1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2007-2009 Bruce Simpson. 5 * Copyright (c) 2005 Robert N. M. Watson. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote 17 * products derived from this software without specific prior written 18 * permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * IPv4 multicast socket, group, and socket option processing module. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/protosw.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/protosw.h> 51 #include <sys/sysctl.h> 52 #include <sys/ktr.h> 53 #include <sys/taskqueue.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/route/nhop.h> 61 #include <net/vnet.h> 62 63 #include <net/ethernet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/in_fib.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip_var.h> 71 #include <netinet/igmp_var.h> 72 73 #ifndef KTR_IGMPV3 74 #define KTR_IGMPV3 KTR_INET 75 #endif 76 77 #ifndef __SOCKUNION_DECLARED 78 union sockunion { 79 struct sockaddr_storage ss; 80 struct sockaddr sa; 81 struct sockaddr_dl sdl; 82 struct sockaddr_in sin; 83 }; 84 typedef union sockunion sockunion_t; 85 #define __SOCKUNION_DECLARED 86 #endif /* __SOCKUNION_DECLARED */ 87 88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 89 "IPv4 multicast PCB-layer source filter"); 90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 93 "IPv4 multicast IGMP-layer source filter"); 94 95 /* 96 * Locking: 97 * 98 * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, 99 * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 100 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 101 * it can be taken by code in net/if.c also. 102 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 103 * 104 * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly 105 * any need for in_multi itself to be virtualized -- it is bound to an ifp 106 * anyway no matter what happens. 107 */ 108 struct mtx in_multi_list_mtx; 109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); 110 111 struct mtx in_multi_free_mtx; 112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); 113 114 struct sx in_multi_sx; 115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); 116 117 int ifma_restart; 118 119 /* 120 * Functions with non-static linkage defined in this file should be 121 * declared in in_var.h: 122 * imo_multi_filter() 123 * in_addmulti() 124 * in_delmulti() 125 * in_joingroup() 126 * in_joingroup_locked() 127 * in_leavegroup() 128 * in_leavegroup_locked() 129 * and ip_var.h: 130 * inp_freemoptions() 131 * inp_getmoptions() 132 * inp_setmoptions() 133 * 134 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 135 * and in_delmulti(). 136 */ 137 static void imf_commit(struct in_mfilter *); 138 static int imf_get_source(struct in_mfilter *imf, 139 const struct sockaddr_in *psin, 140 struct in_msource **); 141 static struct in_msource * 142 imf_graft(struct in_mfilter *, const uint8_t, 143 const struct sockaddr_in *); 144 static void imf_leave(struct in_mfilter *); 145 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 146 static void imf_purge(struct in_mfilter *); 147 static void imf_rollback(struct in_mfilter *); 148 static void imf_reap(struct in_mfilter *); 149 static struct in_mfilter * 150 imo_match_group(const struct ip_moptions *, 151 const struct ifnet *, const struct sockaddr *); 152 static struct in_msource * 153 imo_match_source(struct in_mfilter *, const struct sockaddr *); 154 static void ims_merge(struct ip_msource *ims, 155 const struct in_msource *lims, const int rollback); 156 static int in_getmulti(struct ifnet *, const struct in_addr *, 157 struct in_multi **); 158 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 159 const int noalloc, struct ip_msource **pims); 160 #ifdef KTR 161 static int inm_is_ifp_detached(const struct in_multi *); 162 #endif 163 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 164 static void inm_purge(struct in_multi *); 165 static void inm_reap(struct in_multi *); 166 static void inm_release(struct in_multi *); 167 static struct ip_moptions * 168 inp_findmoptions(struct inpcb *); 169 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 170 static int inp_join_group(struct inpcb *, struct sockopt *); 171 static int inp_leave_group(struct inpcb *, struct sockopt *); 172 static struct ifnet * 173 inp_lookup_mcast_ifp(const struct inpcb *, 174 const struct sockaddr_in *, const struct in_addr); 175 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 176 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 177 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 178 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 179 180 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, 181 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 182 "IPv4 multicast"); 183 184 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 185 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 186 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, 187 "Max source filters per group"); 188 189 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 190 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 191 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, 192 "Max source filters per socket"); 193 194 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 195 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 196 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 197 198 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 199 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 200 "Per-interface stack-wide source filters"); 201 202 #ifdef KTR 203 /* 204 * Inline function which wraps assertions for a valid ifp. 205 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 206 * is detached. 207 */ 208 static int __inline 209 inm_is_ifp_detached(const struct in_multi *inm) 210 { 211 struct ifnet *ifp; 212 213 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 214 ifp = inm->inm_ifma->ifma_ifp; 215 if (ifp != NULL) { 216 /* 217 * Sanity check that netinet's notion of ifp is the 218 * same as net's. 219 */ 220 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 221 } 222 223 return (ifp == NULL); 224 } 225 #endif 226 227 /* 228 * Interface detach can happen in a taskqueue thread context, so we must use a 229 * dedicated thread to avoid deadlocks when draining inm_release tasks. 230 */ 231 TASKQUEUE_DEFINE_THREAD(inm_free); 232 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); 233 static void inm_release_task(void *arg __unused, int pending __unused); 234 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL); 235 236 void 237 inm_release_wait(void *arg __unused) 238 { 239 240 /* 241 * Make sure all pending multicast addresses are freed before 242 * the VNET or network device is destroyed: 243 */ 244 taskqueue_drain(taskqueue_inm_free, &inm_free_task); 245 } 246 #ifdef VIMAGE 247 /* XXX-BZ FIXME, see D24914. */ 248 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); 249 #endif 250 251 void 252 inm_release_list_deferred(struct in_multi_head *inmh) 253 { 254 255 if (SLIST_EMPTY(inmh)) 256 return; 257 mtx_lock(&in_multi_free_mtx); 258 SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); 259 mtx_unlock(&in_multi_free_mtx); 260 taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); 261 } 262 263 void 264 inm_disconnect(struct in_multi *inm) 265 { 266 struct ifnet *ifp; 267 struct ifmultiaddr *ifma, *ll_ifma; 268 269 ifp = inm->inm_ifp; 270 IF_ADDR_WLOCK_ASSERT(ifp); 271 ifma = inm->inm_ifma; 272 273 if_ref(ifp); 274 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 275 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 276 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 277 } 278 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 279 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 280 MPASS(ifma != ll_ifma); 281 ifma->ifma_llifma = NULL; 282 MPASS(ll_ifma->ifma_llifma == NULL); 283 MPASS(ll_ifma->ifma_ifp == ifp); 284 if (--ll_ifma->ifma_refcount == 0) { 285 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 286 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 287 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 288 } 289 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 290 if_freemulti(ll_ifma); 291 ifma_restart = true; 292 } 293 } 294 } 295 296 void 297 inm_release_deferred(struct in_multi *inm) 298 { 299 struct in_multi_head tmp; 300 301 IN_MULTI_LIST_LOCK_ASSERT(); 302 MPASS(inm->inm_refcount > 0); 303 if (--inm->inm_refcount == 0) { 304 SLIST_INIT(&tmp); 305 inm_disconnect(inm); 306 inm->inm_ifma->ifma_protospec = NULL; 307 SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); 308 inm_release_list_deferred(&tmp); 309 } 310 } 311 312 static void 313 inm_release_task(void *arg __unused, int pending __unused) 314 { 315 struct in_multi_head inm_free_tmp; 316 struct in_multi *inm, *tinm; 317 318 SLIST_INIT(&inm_free_tmp); 319 mtx_lock(&in_multi_free_mtx); 320 SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); 321 mtx_unlock(&in_multi_free_mtx); 322 IN_MULTI_LOCK(); 323 SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { 324 SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); 325 MPASS(inm); 326 inm_release(inm); 327 } 328 IN_MULTI_UNLOCK(); 329 } 330 331 /* 332 * Initialize an in_mfilter structure to a known state at t0, t1 333 * with an empty source filter list. 334 */ 335 static __inline void 336 imf_init(struct in_mfilter *imf, const int st0, const int st1) 337 { 338 memset(imf, 0, sizeof(struct in_mfilter)); 339 RB_INIT(&imf->imf_sources); 340 imf->imf_st[0] = st0; 341 imf->imf_st[1] = st1; 342 } 343 344 struct in_mfilter * 345 ip_mfilter_alloc(const int mflags, const int st0, const int st1) 346 { 347 struct in_mfilter *imf; 348 349 imf = malloc(sizeof(*imf), M_INMFILTER, mflags); 350 if (imf != NULL) 351 imf_init(imf, st0, st1); 352 353 return (imf); 354 } 355 356 void 357 ip_mfilter_free(struct in_mfilter *imf) 358 { 359 360 imf_purge(imf); 361 free(imf, M_INMFILTER); 362 } 363 364 /* 365 * Function for looking up an in_multi record for an IPv4 multicast address 366 * on a given interface. ifp must be valid. If no record found, return NULL. 367 * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. 368 */ 369 struct in_multi * 370 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 371 { 372 struct ifmultiaddr *ifma; 373 struct in_multi *inm; 374 375 IN_MULTI_LIST_LOCK_ASSERT(); 376 IF_ADDR_LOCK_ASSERT(ifp); 377 378 inm = NULL; 379 CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 380 if (ifma->ifma_addr->sa_family != AF_INET || 381 ifma->ifma_protospec == NULL) 382 continue; 383 inm = (struct in_multi *)ifma->ifma_protospec; 384 if (inm->inm_addr.s_addr == ina.s_addr) 385 break; 386 inm = NULL; 387 } 388 return (inm); 389 } 390 391 /* 392 * Wrapper for inm_lookup_locked(). 393 * The IF_ADDR_LOCK will be taken on ifp and released on return. 