1 /*- 2 * Copyright (c) 2007-2009 Bruce Simpson. 3 * Copyright (c) 2005 Robert N. M. Watson. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * IPv4 multicast socket, group, and socket option processing module. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/protosw.h> 47 #include <sys/sysctl.h> 48 #include <sys/ktr.h> 49 #include <sys/taskqueue.h> 50 #include <sys/tree.h> 51 52 #include <net/if.h> 53 #include <net/if_dl.h> 54 #include <net/route.h> 55 #include <net/vnet.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip_var.h> 62 #include <netinet/igmp_var.h> 63 64 #ifndef KTR_IGMPV3 65 #define KTR_IGMPV3 KTR_INET 66 #endif 67 68 #ifndef __SOCKUNION_DECLARED 69 union sockunion { 70 struct sockaddr_storage ss; 71 struct sockaddr sa; 72 struct sockaddr_dl sdl; 73 struct sockaddr_in sin; 74 }; 75 typedef union sockunion sockunion_t; 76 #define __SOCKUNION_DECLARED 77 #endif /* __SOCKUNION_DECLARED */ 78 79 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 80 "IPv4 multicast PCB-layer source filter"); 81 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 82 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 83 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 84 "IPv4 multicast IGMP-layer source filter"); 85 86 /* 87 * Locking: 88 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 89 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 90 * it can be taken by code in net/if.c also. 91 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 92 * 93 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly 94 * any need for in_multi itself to be virtualized -- it is bound to an ifp 95 * anyway no matter what happens. 96 */ 97 struct mtx in_multi_mtx; 98 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF); 99 100 /* 101 * Functions with non-static linkage defined in this file should be 102 * declared in in_var.h: 103 * imo_multi_filter() 104 * in_addmulti() 105 * in_delmulti() 106 * in_joingroup() 107 * in_joingroup_locked() 108 * in_leavegroup() 109 * in_leavegroup_locked() 110 * and ip_var.h: 111 * inp_freemoptions() 112 * inp_getmoptions() 113 * inp_setmoptions() 114 * 115 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 116 * and in_delmulti(). 117 */ 118 static void imf_commit(struct in_mfilter *); 119 static int imf_get_source(struct in_mfilter *imf, 120 const struct sockaddr_in *psin, 121 struct in_msource **); 122 static struct in_msource * 123 imf_graft(struct in_mfilter *, const uint8_t, 124 const struct sockaddr_in *); 125 static void imf_leave(struct in_mfilter *); 126 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 127 static void imf_purge(struct in_mfilter *); 128 static void imf_rollback(struct in_mfilter *); 129 static void imf_reap(struct in_mfilter *); 130 static int imo_grow(struct ip_moptions *); 131 static size_t imo_match_group(const struct ip_moptions *, 132 const struct ifnet *, const struct sockaddr *); 133 static struct in_msource * 134 imo_match_source(const struct ip_moptions *, const size_t, 135 const struct sockaddr *); 136 static void ims_merge(struct ip_msource *ims, 137 const struct in_msource *lims, const int rollback); 138 static int in_getmulti(struct ifnet *, const struct in_addr *, 139 struct in_multi **); 140 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 141 const int noalloc, struct ip_msource **pims); 142 static int inm_is_ifp_detached(const struct in_multi *); 143 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 144 static void inm_purge(struct in_multi *); 145 static void inm_reap(struct in_multi *); 146 static struct ip_moptions * 147 inp_findmoptions(struct inpcb *); 148 static void inp_freemoptions_internal(struct ip_moptions *); 149 static void inp_gcmoptions(void *, int); 150 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 151 static int inp_join_group(struct inpcb *, struct sockopt *); 152 static int inp_leave_group(struct inpcb *, struct sockopt *); 153 static struct ifnet * 154 inp_lookup_mcast_ifp(const struct inpcb *, 155 const struct sockaddr_in *, const struct in_addr); 156 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 157 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 158 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 159 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 160 161 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, 162 "IPv4 multicast"); 163 164 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 165 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 166 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0, 167 "Max source filters per group"); 168 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc); 169 170 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 171 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 172 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0, 173 "Max source filters per socket"); 174 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc); 175 176 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 177 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN, 178 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 179 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop); 180 181 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 182 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 183 "Per-interface stack-wide source filters"); 184 185 static STAILQ_HEAD(, ip_moptions) imo_gc_list = 186 STAILQ_HEAD_INITIALIZER(imo_gc_list); 187 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL); 188 189 /* 190 * Inline function which wraps assertions for a valid ifp. 191 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 192 * is detached. 193 */ 194 static int __inline 195 inm_is_ifp_detached(const struct in_multi *inm) 196 { 197 struct ifnet *ifp; 198 199 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 200 ifp = inm->inm_ifma->ifma_ifp; 201 if (ifp != NULL) { 202 /* 203 * Sanity check that netinet's notion of ifp is the 204 * same as net's. 205 */ 206 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 207 } 208 209 return (ifp == NULL); 210 } 211 212 /* 213 * Initialize an in_mfilter structure to a known state at t0, t1 214 * with an empty source filter list. 215 */ 216 static __inline void 217 imf_init(struct in_mfilter *imf, const int st0, const int st1) 218 { 219 memset(imf, 0, sizeof(struct in_mfilter)); 220 RB_INIT(&imf->imf_sources); 221 imf->imf_st[0] = st0; 222 imf->imf_st[1] = st1; 223 } 224 225 /* 226 * Resize the ip_moptions vector to the next power-of-two minus 1. 227 * May be called with locks held; do not sleep. 228 */ 229 static int 230 imo_grow(struct ip_moptions *imo) 231 { 232 struct in_multi **nmships; 233 struct in_multi **omships; 234 struct in_mfilter *nmfilters; 235 struct in_mfilter *omfilters; 236 size_t idx; 237 size_t newmax; 238 size_t oldmax; 239 240 nmships = NULL; 241 nmfilters = NULL; 242 omships = imo->imo_membership; 243 omfilters = imo->imo_mfilters; 244 oldmax = imo->imo_max_memberships; 245 newmax = ((oldmax + 1) * 2) - 1; 246 247 if (newmax <= IP_MAX_MEMBERSHIPS) { 248 nmships = (struct in_multi **)realloc(omships, 249 sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT); 250 nmfilters = (struct in_mfilter *)realloc(omfilters, 251 sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT); 252 if (nmships != NULL && nmfilters != NULL) { 253 /* Initialize newly allocated source filter heads. */ 254 for (idx = oldmax; idx < newmax; idx++) { 255 imf_init(&nmfilters[idx], MCAST_UNDEFINED, 256 MCAST_EXCLUDE); 257 } 258 imo->imo_max_memberships = newmax; 259 imo->imo_membership = nmships; 260 imo->imo_mfilters = nmfilters; 261 } 262 } 263 264 if (nmships == NULL || nmfilters == NULL) { 265 if (nmships != NULL) 266 free(nmships, M_IPMOPTS); 267 if (nmfilters != NULL) 268 free(nmfilters, M_INMFILTER); 269 return (ETOOMANYREFS); 270 } 271 272 return (0); 273 } 274 275 /* 276 * Find an IPv4 multicast group entry for this ip_moptions instance 277 * which matches the specified group, and optionally an interface. 278 * Return its index into the array, or -1 if not found. 279 */ 280 static size_t 281 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 282 const struct sockaddr *group) 283 { 284 const struct sockaddr_in *gsin; 285 struct in_multi **pinm; 286 int idx; 287 int nmships; 288 289 gsin = (const struct sockaddr_in *)group; 290 291 /* The imo_membership array may be lazy allocated. */ 292 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) 293 return (-1); 294 295 nmships = imo->imo_num_memberships; 296 pinm = &imo->imo_membership[0]; 297 for (idx = 0; idx < nmships; idx++, pinm++) { 298 if (*pinm == NULL) 299 continue; 300 if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) && 301 in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) { 302 break; 303 } 304 } 305 if (idx >= nmships) 306 idx = -1; 307 308 return (idx); 309 } 310 311 /* 312 * Find an IPv4 multicast source entry for this imo which matches 313 * the given group index for this socket, and source address. 314 * 315 * NOTE: This does not check if the entry is in-mode, merely if 316 * it exists, which may not be the desired behaviour. 317 */ 318 static struct in_msource * 319 imo_match_source(const struct ip_moptions *imo, const size_t gidx, 320 const struct sockaddr *src) 321 { 322 struct ip_msource find; 323 struct in_mfilter *imf; 324 struct ip_msource *ims; 325 const sockunion_t *psa; 326 327 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 328 KASSERT(gidx != -1 && gidx < imo->imo_num_memberships, 329 ("%s: invalid index %d\n", __func__, (int)gidx)); 330 331 /* The imo_mfilters array may be lazy allocated. */ 332 if (imo->imo_mfilters == NULL) 333 return (NULL); 334 imf = &imo->imo_mfilters[gidx]; 335 336 /* Source trees are keyed in host byte order. */ 337 psa = (const sockunion_t *)src; 338 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 339 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 340 341 return ((struct in_msource *)ims); 342 } 343 344 /* 345 * Perform filtering for multicast datagrams on a socket by group and source. 346 * 347 * Returns 0 if a datagram should be allowed through, or various error codes 348 * if the socket was not a member of the group, or the source was muted, etc. 349 */ 350 int 351 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 352 const struct sockaddr *group, const struct sockaddr *src) 353 { 354 size_t gidx; 355 struct in_msource *ims; 356 int mode; 357 358 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 359 360 gidx = imo_match_group(imo, ifp, group); 361 if (gidx == -1) 362 return (MCAST_NOTGMEMBER); 363 364 /* 365 * Check if the source was included in an (S,G) join. 366 * Allow reception on exclusive memberships by default, 367 * reject reception on inclusive memberships by default. 