xref: /freebsd/sys/netinet/in_mcast.c (revision 964219664dcec4198441910904fb9064569d174d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/gtaskqueue.h>
55 #include <sys/tree.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
98  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
99  *   it can be taken by code in net/if.c also.
100  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
101  *
102  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
103  * any need for in_multi itself to be virtualized -- it is bound to an ifp
104  * anyway no matter what happens.
105  */
106 struct mtx in_multi_list_mtx;
107 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
108 
109 struct mtx in_multi_free_mtx;
110 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
111 
112 struct sx in_multi_sx;
113 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
114 
115 int ifma_restart;
116 
117 /*
118  * Functions with non-static linkage defined in this file should be
119  * declared in in_var.h:
120  *  imo_multi_filter()
121  *  in_addmulti()
122  *  in_delmulti()
123  *  in_joingroup()
124  *  in_joingroup_locked()
125  *  in_leavegroup()
126  *  in_leavegroup_locked()
127  * and ip_var.h:
128  *  inp_freemoptions()
129  *  inp_getmoptions()
130  *  inp_setmoptions()
131  *
132  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
133  * and in_delmulti().
134  */
135 static void	imf_commit(struct in_mfilter *);
136 static int	imf_get_source(struct in_mfilter *imf,
137 		    const struct sockaddr_in *psin,
138 		    struct in_msource **);
139 static struct in_msource *
140 		imf_graft(struct in_mfilter *, const uint8_t,
141 		    const struct sockaddr_in *);
142 static void	imf_leave(struct in_mfilter *);
143 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
144 static void	imf_purge(struct in_mfilter *);
145 static void	imf_rollback(struct in_mfilter *);
146 static void	imf_reap(struct in_mfilter *);
147 static int	imo_grow(struct ip_moptions *);
148 static size_t	imo_match_group(const struct ip_moptions *,
149 		    const struct ifnet *, const struct sockaddr *);
150 static struct in_msource *
151 		imo_match_source(const struct ip_moptions *, const size_t,
152 		    const struct sockaddr *);
153 static void	ims_merge(struct ip_msource *ims,
154 		    const struct in_msource *lims, const int rollback);
155 static int	in_getmulti(struct ifnet *, const struct in_addr *,
156 		    struct in_multi **);
157 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
158 		    const int noalloc, struct ip_msource **pims);
159 #ifdef KTR
160 static int	inm_is_ifp_detached(const struct in_multi *);
161 #endif
162 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
163 static void	inm_purge(struct in_multi *);
164 static void	inm_reap(struct in_multi *);
165 static void inm_release(struct in_multi *);
166 static struct ip_moptions *
167 		inp_findmoptions(struct inpcb *);
168 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
169 static int	inp_join_group(struct inpcb *, struct sockopt *);
170 static int	inp_leave_group(struct inpcb *, struct sockopt *);
171 static struct ifnet *
172 		inp_lookup_mcast_ifp(const struct inpcb *,
173 		    const struct sockaddr_in *, const struct in_addr);
174 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
175 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
176 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
177 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
178 
179 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
180     "IPv4 multicast");
181 
182 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
183 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
184     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
185     "Max source filters per group");
186 
187 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
188 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
189     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
190     "Max source filters per socket");
191 
192 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
193 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
194     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
195 
196 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
197     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
198     "Per-interface stack-wide source filters");
199 
200 #ifdef KTR
201 /*
202  * Inline function which wraps assertions for a valid ifp.
203  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
204  * is detached.
205  */
206 static int __inline
207 inm_is_ifp_detached(const struct in_multi *inm)
208 {
209 	struct ifnet *ifp;
210 
211 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
212 	ifp = inm->inm_ifma->ifma_ifp;
213 	if (ifp != NULL) {
214 		/*
215 		 * Sanity check that netinet's notion of ifp is the
216 		 * same as net's.