394 */ 395 struct in_multi * 396 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 397 { 398 struct epoch_tracker et; 399 struct in_multi *inm; 400 401 IN_MULTI_LIST_LOCK_ASSERT(); 402 NET_EPOCH_ENTER(et); 403 404 inm = inm_lookup_locked(ifp, ina); 405 NET_EPOCH_EXIT(et); 406 407 return (inm); 408 } 409 410 /* 411 * Find an IPv4 multicast group entry for this ip_moptions instance 412 * which matches the specified group, and optionally an interface. 413 * Return its index into the array, or -1 if not found. 414 */ 415 static struct in_mfilter * 416 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 417 const struct sockaddr *group) 418 { 419 const struct sockaddr_in *gsin; 420 struct in_mfilter *imf; 421 struct in_multi *inm; 422 423 gsin = (const struct sockaddr_in *)group; 424 425 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 426 inm = imf->imf_inm; 427 if (inm == NULL) 428 continue; 429 if ((ifp == NULL || (inm->inm_ifp == ifp)) && 430 in_hosteq(inm->inm_addr, gsin->sin_addr)) { 431 break; 432 } 433 } 434 return (imf); 435 } 436 437 /* 438 * Find an IPv4 multicast source entry for this imo which matches 439 * the given group index for this socket, and source address. 440 * 441 * NOTE: This does not check if the entry is in-mode, merely if 442 * it exists, which may not be the desired behaviour. 443 */ 444 static struct in_msource * 445 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) 446 { 447 struct ip_msource find; 448 struct ip_msource *ims; 449 const sockunion_t *psa; 450 451 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 452 453 /* Source trees are keyed in host byte order. */ 454 psa = (const sockunion_t *)src; 455 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 456 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 457 458 return ((struct in_msource *)ims); 459 } 460 461 /* 462 * Perform filtering for multicast datagrams on a socket by group and source. 463 * 464 * Returns 0 if a datagram should be allowed through, or various error codes 465 * if the socket was not a member of the group, or the source was muted, etc. 466 */ 467 int 468 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 469 const struct sockaddr *group, const struct sockaddr *src) 470 { 471 struct in_mfilter *imf; 472 struct in_msource *ims; 473 int mode; 474 475 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 476 477 imf = imo_match_group(imo, ifp, group); 478 if (imf == NULL) 479 return (MCAST_NOTGMEMBER); 480 481 /* 482 * Check if the source was included in an (S,G) join. 483 * Allow reception on exclusive memberships by default, 484 * reject reception on inclusive memberships by default. 485 * Exclude source only if an in-mode exclude filter exists. 486 * Include source only if an in-mode include filter exists. 487 * NOTE: We are comparing group state here at IGMP t1 (now) 488 * with socket-layer t0 (since last downcall). 489 */ 490 mode = imf->imf_st[1]; 491 ims = imo_match_source(imf, src); 492 493 if ((ims == NULL && mode == MCAST_INCLUDE) || 494 (ims != NULL && ims->imsl_st[0] != mode)) 495 return (MCAST_NOTSMEMBER); 496 497 return (MCAST_PASS); 498 } 499 500 /* 501 * Find and return a reference to an in_multi record for (ifp, group), 502 * and bump its reference count. 503 * If one does not exist, try to allocate it, and update link-layer multicast 504 * filters on ifp to listen for group. 505 * Assumes the IN_MULTI lock is held across the call. 506 * Return 0 if successful, otherwise return an appropriate error code. 507 */ 508 static int 509 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 510 struct in_multi **pinm) 511 { 512 struct sockaddr_in gsin; 513 struct ifmultiaddr *ifma; 514 struct in_ifinfo *ii; 515 struct in_multi *inm; 516 int error; 517 518 IN_MULTI_LOCK_ASSERT(); 519 520 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 521 IN_MULTI_LIST_LOCK(); 522 inm = inm_lookup(ifp, *group); 523 if (inm != NULL) { 524 /* 525 * If we already joined this group, just bump the 526 * refcount and return it. 527 */ 528 KASSERT(inm->inm_refcount >= 1, 529 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 530 inm_acquire_locked(inm); 531 *pinm = inm; 532 } 533 IN_MULTI_LIST_UNLOCK(); 534 if (inm != NULL) 535 return (0); 536 537 memset(&gsin, 0, sizeof(gsin)); 538 gsin.sin_family = AF_INET; 539 gsin.sin_len = sizeof(struct sockaddr_in); 540 gsin.sin_addr = *group; 541 542 /* 543 * Check if a link-layer group is already associated 544 * with this network-layer group on the given ifnet. 545 */ 546 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 547 if (error != 0) 548 return (error); 549 550 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 551 IN_MULTI_LIST_LOCK(); 552 IF_ADDR_WLOCK(ifp); 553 554 /* 555 * If something other than netinet is occupying the link-layer 556 * group, print a meaningful error message and back out of 557 * the allocation. 558 * Otherwise, bump the refcount on the existing network-layer 559 * group association and return it. 560 */ 561 if (ifma->ifma_protospec != NULL) { 562 inm = (struct in_multi *)ifma->ifma_protospec; 563 #ifdef INVARIANTS 564 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 565 __func__)); 566 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 567 ("%s: ifma not AF_INET", __func__)); 568 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 569 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 570 !in_hosteq(inm->inm_addr, *group)) { 571 char addrbuf[INET_ADDRSTRLEN]; 572 573 panic("%s: ifma %p is inconsistent with %p (%s)", 574 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); 575 } 576 #endif 577 inm_acquire_locked(inm); 578 *pinm = inm; 579 goto out_locked; 580 } 581 582 IF_ADDR_WLOCK_ASSERT(ifp); 583 584 /* 585 * A new in_multi record is needed; allocate and initialize it. 586 * We DO NOT perform an IGMP join as the in_ layer may need to 587 * push an initial source list down to IGMP to support SSM. 588 * 589 * The initial source filter state is INCLUDE, {} as per the RFC. 590 */ 591 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 592 if (inm == NULL) { 593 IF_ADDR_WUNLOCK(ifp); 594 IN_MULTI_LIST_UNLOCK(); 595 if_delmulti_ifma(ifma); 596 return (ENOMEM); 597 } 598 inm->inm_addr = *group; 599 inm->inm_ifp = ifp; 600 inm->inm_igi = ii->ii_igmp; 601 inm->inm_ifma = ifma; 602 inm->inm_refcount = 1; 603 inm->inm_state = IGMP_NOT_MEMBER; 604 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 605 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 606 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 607 RB_INIT(&inm->inm_srcs); 608 609 ifma->ifma_protospec = inm; 610 611 *pinm = inm; 612 out_locked: 613 IF_ADDR_WUNLOCK(ifp); 614 IN_MULTI_LIST_UNLOCK(); 615 return (0); 616 } 617 618 /* 619 * Drop a reference to an in_multi record. 620 * 621 * If the refcount drops to 0, free the in_multi record and 622 * delete the underlying link-layer membership. 623 */ 624 static void 625 inm_release(struct in_multi *inm) 626 { 627 struct ifmultiaddr *ifma; 628 struct ifnet *ifp; 629 630 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 631 MPASS(inm->inm_refcount == 0); 632 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 633 634 ifma = inm->inm_ifma; 635 ifp = inm->inm_ifp; 636 637 /* XXX this access is not covered by IF_ADDR_LOCK */ 638 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 639 if (ifp != NULL) { 640 CURVNET_SET(ifp->if_vnet); 641 inm_purge(inm); 642 free(inm, M_IPMADDR); 643 if_delmulti_ifma_flags(ifma, 1); 644 CURVNET_RESTORE(); 645 if_rele(ifp); 646 } else { 647 inm_purge(inm); 648 free(inm, M_IPMADDR); 649 if_delmulti_ifma_flags(ifma, 1); 650 } 651 } 652 653 /* 654 * Clear recorded source entries for a group. 655 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 656 * FIXME: Should reap. 657 */ 658 void 659 inm_clear_recorded(struct in_multi *inm) 660 { 661 struct ip_msource *ims; 662 663 IN_MULTI_LIST_LOCK_ASSERT(); 664 665 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 666 if (ims->ims_stp) { 667 ims->ims_stp = 0; 668 --inm->inm_st[1].iss_rec; 669 } 670 } 671 KASSERT(inm->inm_st[1].iss_rec == 0, 672 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 673 } 674 675 /* 676 * Record a source as pending for a Source-Group IGMPv3 query. 677 * This lives here as it modifies the shared tree. 678 * 679 * inm is the group descriptor. 680 * naddr is the address of the source to record in network-byte order. 681 * 682 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 683 * lazy-allocate a source node in response to an SG query. 684 * Otherwise, no allocation is performed. This saves some memory 685 * with the trade-off that the source will not be reported to the 686 * router if joined in the window between the query response and 687 * the group actually being joined on the local host. 688 * 689 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 690 * This turns off the allocation of a recorded source entry if 691 * the group has not been joined. 692 * 693 * Return 0 if the source didn't exist or was already marked as recorded. 694 * Return 1 if the source was marked as recorded by this function. 695 * Return <0 if any error occurred (negated errno code). 696 */ 697 int 698 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 699 { 700 struct ip_msource find; 701 struct ip_msource *ims, *nims; 702 703 IN_MULTI_LIST_LOCK_ASSERT(); 704 705 find.ims_haddr = ntohl(naddr); 706 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 707 if (ims && ims->ims_stp) 708 return (0); 709 if (ims == NULL) { 710 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 711 return (-ENOSPC); 712 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 713 M_NOWAIT | M_ZERO); 714 if (nims == NULL) 715 return (-ENOMEM); 716 nims->ims_haddr = find.ims_haddr; 717 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 718 ++inm->inm_nsrc; 719 ims = nims; 720 } 721 722 /* 723 * Mark the source as recorded and update the recorded 724 * source count. 725 */ 726 ++ims->ims_stp; 727 ++inm->inm_st[1].iss_rec; 728 729 return (1); 730 } 731 732 /* 733 * Return a pointer to an in_msource owned by an in_mfilter, 734 * given its source address. 735 * Lazy-allocate if needed. If this is a new entry its filter state is 736 * undefined at t0. 737 * 738 * imf is the filter set being modified. 739 * haddr is the source address in *host* byte-order. 740 * 741 * SMPng: May be called with locks held; malloc must not block. 742 */ 743 static int 744 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 745 struct in_msource **plims) 746 { 747 struct ip_msource find; 748 struct ip_msource *ims, *nims; 749 struct in_msource *lims; 750 int error; 751 752 error = 0; 753 ims = NULL; 754 lims = NULL; 755 756 /* key is host byte order */ 757 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 758 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 759 lims = (struct in_msource *)ims; 760 if (lims == NULL) { 761 if (imf->imf_nsrc == in_mcast_maxsocksrc) 762 return (ENOSPC); 763 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 764 M_NOWAIT | M_ZERO); 765 if (nims == NULL) 766 return (ENOMEM); 767 lims = (struct in_msource *)nims; 768 lims->ims_haddr = find.ims_haddr; 769 lims->imsl_st[0] = MCAST_UNDEFINED; 770 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 771 ++imf->imf_nsrc; 772 } 773 774 *plims = lims; 775 776 return (error); 777 } 778 779 /* 780 * Graft a source entry into an existing socket-layer filter set, 781 * maintaining any required invariants and checking allocations. 