2608 if (error) { 2609 free(kss, M_TEMP); 2610 return (error); 2611 } 2612 2613 INP_WLOCK(inp); 2614 2615 /* 2616 * Mark all source filters as UNDEFINED at t1. 2617 * Restore new group filter mode, as imf_leave() 2618 * will set it to INCLUDE. 2619 */ 2620 imf_leave(imf); 2621 imf->imf_st[1] = msfr.msfr_fmode; 2622 2623 /* 2624 * Update socket layer filters at t1, lazy-allocating 2625 * new entries. This saves a bunch of memory at the 2626 * cost of one RB_FIND() per source entry; duplicate 2627 * entries in the msfr_nsrcs vector are ignored. 2628 * If we encounter an error, rollback transaction. 2629 * 2630 * XXX This too could be replaced with a set-symmetric 2631 * difference like loop to avoid walking from root 2632 * every time, as the key space is common. 2633 */ 2634 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2635 psin = (struct sockaddr_in *)pkss; 2636 if (psin->sin_family != AF_INET) { 2637 error = EAFNOSUPPORT; 2638 break; 2639 } 2640 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2641 error = EINVAL; 2642 break; 2643 } 2644 error = imf_get_source(imf, psin, &lims); 2645 if (error) 2646 break; 2647 lims->imsl_st[1] = imf->imf_st[1]; 2648 } 2649 free(kss, M_TEMP); 2650 } 2651 2652 if (error) 2653 goto out_imf_rollback; 2654 2655 INP_WLOCK_ASSERT(inp); 2656 2657 /* 2658 * Begin state merge transaction at IGMP layer. 2659 */ 2660 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2661 IN_MULTI_LIST_LOCK(); 2662 error = inm_merge(inm, imf); 2663 if (error) { 2664 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2665 IN_MULTI_LIST_UNLOCK(); 2666 goto out_imf_rollback; 2667 } 2668 2669 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2670 error = igmp_change_state(inm); 2671 IN_MULTI_LIST_UNLOCK(); 2672 if (error) 2673 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2674 2675 out_imf_rollback: 2676 if (error) 2677 imf_rollback(imf); 2678 else 2679 imf_commit(imf); 2680 2681 imf_reap(imf); 2682 2683 out_inp_locked: 2684 INP_WUNLOCK(inp); 2685 IN_MULTI_UNLOCK(); 2686 return (error); 2687 } 2688 2689 /* 2690 * Set the IP multicast options in response to user setsockopt(). 2691 * 2692 * Many of the socket options handled in this function duplicate the 2693 * functionality of socket options in the regular unicast API. However, 2694 * it is not possible to merge the duplicate code, because the idempotence 2695 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2696 * the effects of these options must be treated as separate and distinct. 2697 * 2698 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2699 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2700 * is refactored to no longer use vifs. 2701 */ 2702 int 2703 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2704 { 2705 struct ip_moptions *imo; 2706 int error; 2707 2708 error = 0; 2709 2710 /* If socket is neither of type SOCK_RAW or SOCK_DGRAM, reject it. */ 2711 if (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2712 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) 2713 return (EOPNOTSUPP); 2714 2715 switch (sopt->sopt_name) { 2716 case IP_MULTICAST_VIF: { 2717 int vifi; 2718 /* 2719 * Select a multicast VIF for transmission. 2720 * Only useful if multicast forwarding is active. 2721 */ 2722 if (legal_vif_num == NULL) { 2723 error = EOPNOTSUPP; 2724 break; 2725 } 2726 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2727 if (error) 2728 break; 2729 if (!legal_vif_num(vifi) && (vifi != -1)) { 2730 error = EINVAL; 2731 break; 2732 } 2733 imo = inp_findmoptions(inp); 2734 imo->imo_multicast_vif = vifi; 2735 INP_WUNLOCK(inp); 2736 break; 2737 } 2738 2739 case IP_MULTICAST_IF: 2740 error = inp_set_multicast_if(inp, sopt); 2741 break; 2742 2743 case IP_MULTICAST_TTL: { 2744 u_char ttl; 2745 2746 /* 2747 * Set the IP time-to-live for outgoing multicast packets. 