217 		 */
218 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
219 	}
220 
221 	return (ifp == NULL);
222 }
223 #endif
224 
225 static struct grouptask free_gtask;
226 static struct in_multi_head inm_free_list;
227 static void inm_release_task(void *arg __unused);
228 static void inm_init(void)
229 {
230 	SLIST_INIT(&inm_free_list);
231 	taskqgroup_config_gtask_init(NULL, &free_gtask, inm_release_task, "inm release task");
232 }
233 
234 SYSINIT(inm_init, SI_SUB_SMP + 1, SI_ORDER_FIRST,
235 	inm_init, NULL);
236 
237 
238 void
239 inm_release_list_deferred(struct in_multi_head *inmh)
240 {
241 
242 	if (SLIST_EMPTY(inmh))
243 		return;
244 	mtx_lock(&in_multi_free_mtx);
245 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
246 	mtx_unlock(&in_multi_free_mtx);
247 	GROUPTASK_ENQUEUE(&free_gtask);
248 }
249 
250 void
251 inm_disconnect(struct in_multi *inm)
252 {
253 	struct ifnet *ifp;
254 	struct ifmultiaddr *ifma, *ll_ifma;
255 
256 	ifp = inm->inm_ifp;
257 	IF_ADDR_WLOCK_ASSERT(ifp);
258 	ifma = inm->inm_ifma;
259 
260 	if_ref(ifp);
261 	CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
262 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
263 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
264 		MPASS(ifma != ll_ifma);
265 		ifma->ifma_llifma = NULL;
266 		MPASS(ll_ifma->ifma_llifma == NULL);
267 		MPASS(ll_ifma->ifma_ifp == ifp);
268 		if (--ll_ifma->ifma_refcount == 0) {
269 			CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
270 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
271 			if_freemulti(ll_ifma);
272 			ifma_restart = true;
273 		}
274 	}
275 }
276 
277 void
278 inm_release_deferred(struct in_multi *inm)
279 {
280 	struct in_multi_head tmp;
281 
282 	IN_MULTI_LIST_LOCK_ASSERT();
283 	MPASS(inm->inm_refcount > 0);
284 	if (--inm->inm_refcount == 0) {
285 		SLIST_INIT(&tmp);
286 		inm_disconnect(inm);
287 		inm->inm_ifma->ifma_protospec = NULL;
288 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
289 		inm_release_list_deferred(&tmp);
290 	}
291 }
292 
293 static void
294 inm_release_task(void *arg __unused)
295 {
296 	struct in_multi_head inm_free_tmp;
297 	struct in_multi *inm, *tinm;
298 
299 	SLIST_INIT(&inm_free_tmp);
300 	mtx_lock(&in_multi_free_mtx);
301 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
302 	mtx_unlock(&in_multi_free_mtx);
303 	IN_MULTI_LOCK();
304 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
305 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
306 		MPASS(inm);
307 		inm_release(inm);
308 	}
309 	IN_MULTI_UNLOCK();
310 }
311 
312 /*
313  * Initialize an in_mfilter structure to a known state at t0, t1
314  * with an empty source filter list.
315  */
316 static __inline void
317 imf_init(struct in_mfilter *imf, const int st0, const int st1)
318 {
319 	memset(imf, 0, sizeof(struct in_mfilter));
320 	RB_INIT(&imf->imf_sources);
321 	imf->imf_st[0] = st0;
322 	imf->imf_st[1] = st1;
323 }
324 
325 /*
326  * Function for looking up an in_multi record for an IPv4 multicast address
327  * on a given interface. ifp must be valid. If no record found, return NULL.
328  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
329  */
330 struct in_multi *
331 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
332 {
333 	struct ifmultiaddr *ifma;
334 	struct in_multi *inm;
335 
336 	IN_MULTI_LIST_LOCK_ASSERT();
337 	IF_ADDR_LOCK_ASSERT(ifp);
338 
339 	inm = NULL;
340 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
341 		if (ifma->ifma_addr->sa_family != AF_INET ||
342 			ifma->ifma_protospec == NULL)
343 			continue;
344 		inm = (struct in_multi *)ifma->ifma_protospec;
345 		if (inm->inm_addr.s_addr == ina.s_addr)
346 			break;
347 		inm = NULL;
348 	}
349 	return (inm);
350 }
351 
352 /*
353  * Wrapper for inm_lookup_locked().
354  * The IF_ADDR_LOCK will be taken on ifp and released on return.
355  */
356 struct in_multi *
357 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
358 {
359 	struct in_multi *inm;
360 
361 	IN_MULTI_LIST_LOCK_ASSERT();
362 	IF_ADDR_RLOCK(ifp);
363 	inm = inm_lookup_locked(ifp, ina);
364 	IF_ADDR_RUNLOCK(ifp);
365 
366 	return (inm);
367 }
368 
369 /*
370  * Resize the ip_moptions vector to the next power-of-two minus 1.