782 * 783 * The source is marked as being in the new filter mode at t1. 784 * 785 * Return the pointer to the new node, otherwise return NULL. 786 */ 787 static struct in_msource * 788 imf_graft(struct in_mfilter *imf, const uint8_t st1, 789 const struct sockaddr_in *psin) 790 { 791 struct ip_msource *nims; 792 struct in_msource *lims; 793 794 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 795 M_NOWAIT | M_ZERO); 796 if (nims == NULL) 797 return (NULL); 798 lims = (struct in_msource *)nims; 799 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 800 lims->imsl_st[0] = MCAST_UNDEFINED; 801 lims->imsl_st[1] = st1; 802 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 803 ++imf->imf_nsrc; 804 805 return (lims); 806 } 807 808 /* 809 * Prune a source entry from an existing socket-layer filter set, 810 * maintaining any required invariants and checking allocations. 811 * 812 * The source is marked as being left at t1, it is not freed. 813 * 814 * Return 0 if no error occurred, otherwise return an errno value. 815 */ 816 static int 817 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 818 { 819 struct ip_msource find; 820 struct ip_msource *ims; 821 struct in_msource *lims; 822 823 /* key is host byte order */ 824 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 825 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 826 if (ims == NULL) 827 return (ENOENT); 828 lims = (struct in_msource *)ims; 829 lims->imsl_st[1] = MCAST_UNDEFINED; 830 return (0); 831 } 832 833 /* 834 * Revert socket-layer filter set deltas at t1 to t0 state. 835 */ 836 static void 837 imf_rollback(struct in_mfilter *imf) 838 { 839 struct ip_msource *ims, *tims; 840 struct in_msource *lims; 841 842 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 843 lims = (struct in_msource *)ims; 844 if (lims->imsl_st[0] == lims->imsl_st[1]) { 845 /* no change at t1 */ 846 continue; 847 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 848 /* revert change to existing source at t1 */ 849 lims->imsl_st[1] = lims->imsl_st[0]; 850 } else { 851 /* revert source added t1 */ 852 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 853 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 854 free(ims, M_INMFILTER); 855 imf->imf_nsrc--; 856 } 857 } 858 imf->imf_st[1] = imf->imf_st[0]; 859 } 860 861 /* 862 * Mark socket-layer filter set as INCLUDE {} at t1. 863 */ 864 static void 865 imf_leave(struct in_mfilter *imf) 866 { 867 struct ip_msource *ims; 868 struct in_msource *lims; 869 870 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 871 lims = (struct in_msource *)ims; 872 lims->imsl_st[1] = MCAST_UNDEFINED; 873 } 874 imf->imf_st[1] = MCAST_INCLUDE; 875 } 876 877 /* 878 * Mark socket-layer filter set deltas as committed. 879 */ 880 static void 881 imf_commit(struct in_mfilter *imf) 882 { 883 struct ip_msource *ims; 884 struct in_msource *lims; 885 886 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 887 lims = (struct in_msource *)ims; 888 lims->imsl_st[0] = lims->imsl_st[1]; 889 } 890 imf->imf_st[0] = imf->imf_st[1]; 891 } 892 893 /* 894 * Reap unreferenced sources from socket-layer filter set. 895 */ 896 static void 897 imf_reap(struct in_mfilter *imf) 898 { 899 struct ip_msource *ims, *tims; 900 struct in_msource *lims; 901 902 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 903 lims = (struct in_msource *)ims; 904 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 905 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 906 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 907 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 908 free(ims, M_INMFILTER); 909 imf->imf_nsrc--; 910 } 911 } 912 } 913 914 /* 915 * Purge socket-layer filter set. 916 */ 917 static void 918 imf_purge(struct in_mfilter *imf) 919 { 920 struct ip_msource *ims, *tims; 921 922 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 923 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 924 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 925 free(ims, M_INMFILTER); 926 imf->imf_nsrc--; 927 } 928 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 929 KASSERT(RB_EMPTY(&imf->imf_sources), 930 ("%s: imf_sources not empty", __func__)); 931 } 932 933 /* 934 * Look up a source filter entry for a multicast group. 935 * 936 * inm is the group descriptor to work with. 937 * haddr is the host-byte-order IPv4 address to look up. 938 * noalloc may be non-zero to suppress allocation of sources. 939 * *pims will be set to the address of the retrieved or allocated source. 940 * 941 * SMPng: NOTE: may be called with locks held. 942 * Return 0 if successful, otherwise return a non-zero error code. 943 */ 944 static int 945 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 946 const int noalloc, struct ip_msource **pims) 947 { 948 struct ip_msource find; 949 struct ip_msource *ims, *nims; 950 951 find.ims_haddr = haddr; 952 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 953 if (ims == NULL && !noalloc) { 954 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 955 return (ENOSPC); 956 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 957 M_NOWAIT | M_ZERO); 958 if (nims == NULL) 959 return (ENOMEM); 960 nims->ims_haddr = haddr; 961 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 962 ++inm->inm_nsrc; 963 ims = nims; 964 #ifdef KTR 965 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, 966 haddr, ims); 967 #endif 968 } 969 970 *pims = ims; 971 return (0); 972 } 973 974 /* 975 * Merge socket-layer source into IGMP-layer source. 976 * If rollback is non-zero, perform the inverse of the merge. 977 */ 978 static void 979 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 980 const int rollback) 981 { 982 int n = rollback ? -1 : 1; 983 984 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 985 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", 986 __func__, n, ims->ims_haddr); 987 ims->ims_st[1].ex -= n; 988 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 989 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", 990 __func__, n, ims->ims_haddr); 991 ims->ims_st[1].in -= n; 992 } 993 994 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 995 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", 996 __func__, n, ims->ims_haddr); 997 ims->ims_st[1].ex += n; 998 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 999 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", 1000 __func__, n, ims->ims_haddr); 1001 ims->ims_st[1].in += n; 1002 } 1003 } 1004 1005 /* 1006 * Atomically update the global in_multi state, when a membership's 1007 * filter list is being updated in any way. 1008 * 1009 * imf is the per-inpcb-membership group filter pointer. 1010 * A fake imf may be passed for in-kernel consumers. 1011 * 1012 * XXX This is a candidate for a set-symmetric-difference style loop 1013 * which would eliminate the repeated lookup from root of ims nodes, 1014 * as they share the same key space. 1015 * 1016 * If any error occurred this function will back out of refcounts 1017 * and return a non-zero value. 1018 */ 1019 static int 1020 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1021 { 1022 struct ip_msource *ims, *nims; 1023 struct in_msource *lims; 1024 int schanged, error; 1025 int nsrc0, nsrc1; 1026 1027 schanged = 0; 1028 error = 0; 1029 nsrc1 = nsrc0 = 0; 1030 IN_MULTI_LIST_LOCK_ASSERT(); 1031 1032 /* 1033 * Update the source filters first, as this may fail. 1034 * Maintain count of in-mode filters at t0, t1. These are 1035 * used to work out if we transition into ASM mode or not. 1036 * Maintain a count of source filters whose state was 1037 * actually modified by this operation. 1038 */ 1039 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1040 lims = (struct in_msource *)ims; 1041 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 1042 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 1043 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 1044 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 1045 ++schanged; 1046 if (error) 1047 break; 1048 ims_merge(nims, lims, 0); 1049 } 1050 if (error) { 1051 struct ip_msource *bims; 1052 1053 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 1054 lims = (struct in_msource *)ims; 1055 if (lims->imsl_st[0] == lims->imsl_st[1]) 1056 continue; 1057 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 1058 if (bims == NULL) 1059 continue; 1060 ims_merge(bims, lims, 1); 1061 } 1062 goto out_reap; 1063 } 1064 1065 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1066 __func__, nsrc0, nsrc1); 1067 1068 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1069 if (imf->imf_st[0] == imf->imf_st[1] && 1070 imf->imf_st[1] == MCAST_INCLUDE) { 1071 if (nsrc1 == 0) { 1072 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1073 --inm->inm_st[1].iss_in; 1074 } 1075 } 1076 1077 /* Handle filter mode transition on socket. */ 1078 if (imf->imf_st[0] != imf->imf_st[1]) { 1079 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1080 __func__, imf->imf_st[0], imf->imf_st[1]); 1081 1082 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1083 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1084 --inm->inm_st[1].iss_ex; 1085 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1086 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1087 --inm->inm_st[1].iss_in; 1088 } 1089 1090 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1091 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1092 inm->inm_st[1].iss_ex++; 1093 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1094 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1095 inm->inm_st[1].iss_in++; 1096 } 1097 } 1098 1099 /* 1100 * Track inm filter state in terms of listener counts. 1101 * If there are any exclusive listeners, stack-wide 1102 * membership is exclusive. 1103 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1104 * If no listeners remain, state is undefined at t1, 1105 * and the IGMP lifecycle for this group should finish. 