368 * Exclude source only if an in-mode exclude filter exists. 369 * Include source only if an in-mode include filter exists. 370 * NOTE: We are comparing group state here at IGMP t1 (now) 371 * with socket-layer t0 (since last downcall). 372 */ 373 mode = imo->imo_mfilters[gidx].imf_st[1]; 374 ims = imo_match_source(imo, gidx, src); 375 376 if ((ims == NULL && mode == MCAST_INCLUDE) || 377 (ims != NULL && ims->imsl_st[0] != mode)) 378 return (MCAST_NOTSMEMBER); 379 380 return (MCAST_PASS); 381 } 382 383 /* 384 * Find and return a reference to an in_multi record for (ifp, group), 385 * and bump its reference count. 386 * If one does not exist, try to allocate it, and update link-layer multicast 387 * filters on ifp to listen for group. 388 * Assumes the IN_MULTI lock is held across the call. 389 * Return 0 if successful, otherwise return an appropriate error code. 390 */ 391 static int 392 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 393 struct in_multi **pinm) 394 { 395 struct sockaddr_in gsin; 396 struct ifmultiaddr *ifma; 397 struct in_ifinfo *ii; 398 struct in_multi *inm; 399 int error; 400 401 IN_MULTI_LOCK_ASSERT(); 402 403 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 404 405 inm = inm_lookup(ifp, *group); 406 if (inm != NULL) { 407 /* 408 * If we already joined this group, just bump the 409 * refcount and return it. 410 */ 411 KASSERT(inm->inm_refcount >= 1, 412 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 413 ++inm->inm_refcount; 414 *pinm = inm; 415 return (0); 416 } 417 418 memset(&gsin, 0, sizeof(gsin)); 419 gsin.sin_family = AF_INET; 420 gsin.sin_len = sizeof(struct sockaddr_in); 421 gsin.sin_addr = *group; 422 423 /* 424 * Check if a link-layer group is already associated 425 * with this network-layer group on the given ifnet. 426 */ 427 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 428 if (error != 0) 429 return (error); 430 431 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 432 IF_ADDR_WLOCK(ifp); 433 434 /* 435 * If something other than netinet is occupying the link-layer 436 * group, print a meaningful error message and back out of 437 * the allocation. 438 * Otherwise, bump the refcount on the existing network-layer 439 * group association and return it. 440 */ 441 if (ifma->ifma_protospec != NULL) { 442 inm = (struct in_multi *)ifma->ifma_protospec; 443 #ifdef INVARIANTS 444 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 445 __func__)); 446 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 447 ("%s: ifma not AF_INET", __func__)); 448 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 449 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 450 !in_hosteq(inm->inm_addr, *group)) 451 panic("%s: ifma %p is inconsistent with %p (%s)", 452 __func__, ifma, inm, inet_ntoa(*group)); 453 #endif 454 ++inm->inm_refcount; 455 *pinm = inm; 456 IF_ADDR_WUNLOCK(ifp); 457 return (0); 458 } 459 460 IF_ADDR_WLOCK_ASSERT(ifp); 461 462 /* 463 * A new in_multi record is needed; allocate and initialize it. 464 * We DO NOT perform an IGMP join as the in_ layer may need to 465 * push an initial source list down to IGMP to support SSM. 466 * 467 * The initial source filter state is INCLUDE, {} as per the RFC. 468 */ 469 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 470 if (inm == NULL) { 471 if_delmulti_ifma(ifma); 472 IF_ADDR_WUNLOCK(ifp); 473 return (ENOMEM); 474 } 475 inm->inm_addr = *group; 476 inm->inm_ifp = ifp; 477 inm->inm_igi = ii->ii_igmp; 478 inm->inm_ifma = ifma; 479 inm->inm_refcount = 1; 480 inm->inm_state = IGMP_NOT_MEMBER; 481 482 /* 483 * Pending state-changes per group are subject to a bounds check. 484 */ 485 IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 486 487 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 488 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 489 RB_INIT(&inm->inm_srcs); 490 491 ifma->ifma_protospec = inm; 492 493 *pinm = inm; 494 495 IF_ADDR_WUNLOCK(ifp); 496 return (0); 497 } 498 499 /* 500 * Drop a reference to an in_multi record. 501 * 502 * If the refcount drops to 0, free the in_multi record and 503 * delete the underlying link-layer membership. 504 */ 505 void 506 inm_release_locked(struct in_multi *inm) 507 { 508 struct ifmultiaddr *ifma; 509 510 IN_MULTI_LOCK_ASSERT(); 511 512 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 513 514 if (--inm->inm_refcount > 0) { 515 CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__, 516 inm->inm_refcount); 517 return; 518 } 519 520 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 521 522 ifma = inm->inm_ifma; 523 524 /* XXX this access is not covered by IF_ADDR_LOCK */ 525 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 526 KASSERT(ifma->ifma_protospec == inm, 527 ("%s: ifma_protospec != inm", __func__)); 528 ifma->ifma_protospec = NULL; 529 530 inm_purge(inm); 531 532 free(inm, M_IPMADDR); 533 534 if_delmulti_ifma(ifma); 535 } 536 537 /* 538 * Clear recorded source entries for a group. 539 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 540 * FIXME: Should reap. 541 */ 542 void 543 inm_clear_recorded(struct in_multi *inm) 544 { 545 struct ip_msource *ims; 546 547 IN_MULTI_LOCK_ASSERT(); 548 549 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 550 if (ims->ims_stp) { 551 ims->ims_stp = 0; 552 --inm->inm_st[1].iss_rec; 553 } 554 } 555 KASSERT(inm->inm_st[1].iss_rec == 0, 556 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 557 } 558 559 /* 560 * Record a source as pending for a Source-Group IGMPv3 query. 561 * This lives here as it modifies the shared tree. 562 * 563 * inm is the group descriptor. 564 * naddr is the address of the source to record in network-byte order. 565 * 566 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 567 * lazy-allocate a source node in response to an SG query. 568 * Otherwise, no allocation is performed. This saves some memory 569 * with the trade-off that the source will not be reported to the 570 * router if joined in the window between the query response and 571 * the group actually being joined on the local host. 572 * 573 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 574 * This turns off the allocation of a recorded source entry if 575 * the group has not been joined. 576 * 577 * Return 0 if the source didn't exist or was already marked as recorded. 578 * Return 1 if the source was marked as recorded by this function. 579 * Return <0 if any error occured (negated errno code). 580 */ 581 int 582 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 583 { 584 struct ip_msource find; 585 struct ip_msource *ims, *nims; 586 587 IN_MULTI_LOCK_ASSERT(); 588 589 find.ims_haddr = ntohl(naddr); 590 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 591 if (ims && ims->ims_stp) 592 return (0); 593 if (ims == NULL) { 594 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 595 return (-ENOSPC); 596 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 597 M_NOWAIT | M_ZERO); 598 if (nims == NULL) 599 return (-ENOMEM); 600 nims->ims_haddr = find.ims_haddr; 601 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 602 ++inm->inm_nsrc; 603 ims = nims; 604 } 605 606 /* 607 * Mark the source as recorded and update the recorded 608 * source count. 609 */ 610 ++ims->ims_stp; 611 ++inm->inm_st[1].iss_rec; 612 613 return (1); 614 } 615 616 /* 617 * Return a pointer to an in_msource owned by an in_mfilter, 618 * given its source address. 619 * Lazy-allocate if needed. If this is a new entry its filter state is 620 * undefined at t0. 621 * 622 * imf is the filter set being modified. 623 * haddr is the source address in *host* byte-order. 624 * 625 * SMPng: May be called with locks held; malloc must not block. 626 */ 627 static int 628 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 629 struct in_msource **plims) 630 { 631 struct ip_msource find; 632 struct ip_msource *ims, *nims; 633 struct in_msource *lims; 634 int error; 635 636 error = 0; 637 ims = NULL; 638 lims = NULL; 639 640 /* key is host byte order */ 641 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 642 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 643 lims = (struct in_msource *)ims; 644 if (lims == NULL) { 645 if (imf->imf_nsrc == in_mcast_maxsocksrc) 646 return (ENOSPC); 647 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 648 M_NOWAIT | M_ZERO); 649 if (nims == NULL) 650 return (ENOMEM); 651 lims = (struct in_msource *)nims; 652 lims->ims_haddr = find.ims_haddr; 653 lims->imsl_st[0] = MCAST_UNDEFINED; 654 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 655 ++imf->imf_nsrc; 656 } 657 658 *plims = lims; 659 660 return (error); 661 } 662 663 /* 664 * Graft a source entry into an existing socket-layer filter set, 665 * maintaining any required invariants and checking allocations. 666 * 667 * The source is marked as being in the new filter mode at t1. 668 * 669 * Return the pointer to the new node, otherwise return NULL. 670 */ 671 static struct in_msource * 672 imf_graft(struct in_mfilter *imf, const uint8_t st1, 673 const struct sockaddr_in *psin) 674 { 675 struct ip_msource *nims; 676 struct in_msource *lims; 677 678 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 679 M_NOWAIT | M_ZERO); 680 if (nims == NULL) 681 return (NULL); 682 lims = (struct in_msource *)nims; 683 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 684 lims->imsl_st[0] = MCAST_UNDEFINED; 685 lims->imsl_st[1] = st1; 686 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 687 ++imf->imf_nsrc; 688 689 return (lims); 690 } 691 692 /* 693 * Prune a source entry from an existing socket-layer filter set, 694 * maintaining any required invariants and checking allocations. 695 * 696 * The source is marked as being left at t1, it is not freed. 697 * 698 * Return 0 if no error occurred, otherwise return an errno value. 699 */ 700 static int 701 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 702 { 703 struct ip_msource find; 704 struct ip_msource *ims; 705 struct in_msource *lims; 706 707 /* key is host byte order */ 708 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 709 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 710 if (ims == NULL) 711 return (ENOENT); 712 lims = (struct in_msource *)ims; 713 lims->imsl_st[1] = MCAST_UNDEFINED; 714 return (0); 715 } 716 717 /* 718 * Revert socket-layer filter set deltas at t1 to t0 state. 