371  * May be called with locks held; do not sleep.
372  */
373 static int
374 imo_grow(struct ip_moptions *imo)
375 {
376 	struct in_multi		**nmships;
377 	struct in_multi		**omships;
378 	struct in_mfilter	 *nmfilters;
379 	struct in_mfilter	 *omfilters;
380 	size_t			  idx;
381 	size_t			  newmax;
382 	size_t			  oldmax;
383 
384 	nmships = NULL;
385 	nmfilters = NULL;
386 	omships = imo->imo_membership;
387 	omfilters = imo->imo_mfilters;
388 	oldmax = imo->imo_max_memberships;
389 	newmax = ((oldmax + 1) * 2) - 1;
390 
391 	if (newmax <= IP_MAX_MEMBERSHIPS) {
392 		nmships = (struct in_multi **)realloc(omships,
393 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
394 		nmfilters = (struct in_mfilter *)realloc(omfilters,
395 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
396 		if (nmships != NULL && nmfilters != NULL) {
397 			/* Initialize newly allocated source filter heads. */
398 			for (idx = oldmax; idx < newmax; idx++) {
399 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
400 				    MCAST_EXCLUDE);
401 			}
402 			imo->imo_max_memberships = newmax;
403 			imo->imo_membership = nmships;
404 			imo->imo_mfilters = nmfilters;
405 		}
406 	}
407 
408 	if (nmships == NULL || nmfilters == NULL) {
409 		if (nmships != NULL)
410 			free(nmships, M_IPMOPTS);
411 		if (nmfilters != NULL)
412 			free(nmfilters, M_INMFILTER);
413 		return (ETOOMANYREFS);
414 	}
415 
416 	return (0);
417 }
418 
419 /*
420  * Find an IPv4 multicast group entry for this ip_moptions instance
421  * which matches the specified group, and optionally an interface.
422  * Return its index into the array, or -1 if not found.
423  */
424 static size_t
425 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
426     const struct sockaddr *group)
427 {
428 	const struct sockaddr_in *gsin;
429 	struct in_multi	**pinm;
430 	int		  idx;
431 	int		  nmships;
432 
433 	gsin = (const struct sockaddr_in *)group;
434 
435 	/* The imo_membership array may be lazy allocated. */
436 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
437 		return (-1);
438 
439 	nmships = imo->imo_num_memberships;
440 	pinm = &imo->imo_membership[0];
441 	for (idx = 0; idx < nmships; idx++, pinm++) {
442 		if (*pinm == NULL)
443 			continue;
444 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
445 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
446 			break;
447 		}
448 	}
449 	if (idx >= nmships)
450 		idx = -1;
451 
452 	return (idx);
453 }
454 
455 /*
456  * Find an IPv4 multicast source entry for this imo which matches
457  * the given group index for this socket, and source address.
458  *
459  * NOTE: This does not check if the entry is in-mode, merely if
460  * it exists, which may not be the desired behaviour.
461  */
462 static struct in_msource *
463 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
464     const struct sockaddr *src)
465 {
466 	struct ip_msource	 find;
467 	struct in_mfilter	*imf;
468 	struct ip_msource	*ims;
469 	const sockunion_t	*psa;
470 
471 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
472 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
473 	    ("%s: invalid index %d\n", __func__, (int)gidx));
474 
475 	/* The imo_mfilters array may be lazy allocated. */
476 	if (imo->imo_mfilters == NULL)
477 		return (NULL);
478 	imf = &imo->imo_mfilters[gidx];
479 
480 	/* Source trees are keyed in host byte order. */
481 	psa = (const sockunion_t *)src;
482 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
483 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
484 
485 	return ((struct in_msource *)ims);
486 }
487 
488 /*
489  * Perform filtering for multicast datagrams on a socket by group and source.
490  *
491  * Returns 0 if a datagram should be allowed through, or various error codes
492  * if the socket was not a member of the group, or the source was muted, etc.