1106 */ 1107 if (inm->inm_st[1].iss_ex > 0) { 1108 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1109 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1110 } else if (inm->inm_st[1].iss_in > 0) { 1111 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1112 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1113 } else { 1114 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1115 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1116 } 1117 1118 /* Decrement ASM listener count on transition out of ASM mode. */ 1119 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1120 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1121 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1122 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1123 --inm->inm_st[1].iss_asm; 1124 } 1125 } 1126 1127 /* Increment ASM listener count on transition to ASM mode. */ 1128 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1129 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1130 inm->inm_st[1].iss_asm++; 1131 } 1132 1133 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1134 inm_print(inm); 1135 1136 out_reap: 1137 if (schanged > 0) { 1138 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1139 inm_reap(inm); 1140 } 1141 return (error); 1142 } 1143 1144 /* 1145 * Mark an in_multi's filter set deltas as committed. 1146 * Called by IGMP after a state change has been enqueued. 1147 */ 1148 void 1149 inm_commit(struct in_multi *inm) 1150 { 1151 struct ip_msource *ims; 1152 1153 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1154 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1155 inm_print(inm); 1156 1157 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1158 ims->ims_st[0] = ims->ims_st[1]; 1159 } 1160 inm->inm_st[0] = inm->inm_st[1]; 1161 } 1162 1163 /* 1164 * Reap unreferenced nodes from an in_multi's filter set. 1165 */ 1166 static void 1167 inm_reap(struct in_multi *inm) 1168 { 1169 struct ip_msource *ims, *tims; 1170 1171 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1172 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1173 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1174 ims->ims_stp != 0) 1175 continue; 1176 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1177 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1178 free(ims, M_IPMSOURCE); 1179 inm->inm_nsrc--; 1180 } 1181 } 1182 1183 /* 1184 * Purge all source nodes from an in_multi's filter set. 1185 */ 1186 static void 1187 inm_purge(struct in_multi *inm) 1188 { 1189 struct ip_msource *ims, *tims; 1190 1191 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1192 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1193 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1194 free(ims, M_IPMSOURCE); 1195 inm->inm_nsrc--; 1196 } 1197 } 1198 1199 /* 1200 * Join a multicast group; unlocked entry point. 1201 * 1202 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1203 * is not held. Fortunately, ifp is unlikely to have been detached 1204 * at this point, so we assume it's OK to recurse. 1205 */ 1206 int 1207 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1208 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1209 { 1210 int error; 1211 1212 IN_MULTI_LOCK(); 1213 error = in_joingroup_locked(ifp, gina, imf, pinm); 1214 IN_MULTI_UNLOCK(); 1215 1216 return (error); 1217 } 1218 1219 /* 1220 * Join a multicast group; real entry point. 1221 * 1222 * Only preserves atomicity at inm level. 1223 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1224 * 1225 * If the IGMP downcall fails, the group is not joined, and an error 1226 * code is returned. 1227 */ 1228 int 1229 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1230 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1231 { 1232 struct in_mfilter timf; 1233 struct in_multi *inm; 1234 int error; 1235 1236 IN_MULTI_LOCK_ASSERT(); 1237 IN_MULTI_LIST_UNLOCK_ASSERT(); 1238 1239 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, 1240 ntohl(gina->s_addr), ifp, ifp->if_xname); 1241 1242 error = 0; 1243 inm = NULL; 1244 1245 /* 1246 * If no imf was specified (i.e. kernel consumer), 1247 * fake one up and assume it is an ASM join. 1248 */ 1249 if (imf == NULL) { 1250 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1251 imf = &timf; 1252 } 1253 1254 error = in_getmulti(ifp, gina, &inm); 1255 if (error) { 1256 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1257 return (error); 1258 } 1259 IN_MULTI_LIST_LOCK(); 1260 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1261 error = inm_merge(inm, imf); 1262 if (error) { 1263 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1264 goto out_inm_release; 1265 } 1266 1267 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1268 error = igmp_change_state(inm); 1269 if (error) { 1270 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1271 goto out_inm_release; 1272 } 1273 1274 out_inm_release: 1275 if (error) { 1276 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1277 IF_ADDR_WLOCK(ifp); 1278 inm_release_deferred(inm); 1279 IF_ADDR_WUNLOCK(ifp); 1280 } else { 1281 *pinm = inm; 1282 } 1283 IN_MULTI_LIST_UNLOCK(); 1284 1285 return (error); 1286 } 1287 1288 /* 1289 * Leave a multicast group; unlocked entry point. 1290 */ 1291 int 1292 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1293 { 1294 int error; 1295 1296 IN_MULTI_LOCK(); 1297 error = in_leavegroup_locked(inm, imf); 1298 IN_MULTI_UNLOCK(); 1299 1300 return (error); 1301 } 1302 1303 /* 1304 * Leave a multicast group; real entry point. 1305 * All source filters will be expunged. 1306 * 1307 * Only preserves atomicity at inm level. 1308 * 1309 * Holding the write lock for the INP which contains imf 1310 * is highly advisable. We can't assert for it as imf does not 1311 * contain a back-pointer to the owning inp. 1312 * 1313 * Note: This is not the same as inm_release(*) as this function also 1314 * makes a state change downcall into IGMP. 1315 */ 1316 int 1317 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1318 { 1319 struct in_mfilter timf; 1320 int error; 1321 1322 IN_MULTI_LOCK_ASSERT(); 1323 IN_MULTI_LIST_UNLOCK_ASSERT(); 1324 1325 error = 0; 1326 1327 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, 1328 inm, ntohl(inm->inm_addr.s_addr), 1329 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1330 imf); 1331 1332 /* 1333 * If no imf was specified (i.e. kernel consumer), 1334 * fake one up and assume it is an ASM join. 1335 */ 1336 if (imf == NULL) { 1337 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1338 imf = &timf; 1339 } 1340 1341 /* 1342 * Begin state merge transaction at IGMP layer. 1343 * 1344 * As this particular invocation should not cause any memory 1345 * to be allocated, and there is no opportunity to roll back 1346 * the transaction, it MUST NOT fail. 1347 */ 1348 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1349 IN_MULTI_LIST_LOCK(); 1350 error = inm_merge(inm, imf); 1351 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1352 1353 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1354 CURVNET_SET(inm->inm_ifp->if_vnet); 1355 error = igmp_change_state(inm); 1356 IF_ADDR_WLOCK(inm->inm_ifp); 1357 inm_release_deferred(inm); 1358 IF_ADDR_WUNLOCK(inm->inm_ifp); 1359 IN_MULTI_LIST_UNLOCK(); 1360 CURVNET_RESTORE(); 1361 if (error) 1362 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1363 1364 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1365 1366 return (error); 1367 } 1368 1369 /*#ifndef BURN_BRIDGES*/ 1370 /* 1371 * Join an IPv4 multicast group in (*,G) exclusive mode. 1372 * The group must be a 224.0.0.0/24 link-scope group. 1373 * This KPI is for legacy kernel consumers only. 1374 */ 1375 struct in_multi * 1376 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1377 { 1378 struct in_multi *pinm; 1379 int error; 1380 #ifdef INVARIANTS 1381 char addrbuf[INET_ADDRSTRLEN]; 1382 #endif 1383 1384 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1385 ("%s: %s not in 224.0.0.0/24", __func__, 1386 inet_ntoa_r(*ap, addrbuf))); 1387 1388 error = in_joingroup(ifp, ap, NULL, &pinm); 1389 if (error != 0) 1390 pinm = NULL; 1391 1392 return (pinm); 1393 } 1394 1395 /* 1396 * Block or unblock an ASM multicast source on an inpcb. 1397 * This implements the delta-based API described in RFC 3678. 1398 * 1399 * The delta-based API applies only to exclusive-mode memberships. 1400 * An IGMP downcall will be performed. 1401 * 1402 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1403 * 1404 * Return 0 if successful, otherwise return an appropriate error code. 1405 */ 1406 static int 1407 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1408 { 1409 struct group_source_req gsr; 1410 struct rm_priotracker in_ifa_tracker; 1411 sockunion_t *gsa, *ssa; 1412 struct ifnet *ifp; 1413 struct in_mfilter *imf; 1414 struct ip_moptions *imo; 1415 struct in_msource *ims; 1416 struct in_multi *inm; 1417 uint16_t fmode; 1418 int error, doblock; 1419 1420 ifp = NULL; 1421 error = 0; 1422 doblock = 0; 1423 1424 memset(&gsr, 0, sizeof(struct group_source_req)); 1425 gsa = (sockunion_t *)&gsr.gsr_group; 1426 ssa = (sockunion_t *)&gsr.gsr_source; 1427 1428 switch (sopt->sopt_name) { 1429 case IP_BLOCK_SOURCE: 1430 case IP_UNBLOCK_SOURCE: { 1431 struct ip_mreq_source mreqs; 1432 1433 error = sooptcopyin(sopt, &mreqs, 1434 sizeof(struct ip_mreq_source), 1435 sizeof(struct ip_mreq_source)); 1436 if (error) 1437 return (error); 1438 1439 gsa->sin.sin_family = AF_INET; 1440 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1441 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1442 1443 ssa->sin.sin_family = AF_INET; 1444 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1445 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1446 1447 if (!in_nullhost(mreqs.imr_interface)) { 1448 IN_IFADDR_RLOCK(&in_ifa_tracker); 1449 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1450 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1451 } 1452 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1453 doblock = 1; 1454 1455 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1456 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1457 break; 1458 } 1459 1460 case MCAST_BLOCK_SOURCE: 1461 case MCAST_UNBLOCK_SOURCE: 1462 error = sooptcopyin(sopt, &gsr, 1463 sizeof(struct group_source_req), 1464 sizeof(struct group_source_req)); 1465 if (error) 1466 return (error); 1467 1468 if (gsa->sin.sin_family != AF_INET || 1469 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1470 return (EINVAL); 1471 1472 if (ssa->sin.sin_family != AF_INET || 1473 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1474 return (EINVAL); 1475 1476 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1477 return (EADDRNOTAVAIL); 1478 1479 ifp = ifnet_byindex(gsr.gsr_interface); 1480 1481 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1482 doblock = 1; 1483 break; 1484 1485 default: 1486 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1487 __func__, sopt->sopt_name); 1488 return (EOPNOTSUPP); 1489 break; 1490 } 1491 1492 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1493 return (EINVAL); 1494 1495 IN_MULTI_LOCK(); 1496 1497 /* 1498 * Check if we are actually a member of this group. 1499 */ 1500 imo = inp_findmoptions(inp); 1501 imf = imo_match_group(imo, ifp, &gsa->sa); 1502 if (imf == NULL) { 1503 error = EADDRNOTAVAIL; 1504 goto out_inp_locked; 1505 } 1506 inm = imf->imf_inm; 1507 1508 /* 1509 * Attempting to use the delta-based API on an 1510 * non exclusive-mode membership is an error. 