719 */ 720 static void 721 imf_rollback(struct in_mfilter *imf) 722 { 723 struct ip_msource *ims, *tims; 724 struct in_msource *lims; 725 726 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 727 lims = (struct in_msource *)ims; 728 if (lims->imsl_st[0] == lims->imsl_st[1]) { 729 /* no change at t1 */ 730 continue; 731 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 732 /* revert change to existing source at t1 */ 733 lims->imsl_st[1] = lims->imsl_st[0]; 734 } else { 735 /* revert source added t1 */ 736 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 737 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 738 free(ims, M_INMFILTER); 739 imf->imf_nsrc--; 740 } 741 } 742 imf->imf_st[1] = imf->imf_st[0]; 743 } 744 745 /* 746 * Mark socket-layer filter set as INCLUDE {} at t1. 747 */ 748 static void 749 imf_leave(struct in_mfilter *imf) 750 { 751 struct ip_msource *ims; 752 struct in_msource *lims; 753 754 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 755 lims = (struct in_msource *)ims; 756 lims->imsl_st[1] = MCAST_UNDEFINED; 757 } 758 imf->imf_st[1] = MCAST_INCLUDE; 759 } 760 761 /* 762 * Mark socket-layer filter set deltas as committed. 763 */ 764 static void 765 imf_commit(struct in_mfilter *imf) 766 { 767 struct ip_msource *ims; 768 struct in_msource *lims; 769 770 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 771 lims = (struct in_msource *)ims; 772 lims->imsl_st[0] = lims->imsl_st[1]; 773 } 774 imf->imf_st[0] = imf->imf_st[1]; 775 } 776 777 /* 778 * Reap unreferenced sources from socket-layer filter set. 779 */ 780 static void 781 imf_reap(struct in_mfilter *imf) 782 { 783 struct ip_msource *ims, *tims; 784 struct in_msource *lims; 785 786 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 787 lims = (struct in_msource *)ims; 788 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 789 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 790 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 791 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 792 free(ims, M_INMFILTER); 793 imf->imf_nsrc--; 794 } 795 } 796 } 797 798 /* 799 * Purge socket-layer filter set. 800 */ 801 static void 802 imf_purge(struct in_mfilter *imf) 803 { 804 struct ip_msource *ims, *tims; 805 806 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 807 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 808 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 809 free(ims, M_INMFILTER); 810 imf->imf_nsrc--; 811 } 812 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 813 KASSERT(RB_EMPTY(&imf->imf_sources), 814 ("%s: imf_sources not empty", __func__)); 815 } 816 817 /* 818 * Look up a source filter entry for a multicast group. 819 * 820 * inm is the group descriptor to work with. 821 * haddr is the host-byte-order IPv4 address to look up. 822 * noalloc may be non-zero to suppress allocation of sources. 823 * *pims will be set to the address of the retrieved or allocated source. 824 * 825 * SMPng: NOTE: may be called with locks held. 826 * Return 0 if successful, otherwise return a non-zero error code. 827 */ 828 static int 829 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 830 const int noalloc, struct ip_msource **pims) 831 { 832 struct ip_msource find; 833 struct ip_msource *ims, *nims; 834 #ifdef KTR 835 struct in_addr ia; 836 #endif 837 838 find.ims_haddr = haddr; 839 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 840 if (ims == NULL && !noalloc) { 841 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 842 return (ENOSPC); 843 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 844 M_NOWAIT | M_ZERO); 845 if (nims == NULL) 846 return (ENOMEM); 847 nims->ims_haddr = haddr; 848 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 849 ++inm->inm_nsrc; 850 ims = nims; 851 #ifdef KTR 852 ia.s_addr = htonl(haddr); 853 CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__, 854 inet_ntoa(ia), ims); 855 #endif 856 } 857 858 *pims = ims; 859 return (0); 860 } 861 862 /* 863 * Merge socket-layer source into IGMP-layer source. 864 * If rollback is non-zero, perform the inverse of the merge. 865 */ 866 static void 867 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 868 const int rollback) 869 { 870 int n = rollback ? -1 : 1; 871 #ifdef KTR 872 struct in_addr ia; 873 874 ia.s_addr = htonl(ims->ims_haddr); 875 #endif 876 877 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 878 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s", 879 __func__, n, inet_ntoa(ia)); 880 ims->ims_st[1].ex -= n; 881 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 882 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s", 883 __func__, n, inet_ntoa(ia)); 884 ims->ims_st[1].in -= n; 885 } 886 887 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 888 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s", 889 __func__, n, inet_ntoa(ia)); 890 ims->ims_st[1].ex += n; 891 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 892 CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s", 893 __func__, n, inet_ntoa(ia)); 894 ims->ims_st[1].in += n; 895 } 896 } 897 898 /* 899 * Atomically update the global in_multi state, when a membership's 900 * filter list is being updated in any way. 901 * 902 * imf is the per-inpcb-membership group filter pointer. 903 * A fake imf may be passed for in-kernel consumers. 904 * 905 * XXX This is a candidate for a set-symmetric-difference style loop 906 * which would eliminate the repeated lookup from root of ims nodes, 907 * as they share the same key space. 908 * 909 * If any error occurred this function will back out of refcounts 910 * and return a non-zero value. 911 */ 912 static int 913 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 914 { 915 struct ip_msource *ims, *nims; 916 struct in_msource *lims; 917 int schanged, error; 918 int nsrc0, nsrc1; 919 920 schanged = 0; 921 error = 0; 922 nsrc1 = nsrc0 = 0; 923 924 /* 925 * Update the source filters first, as this may fail. 926 * Maintain count of in-mode filters at t0, t1. These are 927 * used to work out if we transition into ASM mode or not. 928 * Maintain a count of source filters whose state was 929 * actually modified by this operation. 930 */ 931 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 932 lims = (struct in_msource *)ims; 933 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 934 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 935 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 936 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 937 ++schanged; 938 if (error) 939 break; 940 ims_merge(nims, lims, 0); 941 } 942 if (error) { 943 struct ip_msource *bims; 944 945 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 946 lims = (struct in_msource *)ims; 947 if (lims->imsl_st[0] == lims->imsl_st[1]) 948 continue; 949 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 950 if (bims == NULL) 951 continue; 952 ims_merge(bims, lims, 1); 953 } 954 goto out_reap; 955 } 956 957 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 958 __func__, nsrc0, nsrc1); 959 960 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 961 if (imf->imf_st[0] == imf->imf_st[1] && 962 imf->imf_st[1] == MCAST_INCLUDE) { 963 if (nsrc1 == 0) { 964 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 965 --inm->inm_st[1].iss_in; 966 } 967 } 968 969 /* Handle filter mode transition on socket. */ 970 if (imf->imf_st[0] != imf->imf_st[1]) { 971 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 972 __func__, imf->imf_st[0], imf->imf_st[1]); 973 974 if (imf->imf_st[0] == MCAST_EXCLUDE) { 975 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 976 --inm->inm_st[1].iss_ex; 977 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 978 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 979 --inm->inm_st[1].iss_in; 980 } 981 982 if (imf->imf_st[1] == MCAST_EXCLUDE) { 983 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 984 inm->inm_st[1].iss_ex++; 985 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 986 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 987 inm->inm_st[1].iss_in++; 988 } 989 } 990 991 /* 992 * Track inm filter state in terms of listener counts. 993 * If there are any exclusive listeners, stack-wide 994 * membership is exclusive. 995 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 996 * If no listeners remain, state is undefined at t1, 997 * and the IGMP lifecycle for this group should finish. 998 */ 999 if (inm->inm_st[1].iss_ex > 0) { 1000 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1001 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1002 } else if (inm->inm_st[1].iss_in > 0) { 1003 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1004 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1005 } else { 1006 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1007 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1008 } 1009 1010 /* Decrement ASM listener count on transition out of ASM mode. */ 1011 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1012 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1013 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1014 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1015 --inm->inm_st[1].iss_asm; 1016 } 1017 1018 /* Increment ASM listener count on transition to ASM mode. */ 1019 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1020 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1021 inm->inm_st[1].iss_asm++; 1022 } 1023 1024 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1025 inm_print(inm); 1026 1027 out_reap: 1028 if (schanged > 0) { 1029 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1030 inm_reap(inm); 1031 } 1032 return (error); 1033 } 1034 1035 /* 1036 * Mark an in_multi's filter set deltas as committed. 1037 * Called by IGMP after a state change has been enqueued. 