493  */
494 int
495 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
496     const struct sockaddr *group, const struct sockaddr *src)
497 {
498 	size_t gidx;
499 	struct in_msource *ims;
500 	int mode;
501 
502 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
503 
504 	gidx = imo_match_group(imo, ifp, group);
505 	if (gidx == -1)
506 		return (MCAST_NOTGMEMBER);
507 
508 	/*
509 	 * Check if the source was included in an (S,G) join.
510 	 * Allow reception on exclusive memberships by default,
511 	 * reject reception on inclusive memberships by default.
512 	 * Exclude source only if an in-mode exclude filter exists.
513 	 * Include source only if an in-mode include filter exists.
514 	 * NOTE: We are comparing group state here at IGMP t1 (now)
515 	 * with socket-layer t0 (since last downcall).
516 	 */
517 	mode = imo->imo_mfilters[gidx].imf_st[1];
518 	ims = imo_match_source(imo, gidx, src);
519 
520 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
521 	    (ims != NULL && ims->imsl_st[0] != mode))
522 		return (MCAST_NOTSMEMBER);
523 
524 	return (MCAST_PASS);
525 }
526 
527 /*
528  * Find and return a reference to an in_multi record for (ifp, group),
529  * and bump its reference count.
530  * If one does not exist, try to allocate it, and update link-layer multicast
531  * filters on ifp to listen for group.
532  * Assumes the IN_MULTI lock is held across the call.
533  * Return 0 if successful, otherwise return an appropriate error code.
534  */
535 static int
536 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
537     struct in_multi **pinm)
538 {
539 	struct sockaddr_in	 gsin;
540 	struct ifmultiaddr	*ifma;
541 	struct in_ifinfo	*ii;
542 	struct in_multi		*inm;
543 	int error;
544 
545 	IN_MULTI_LOCK_ASSERT();
546 
547 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
548 	IN_MULTI_LIST_LOCK();
549 	inm = inm_lookup(ifp, *group);
550 	if (inm != NULL) {
551 		/*
552 		 * If we already joined this group, just bump the
553 		 * refcount and return it.
554 		 */
555 		KASSERT(inm->inm_refcount >= 1,
556 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
557 		inm_acquire_locked(inm);
558 		*pinm = inm;
559 	}
560 	IN_MULTI_LIST_UNLOCK();
561 	if (inm != NULL)
562 		return (0);
563 
564 	memset(&gsin, 0, sizeof(gsin));
565 	gsin.sin_family = AF_INET;
566 	gsin.sin_len = sizeof(struct sockaddr_in);
567 	gsin.sin_addr = *group;
568 
569 	/*
570 	 * Check if a link-layer group is already associated
571 	 * with this network-layer group on the given ifnet.
572 	 */
573 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
574 	if (error != 0)
575 		return (error);
576 
577 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
578 	IN_MULTI_LIST_LOCK();
579 	IF_ADDR_WLOCK(ifp);
580 
581 	/*
582 	 * If something other than netinet is occupying the link-layer
583 	 * group, print a meaningful error message and back out of
584 	 * the allocation.
585 	 * Otherwise, bump the refcount on the existing network-layer
586 	 * group association and return it.
587 	 */
588 	if (ifma->ifma_protospec != NULL) {
589 		inm = (struct in_multi *)ifma->ifma_protospec;
590 #ifdef INVARIANTS
591 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
592 		    __func__));
593 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
594 		    ("%s: ifma not AF_INET", __func__));
595 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
596 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
597 		    !in_hosteq(inm->inm_addr, *group)) {
598 			char addrbuf[INET_ADDRSTRLEN];
599 
600 			panic("%s: ifma %p is inconsistent with %p (%s)",
601 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
602 		}
603 #endif
604 		inm_acquire_locked(inm);
605 		*pinm = inm;
606 		goto out_locked;
607 	}
608 
609 	IF_ADDR_WLOCK_ASSERT(ifp);
610 
611 	/*
612 	 * A new in_multi record is needed; allocate and initialize it.
613 	 * We DO NOT perform an IGMP join as the in_ layer may need to
614 	 * push an initial source list down to IGMP to support SSM.
615 	 *
616 	 * The initial source filter state is INCLUDE, {} as per the RFC.