1511 */ 1512 fmode = imf->imf_st[0]; 1513 if (fmode != MCAST_EXCLUDE) { 1514 error = EINVAL; 1515 goto out_inp_locked; 1516 } 1517 1518 /* 1519 * Deal with error cases up-front: 1520 * Asked to block, but already blocked; or 1521 * Asked to unblock, but nothing to unblock. 1522 * If adding a new block entry, allocate it. 1523 */ 1524 ims = imo_match_source(imf, &ssa->sa); 1525 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1526 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, 1527 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); 1528 error = EADDRNOTAVAIL; 1529 goto out_inp_locked; 1530 } 1531 1532 INP_WLOCK_ASSERT(inp); 1533 1534 /* 1535 * Begin state merge transaction at socket layer. 1536 */ 1537 if (doblock) { 1538 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1539 ims = imf_graft(imf, fmode, &ssa->sin); 1540 if (ims == NULL) 1541 error = ENOMEM; 1542 } else { 1543 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1544 error = imf_prune(imf, &ssa->sin); 1545 } 1546 1547 if (error) { 1548 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1549 goto out_imf_rollback; 1550 } 1551 1552 /* 1553 * Begin state merge transaction at IGMP layer. 1554 */ 1555 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1556 IN_MULTI_LIST_LOCK(); 1557 error = inm_merge(inm, imf); 1558 if (error) { 1559 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1560 IN_MULTI_LIST_UNLOCK(); 1561 goto out_imf_rollback; 1562 } 1563 1564 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1565 error = igmp_change_state(inm); 1566 IN_MULTI_LIST_UNLOCK(); 1567 if (error) 1568 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1569 1570 out_imf_rollback: 1571 if (error) 1572 imf_rollback(imf); 1573 else 1574 imf_commit(imf); 1575 1576 imf_reap(imf); 1577 1578 out_inp_locked: 1579 INP_WUNLOCK(inp); 1580 IN_MULTI_UNLOCK(); 1581 return (error); 1582 } 1583 1584 /* 1585 * Given an inpcb, return its multicast options structure pointer. Accepts 1586 * an unlocked inpcb pointer, but will return it locked. May sleep. 1587 * 1588 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1589 * SMPng: NOTE: Returns with the INP write lock held. 1590 */ 1591 static struct ip_moptions * 1592 inp_findmoptions(struct inpcb *inp) 1593 { 1594 struct ip_moptions *imo; 1595 1596 INP_WLOCK(inp); 1597 if (inp->inp_moptions != NULL) 1598 return (inp->inp_moptions); 1599 1600 INP_WUNLOCK(inp); 1601 1602 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1603 1604 imo->imo_multicast_ifp = NULL; 1605 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1606 imo->imo_multicast_vif = -1; 1607 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1608 imo->imo_multicast_loop = in_mcast_loop; 1609 STAILQ_INIT(&imo->imo_head); 1610 1611 INP_WLOCK(inp); 1612 if (inp->inp_moptions != NULL) { 1613 free(imo, M_IPMOPTS); 1614 return (inp->inp_moptions); 1615 } 1616 inp->inp_moptions = imo; 1617 return (imo); 1618 } 1619 1620 static void 1621 inp_gcmoptions(struct ip_moptions *imo) 1622 { 1623 struct in_mfilter *imf; 1624 struct in_multi *inm; 1625 struct ifnet *ifp; 1626 1627 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { 1628 ip_mfilter_remove(&imo->imo_head, imf); 1629 1630 imf_leave(imf); 1631 if ((inm = imf->imf_inm) != NULL) { 1632 if ((ifp = inm->inm_ifp) != NULL) { 1633 CURVNET_SET(ifp->if_vnet); 1634 (void)in_leavegroup(inm, imf); 1635 CURVNET_RESTORE(); 1636 } else { 1637 (void)in_leavegroup(inm, imf); 1638 } 1639 } 1640 ip_mfilter_free(imf); 1641 } 1642 free(imo, M_IPMOPTS); 1643 } 1644 1645 /* 1646 * Discard the IP multicast options (and source filters). To minimize 1647 * the amount of work done while holding locks such as the INP's 1648 * pcbinfo lock (which is used in the receive path), the free 1649 * operation is deferred to the epoch callback task. 1650 */ 1651 void 1652 inp_freemoptions(struct ip_moptions *imo) 1653 { 1654 if (imo == NULL) 1655 return; 1656 inp_gcmoptions(imo); 1657 } 1658 1659 /* 1660 * Atomically get source filters on a socket for an IPv4 multicast group. 1661 * Called with INP lock held; returns with lock released. 1662 */ 1663 static int 1664 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1665 { 1666 struct __msfilterreq msfr; 1667 sockunion_t *gsa; 1668 struct ifnet *ifp; 1669 struct ip_moptions *imo; 1670 struct in_mfilter *imf; 1671 struct ip_msource *ims; 1672 struct in_msource *lims; 1673 struct sockaddr_in *psin; 1674 struct sockaddr_storage *ptss; 1675 struct sockaddr_storage *tss; 1676 int error; 1677 size_t nsrcs, ncsrcs; 1678 1679 INP_WLOCK_ASSERT(inp); 1680 1681 imo = inp->inp_moptions; 1682 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1683 1684 INP_WUNLOCK(inp); 1685 1686 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1687 sizeof(struct __msfilterreq)); 1688 if (error) 1689 return (error); 1690 1691 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1692 return (EINVAL); 1693 1694 ifp = ifnet_byindex(msfr.msfr_ifindex); 1695 if (ifp == NULL) 1696 return (EINVAL); 1697 1698 INP_WLOCK(inp); 1699 1700 /* 1701 * Lookup group on the socket. 1702 */ 1703 gsa = (sockunion_t *)&msfr.msfr_group; 1704 imf = imo_match_group(imo, ifp, &gsa->sa); 1705 if (imf == NULL) { 1706 INP_WUNLOCK(inp); 1707 return (EADDRNOTAVAIL); 1708 } 1709 1710 /* 1711 * Ignore memberships which are in limbo. 1712 */ 1713 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1714 INP_WUNLOCK(inp); 1715 return (EAGAIN); 1716 } 1717 msfr.msfr_fmode = imf->imf_st[1]; 1718 1719 /* 1720 * If the user specified a buffer, copy out the source filter 1721 * entries to userland gracefully. 1722 * We only copy out the number of entries which userland 1723 * has asked for, but we always tell userland how big the 1724 * buffer really needs to be. 1725 */ 1726 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1727 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1728 tss = NULL; 1729 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1730 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1731 M_TEMP, M_NOWAIT | M_ZERO); 1732 if (tss == NULL) { 1733 INP_WUNLOCK(inp); 1734 return (ENOBUFS); 1735 } 1736 } 1737 1738 /* 1739 * Count number of sources in-mode at t0. 1740 * If buffer space exists and remains, copy out source entries. 1741 */ 1742 nsrcs = msfr.msfr_nsrcs; 1743 ncsrcs = 0; 1744 ptss = tss; 1745 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1746 lims = (struct in_msource *)ims; 1747 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1748 lims->imsl_st[0] != imf->imf_st[0]) 1749 continue; 1750 ++ncsrcs; 1751 if (tss != NULL && nsrcs > 0) { 1752 psin = (struct sockaddr_in *)ptss; 1753 psin->sin_family = AF_INET; 1754 psin->sin_len = sizeof(struct sockaddr_in); 1755 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1756 psin->sin_port = 0; 1757 ++ptss; 1758 --nsrcs; 1759 } 1760 } 1761 1762 INP_WUNLOCK(inp); 1763 1764 if (tss != NULL) { 1765 error = copyout(tss, msfr.msfr_srcs, 1766 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1767 free(tss, M_TEMP); 1768 if (error) 1769 return (error); 1770 } 1771 1772 msfr.msfr_nsrcs = ncsrcs; 1773 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1774 1775 return (error); 1776 } 1777 1778 /* 1779 * Return the IP multicast options in response to user getsockopt(). 1780 */ 1781 int 1782 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1783 { 1784 struct rm_priotracker in_ifa_tracker; 1785 struct ip_mreqn mreqn; 1786 struct ip_moptions *imo; 1787 struct ifnet *ifp; 1788 struct in_ifaddr *ia; 1789 int error, optval; 1790 u_char coptval; 1791 1792 INP_WLOCK(inp); 1793 imo = inp->inp_moptions; 1794 /* 1795 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1796 * or is a divert socket, reject it. 1797 */ 1798 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1799 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1800 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1801 INP_WUNLOCK(inp); 1802 return (EOPNOTSUPP); 1803 } 1804 1805 error = 0; 1806 switch (sopt->sopt_name) { 1807 case IP_MULTICAST_VIF: 1808 if (imo != NULL) 1809 optval = imo->imo_multicast_vif; 1810 else 1811 optval = -1; 1812 INP_WUNLOCK(inp); 1813 error = sooptcopyout(sopt, &optval, sizeof(int)); 1814 break; 1815 1816 case IP_MULTICAST_IF: 1817 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1818 if (imo != NULL) { 1819 ifp = imo->imo_multicast_ifp; 1820 if (!in_nullhost(imo->imo_multicast_addr)) { 1821 mreqn.imr_address = imo->imo_multicast_addr; 1822 } else if (ifp != NULL) { 1823 struct epoch_tracker et; 1824 1825 mreqn.imr_ifindex = ifp->if_index; 1826 NET_EPOCH_ENTER(et); 1827 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 1828 if (ia != NULL) 1829 mreqn.imr_address = 1830 IA_SIN(ia)->sin_addr; 1831 NET_EPOCH_EXIT(et); 1832 } 1833 } 1834 INP_WUNLOCK(inp); 1835 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1836 error = sooptcopyout(sopt, &mreqn, 1837 sizeof(struct ip_mreqn)); 1838 } else { 1839 error = sooptcopyout(sopt, &mreqn.imr_address, 1840 sizeof(struct in_addr)); 1841 } 1842 break; 1843 1844 case IP_MULTICAST_TTL: 1845 if (imo == NULL) 1846 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1847 else 1848 optval = coptval = imo->imo_multicast_ttl; 1849 INP_WUNLOCK(inp); 1850 if (sopt->sopt_valsize == sizeof(u_char)) 1851 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1852 else 1853 error = sooptcopyout(sopt, &optval, sizeof(int)); 1854 break; 1855 1856 case IP_MULTICAST_LOOP: 1857 if (imo == NULL) 1858 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1859 else 1860 optval = coptval = imo->imo_multicast_loop; 1861 INP_WUNLOCK(inp); 1862 if (sopt->sopt_valsize == sizeof(u_char)) 1863 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1864 else 1865 error = sooptcopyout(sopt, &optval, sizeof(int)); 1866 break; 1867 1868 case IP_MSFILTER: 1869 if (imo == NULL) { 1870 error = EADDRNOTAVAIL; 1871 INP_WUNLOCK(inp); 1872 } else { 1873 error = inp_get_source_filters(inp, sopt); 1874 } 1875 break; 1876 1877 default: 1878 INP_WUNLOCK(inp); 1879 error = ENOPROTOOPT; 1880 break; 1881 } 1882 1883 INP_UNLOCK_ASSERT(inp); 1884 1885 return (error); 1886 } 1887 1888 /* 1889 * Look up the ifnet to use for a multicast group membership, 1890 * given the IPv4 address of an interface, and the IPv4 group address. 1891 * 1892 * This routine exists to support legacy multicast applications 1893 * which do not understand that multicast memberships are scoped to 1894 * specific physical links in the networking stack, or which need 1895 * to join link-scope groups before IPv4 addresses are configured. 1896 * 1897 * If inp is non-NULL, use this socket's current FIB number for any 1898 * required FIB lookup. 1899 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1900 * and use its ifp; usually, this points to the default next-hop. 1901 * 1902 * If the FIB lookup fails, attempt to use the first non-loopback 1903 * interface with multicast capability in the system as a 1904 * last resort. The legacy IPv4 ASM API requires that we do 1905 * this in order to allow groups to be joined when the routing 1906 * table has not yet been populated during boot. 1907 * 1908 * Returns NULL if no ifp could be found. 