1038 */ 1039 void 1040 inm_commit(struct in_multi *inm) 1041 { 1042 struct ip_msource *ims; 1043 1044 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1045 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1046 inm_print(inm); 1047 1048 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1049 ims->ims_st[0] = ims->ims_st[1]; 1050 } 1051 inm->inm_st[0] = inm->inm_st[1]; 1052 } 1053 1054 /* 1055 * Reap unreferenced nodes from an in_multi's filter set. 1056 */ 1057 static void 1058 inm_reap(struct in_multi *inm) 1059 { 1060 struct ip_msource *ims, *tims; 1061 1062 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1063 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1064 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1065 ims->ims_stp != 0) 1066 continue; 1067 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1068 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1069 free(ims, M_IPMSOURCE); 1070 inm->inm_nsrc--; 1071 } 1072 } 1073 1074 /* 1075 * Purge all source nodes from an in_multi's filter set. 1076 */ 1077 static void 1078 inm_purge(struct in_multi *inm) 1079 { 1080 struct ip_msource *ims, *tims; 1081 1082 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1083 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1084 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1085 free(ims, M_IPMSOURCE); 1086 inm->inm_nsrc--; 1087 } 1088 } 1089 1090 /* 1091 * Join a multicast group; unlocked entry point. 1092 * 1093 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1094 * is not held. Fortunately, ifp is unlikely to have been detached 1095 * at this point, so we assume it's OK to recurse. 1096 */ 1097 int 1098 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1099 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1100 { 1101 int error; 1102 1103 IN_MULTI_LOCK(); 1104 error = in_joingroup_locked(ifp, gina, imf, pinm); 1105 IN_MULTI_UNLOCK(); 1106 1107 return (error); 1108 } 1109 1110 /* 1111 * Join a multicast group; real entry point. 1112 * 1113 * Only preserves atomicity at inm level. 1114 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1115 * 1116 * If the IGMP downcall fails, the group is not joined, and an error 1117 * code is returned. 1118 */ 1119 int 1120 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1121 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1122 { 1123 struct in_mfilter timf; 1124 struct in_multi *inm; 1125 int error; 1126 1127 IN_MULTI_LOCK_ASSERT(); 1128 1129 CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__, 1130 inet_ntoa(*gina), ifp, ifp->if_xname); 1131 1132 error = 0; 1133 inm = NULL; 1134 1135 /* 1136 * If no imf was specified (i.e. kernel consumer), 1137 * fake one up and assume it is an ASM join. 1138 */ 1139 if (imf == NULL) { 1140 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1141 imf = &timf; 1142 } 1143 1144 error = in_getmulti(ifp, gina, &inm); 1145 if (error) { 1146 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1147 return (error); 1148 } 1149 1150 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1151 error = inm_merge(inm, imf); 1152 if (error) { 1153 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1154 goto out_inm_release; 1155 } 1156 1157 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1158 error = igmp_change_state(inm); 1159 if (error) { 1160 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1161 goto out_inm_release; 1162 } 1163 1164 out_inm_release: 1165 if (error) { 1166 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1167 inm_release_locked(inm); 1168 } else { 1169 *pinm = inm; 1170 } 1171 1172 return (error); 1173 } 1174 1175 /* 1176 * Leave a multicast group; unlocked entry point. 1177 */ 1178 int 1179 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1180 { 1181 int error; 1182 1183 IN_MULTI_LOCK(); 1184 error = in_leavegroup_locked(inm, imf); 1185 IN_MULTI_UNLOCK(); 1186 1187 return (error); 1188 } 1189 1190 /* 1191 * Leave a multicast group; real entry point. 1192 * All source filters will be expunged. 1193 * 1194 * Only preserves atomicity at inm level. 1195 * 1196 * Holding the write lock for the INP which contains imf 1197 * is highly advisable. We can't assert for it as imf does not 1198 * contain a back-pointer to the owning inp. 1199 * 1200 * Note: This is not the same as inm_release(*) as this function also 1201 * makes a state change downcall into IGMP. 1202 */ 1203 int 1204 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1205 { 1206 struct in_mfilter timf; 1207 int error; 1208 1209 error = 0; 1210 1211 IN_MULTI_LOCK_ASSERT(); 1212 1213 CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__, 1214 inm, inet_ntoa(inm->inm_addr), 1215 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1216 imf); 1217 1218 /* 1219 * If no imf was specified (i.e. kernel consumer), 1220 * fake one up and assume it is an ASM join. 1221 */ 1222 if (imf == NULL) { 1223 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1224 imf = &timf; 1225 } 1226 1227 /* 1228 * Begin state merge transaction at IGMP layer. 1229 * 1230 * As this particular invocation should not cause any memory 1231 * to be allocated, and there is no opportunity to roll back 1232 * the transaction, it MUST NOT fail. 1233 */ 1234 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1235 error = inm_merge(inm, imf); 1236 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1237 1238 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1239 CURVNET_SET(inm->inm_ifp->if_vnet); 1240 error = igmp_change_state(inm); 1241 CURVNET_RESTORE(); 1242 if (error) 1243 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1244 1245 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1246 inm_release_locked(inm); 1247 1248 return (error); 1249 } 1250 1251 /*#ifndef BURN_BRIDGES*/ 1252 /* 1253 * Join an IPv4 multicast group in (*,G) exclusive mode. 1254 * The group must be a 224.0.0.0/24 link-scope group. 1255 * This KPI is for legacy kernel consumers only. 1256 */ 1257 struct in_multi * 1258 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1259 { 1260 struct in_multi *pinm; 1261 int error; 1262 1263 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1264 ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap))); 1265 1266 error = in_joingroup(ifp, ap, NULL, &pinm); 1267 if (error != 0) 1268 pinm = NULL; 1269 1270 return (pinm); 1271 } 1272 1273 /* 1274 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. 1275 * This KPI is for legacy kernel consumers only. 1276 */ 1277 void 1278 in_delmulti(struct in_multi *inm) 1279 { 1280 1281 (void)in_leavegroup(inm, NULL); 1282 } 1283 /*#endif*/ 1284 1285 /* 1286 * Block or unblock an ASM multicast source on an inpcb. 1287 * This implements the delta-based API described in RFC 3678. 1288 * 1289 * The delta-based API applies only to exclusive-mode memberships. 1290 * An IGMP downcall will be performed. 1291 * 1292 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1293 * 1294 * Return 0 if successful, otherwise return an appropriate error code. 1295 */ 1296 static int 1297 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1298 { 1299 struct group_source_req gsr; 1300 sockunion_t *gsa, *ssa; 1301 struct ifnet *ifp; 1302 struct in_mfilter *imf; 1303 struct ip_moptions *imo; 1304 struct in_msource *ims; 1305 struct in_multi *inm; 1306 size_t idx; 1307 uint16_t fmode; 1308 int error, doblock; 1309 1310 ifp = NULL; 1311 error = 0; 1312 doblock = 0; 1313 1314 memset(&gsr, 0, sizeof(struct group_source_req)); 1315 gsa = (sockunion_t *)&gsr.gsr_group; 1316 ssa = (sockunion_t *)&gsr.gsr_source; 1317 1318 switch (sopt->sopt_name) { 1319 case IP_BLOCK_SOURCE: 1320 case IP_UNBLOCK_SOURCE: { 1321 struct ip_mreq_source mreqs; 1322 1323 error = sooptcopyin(sopt, &mreqs, 1324 sizeof(struct ip_mreq_source), 1325 sizeof(struct ip_mreq_source)); 1326 if (error) 1327 return (error); 1328 1329 gsa->sin.sin_family = AF_INET; 1330 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1331 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1332 1333 ssa->sin.sin_family = AF_INET; 1334 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1335 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1336 1337 if (!in_nullhost(mreqs.imr_interface)) 1338 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1339 1340 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1341 doblock = 1; 1342 1343 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1344 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1345 break; 1346 } 1347 1348 case MCAST_BLOCK_SOURCE: 1349 case MCAST_UNBLOCK_SOURCE: 1350 error = sooptcopyin(sopt, &gsr, 1351 sizeof(struct group_source_req), 1352 sizeof(struct group_source_req)); 1353 if (error) 1354 return (error); 1355 1356 if (gsa->sin.sin_family != AF_INET || 1357 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1358 return (EINVAL); 1359 1360 if (ssa->sin.sin_family != AF_INET || 1361 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1362 return (EINVAL); 1363 1364 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1365 return (EADDRNOTAVAIL); 1366 1367 ifp = ifnet_byindex(gsr.gsr_interface); 1368 1369 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1370 doblock = 1; 1371 break; 1372 1373 default: 1374 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1375 __func__, sopt->sopt_name); 1376 return (EOPNOTSUPP); 1377 break; 1378 } 1379 1380 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1381 return (EINVAL); 1382 1383 /* 1384 * Check if we are actually a member of this group. 1385 */ 1386 imo = inp_findmoptions(inp); 1387 idx = imo_match_group(imo, ifp, &gsa->sa); 1388 if (idx == -1 || imo->imo_mfilters == NULL) { 1389 error = EADDRNOTAVAIL; 1390 goto out_inp_locked; 1391 } 1392 1393 KASSERT(imo->imo_mfilters != NULL, 1394 ("%s: imo_mfilters not allocated", __func__)); 1395 imf = &imo->imo_mfilters[idx]; 1396 inm = imo->imo_membership[idx]; 1397 1398 /* 1399 * Attempting to use the delta-based API on an 1400 * non exclusive-mode membership is an error. 1401 */ 1402 fmode = imf->imf_st[0]; 1403 if (fmode != MCAST_EXCLUDE) { 1404 error = EINVAL; 1405 goto out_inp_locked; 1406 } 1407 1408 /* 1409 * Deal with error cases up-front: 1410 * Asked to block, but already blocked; or 1411 * Asked to unblock, but nothing to unblock. 1412 * If adding a new block entry, allocate it. 1413 */ 1414 ims = imo_match_source(imo, idx, &ssa->sa); 1415 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1416 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 1417 inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not "); 1418 error = EADDRNOTAVAIL; 1419 goto out_inp_locked; 1420 } 1421 1422 INP_WLOCK_ASSERT(inp); 1423 1424 /* 1425 * Begin state merge transaction at socket layer. 1426 */ 1427 if (doblock) { 1428 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1429 ims = imf_graft(imf, fmode, &ssa->sin); 1430 if (ims == NULL) 1431 error = ENOMEM; 1432 } else { 1433 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1434 error = imf_prune(imf, &ssa->sin); 1435 } 1436 1437 if (error) { 1438 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1439 goto out_imf_rollback; 1440 } 1441 1442 /* 1443 * Begin state merge transaction at IGMP layer. 