2748 * The original multicast API required a char argument, 2749 * which is inconsistent with the rest of the socket API. 2750 * We allow either a char or an int. 2751 */ 2752 if (sopt->sopt_valsize == sizeof(u_char)) { 2753 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2754 sizeof(u_char)); 2755 if (error) 2756 break; 2757 } else { 2758 u_int ittl; 2759 2760 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2761 sizeof(u_int)); 2762 if (error) 2763 break; 2764 if (ittl > 255) { 2765 error = EINVAL; 2766 break; 2767 } 2768 ttl = (u_char)ittl; 2769 } 2770 imo = inp_findmoptions(inp); 2771 imo->imo_multicast_ttl = ttl; 2772 INP_WUNLOCK(inp); 2773 break; 2774 } 2775 2776 case IP_MULTICAST_LOOP: { 2777 u_char loop; 2778 2779 /* 2780 * Set the loopback flag for outgoing multicast packets. 2781 * Must be zero or one. The original multicast API required a 2782 * char argument, which is inconsistent with the rest 2783 * of the socket API. We allow either a char or an int. 2784 */ 2785 if (sopt->sopt_valsize == sizeof(u_char)) { 2786 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2787 sizeof(u_char)); 2788 if (error) 2789 break; 2790 } else { 2791 u_int iloop; 2792 2793 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2794 sizeof(u_int)); 2795 if (error) 2796 break; 2797 loop = (u_char)iloop; 2798 } 2799 imo = inp_findmoptions(inp); 2800 imo->imo_multicast_loop = !!loop; 2801 INP_WUNLOCK(inp); 2802 break; 2803 } 2804 2805 case IP_ADD_MEMBERSHIP: 2806 case IP_ADD_SOURCE_MEMBERSHIP: 2807 case MCAST_JOIN_GROUP: 2808 case MCAST_JOIN_SOURCE_GROUP: 2809 error = inp_join_group(inp, sopt); 2810 break; 2811 2812 case IP_DROP_MEMBERSHIP: 2813 case IP_DROP_SOURCE_MEMBERSHIP: 2814 case MCAST_LEAVE_GROUP: 2815 case MCAST_LEAVE_SOURCE_GROUP: 2816 error = inp_leave_group(inp, sopt); 2817 break; 2818 2819 case IP_BLOCK_SOURCE: 2820 case IP_UNBLOCK_SOURCE: 2821 case MCAST_BLOCK_SOURCE: 2822 case MCAST_UNBLOCK_SOURCE: 2823 error = inp_block_unblock_source(inp, sopt); 2824 break; 2825 2826 case IP_MSFILTER: 2827 error = inp_set_source_filters(inp, sopt); 2828 break; 2829 2830 default: 2831 error = EOPNOTSUPP; 2832 break; 2833 } 2834 2835 INP_UNLOCK_ASSERT(inp); 2836 2837 return (error); 2838 } 2839 2840 /* 2841 * Expose IGMP's multicast filter mode and source list(s) to userland, 2842 * keyed by (ifindex, group). 2843 * The filter mode is written out as a uint32_t, followed by 2844 * 0..n of struct in_addr. 2845 * For use by ifmcstat(8). 2846 * SMPng: NOTE: unlocked read of ifindex space. 2847 */ 2848 static int 2849 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2850 { 2851 struct in_addr src, group; 2852 struct epoch_tracker et; 2853 struct ifnet *ifp; 2854 struct ifmultiaddr *ifma; 2855 struct in_multi *inm; 2856 struct ip_msource *ims; 2857 int *name; 2858 int retval; 2859 u_int namelen; 2860 uint32_t fmode, ifindex; 2861 2862 name = (int *)arg1; 2863 namelen = arg2; 2864 2865 if (req->newptr != NULL) 2866 return (EPERM); 2867 2868 if (namelen != 2) 2869 return (EINVAL); 2870 2871 group.s_addr = name[1]; 2872 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2873 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", 2874 __func__, ntohl(group.s_addr)); 2875 return (EINVAL); 2876 } 2877 2878 ifindex = name[0]; 2879 NET_EPOCH_ENTER(et); 2880 ifp = ifnet_byindex(ifindex); 2881 if (ifp == NULL) { 2882 NET_EPOCH_EXIT(et); 2883 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2884 __func__, ifindex); 2885 return (ENOENT); 2886 } 2887 2888 retval = sysctl_wire_old_buffer(req, 2889 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2890 if (retval) { 2891 NET_EPOCH_EXIT(et); 