1909 * 1910 * FUTURE: Implement IPv4 source-address selection. 1911 */ 1912 static struct ifnet * 1913 inp_lookup_mcast_ifp(const struct inpcb *inp, 1914 const struct sockaddr_in *gsin, const struct in_addr ina) 1915 { 1916 struct rm_priotracker in_ifa_tracker; 1917 struct ifnet *ifp; 1918 struct nhop_object *nh; 1919 uint32_t fibnum; 1920 1921 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1922 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1923 ("%s: not multicast", __func__)); 1924 1925 ifp = NULL; 1926 if (!in_nullhost(ina)) { 1927 IN_IFADDR_RLOCK(&in_ifa_tracker); 1928 INADDR_TO_IFP(ina, ifp); 1929 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1930 } else { 1931 fibnum = inp ? inp->inp_inc.inc_fibnum : 0; 1932 nh = fib4_lookup(fibnum, gsin->sin_addr, 0, 0, 0); 1933 if (nh != NULL) 1934 ifp = nh->nh_ifp; 1935 else { 1936 struct in_ifaddr *ia; 1937 struct ifnet *mifp; 1938 1939 mifp = NULL; 1940 IN_IFADDR_RLOCK(&in_ifa_tracker); 1941 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1942 mifp = ia->ia_ifp; 1943 if (!(mifp->if_flags & IFF_LOOPBACK) && 1944 (mifp->if_flags & IFF_MULTICAST)) { 1945 ifp = mifp; 1946 break; 1947 } 1948 } 1949 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1950 } 1951 } 1952 1953 return (ifp); 1954 } 1955 1956 /* 1957 * Join an IPv4 multicast group, possibly with a source. 1958 */ 1959 static int 1960 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1961 { 1962 struct group_source_req gsr; 1963 sockunion_t *gsa, *ssa; 1964 struct ifnet *ifp; 1965 struct in_mfilter *imf; 1966 struct ip_moptions *imo; 1967 struct in_multi *inm; 1968 struct in_msource *lims; 1969 int error, is_new; 1970 1971 ifp = NULL; 1972 lims = NULL; 1973 error = 0; 1974 1975 memset(&gsr, 0, sizeof(struct group_source_req)); 1976 gsa = (sockunion_t *)&gsr.gsr_group; 1977 gsa->ss.ss_family = AF_UNSPEC; 1978 ssa = (sockunion_t *)&gsr.gsr_source; 1979 ssa->ss.ss_family = AF_UNSPEC; 1980 1981 switch (sopt->sopt_name) { 1982 case IP_ADD_MEMBERSHIP: { 1983 struct ip_mreqn mreqn; 1984 1985 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) 1986 error = sooptcopyin(sopt, &mreqn, 1987 sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); 1988 else 1989 error = sooptcopyin(sopt, &mreqn, 1990 sizeof(struct ip_mreq), sizeof(struct ip_mreq)); 1991 if (error) 1992 return (error); 1993 1994 gsa->sin.sin_family = AF_INET; 1995 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1996 gsa->sin.sin_addr = mreqn.imr_multiaddr; 1997 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1998 return (EINVAL); 1999 2000 if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && 2001 mreqn.imr_ifindex != 0) 2002 ifp = ifnet_byindex(mreqn.imr_ifindex); 2003 else 2004 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 2005 mreqn.imr_address); 2006 break; 2007 } 2008 case IP_ADD_SOURCE_MEMBERSHIP: { 2009 struct ip_mreq_source mreqs; 2010 2011 error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), 2012 sizeof(struct ip_mreq_source)); 2013 if (error) 2014 return (error); 2015 2016 gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; 2017 gsa->sin.sin_len = ssa->sin.sin_len = 2018 sizeof(struct sockaddr_in); 2019 2020 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2021 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2022 return (EINVAL); 2023 2024 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2025 2026 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 2027 mreqs.imr_interface); 2028 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2029 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2030 break; 2031 } 2032 2033 case MCAST_JOIN_GROUP: 2034 case MCAST_JOIN_SOURCE_GROUP: 2035 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 2036 error = sooptcopyin(sopt, &gsr, 2037 sizeof(struct group_req), 2038 sizeof(struct group_req)); 2039 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2040 error = sooptcopyin(sopt, &gsr, 2041 sizeof(struct group_source_req), 2042 sizeof(struct group_source_req)); 2043 } 2044 if (error) 2045 return (error); 2046 2047 if (gsa->sin.sin_family != AF_INET || 2048 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2049 return (EINVAL); 2050 2051 /* 2052 * Overwrite the port field if present, as the sockaddr 2053 * being copied in may be matched with a binary comparison. 2054 */ 2055 gsa->sin.sin_port = 0; 2056 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2057 if (ssa->sin.sin_family != AF_INET || 2058 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2059 return (EINVAL); 2060 ssa->sin.sin_port = 0; 2061 } 2062 2063 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2064 return (EINVAL); 2065 2066 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2067 return (EADDRNOTAVAIL); 2068 ifp = ifnet_byindex(gsr.gsr_interface); 2069 break; 2070 2071 default: 2072 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2073 __func__, sopt->sopt_name); 2074 return (EOPNOTSUPP); 2075 break; 2076 } 2077 2078 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2079 return (EADDRNOTAVAIL); 2080 2081 IN_MULTI_LOCK(); 2082 2083 /* 2084 * Find the membership in the membership list. 2085 */ 2086 imo = inp_findmoptions(inp); 2087 imf = imo_match_group(imo, ifp, &gsa->sa); 2088 if (imf == NULL) { 2089 is_new = 1; 2090 inm = NULL; 2091 2092 if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { 2093 error = ENOMEM; 2094 goto out_inp_locked; 2095 } 2096 } else { 2097 is_new = 0; 2098 inm = imf->imf_inm; 2099 2100 if (ssa->ss.ss_family != AF_UNSPEC) { 2101 /* 2102 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2103 * is an error. On an existing inclusive membership, 2104 * it just adds the source to the filter list. 2105 */ 2106 if (imf->imf_st[1] != MCAST_INCLUDE) { 2107 error = EINVAL; 2108 goto out_inp_locked; 2109 } 2110 /* 2111 * Throw out duplicates. 2112 * 2113 * XXX FIXME: This makes a naive assumption that 2114 * even if entries exist for *ssa in this imf, 2115 * they will be rejected as dupes, even if they 2116 * are not valid in the current mode (in-mode). 2117 * 2118 * in_msource is transactioned just as for anything 2119 * else in SSM -- but note naive use of inm_graft() 2120 * below for allocating new filter entries. 2121 * 2122 * This is only an issue if someone mixes the 2123 * full-state SSM API with the delta-based API, 2124 * which is discouraged in the relevant RFCs. 2125 */ 2126 lims = imo_match_source(imf, &ssa->sa); 2127 if (lims != NULL /*&& 2128 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2129 error = EADDRNOTAVAIL; 2130 goto out_inp_locked; 2131 } 2132 } else { 2133 /* 2134 * MCAST_JOIN_GROUP on an existing exclusive 2135 * membership is an error; return EADDRINUSE 2136 * to preserve 4.4BSD API idempotence, and 2137 * avoid tedious detour to code below. 2138 * NOTE: This is bending RFC 3678 a bit. 2139 * 2140 * On an existing inclusive membership, this is also 2141 * an error; if you want to change filter mode, 2142 * you must use the userland API setsourcefilter(). 2143 * XXX We don't reject this for imf in UNDEFINED 2144 * state at t1, because allocation of a filter 2145 * is atomic with allocation of a membership. 2146 */ 2147 error = EINVAL; 2148 if (imf->imf_st[1] == MCAST_EXCLUDE) 2149 error = EADDRINUSE; 2150 goto out_inp_locked; 2151 } 2152 } 2153 2154 /* 2155 * Begin state merge transaction at socket layer. 2156 */ 2157 INP_WLOCK_ASSERT(inp); 2158 2159 /* 2160 * Graft new source into filter list for this inpcb's 2161 * membership of the group. The in_multi may not have 2162 * been allocated yet if this is a new membership, however, 2163 * the in_mfilter slot will be allocated and must be initialized. 2164 * 2165 * Note: Grafting of exclusive mode filters doesn't happen 2166 * in this path. 2167 * XXX: Should check for non-NULL lims (node exists but may 2168 * not be in-mode) for interop with full-state API. 2169 */ 2170 if (ssa->ss.ss_family != AF_UNSPEC) { 2171 /* Membership starts in IN mode */ 2172 if (is_new) { 2173 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2174 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2175 if (imf == NULL) { 2176 error = ENOMEM; 2177 goto out_inp_locked; 2178 } 2179 } else { 2180 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2181 } 2182 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2183 if (lims == NULL) { 2184 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2185 __func__); 2186 error = ENOMEM; 2187 goto out_inp_locked; 2188 } 2189 } else { 2190 /* No address specified; Membership starts in EX mode */ 2191 if (is_new) { 2192 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2193 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2194 if (imf == NULL) { 2195 error = ENOMEM; 2196 goto out_inp_locked; 2197 } 2198 } 2199 } 2200 2201 /* 2202 * Begin state merge transaction at IGMP layer. 2203 */ 2204 if (is_new) { 2205 in_pcbref(inp); 2206 INP_WUNLOCK(inp); 2207 2208 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2209 &imf->imf_inm); 2210 2211 INP_WLOCK(inp); 2212 if (in_pcbrele_wlocked(inp)) { 2213 error = ENXIO; 2214 goto out_inp_unlocked; 2215 } 2216 if (error) { 2217 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2218 __func__); 2219 goto out_inp_locked; 2220 } 2221 /* 2222 * NOTE: Refcount from in_joingroup_locked() 2223 * is protecting membership. 2224 */ 2225 ip_mfilter_insert(&imo->imo_head, imf); 2226 } else { 2227 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2228 IN_MULTI_LIST_LOCK(); 2229 error = inm_merge(inm, imf); 2230 if (error) { 2231 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2232 __func__); 2233 IN_MULTI_LIST_UNLOCK(); 2234 imf_rollback(imf); 2235 imf_reap(imf); 2236 goto out_inp_locked; 2237 } 2238 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2239 error = igmp_change_state(inm); 2240 IN_MULTI_LIST_UNLOCK(); 2241 if (error) { 2242 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2243 __func__); 2244 imf_rollback(imf); 2245 imf_reap(imf); 2246 goto out_inp_locked; 2247 } 2248 } 2249 2250 imf_commit(imf); 2251 imf = NULL; 2252 2253 out_inp_locked: 2254 INP_WUNLOCK(inp); 2255 out_inp_unlocked: 2256 IN_MULTI_UNLOCK(); 2257 2258 if (is_new && imf) { 2259 if (imf->imf_inm != NULL) { 2260 IN_MULTI_LIST_LOCK(); 2261 IF_ADDR_WLOCK(ifp); 2262 inm_release_deferred(imf->imf_inm); 2263 IF_ADDR_WUNLOCK(ifp); 2264 IN_MULTI_LIST_UNLOCK(); 2265 } 2266 ip_mfilter_free(imf); 2267 } 2268 return (error); 2269 } 2270 2271 /* 2272 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2273 */ 2274 static int 2275 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2276 { 2277 struct group_source_req gsr; 2278 struct ip_mreq_source mreqs; 2279 struct rm_priotracker in_ifa_tracker; 2280 sockunion_t *gsa, *ssa; 2281 struct ifnet *ifp; 2282 struct in_mfilter *imf; 2283 struct ip_moptions *imo; 2284 struct in_msource *ims; 2285 struct in_multi *inm; 2286 int error; 2287 bool is_final; 2288 2289 ifp = NULL; 2290 error = 0; 2291 is_final = true; 2292 2293 memset(&gsr, 0, sizeof(struct group_source_req)); 2294 gsa = (sockunion_t *)&gsr.gsr_group; 2295 gsa->ss.ss_family = AF_UNSPEC; 2296 ssa = (sockunion_t *)&gsr.gsr_source; 2297 ssa->ss.ss_family = AF_UNSPEC; 2298 2299 switch (sopt->sopt_name) { 2300 case IP_DROP_MEMBERSHIP: 2301 case IP_DROP_SOURCE_MEMBERSHIP: 2302 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2303 error = sooptcopyin(sopt, &mreqs, 2304 sizeof(struct ip_mreq), 2305 sizeof(struct ip_mreq)); 2306 /* 2307 * Swap interface and sourceaddr arguments, 2308 * as ip_mreq and ip_mreq_source are laid 2309 * out differently. 