1444 */ 1445 IN_MULTI_LOCK(); 1446 1447 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1448 error = inm_merge(inm, imf); 1449 if (error) { 1450 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1451 goto out_imf_rollback; 1452 } 1453 1454 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1455 error = igmp_change_state(inm); 1456 if (error) 1457 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1458 1459 IN_MULTI_UNLOCK(); 1460 1461 out_imf_rollback: 1462 if (error) 1463 imf_rollback(imf); 1464 else 1465 imf_commit(imf); 1466 1467 imf_reap(imf); 1468 1469 out_inp_locked: 1470 INP_WUNLOCK(inp); 1471 return (error); 1472 } 1473 1474 /* 1475 * Given an inpcb, return its multicast options structure pointer. Accepts 1476 * an unlocked inpcb pointer, but will return it locked. May sleep. 1477 * 1478 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1479 * SMPng: NOTE: Returns with the INP write lock held. 1480 */ 1481 static struct ip_moptions * 1482 inp_findmoptions(struct inpcb *inp) 1483 { 1484 struct ip_moptions *imo; 1485 struct in_multi **immp; 1486 struct in_mfilter *imfp; 1487 size_t idx; 1488 1489 INP_WLOCK(inp); 1490 if (inp->inp_moptions != NULL) 1491 return (inp->inp_moptions); 1492 1493 INP_WUNLOCK(inp); 1494 1495 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1496 immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, 1497 M_WAITOK | M_ZERO); 1498 imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, 1499 M_INMFILTER, M_WAITOK); 1500 1501 imo->imo_multicast_ifp = NULL; 1502 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1503 imo->imo_multicast_vif = -1; 1504 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1505 imo->imo_multicast_loop = in_mcast_loop; 1506 imo->imo_num_memberships = 0; 1507 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; 1508 imo->imo_membership = immp; 1509 1510 /* Initialize per-group source filters. */ 1511 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) 1512 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1513 imo->imo_mfilters = imfp; 1514 1515 INP_WLOCK(inp); 1516 if (inp->inp_moptions != NULL) { 1517 free(imfp, M_INMFILTER); 1518 free(immp, M_IPMOPTS); 1519 free(imo, M_IPMOPTS); 1520 return (inp->inp_moptions); 1521 } 1522 inp->inp_moptions = imo; 1523 return (imo); 1524 } 1525 1526 /* 1527 * Discard the IP multicast options (and source filters). To minimize 1528 * the amount of work done while holding locks such as the INP's 1529 * pcbinfo lock (which is used in the receive path), the free 1530 * operation is performed asynchronously in a separate task. 1531 * 1532 * SMPng: NOTE: assumes INP write lock is held. 1533 */ 1534 void 1535 inp_freemoptions(struct ip_moptions *imo) 1536 { 1537 1538 KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__)); 1539 IN_MULTI_LOCK(); 1540 STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link); 1541 IN_MULTI_UNLOCK(); 1542 taskqueue_enqueue(taskqueue_thread, &imo_gc_task); 1543 } 1544 1545 static void 1546 inp_freemoptions_internal(struct ip_moptions *imo) 1547 { 1548 struct in_mfilter *imf; 1549 size_t idx, nmships; 1550 1551 nmships = imo->imo_num_memberships; 1552 for (idx = 0; idx < nmships; ++idx) { 1553 imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL; 1554 if (imf) 1555 imf_leave(imf); 1556 (void)in_leavegroup(imo->imo_membership[idx], imf); 1557 if (imf) 1558 imf_purge(imf); 1559 } 1560 1561 if (imo->imo_mfilters) 1562 free(imo->imo_mfilters, M_INMFILTER); 1563 free(imo->imo_membership, M_IPMOPTS); 1564 free(imo, M_IPMOPTS); 1565 } 1566 1567 static void 1568 inp_gcmoptions(void *context, int pending) 1569 { 1570 struct ip_moptions *imo; 1571 1572 IN_MULTI_LOCK(); 1573 while (!STAILQ_EMPTY(&imo_gc_list)) { 1574 imo = STAILQ_FIRST(&imo_gc_list); 1575 STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link); 1576 IN_MULTI_UNLOCK(); 1577 inp_freemoptions_internal(imo); 1578 IN_MULTI_LOCK(); 1579 } 1580 IN_MULTI_UNLOCK(); 1581 } 1582 1583 /* 1584 * Atomically get source filters on a socket for an IPv4 multicast group. 1585 * Called with INP lock held; returns with lock released. 1586 */ 1587 static int 1588 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1589 { 1590 struct __msfilterreq msfr; 1591 sockunion_t *gsa; 1592 struct ifnet *ifp; 1593 struct ip_moptions *imo; 1594 struct in_mfilter *imf; 1595 struct ip_msource *ims; 1596 struct in_msource *lims; 1597 struct sockaddr_in *psin; 1598 struct sockaddr_storage *ptss; 1599 struct sockaddr_storage *tss; 1600 int error; 1601 size_t idx, nsrcs, ncsrcs; 1602 1603 INP_WLOCK_ASSERT(inp); 1604 1605 imo = inp->inp_moptions; 1606 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1607 1608 INP_WUNLOCK(inp); 1609 1610 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1611 sizeof(struct __msfilterreq)); 1612 if (error) 1613 return (error); 1614 1615 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1616 return (EINVAL); 1617 1618 ifp = ifnet_byindex(msfr.msfr_ifindex); 1619 if (ifp == NULL) 1620 return (EINVAL); 1621 1622 INP_WLOCK(inp); 1623 1624 /* 1625 * Lookup group on the socket. 1626 */ 1627 gsa = (sockunion_t *)&msfr.msfr_group; 1628 idx = imo_match_group(imo, ifp, &gsa->sa); 1629 if (idx == -1 || imo->imo_mfilters == NULL) { 1630 INP_WUNLOCK(inp); 1631 return (EADDRNOTAVAIL); 1632 } 1633 imf = &imo->imo_mfilters[idx]; 1634 1635 /* 1636 * Ignore memberships which are in limbo. 1637 */ 1638 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1639 INP_WUNLOCK(inp); 1640 return (EAGAIN); 1641 } 1642 msfr.msfr_fmode = imf->imf_st[1]; 1643 1644 /* 1645 * If the user specified a buffer, copy out the source filter 1646 * entries to userland gracefully. 1647 * We only copy out the number of entries which userland 1648 * has asked for, but we always tell userland how big the 1649 * buffer really needs to be. 1650 */ 1651 tss = NULL; 1652 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1653 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1654 M_TEMP, M_NOWAIT | M_ZERO); 1655 if (tss == NULL) { 1656 INP_WUNLOCK(inp); 1657 return (ENOBUFS); 1658 } 1659 } 1660 1661 /* 1662 * Count number of sources in-mode at t0. 1663 * If buffer space exists and remains, copy out source entries. 1664 */ 1665 nsrcs = msfr.msfr_nsrcs; 1666 ncsrcs = 0; 1667 ptss = tss; 1668 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1669 lims = (struct in_msource *)ims; 1670 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1671 lims->imsl_st[0] != imf->imf_st[0]) 1672 continue; 1673 ++ncsrcs; 1674 if (tss != NULL && nsrcs > 0) { 1675 psin = (struct sockaddr_in *)ptss; 1676 psin->sin_family = AF_INET; 1677 psin->sin_len = sizeof(struct sockaddr_in); 1678 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1679 psin->sin_port = 0; 1680 ++ptss; 1681 --nsrcs; 1682 } 1683 } 1684 1685 INP_WUNLOCK(inp); 1686 1687 if (tss != NULL) { 1688 error = copyout(tss, msfr.msfr_srcs, 1689 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1690 free(tss, M_TEMP); 1691 if (error) 1692 return (error); 1693 } 1694 1695 msfr.msfr_nsrcs = ncsrcs; 1696 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1697 1698 return (error); 1699 } 1700 1701 /* 1702 * Return the IP multicast options in response to user getsockopt(). 1703 */ 1704 int 1705 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1706 { 1707 struct ip_mreqn mreqn; 1708 struct ip_moptions *imo; 1709 struct ifnet *ifp; 1710 struct in_ifaddr *ia; 1711 int error, optval; 1712 u_char coptval; 1713 1714 INP_WLOCK(inp); 1715 imo = inp->inp_moptions; 1716 /* 1717 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1718 * or is a divert socket, reject it. 1719 */ 1720 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1721 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1722 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1723 INP_WUNLOCK(inp); 1724 return (EOPNOTSUPP); 1725 } 1726 1727 error = 0; 1728 switch (sopt->sopt_name) { 1729 case IP_MULTICAST_VIF: 1730 if (imo != NULL) 1731 optval = imo->imo_multicast_vif; 1732 else 1733 optval = -1; 1734 INP_WUNLOCK(inp); 1735 error = sooptcopyout(sopt, &optval, sizeof(int)); 1736 break; 1737 1738 case IP_MULTICAST_IF: 1739 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1740 if (imo != NULL) { 1741 ifp = imo->imo_multicast_ifp; 1742 if (!in_nullhost(imo->imo_multicast_addr)) { 1743 mreqn.imr_address = imo->imo_multicast_addr; 1744 } else if (ifp != NULL) { 1745 mreqn.imr_ifindex = ifp->if_index; 1746 IFP_TO_IA(ifp, ia); 1747 if (ia != NULL) { 1748 mreqn.imr_address = 1749 IA_SIN(ia)->sin_addr; 1750 ifa_free(&ia->ia_ifa); 1751 } 1752 } 1753 } 1754 INP_WUNLOCK(inp); 1755 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1756 error = sooptcopyout(sopt, &mreqn, 1757 sizeof(struct ip_mreqn)); 1758 } else { 1759 error = sooptcopyout(sopt, &mreqn.imr_address, 1760 sizeof(struct in_addr)); 1761 } 1762 break; 1763 1764 case IP_MULTICAST_TTL: 1765 if (imo == 0) 1766 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1767 else 1768 optval = coptval = imo->imo_multicast_ttl; 1769 INP_WUNLOCK(inp); 1770 if (sopt->sopt_valsize == sizeof(u_char)) 1771 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1772 else 1773 error = sooptcopyout(sopt, &optval, sizeof(int)); 1774 break; 1775 1776 case IP_MULTICAST_LOOP: 1777 if (imo == 0) 1778 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1779 else 1780 optval = coptval = imo->imo_multicast_loop; 1781 INP_WUNLOCK(inp); 1782 if (sopt->sopt_valsize == sizeof(u_char)) 1783 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1784 else 1785 error = sooptcopyout(sopt, &optval, sizeof(int)); 1786 break; 1787 1788 case IP_MSFILTER: 1789 if (imo == NULL) { 1790 error = EADDRNOTAVAIL; 1791 INP_WUNLOCK(inp); 1792 } else { 1793 error = inp_get_source_filters(inp, sopt); 1794 } 1795 break; 1796 1797 default: 1798 INP_WUNLOCK(inp); 1799 error = ENOPROTOOPT; 1800 break; 1801 } 1802 1803 INP_UNLOCK_ASSERT(inp); 1804 1805 return (error); 1806 } 1807 1808 /* 1809 * Look up the ifnet to use for a multicast group membership, 1810 * given the IPv4 address of an interface, and the IPv4 group address. 1811 * 1812 * This routine exists to support legacy multicast applications 1813 * which do not understand that multicast memberships are scoped to 1814 * specific physical links in the networking stack, or which need 1815 * to join link-scope groups before IPv4 addresses are configured. 1816 * 1817 * If inp is non-NULL, use this socket's current FIB number for any 1818 * required FIB lookup. 