2892 return (retval); 2893 } 2894 2895 IN_MULTI_LIST_LOCK(); 2896 2897 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2898 inm = inm_ifmultiaddr_get_inm(ifma); 2899 if (inm == NULL) 2900 continue; 2901 if (!in_hosteq(inm->inm_addr, group)) 2902 continue; 2903 fmode = inm->inm_st[1].iss_fmode; 2904 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2905 if (retval != 0) 2906 break; 2907 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2908 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, 2909 ims->ims_haddr); 2910 /* 2911 * Only copy-out sources which are in-mode. 2912 */ 2913 if (fmode != ims_get_mode(inm, ims, 1)) { 2914 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2915 __func__); 2916 continue; 2917 } 2918 src.s_addr = htonl(ims->ims_haddr); 2919 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2920 if (retval != 0) 2921 break; 2922 } 2923 } 2924 2925 IN_MULTI_LIST_UNLOCK(); 2926 NET_EPOCH_EXIT(et); 2927 2928 return (retval); 2929 } 2930 2931 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) 2932 2933 static const char *inm_modestrs[] = { 2934 [MCAST_UNDEFINED] = "un", 2935 [MCAST_INCLUDE] = "in", 2936 [MCAST_EXCLUDE] = "ex", 2937 }; 2938 _Static_assert(MCAST_UNDEFINED == 0 && 2939 MCAST_EXCLUDE + 1 == nitems(inm_modestrs), 2940 "inm_modestrs: no longer matches #defines"); 2941 2942 static const char * 2943 inm_mode_str(const int mode) 2944 { 2945 2946 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2947 return (inm_modestrs[mode]); 2948 return ("??"); 2949 } 2950 2951 static const char *inm_statestrs[] = { 2952 [IGMP_NOT_MEMBER] = "not-member", 2953 [IGMP_SILENT_MEMBER] = "silent", 2954 [IGMP_REPORTING_MEMBER] = "reporting", 2955 [IGMP_IDLE_MEMBER] = "idle", 2956 [IGMP_LAZY_MEMBER] = "lazy", 2957 [IGMP_SLEEPING_MEMBER] = "sleeping", 2958 [IGMP_AWAKENING_MEMBER] = "awakening", 2959 [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", 2960 [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", 2961 [IGMP_LEAVING_MEMBER] = "leaving", 2962 }; 2963 _Static_assert(IGMP_NOT_MEMBER == 0 && 2964 IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), 2965 "inm_statetrs: no longer matches #defines"); 2966 2967 static const char * 2968 inm_state_str(const int state) 2969 { 2970 2971 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2972 return (inm_statestrs[state]); 2973 return ("??"); 2974 } 2975 2976 /* 2977 * Dump an in_multi structure to the console. 2978 */ 2979 void 2980 inm_print(const struct in_multi *inm) 2981 { 2982 int t; 2983 char addrbuf[INET_ADDRSTRLEN]; 2984 2985 if ((ktr_mask & KTR_IGMPV3) == 0) 2986 return; 2987 2988 printf("%s: --- begin inm %p ---\n", __func__, inm); 2989 printf("addr %s ifp %p(%s) ifma %p\n", 2990 inet_ntoa_r(inm->inm_addr, addrbuf), 2991 inm->inm_ifp, 2992 inm->inm_ifp->if_xname, 2993 inm->inm_ifma); 2994 printf("timer %u state %s refcount %u scq.len %u\n", 2995 inm->inm_timer, 2996 inm_state_str(inm->inm_state), 2997 inm->inm_refcount, 2998 inm->inm_scq.mq_len); 2999 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 3000 inm->inm_igi, 3001 inm->inm_nsrc, 3002 inm->inm_sctimer, 3003 inm->inm_scrv); 3004 for (t = 0; t < 2; t++) { 3005 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 3006 inm_mode_str(inm->inm_st[t].iss_fmode), 3007 inm->inm_st[t].iss_asm, 3008 inm->inm_st[t].iss_ex, 3009 inm->inm_st[t].iss_in, 3010 inm->inm_st[t].iss_rec); 3011 } 3012 printf("%s: --- end inm %p ---\n", __func__, inm); 3013 } 3014 3015 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ 3016 3017 void 3018 inm_print(const struct in_multi *inm) 3019 { 3020 3021 } 3022 3023 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ 3024 3025 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3026