2310 */ 2311 mreqs.imr_interface = mreqs.imr_sourceaddr; 2312 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2313 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2314 error = sooptcopyin(sopt, &mreqs, 2315 sizeof(struct ip_mreq_source), 2316 sizeof(struct ip_mreq_source)); 2317 } 2318 if (error) 2319 return (error); 2320 2321 gsa->sin.sin_family = AF_INET; 2322 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2323 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2324 2325 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2326 ssa->sin.sin_family = AF_INET; 2327 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2328 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2329 } 2330 2331 /* 2332 * Attempt to look up hinted ifp from interface address. 2333 * Fallthrough with null ifp iff lookup fails, to 2334 * preserve 4.4BSD mcast API idempotence. 2335 * XXX NOTE WELL: The RFC 3678 API is preferred because 2336 * using an IPv4 address as a key is racy. 2337 */ 2338 if (!in_nullhost(mreqs.imr_interface)) { 2339 IN_IFADDR_RLOCK(&in_ifa_tracker); 2340 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2341 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 2342 } 2343 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2344 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2345 2346 break; 2347 2348 case MCAST_LEAVE_GROUP: 2349 case MCAST_LEAVE_SOURCE_GROUP: 2350 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2351 error = sooptcopyin(sopt, &gsr, 2352 sizeof(struct group_req), 2353 sizeof(struct group_req)); 2354 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2355 error = sooptcopyin(sopt, &gsr, 2356 sizeof(struct group_source_req), 2357 sizeof(struct group_source_req)); 2358 } 2359 if (error) 2360 return (error); 2361 2362 if (gsa->sin.sin_family != AF_INET || 2363 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2364 return (EINVAL); 2365 2366 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2367 if (ssa->sin.sin_family != AF_INET || 2368 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2369 return (EINVAL); 2370 } 2371 2372 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2373 return (EADDRNOTAVAIL); 2374 2375 ifp = ifnet_byindex(gsr.gsr_interface); 2376 2377 if (ifp == NULL) 2378 return (EADDRNOTAVAIL); 2379 break; 2380 2381 default: 2382 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2383 __func__, sopt->sopt_name); 2384 return (EOPNOTSUPP); 2385 break; 2386 } 2387 2388 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2389 return (EINVAL); 2390 2391 IN_MULTI_LOCK(); 2392 2393 /* 2394 * Find the membership in the membership list. 2395 */ 2396 imo = inp_findmoptions(inp); 2397 imf = imo_match_group(imo, ifp, &gsa->sa); 2398 if (imf == NULL) { 2399 error = EADDRNOTAVAIL; 2400 goto out_inp_locked; 2401 } 2402 inm = imf->imf_inm; 2403 2404 if (ssa->ss.ss_family != AF_UNSPEC) 2405 is_final = false; 2406 2407 /* 2408 * Begin state merge transaction at socket layer. 2409 */ 2410 INP_WLOCK_ASSERT(inp); 2411 2412 /* 2413 * If we were instructed only to leave a given source, do so. 2414 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2415 */ 2416 if (is_final) { 2417 ip_mfilter_remove(&imo->imo_head, imf); 2418 imf_leave(imf); 2419 2420 /* 2421 * Give up the multicast address record to which 2422 * the membership points. 2423 */ 2424 (void) in_leavegroup_locked(imf->imf_inm, imf); 2425 } else { 2426 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2427 error = EADDRNOTAVAIL; 2428 goto out_inp_locked; 2429 } 2430 ims = imo_match_source(imf, &ssa->sa); 2431 if (ims == NULL) { 2432 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", 2433 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); 2434 error = EADDRNOTAVAIL; 2435 goto out_inp_locked; 2436 } 2437 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2438 error = imf_prune(imf, &ssa->sin); 2439 if (error) { 2440 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2441 __func__); 2442 goto out_inp_locked; 2443 } 2444 } 2445 2446 /* 2447 * Begin state merge transaction at IGMP layer. 2448 */ 2449 if (!is_final) { 2450 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2451 IN_MULTI_LIST_LOCK(); 2452 error = inm_merge(inm, imf); 2453 if (error) { 2454 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2455 __func__); 2456 IN_MULTI_LIST_UNLOCK(); 2457 imf_rollback(imf); 2458 imf_reap(imf); 2459 goto out_inp_locked; 2460 } 2461 2462 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2463 error = igmp_change_state(inm); 2464 IN_MULTI_LIST_UNLOCK(); 2465 if (error) { 2466 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2467 __func__); 2468 imf_rollback(imf); 2469 imf_reap(imf); 2470 goto out_inp_locked; 2471 } 2472 } 2473 imf_commit(imf); 2474 imf_reap(imf); 2475 2476 out_inp_locked: 2477 INP_WUNLOCK(inp); 2478 2479 if (is_final && imf) 2480 ip_mfilter_free(imf); 2481 2482 IN_MULTI_UNLOCK(); 2483 return (error); 2484 } 2485 2486 /* 2487 * Select the interface for transmitting IPv4 multicast datagrams. 2488 * 2489 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2490 * may be passed to this socket option. An address of INADDR_ANY or an 2491 * interface index of 0 is used to remove a previous selection. 2492 * When no interface is selected, one is chosen for every send. 2493 */ 2494 static int 2495 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2496 { 2497 struct rm_priotracker in_ifa_tracker; 2498 struct in_addr addr; 2499 struct ip_mreqn mreqn; 2500 struct ifnet *ifp; 2501 struct ip_moptions *imo; 2502 int error; 2503 2504 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2505 /* 2506 * An interface index was specified using the 2507 * Linux-derived ip_mreqn structure. 2508 */ 2509 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2510 sizeof(struct ip_mreqn)); 2511 if (error) 2512 return (error); 2513 2514 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2515 return (EINVAL); 2516 2517 if (mreqn.imr_ifindex == 0) { 2518 ifp = NULL; 2519 } else { 2520 ifp = ifnet_byindex(mreqn.imr_ifindex); 2521 if (ifp == NULL) 2522 return (EADDRNOTAVAIL); 2523 } 2524 } else { 2525 /* 2526 * An interface was specified by IPv4 address. 2527 * This is the traditional BSD usage. 2528 */ 2529 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2530 sizeof(struct in_addr)); 2531 if (error) 2532 return (error); 2533 if (in_nullhost(addr)) { 2534 ifp = NULL; 2535 } else { 2536 IN_IFADDR_RLOCK(&in_ifa_tracker); 2537 INADDR_TO_IFP(addr, ifp); 2538 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 2539 if (ifp == NULL) 2540 return (EADDRNOTAVAIL); 2541 } 2542 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, 2543 ntohl(addr.s_addr)); 2544 } 2545 2546 /* Reject interfaces which do not support multicast. */ 2547 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2548 return (EOPNOTSUPP); 2549 2550 imo = inp_findmoptions(inp); 2551 imo->imo_multicast_ifp = ifp; 2552 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2553 INP_WUNLOCK(inp); 2554 2555 return (0); 2556 } 2557 2558 /* 2559 * Atomically set source filters on a socket for an IPv4 multicast group. 2560 * 2561 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2562 */ 2563 static int 2564 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2565 { 2566 struct __msfilterreq msfr; 2567 sockunion_t *gsa; 2568 struct ifnet *ifp; 2569 struct in_mfilter *imf; 2570 struct ip_moptions *imo; 2571 struct in_multi *inm; 2572 int error; 2573 2574 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2575 sizeof(struct __msfilterreq)); 2576 if (error) 2577 return (error); 2578 2579 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2580 return (ENOBUFS); 2581 2582 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2583 msfr.msfr_fmode != MCAST_INCLUDE)) 2584 return (EINVAL); 2585 2586 if (msfr.msfr_group.ss_family != AF_INET || 2587 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2588 return (EINVAL); 2589 2590 gsa = (sockunion_t *)&msfr.msfr_group; 2591 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2592 return (EINVAL); 2593 2594 gsa->sin.sin_port = 0; /* ignore port */ 2595 2596 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2597 return (EADDRNOTAVAIL); 2598 2599 ifp = ifnet_byindex(msfr.msfr_ifindex); 2600 if (ifp == NULL) 2601 return (EADDRNOTAVAIL); 2602 2603 IN_MULTI_LOCK(); 2604 2605 /* 2606 * Take the INP write lock. 2607 * Check if this socket is a member of this group. 2608 */ 2609 imo = inp_findmoptions(inp); 2610 imf = imo_match_group(imo, ifp, &gsa->sa); 2611 if (imf == NULL) { 2612 error = EADDRNOTAVAIL; 2613 goto out_inp_locked; 2614 } 2615 inm = imf->imf_inm; 2616 2617 /* 2618 * Begin state merge transaction at socket layer. 2619 */ 2620 INP_WLOCK_ASSERT(inp); 2621 2622 imf->imf_st[1] = msfr.msfr_fmode; 2623 2624 /* 2625 * Apply any new source filters, if present. 2626 * Make a copy of the user-space source vector so 2627 * that we may copy them with a single copyin. This 2628 * allows us to deal with page faults up-front. 2629 */ 2630 if (msfr.msfr_nsrcs > 0) { 2631 struct in_msource *lims; 2632 struct sockaddr_in *psin; 2633 struct sockaddr_storage *kss, *pkss; 2634 int i; 2635 2636 INP_WUNLOCK(inp); 2637 2638 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2639 __func__, (unsigned long)msfr.msfr_nsrcs); 2640 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2641 M_TEMP, M_WAITOK); 2642 error = copyin(msfr.msfr_srcs, kss, 2643 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2644 if (error) { 2645 free(kss, M_TEMP); 2646 return (error); 2647 } 2648 2649 INP_WLOCK(inp); 2650 2651 /* 2652 * Mark all source filters as UNDEFINED at t1. 2653 * Restore new group filter mode, as imf_leave() 2654 * will set it to INCLUDE. 2655 */ 2656 imf_leave(imf); 2657 imf->imf_st[1] = msfr.msfr_fmode; 2658 2659 /* 2660 * Update socket layer filters at t1, lazy-allocating 2661 * new entries. This saves a bunch of memory at the 2662 * cost of one RB_FIND() per source entry; duplicate 2663 * entries in the msfr_nsrcs vector are ignored. 2664 * If we encounter an error, rollback transaction. 