1819 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1820 * and use its ifp; usually, this points to the default next-hop. 1821 * 1822 * If the FIB lookup fails, attempt to use the first non-loopback 1823 * interface with multicast capability in the system as a 1824 * last resort. The legacy IPv4 ASM API requires that we do 1825 * this in order to allow groups to be joined when the routing 1826 * table has not yet been populated during boot. 1827 * 1828 * Returns NULL if no ifp could be found. 1829 * 1830 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP. 1831 * FUTURE: Implement IPv4 source-address selection. 1832 */ 1833 static struct ifnet * 1834 inp_lookup_mcast_ifp(const struct inpcb *inp, 1835 const struct sockaddr_in *gsin, const struct in_addr ina) 1836 { 1837 struct ifnet *ifp; 1838 1839 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1840 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1841 ("%s: not multicast", __func__)); 1842 1843 ifp = NULL; 1844 if (!in_nullhost(ina)) { 1845 INADDR_TO_IFP(ina, ifp); 1846 } else { 1847 struct route ro; 1848 1849 ro.ro_rt = NULL; 1850 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); 1851 in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0); 1852 if (ro.ro_rt != NULL) { 1853 ifp = ro.ro_rt->rt_ifp; 1854 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1855 RTFREE(ro.ro_rt); 1856 } else { 1857 struct in_ifaddr *ia; 1858 struct ifnet *mifp; 1859 1860 mifp = NULL; 1861 IN_IFADDR_RLOCK(); 1862 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1863 mifp = ia->ia_ifp; 1864 if (!(mifp->if_flags & IFF_LOOPBACK) && 1865 (mifp->if_flags & IFF_MULTICAST)) { 1866 ifp = mifp; 1867 break; 1868 } 1869 } 1870 IN_IFADDR_RUNLOCK(); 1871 } 1872 } 1873 1874 return (ifp); 1875 } 1876 1877 /* 1878 * Join an IPv4 multicast group, possibly with a source. 1879 */ 1880 static int 1881 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1882 { 1883 struct group_source_req gsr; 1884 sockunion_t *gsa, *ssa; 1885 struct ifnet *ifp; 1886 struct in_mfilter *imf; 1887 struct ip_moptions *imo; 1888 struct in_multi *inm; 1889 struct in_msource *lims; 1890 size_t idx; 1891 int error, is_new; 1892 1893 ifp = NULL; 1894 imf = NULL; 1895 lims = NULL; 1896 error = 0; 1897 is_new = 0; 1898 1899 memset(&gsr, 0, sizeof(struct group_source_req)); 1900 gsa = (sockunion_t *)&gsr.gsr_group; 1901 gsa->ss.ss_family = AF_UNSPEC; 1902 ssa = (sockunion_t *)&gsr.gsr_source; 1903 ssa->ss.ss_family = AF_UNSPEC; 1904 1905 switch (sopt->sopt_name) { 1906 case IP_ADD_MEMBERSHIP: 1907 case IP_ADD_SOURCE_MEMBERSHIP: { 1908 struct ip_mreq_source mreqs; 1909 1910 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { 1911 error = sooptcopyin(sopt, &mreqs, 1912 sizeof(struct ip_mreq), 1913 sizeof(struct ip_mreq)); 1914 /* 1915 * Do argument switcharoo from ip_mreq into 1916 * ip_mreq_source to avoid using two instances. 1917 */ 1918 mreqs.imr_interface = mreqs.imr_sourceaddr; 1919 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 1920 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1921 error = sooptcopyin(sopt, &mreqs, 1922 sizeof(struct ip_mreq_source), 1923 sizeof(struct ip_mreq_source)); 1924 } 1925 if (error) 1926 return (error); 1927 1928 gsa->sin.sin_family = AF_INET; 1929 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1930 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1931 1932 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1933 ssa->sin.sin_family = AF_INET; 1934 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1935 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1936 } 1937 1938 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1939 return (EINVAL); 1940 1941 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1942 mreqs.imr_interface); 1943 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1944 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1945 break; 1946 } 1947 1948 case MCAST_JOIN_GROUP: 1949 case MCAST_JOIN_SOURCE_GROUP: 1950 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1951 error = sooptcopyin(sopt, &gsr, 1952 sizeof(struct group_req), 1953 sizeof(struct group_req)); 1954 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1955 error = sooptcopyin(sopt, &gsr, 1956 sizeof(struct group_source_req), 1957 sizeof(struct group_source_req)); 1958 } 1959 if (error) 1960 return (error); 1961 1962 if (gsa->sin.sin_family != AF_INET || 1963 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1964 return (EINVAL); 1965 1966 /* 1967 * Overwrite the port field if present, as the sockaddr 1968 * being copied in may be matched with a binary comparison. 1969 */ 1970 gsa->sin.sin_port = 0; 1971 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1972 if (ssa->sin.sin_family != AF_INET || 1973 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1974 return (EINVAL); 1975 ssa->sin.sin_port = 0; 1976 } 1977 1978 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1979 return (EINVAL); 1980 1981 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1982 return (EADDRNOTAVAIL); 1983 ifp = ifnet_byindex(gsr.gsr_interface); 1984 break; 1985 1986 default: 1987 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1988 __func__, sopt->sopt_name); 1989 return (EOPNOTSUPP); 1990 break; 1991 } 1992 1993 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1994 return (EADDRNOTAVAIL); 1995 1996 imo = inp_findmoptions(inp); 1997 idx = imo_match_group(imo, ifp, &gsa->sa); 1998 if (idx == -1) { 1999 is_new = 1; 2000 } else { 2001 inm = imo->imo_membership[idx]; 2002 imf = &imo->imo_mfilters[idx]; 2003 if (ssa->ss.ss_family != AF_UNSPEC) { 2004 /* 2005 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2006 * is an error. On an existing inclusive membership, 2007 * it just adds the source to the filter list. 2008 */ 2009 if (imf->imf_st[1] != MCAST_INCLUDE) { 2010 error = EINVAL; 2011 goto out_inp_locked; 2012 } 2013 /* 2014 * Throw out duplicates. 2015 * 2016 * XXX FIXME: This makes a naive assumption that 2017 * even if entries exist for *ssa in this imf, 2018 * they will be rejected as dupes, even if they 2019 * are not valid in the current mode (in-mode). 2020 * 2021 * in_msource is transactioned just as for anything 2022 * else in SSM -- but note naive use of inm_graft() 2023 * below for allocating new filter entries. 2024 * 2025 * This is only an issue if someone mixes the 2026 * full-state SSM API with the delta-based API, 2027 * which is discouraged in the relevant RFCs. 2028 */ 2029 lims = imo_match_source(imo, idx, &ssa->sa); 2030 if (lims != NULL /*&& 2031 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2032 error = EADDRNOTAVAIL; 2033 goto out_inp_locked; 2034 } 2035 } else { 2036 /* 2037 * MCAST_JOIN_GROUP on an existing exclusive 2038 * membership is an error; return EADDRINUSE 2039 * to preserve 4.4BSD API idempotence, and 2040 * avoid tedious detour to code below. 2041 * NOTE: This is bending RFC 3678 a bit. 2042 * 2043 * On an existing inclusive membership, this is also 2044 * an error; if you want to change filter mode, 2045 * you must use the userland API setsourcefilter(). 2046 * XXX We don't reject this for imf in UNDEFINED 2047 * state at t1, because allocation of a filter 2048 * is atomic with allocation of a membership. 2049 */ 2050 error = EINVAL; 2051 if (imf->imf_st[1] == MCAST_EXCLUDE) 2052 error = EADDRINUSE; 2053 goto out_inp_locked; 2054 } 2055 } 2056 2057 /* 2058 * Begin state merge transaction at socket layer. 2059 */ 2060 INP_WLOCK_ASSERT(inp); 2061 2062 if (is_new) { 2063 if (imo->imo_num_memberships == imo->imo_max_memberships) { 2064 error = imo_grow(imo); 2065 if (error) 2066 goto out_inp_locked; 2067 } 2068 /* 2069 * Allocate the new slot upfront so we can deal with 2070 * grafting the new source filter in same code path 2071 * as for join-source on existing membership. 2072 */ 2073 idx = imo->imo_num_memberships; 2074 imo->imo_membership[idx] = NULL; 2075 imo->imo_num_memberships++; 2076 KASSERT(imo->imo_mfilters != NULL, 2077 ("%s: imf_mfilters vector was not allocated", __func__)); 2078 imf = &imo->imo_mfilters[idx]; 2079 KASSERT(RB_EMPTY(&imf->imf_sources), 2080 ("%s: imf_sources not empty", __func__)); 2081 } 2082 2083 /* 2084 * Graft new source into filter list for this inpcb's 2085 * membership of the group. The in_multi may not have 2086 * been allocated yet if this is a new membership, however, 2087 * the in_mfilter slot will be allocated and must be initialized. 2088 * 2089 * Note: Grafting of exclusive mode filters doesn't happen 2090 * in this path. 2091 * XXX: Should check for non-NULL lims (node exists but may 2092 * not be in-mode) for interop with full-state API. 2093 */ 2094 if (ssa->ss.ss_family != AF_UNSPEC) { 2095 /* Membership starts in IN mode */ 2096 if (is_new) { 2097 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2098 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2099 } else { 2100 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2101 } 2102 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2103 if (lims == NULL) { 2104 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2105 __func__); 2106 error = ENOMEM; 2107 goto out_imo_free; 2108 } 2109 } else { 2110 /* No address specified; Membership starts in EX mode */ 2111 if (is_new) { 2112 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2113 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2114 } 2115 } 2116 2117 /* 2118 * Begin state merge transaction at IGMP layer. 2119 */ 2120 IN_MULTI_LOCK(); 2121 2122 if (is_new) { 2123 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2124 &inm); 2125 if (error) 2126 goto out_imo_free; 2127 imo->imo_membership[idx] = inm; 2128 } else { 2129 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2130 error = inm_merge(inm, imf); 2131 if (error) { 2132 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2133 __func__); 2134 goto out_imf_rollback; 2135 } 2136 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2137 error = igmp_change_state(inm); 2138 if (error) { 2139 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2140 __func__); 2141 goto out_imf_rollback; 2142 } 2143 } 2144 2145 IN_MULTI_UNLOCK(); 2146 2147 out_imf_rollback: 2148 INP_WLOCK_ASSERT(inp); 2149 if (error) { 2150 imf_rollback(imf); 2151 if (is_new) 2152 imf_purge(imf); 2153 else 2154 imf_reap(imf); 2155 } else { 2156 imf_commit(imf); 2157 } 2158 2159 out_imo_free: 2160 if (error && is_new) { 2161 imo->imo_membership[idx] = NULL; 2162 --imo->imo_num_memberships; 2163 } 2164 2165 out_inp_locked: 2166 INP_WUNLOCK(inp); 2167 return (error); 2168 } 2169 2170 /* 2171 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2172 */ 2173 static int 2174 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2175 { 2176 struct group_source_req gsr; 2177 struct ip_mreq_source mreqs; 2178 sockunion_t *gsa, *ssa; 2179 struct ifnet *ifp; 2180 struct in_mfilter *imf; 2181 struct ip_moptions *imo; 2182 struct in_msource *ims; 2183 struct in_multi *inm; 2184 size_t idx; 2185 int error, is_final; 2186 2187 ifp = NULL; 2188 error = 0; 2189 is_final = 1; 2190 2191 memset(&gsr, 0, sizeof(struct group_source_req)); 2192 gsa = (sockunion_t *)&gsr.gsr_group; 2193 gsa->ss.ss_family = AF_UNSPEC; 2194 ssa = (sockunion_t *)&gsr.gsr_source; 2195 ssa->ss.ss_family = AF_UNSPEC; 2196 2197 switch (sopt->sopt_name) { 2198 case IP_DROP_MEMBERSHIP: 2199 case IP_DROP_SOURCE_MEMBERSHIP: 2200 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2201 error = sooptcopyin(sopt, &mreqs, 2202 sizeof(struct ip_mreq), 2203 sizeof(struct ip_mreq)); 2204 /* 2205 * Swap interface and sourceaddr arguments, 2206 * as ip_mreq and ip_mreq_source are laid 2207 * out differently. 