2665 * 2666 * XXX This too could be replaced with a set-symmetric 2667 * difference like loop to avoid walking from root 2668 * every time, as the key space is common. 2669 */ 2670 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2671 psin = (struct sockaddr_in *)pkss; 2672 if (psin->sin_family != AF_INET) { 2673 error = EAFNOSUPPORT; 2674 break; 2675 } 2676 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2677 error = EINVAL; 2678 break; 2679 } 2680 error = imf_get_source(imf, psin, &lims); 2681 if (error) 2682 break; 2683 lims->imsl_st[1] = imf->imf_st[1]; 2684 } 2685 free(kss, M_TEMP); 2686 } 2687 2688 if (error) 2689 goto out_imf_rollback; 2690 2691 INP_WLOCK_ASSERT(inp); 2692 2693 /* 2694 * Begin state merge transaction at IGMP layer. 2695 */ 2696 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2697 IN_MULTI_LIST_LOCK(); 2698 error = inm_merge(inm, imf); 2699 if (error) { 2700 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2701 IN_MULTI_LIST_UNLOCK(); 2702 goto out_imf_rollback; 2703 } 2704 2705 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2706 error = igmp_change_state(inm); 2707 IN_MULTI_LIST_UNLOCK(); 2708 if (error) 2709 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2710 2711 out_imf_rollback: 2712 if (error) 2713 imf_rollback(imf); 2714 else 2715 imf_commit(imf); 2716 2717 imf_reap(imf); 2718 2719 out_inp_locked: 2720 INP_WUNLOCK(inp); 2721 IN_MULTI_UNLOCK(); 2722 return (error); 2723 } 2724 2725 /* 2726 * Set the IP multicast options in response to user setsockopt(). 2727 * 2728 * Many of the socket options handled in this function duplicate the 2729 * functionality of socket options in the regular unicast API. However, 2730 * it is not possible to merge the duplicate code, because the idempotence 2731 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2732 * the effects of these options must be treated as separate and distinct. 2733 * 2734 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2735 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2736 * is refactored to no longer use vifs. 2737 */ 2738 int 2739 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2740 { 2741 struct ip_moptions *imo; 2742 int error; 2743 struct epoch_tracker et; 2744 2745 error = 0; 2746 2747 /* 2748 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2749 * or is a divert socket, reject it. 2750 */ 2751 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2752 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2753 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2754 return (EOPNOTSUPP); 2755 2756 switch (sopt->sopt_name) { 2757 case IP_MULTICAST_VIF: { 2758 int vifi; 2759 /* 2760 * Select a multicast VIF for transmission. 2761 * Only useful if multicast forwarding is active. 2762 */ 2763 if (legal_vif_num == NULL) { 2764 error = EOPNOTSUPP; 2765 break; 2766 } 2767 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2768 if (error) 2769 break; 2770 if (!legal_vif_num(vifi) && (vifi != -1)) { 2771 error = EINVAL; 2772 break; 2773 } 2774 imo = inp_findmoptions(inp); 2775 imo->imo_multicast_vif = vifi; 2776 INP_WUNLOCK(inp); 2777 break; 2778 } 2779 2780 case IP_MULTICAST_IF: 2781 error = inp_set_multicast_if(inp, sopt); 2782 break; 2783 2784 case IP_MULTICAST_TTL: { 2785 u_char ttl; 2786 2787 /* 2788 * Set the IP time-to-live for outgoing multicast packets. 2789 * The original multicast API required a char argument, 2790 * which is inconsistent with the rest of the socket API. 2791 * We allow either a char or an int. 2792 */ 2793 if (sopt->sopt_valsize == sizeof(u_char)) { 2794 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2795 sizeof(u_char)); 2796 if (error) 2797 break; 2798 } else { 2799 u_int ittl; 2800 2801 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2802 sizeof(u_int)); 2803 if (error) 2804 break; 2805 if (ittl > 255) { 2806 error = EINVAL; 2807 break; 2808 } 2809 ttl = (u_char)ittl; 2810 } 2811 imo = inp_findmoptions(inp); 2812 imo->imo_multicast_ttl = ttl; 2813 INP_WUNLOCK(inp); 2814 break; 2815 } 2816 2817 case IP_MULTICAST_LOOP: { 2818 u_char loop; 2819 2820 /* 2821 * Set the loopback flag for outgoing multicast packets. 2822 * Must be zero or one. The original multicast API required a 2823 * char argument, which is inconsistent with the rest 2824 * of the socket API. We allow either a char or an int. 2825 */ 2826 if (sopt->sopt_valsize == sizeof(u_char)) { 2827 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2828 sizeof(u_char)); 2829 if (error) 2830 break; 2831 } else { 2832 u_int iloop; 2833 2834 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2835 sizeof(u_int)); 2836 if (error) 2837 break; 2838 loop = (u_char)iloop; 2839 } 2840 imo = inp_findmoptions(inp); 2841 imo->imo_multicast_loop = !!loop; 2842 INP_WUNLOCK(inp); 2843 break; 2844 } 2845 2846 case IP_ADD_MEMBERSHIP: 2847 case IP_ADD_SOURCE_MEMBERSHIP: 2848 case MCAST_JOIN_GROUP: 2849 case MCAST_JOIN_SOURCE_GROUP: 2850 NET_EPOCH_ENTER(et); 2851 error = inp_join_group(inp, sopt); 2852 NET_EPOCH_EXIT(et); 2853 break; 2854 2855 case IP_DROP_MEMBERSHIP: 2856 case IP_DROP_SOURCE_MEMBERSHIP: 2857 case MCAST_LEAVE_GROUP: 2858 case MCAST_LEAVE_SOURCE_GROUP: 2859 error = inp_leave_group(inp, sopt); 2860 break; 2861 2862 case IP_BLOCK_SOURCE: 2863 case IP_UNBLOCK_SOURCE: 2864 case MCAST_BLOCK_SOURCE: 2865 case MCAST_UNBLOCK_SOURCE: 2866 error = inp_block_unblock_source(inp, sopt); 2867 break; 2868 2869 case IP_MSFILTER: 2870 error = inp_set_source_filters(inp, sopt); 2871 break; 2872 2873 default: 2874 error = EOPNOTSUPP; 2875 break; 2876 } 2877 2878 INP_UNLOCK_ASSERT(inp); 2879 2880 return (error); 2881 } 2882 2883 /* 2884 * Expose IGMP's multicast filter mode and source list(s) to userland, 2885 * keyed by (ifindex, group). 2886 * The filter mode is written out as a uint32_t, followed by 2887 * 0..n of struct in_addr. 2888 * For use by ifmcstat(8). 2889 * SMPng: NOTE: unlocked read of ifindex space. 2890 */ 2891 static int 2892 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2893 { 2894 struct in_addr src, group; 2895 struct epoch_tracker et; 2896 struct ifnet *ifp; 2897 struct ifmultiaddr *ifma; 2898 struct in_multi *inm; 2899 struct ip_msource *ims; 2900 int *name; 2901 int retval; 2902 u_int namelen; 2903 uint32_t fmode, ifindex; 2904 2905 name = (int *)arg1; 2906 namelen = arg2; 2907 2908 if (req->newptr != NULL) 2909 return (EPERM); 2910 2911 if (namelen != 2) 2912 return (EINVAL); 2913 2914 ifindex = name[0]; 2915 if (ifindex <= 0 || ifindex > V_if_index) { 2916 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2917 __func__, ifindex); 2918 return (ENOENT); 2919 } 2920 2921 group.s_addr = name[1]; 2922 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2923 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", 2924 __func__, ntohl(group.s_addr)); 2925 return (EINVAL); 2926 } 2927 2928 NET_EPOCH_ENTER(et); 2929 ifp = ifnet_byindex(ifindex); 2930 if (ifp == NULL) { 2931 NET_EPOCH_EXIT(et); 2932 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2933 __func__, ifindex); 2934 return (ENOENT); 2935 } 2936 2937 retval = sysctl_wire_old_buffer(req, 2938 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2939 if (retval) { 2940 NET_EPOCH_EXIT(et); 2941 return (retval); 2942 } 2943 2944 IN_MULTI_LIST_LOCK(); 2945 2946 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2947 if (ifma->ifma_addr->sa_family != AF_INET || 2948 ifma->ifma_protospec == NULL) 2949 continue; 2950 inm = (struct in_multi *)ifma->ifma_protospec; 2951 if (!in_hosteq(inm->inm_addr, group)) 2952 continue; 2953 fmode = inm->inm_st[1].iss_fmode; 2954 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2955 if (retval != 0) 2956 break; 2957 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2958 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, 2959 ims->ims_haddr); 2960 /* 2961 * Only copy-out sources which are in-mode. 2962 */ 2963 if (fmode != ims_get_mode(inm, ims, 1)) { 2964 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2965 __func__); 2966 continue; 2967 } 2968 src.s_addr = htonl(ims->ims_haddr); 2969 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2970 if (retval != 0) 2971 break; 2972 } 2973 } 2974 2975 IN_MULTI_LIST_UNLOCK(); 2976 NET_EPOCH_EXIT(et); 2977 2978 return (retval); 2979 } 2980 2981 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) 2982 2983 static const char *inm_modestrs[] = { 2984 [MCAST_UNDEFINED] = "un", 2985 [MCAST_INCLUDE] = "in", 2986 [MCAST_EXCLUDE] = "ex", 2987 }; 2988 _Static_assert(MCAST_UNDEFINED == 0 && 2989 MCAST_EXCLUDE + 1 == nitems(inm_modestrs), 2990 "inm_modestrs: no longer matches #defines"); 2991 2992 static const char * 2993 inm_mode_str(const int mode) 2994 { 2995 2996 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2997 return (inm_modestrs[mode]); 2998 return ("??"); 2999 } 3000 3001 static const char *inm_statestrs[] = { 3002 [IGMP_NOT_MEMBER] = "not-member", 3003 [IGMP_SILENT_MEMBER] = "silent", 3004 [IGMP_REPORTING_MEMBER] = "reporting", 3005 [IGMP_IDLE_MEMBER] = "idle", 3006 [IGMP_LAZY_MEMBER] = "lazy", 3007 [IGMP_SLEEPING_MEMBER] = "sleeping", 3008 [IGMP_AWAKENING_MEMBER] = "awakening", 3009 [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", 3010 [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", 3011 [IGMP_LEAVING_MEMBER] = "leaving", 3012 }; 3013 _Static_assert(IGMP_NOT_MEMBER == 0 && 3014 IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), 3015 "inm_statetrs: no longer matches #defines"); 3016 3017 static const char * 3018 inm_state_str(const int state) 3019 { 3020 3021 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 3022 return (inm_statestrs[state]); 3023 return ("??"); 3024 } 3025 3026 /* 3027 * Dump an in_multi structure to the console. 3028 */ 3029 void 3030 inm_print(const struct in_multi *inm) 3031 { 3032 int t; 3033 char addrbuf[INET_ADDRSTRLEN]; 3034 3035 if ((ktr_mask & KTR_IGMPV3) == 0) 3036 return; 3037 3038 printf("%s: --- begin inm %p ---\n", __func__, inm); 3039 printf("addr %s ifp %p(%s) ifma %p\n", 3040 inet_ntoa_r(inm->inm_addr, addrbuf), 3041 inm->inm_ifp, 3042 inm->inm_ifp->if_xname, 3043 inm->inm_ifma); 3044 printf("timer %u state %s refcount %u scq.len %u\n", 3045 inm->inm_timer, 3046 inm_state_str(inm->inm_state), 3047 inm->inm_refcount, 3048 inm->inm_scq.mq_len); 3049 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 3050 inm->inm_igi, 3051 inm->inm_nsrc, 3052 inm->inm_sctimer, 3053 inm->inm_scrv); 3054 for (t = 0; t < 2; t++) { 3055 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 3056 inm_mode_str(inm->inm_st[t].iss_fmode), 3057 inm->inm_st[t].iss_asm, 3058 inm->inm_st[t].iss_ex, 3059 inm->inm_st[t].iss_in, 3060 inm->inm_st[t].iss_rec); 3061 } 3062 printf("%s: --- end inm %p ---\n", __func__, inm); 3063 } 3064 3065 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ 3066 3067 void 3068 inm_print(const struct in_multi *inm) 3069 { 3070 3071 } 3072 3073 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ 3074 3075 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3076