2208 */ 2209 mreqs.imr_interface = mreqs.imr_sourceaddr; 2210 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2211 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2212 error = sooptcopyin(sopt, &mreqs, 2213 sizeof(struct ip_mreq_source), 2214 sizeof(struct ip_mreq_source)); 2215 } 2216 if (error) 2217 return (error); 2218 2219 gsa->sin.sin_family = AF_INET; 2220 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2221 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2222 2223 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2224 ssa->sin.sin_family = AF_INET; 2225 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2226 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2227 } 2228 2229 /* 2230 * Attempt to look up hinted ifp from interface address. 2231 * Fallthrough with null ifp iff lookup fails, to 2232 * preserve 4.4BSD mcast API idempotence. 2233 * XXX NOTE WELL: The RFC 3678 API is preferred because 2234 * using an IPv4 address as a key is racy. 2235 */ 2236 if (!in_nullhost(mreqs.imr_interface)) 2237 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2238 2239 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 2240 __func__, inet_ntoa(mreqs.imr_interface), ifp); 2241 2242 break; 2243 2244 case MCAST_LEAVE_GROUP: 2245 case MCAST_LEAVE_SOURCE_GROUP: 2246 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2247 error = sooptcopyin(sopt, &gsr, 2248 sizeof(struct group_req), 2249 sizeof(struct group_req)); 2250 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2251 error = sooptcopyin(sopt, &gsr, 2252 sizeof(struct group_source_req), 2253 sizeof(struct group_source_req)); 2254 } 2255 if (error) 2256 return (error); 2257 2258 if (gsa->sin.sin_family != AF_INET || 2259 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2260 return (EINVAL); 2261 2262 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2263 if (ssa->sin.sin_family != AF_INET || 2264 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2265 return (EINVAL); 2266 } 2267 2268 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2269 return (EADDRNOTAVAIL); 2270 2271 ifp = ifnet_byindex(gsr.gsr_interface); 2272 2273 if (ifp == NULL) 2274 return (EADDRNOTAVAIL); 2275 break; 2276 2277 default: 2278 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2279 __func__, sopt->sopt_name); 2280 return (EOPNOTSUPP); 2281 break; 2282 } 2283 2284 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2285 return (EINVAL); 2286 2287 /* 2288 * Find the membership in the membership array. 2289 */ 2290 imo = inp_findmoptions(inp); 2291 idx = imo_match_group(imo, ifp, &gsa->sa); 2292 if (idx == -1) { 2293 error = EADDRNOTAVAIL; 2294 goto out_inp_locked; 2295 } 2296 inm = imo->imo_membership[idx]; 2297 imf = &imo->imo_mfilters[idx]; 2298 2299 if (ssa->ss.ss_family != AF_UNSPEC) 2300 is_final = 0; 2301 2302 /* 2303 * Begin state merge transaction at socket layer. 2304 */ 2305 INP_WLOCK_ASSERT(inp); 2306 2307 /* 2308 * If we were instructed only to leave a given source, do so. 2309 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2310 */ 2311 if (is_final) { 2312 imf_leave(imf); 2313 } else { 2314 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2315 error = EADDRNOTAVAIL; 2316 goto out_inp_locked; 2317 } 2318 ims = imo_match_source(imo, idx, &ssa->sa); 2319 if (ims == NULL) { 2320 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 2321 inet_ntoa(ssa->sin.sin_addr), "not "); 2322 error = EADDRNOTAVAIL; 2323 goto out_inp_locked; 2324 } 2325 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2326 error = imf_prune(imf, &ssa->sin); 2327 if (error) { 2328 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2329 __func__); 2330 goto out_inp_locked; 2331 } 2332 } 2333 2334 /* 2335 * Begin state merge transaction at IGMP layer. 2336 */ 2337 IN_MULTI_LOCK(); 2338 2339 if (is_final) { 2340 /* 2341 * Give up the multicast address record to which 2342 * the membership points. 2343 */ 2344 (void)in_leavegroup_locked(inm, imf); 2345 } else { 2346 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2347 error = inm_merge(inm, imf); 2348 if (error) { 2349 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2350 __func__); 2351 goto out_imf_rollback; 2352 } 2353 2354 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2355 error = igmp_change_state(inm); 2356 if (error) { 2357 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2358 __func__); 2359 } 2360 } 2361 2362 IN_MULTI_UNLOCK(); 2363 2364 out_imf_rollback: 2365 if (error) 2366 imf_rollback(imf); 2367 else 2368 imf_commit(imf); 2369 2370 imf_reap(imf); 2371 2372 if (is_final) { 2373 /* Remove the gap in the membership and filter array. */ 2374 for (++idx; idx < imo->imo_num_memberships; ++idx) { 2375 imo->imo_membership[idx-1] = imo->imo_membership[idx]; 2376 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx]; 2377 } 2378 imo->imo_num_memberships--; 2379 } 2380 2381 out_inp_locked: 2382 INP_WUNLOCK(inp); 2383 return (error); 2384 } 2385 2386 /* 2387 * Select the interface for transmitting IPv4 multicast datagrams. 2388 * 2389 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2390 * may be passed to this socket option. An address of INADDR_ANY or an 2391 * interface index of 0 is used to remove a previous selection. 2392 * When no interface is selected, one is chosen for every send. 2393 */ 2394 static int 2395 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2396 { 2397 struct in_addr addr; 2398 struct ip_mreqn mreqn; 2399 struct ifnet *ifp; 2400 struct ip_moptions *imo; 2401 int error; 2402 2403 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2404 /* 2405 * An interface index was specified using the 2406 * Linux-derived ip_mreqn structure. 2407 */ 2408 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2409 sizeof(struct ip_mreqn)); 2410 if (error) 2411 return (error); 2412 2413 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2414 return (EINVAL); 2415 2416 if (mreqn.imr_ifindex == 0) { 2417 ifp = NULL; 2418 } else { 2419 ifp = ifnet_byindex(mreqn.imr_ifindex); 2420 if (ifp == NULL) 2421 return (EADDRNOTAVAIL); 2422 } 2423 } else { 2424 /* 2425 * An interface was specified by IPv4 address. 2426 * This is the traditional BSD usage. 2427 */ 2428 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2429 sizeof(struct in_addr)); 2430 if (error) 2431 return (error); 2432 if (in_nullhost(addr)) { 2433 ifp = NULL; 2434 } else { 2435 INADDR_TO_IFP(addr, ifp); 2436 if (ifp == NULL) 2437 return (EADDRNOTAVAIL); 2438 } 2439 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp, 2440 inet_ntoa(addr)); 2441 } 2442 2443 /* Reject interfaces which do not support multicast. */ 2444 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2445 return (EOPNOTSUPP); 2446 2447 imo = inp_findmoptions(inp); 2448 imo->imo_multicast_ifp = ifp; 2449 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2450 INP_WUNLOCK(inp); 2451 2452 return (0); 2453 } 2454 2455 /* 2456 * Atomically set source filters on a socket for an IPv4 multicast group. 2457 * 2458 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2459 */ 2460 static int 2461 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2462 { 2463 struct __msfilterreq msfr; 2464 sockunion_t *gsa; 2465 struct ifnet *ifp; 2466 struct in_mfilter *imf; 2467 struct ip_moptions *imo; 2468 struct in_multi *inm; 2469 size_t idx; 2470 int error; 2471 2472 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2473 sizeof(struct __msfilterreq)); 2474 if (error) 2475 return (error); 2476 2477 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2478 return (ENOBUFS); 2479 2480 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2481 msfr.msfr_fmode != MCAST_INCLUDE)) 2482 return (EINVAL); 2483 2484 if (msfr.msfr_group.ss_family != AF_INET || 2485 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2486 return (EINVAL); 2487 2488 gsa = (sockunion_t *)&msfr.msfr_group; 2489 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2490 return (EINVAL); 2491 2492 gsa->sin.sin_port = 0; /* ignore port */ 2493 2494 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2495 return (EADDRNOTAVAIL); 2496 2497 ifp = ifnet_byindex(msfr.msfr_ifindex); 2498 if (ifp == NULL) 2499 return (EADDRNOTAVAIL); 2500 2501 /* 2502 * Take the INP write lock. 2503 * Check if this socket is a member of this group. 2504 */ 2505 imo = inp_findmoptions(inp); 2506 idx = imo_match_group(imo, ifp, &gsa->sa); 2507 if (idx == -1 || imo->imo_mfilters == NULL) { 2508 error = EADDRNOTAVAIL; 2509 goto out_inp_locked; 2510 } 2511 inm = imo->imo_membership[idx]; 2512 imf = &imo->imo_mfilters[idx]; 2513 2514 /* 2515 * Begin state merge transaction at socket layer. 2516 */ 2517 INP_WLOCK_ASSERT(inp); 2518 2519 imf->imf_st[1] = msfr.msfr_fmode; 2520 2521 /* 2522 * Apply any new source filters, if present. 2523 * Make a copy of the user-space source vector so 2524 * that we may copy them with a single copyin. This 2525 * allows us to deal with page faults up-front. 2526 */ 2527 if (msfr.msfr_nsrcs > 0) { 2528 struct in_msource *lims; 2529 struct sockaddr_in *psin; 2530 struct sockaddr_storage *kss, *pkss; 2531 int i; 2532 2533 INP_WUNLOCK(inp); 2534 2535 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2536 __func__, (unsigned long)msfr.msfr_nsrcs); 2537 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2538 M_TEMP, M_WAITOK); 2539 error = copyin(msfr.msfr_srcs, kss, 2540 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2541 if (error) { 2542 free(kss, M_TEMP); 2543 return (error); 2544 } 2545 2546 INP_WLOCK(inp); 2547 2548 /* 2549 * Mark all source filters as UNDEFINED at t1. 2550 * Restore new group filter mode, as imf_leave() 2551 * will set it to INCLUDE. 2552 */ 2553 imf_leave(imf); 2554 imf->imf_st[1] = msfr.msfr_fmode; 2555 2556 /* 2557 * Update socket layer filters at t1, lazy-allocating 2558 * new entries. This saves a bunch of memory at the 2559 * cost of one RB_FIND() per source entry; duplicate 2560 * entries in the msfr_nsrcs vector are ignored. 2561 * If we encounter an error, rollback transaction. 2562 * 2563 * XXX This too could be replaced with a set-symmetric 2564 * difference like loop to avoid walking from root 2565 * every time, as the key space is common. 2566 */ 2567 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2568 psin = (struct sockaddr_in *)pkss; 2569 if (psin->sin_family != AF_INET) { 2570 error = EAFNOSUPPORT; 2571 break; 2572 } 2573 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2574 error = EINVAL; 2575 break; 2576 } 2577 error = imf_get_source(imf, psin, &lims); 2578 if (error) 2579 break; 2580 lims->imsl_st[1] = imf->imf_st[1]; 2581 } 2582 free(kss, M_TEMP); 2583 } 2584 2585 if (error) 2586 goto out_imf_rollback; 2587 2588 INP_WLOCK_ASSERT(inp); 2589 IN_MULTI_LOCK(); 2590 2591 /* 2592 * Begin state merge transaction at IGMP layer. 2593 */ 2594 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2595 error = inm_merge(inm, imf); 2596 if (error) { 2597 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2598 goto out_imf_rollback; 2599 } 2600 2601 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2602 error = igmp_change_state(inm); 2603 if (error) 2604 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2605 2606 IN_MULTI_UNLOCK(); 2607 2608 out_imf_rollback: 2609 if (error) 2610 imf_rollback(imf); 2611 else 2612 imf_commit(imf); 2613 2614 imf_reap(imf); 2615 2616 out_inp_locked: 2617 INP_WUNLOCK(inp); 2618 return (error); 2619 } 2620 2621 /* 2622 * Set the IP multicast options in response to user setsockopt(). 2623 * 2624 * Many of the socket options handled in this function duplicate the 2625 * functionality of socket options in the regular unicast API. However, 2626 * it is not possible to merge the duplicate code, because the idempotence 2627 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2628 * the effects of these options must be treated as separate and distinct. 2629 * 2630 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2631 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2632 * is refactored to no longer use vifs. 2633 */ 2634 int 2635 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2636 { 2637 struct ip_moptions *imo; 2638 int error; 2639 2640 error = 0; 2641 2642 /* 2643 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2644 * or is a divert socket, reject it. 2645 */ 2646 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2647 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2648 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2649 return (EOPNOTSUPP); 2650 2651 switch (sopt->sopt_name) { 2652 case IP_MULTICAST_VIF: { 2653 int vifi; 2654 /* 2655 * Select a multicast VIF for transmission. 2656 * Only useful if multicast forwarding is active. 2657 */ 2658 if (legal_vif_num == NULL) { 2659 error = EOPNOTSUPP; 2660 break; 2661 } 2662 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2663 if (error) 2664 break; 2665 if (!legal_vif_num(vifi) && (vifi != -1)) { 2666 error = EINVAL; 2667 break; 2668 } 2669 imo = inp_findmoptions(inp); 2670 imo->imo_multicast_vif = vifi; 2671 INP_WUNLOCK(inp); 2672 break; 2673 } 2674 2675 case IP_MULTICAST_IF: 2676 error = inp_set_multicast_if(inp, sopt); 2677 break; 2678 2679 case IP_MULTICAST_TTL: { 2680 u_char ttl; 2681 2682 /* 2683 * Set the IP time-to-live for outgoing multicast packets. 2684 * The original multicast API required a char argument, 2685 * which is inconsistent with the rest of the socket API. 2686 * We allow either a char or an int. 2687 */ 2688 if (sopt->sopt_valsize == sizeof(u_char)) { 2689 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2690 sizeof(u_char)); 2691 if (error) 2692 break; 2693 } else { 2694 u_int ittl; 2695 2696 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2697 sizeof(u_int)); 2698 if (error) 2699 break; 2700 if (ittl > 255) { 2701 error = EINVAL; 2702 break; 2703 } 2704 ttl = (u_char)ittl; 2705 } 2706 imo = inp_findmoptions(inp); 2707 imo->imo_multicast_ttl = ttl; 2708 INP_WUNLOCK(inp); 2709 break; 2710 } 2711 2712 case IP_MULTICAST_LOOP: { 2713 u_char loop; 2714 2715 /* 2716 * Set the loopback flag for outgoing multicast packets. 2717 * Must be zero or one. The original multicast API required a 2718 * char argument, which is inconsistent with the rest 2719 * of the socket API. We allow either a char or an int. 2720 */ 2721 if (sopt->sopt_valsize == sizeof(u_char)) { 2722 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2723 sizeof(u_char)); 2724 if (error) 2725 break; 2726 } else { 2727 u_int iloop; 2728 2729 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2730 sizeof(u_int)); 2731 if (error) 2732 break; 2733 loop = (u_char)iloop; 2734 } 2735 imo = inp_findmoptions(inp); 2736 imo->imo_multicast_loop = !!loop; 2737 INP_WUNLOCK(inp); 2738 break; 2739 } 2740 2741 case IP_ADD_MEMBERSHIP: 2742 case IP_ADD_SOURCE_MEMBERSHIP: 2743 case MCAST_JOIN_GROUP: 2744 case MCAST_JOIN_SOURCE_GROUP: 2745 error = inp_join_group(inp, sopt); 2746 break; 2747 2748 case IP_DROP_MEMBERSHIP: 2749 case IP_DROP_SOURCE_MEMBERSHIP: 2750 case MCAST_LEAVE_GROUP: 2751 case MCAST_LEAVE_SOURCE_GROUP: 2752 error = inp_leave_group(inp, sopt); 2753 break; 2754 2755 case IP_BLOCK_SOURCE: 2756 case IP_UNBLOCK_SOURCE: 2757 case MCAST_BLOCK_SOURCE: 2758 case MCAST_UNBLOCK_SOURCE: 2759 error = inp_block_unblock_source(inp, sopt); 2760 break; 2761 2762 case IP_MSFILTER: 2763 error = inp_set_source_filters(inp, sopt); 2764 break; 2765 2766 default: 2767 error = EOPNOTSUPP; 2768 break; 2769 } 2770 2771 INP_UNLOCK_ASSERT(inp); 2772 2773 return (error); 2774 } 2775 2776 /* 2777 * Expose IGMP's multicast filter mode and source list(s) to userland, 2778 * keyed by (ifindex, group). 2779 * The filter mode is written out as a uint32_t, followed by 2780 * 0..n of struct in_addr. 2781 * For use by ifmcstat(8). 2782 * SMPng: NOTE: unlocked read of ifindex space. 2783 */ 2784 static int 2785 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2786 { 2787 struct in_addr src, group; 2788 struct ifnet *ifp; 2789 struct ifmultiaddr *ifma; 2790 struct in_multi *inm; 2791 struct ip_msource *ims; 2792 int *name; 2793 int retval; 2794 u_int namelen; 2795 uint32_t fmode, ifindex; 2796 2797 name = (int *)arg1; 2798 namelen = arg2; 2799 2800 if (req->newptr != NULL) 2801 return (EPERM); 2802 2803 if (namelen != 2) 2804 return (EINVAL); 2805 2806 ifindex = name[0]; 2807 if (ifindex <= 0 || ifindex > V_if_index) { 2808 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2809 __func__, ifindex); 2810 return (ENOENT); 2811 } 2812 2813 group.s_addr = name[1]; 2814 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2815 CTR2(KTR_IGMPV3, "%s: group %s is not multicast", 2816 __func__, inet_ntoa(group)); 2817 return (EINVAL); 2818 } 2819 2820 ifp = ifnet_byindex(ifindex); 2821 if (ifp == NULL) { 2822 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2823 __func__, ifindex); 2824 return (ENOENT); 2825 } 2826 2827 retval = sysctl_wire_old_buffer(req, 2828 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2829 if (retval) 2830 return (retval); 2831 2832 IN_MULTI_LOCK(); 2833 2834 IF_ADDR_RLOCK(ifp); 2835 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2836 if (ifma->ifma_addr->sa_family != AF_INET || 2837 ifma->ifma_protospec == NULL) 2838 continue; 2839 inm = (struct in_multi *)ifma->ifma_protospec; 2840 if (!in_hosteq(inm->inm_addr, group)) 2841 continue; 2842 fmode = inm->inm_st[1].iss_fmode; 2843 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2844 if (retval != 0) 2845 break; 2846 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2847 #ifdef KTR 2848 struct in_addr ina; 2849 ina.s_addr = htonl(ims->ims_haddr); 2850 CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, 2851 inet_ntoa(ina)); 2852 #endif 2853 /* 2854 * Only copy-out sources which are in-mode. 2855 */ 2856 if (fmode != ims_get_mode(inm, ims, 1)) { 2857 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2858 __func__); 2859 continue; 2860 } 2861 src.s_addr = htonl(ims->ims_haddr); 2862 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2863 if (retval != 0) 2864 break; 2865 } 2866 } 2867 IF_ADDR_RUNLOCK(ifp); 2868 2869 IN_MULTI_UNLOCK(); 2870 2871 return (retval); 2872 } 2873 2874 #ifdef KTR 2875 2876 static const char *inm_modestrs[] = { "un", "in", "ex" }; 2877 2878 static const char * 2879 inm_mode_str(const int mode) 2880 { 2881 2882 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2883 return (inm_modestrs[mode]); 2884 return ("??"); 2885 } 2886 2887 static const char *inm_statestrs[] = { 2888 "not-member", 2889 "silent", 2890 "idle", 2891 "lazy", 2892 "sleeping", 2893 "awakening", 2894 "query-pending", 2895 "sg-query-pending", 2896 "leaving" 2897 }; 2898 2899 static const char * 2900 inm_state_str(const int state) 2901 { 2902 2903 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2904 return (inm_statestrs[state]); 2905 return ("??"); 2906 } 2907 2908 /* 2909 * Dump an in_multi structure to the console. 2910 */ 2911 void 2912 inm_print(const struct in_multi *inm) 2913 { 2914 int t; 2915 2916 if ((ktr_mask & KTR_IGMPV3) == 0) 2917 return; 2918 2919 printf("%s: --- begin inm %p ---\n", __func__, inm); 2920 printf("addr %s ifp %p(%s) ifma %p\n", 2921 inet_ntoa(inm->inm_addr), 2922 inm->inm_ifp, 2923 inm->inm_ifp->if_xname, 2924 inm->inm_ifma); 2925 printf("timer %u state %s refcount %u scq.len %u\n", 2926 inm->inm_timer, 2927 inm_state_str(inm->inm_state), 2928 inm->inm_refcount, 2929 inm->inm_scq.ifq_len); 2930 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 2931 inm->inm_igi, 2932 inm->inm_nsrc, 2933 inm->inm_sctimer, 2934 inm->inm_scrv); 2935 for (t = 0; t < 2; t++) { 2936 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2937 inm_mode_str(inm->inm_st[t].iss_fmode), 2938 inm->inm_st[t].iss_asm, 2939 inm->inm_st[t].iss_ex, 2940 inm->inm_st[t].iss_in, 2941 inm->inm_st[t].iss_rec); 2942 } 2943 printf("%s: --- end inm %p ---\n", __func__, inm); 2944 } 2945 2946 #else /* !KTR */ 2947 2948 void 2949 inm_print(const struct in_multi *inm) 2950 { 2951 2952 } 2953 2954 #endif /* KTR */ 2955 2956 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 2957