617 	 */
618 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
619 	if (inm == NULL) {
620 		IF_ADDR_WUNLOCK(ifp);
621 		IN_MULTI_LIST_UNLOCK();
622 		if_delmulti_ifma(ifma);
623 		return (ENOMEM);
624 	}
625 	inm->inm_addr = *group;
626 	inm->inm_ifp = ifp;
627 	inm->inm_igi = ii->ii_igmp;
628 	inm->inm_ifma = ifma;
629 	inm->inm_refcount = 1;
630 	inm->inm_state = IGMP_NOT_MEMBER;
631 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
632 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
633 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
634 	RB_INIT(&inm->inm_srcs);
635 
636 	ifma->ifma_protospec = inm;
637 
638 	*pinm = inm;
639  out_locked:
640 	IF_ADDR_WUNLOCK(ifp);
641 	IN_MULTI_LIST_UNLOCK();
642 	return (0);
643 }
644 
645 /*
646  * Drop a reference to an in_multi record.
647  *
648  * If the refcount drops to 0, free the in_multi record and
649  * delete the underlying link-layer membership.
650  */
651 static void
652 inm_release(struct in_multi *inm)
653 {
654 	struct ifmultiaddr *ifma;
655 	struct ifnet *ifp;
656 
657 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
658 	MPASS(inm->inm_refcount == 0);
659 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
660 
661 	ifma = inm->inm_ifma;
662 	ifp = inm->inm_ifp;
663 
664 	/* XXX this access is not covered by IF_ADDR_LOCK */
665 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
666 	if (ifp != NULL) {
667 		CURVNET_SET(ifp->if_vnet);
668 		inm_purge(inm);
669 		free(inm, M_IPMADDR);
670 		if_delmulti_ifma_flags(ifma, 1);
671 		CURVNET_RESTORE();
672 		if_rele(ifp);
673 	} else {
674 		inm_purge(inm);
675 		free(inm, M_IPMADDR);
676 		if_delmulti_ifma_flags(ifma, 1);
677 	}
678 }
679 
680 /*
681  * Clear recorded source entries for a group.
682  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
683  * FIXME: Should reap.
684  */
685 void
686 inm_clear_recorded(struct in_multi *inm)
687 {
688 	struct ip_msource	*ims;
689 
690 	IN_MULTI_LIST_LOCK_ASSERT();
691 
692 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
693 		if (ims->ims_stp) {
694 			ims->ims_stp = 0;
695 			--inm->inm_st[1].iss_rec;
696 		}
697 	}
698 	KASSERT(inm->inm_st[1].iss_rec == 0,
699 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
700 }
701 
702 /*
703  * Record a source as pending for a Source-Group IGMPv3 query.
704  * This lives here as it modifies the shared tree.
705  *
706  * inm is the group descriptor.
707  * naddr is the address of the source to record in network-byte order.
708  *
709  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
710  * lazy-allocate a source node in response to an SG query.
711  * Otherwise, no allocation is performed. This saves some memory
712  * with the trade-off that the source will not be reported to the
713  * router if joined in the window between the query response and
714  * the group actually being joined on the local host.
715  *
716  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
717  * This turns off the allocation of a recorded source entry if
718  * the group has not been joined.
719  *
720  * Return 0 if the source didn't exist or was already marked as recorded.
721  * Return 1 if the source was marked as recorded by this function.
722  * Return <0 if any error occurred (negated errno code).
723  */
724 int
725 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
726 {
727 	struct ip_msource	 find;
728 	struct ip_msource	*ims, *nims;
729 
730 	IN_MULTI_LIST_LOCK_ASSERT();
731 
732 	find.ims_haddr = ntohl(naddr);
733 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
734 	if (ims && ims->ims_stp)
735 		return (0);
736 	if (ims == NULL) {
737 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
738 			return (-ENOSPC);
739 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
740 		    M_NOWAIT | M_ZERO);
741 		if (nims == NULL)
742 			return (-ENOMEM);
743 		nims->ims_haddr = find.ims_haddr;
744 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
745 		++inm->inm_nsrc;
746 		ims = nims;
747 	}
748 
749 	/*
750 	 * Mark the source as recorded and update the recorded
751 	 * source count.
752 	 */
753 	++ims->ims_stp;
754 	++inm->inm_st[1].iss_rec;
755 
756 	return (1);
757 }
758 
759 /*
760  * Return a pointer to an in_msource owned by an in_mfilter,
761  * given its source address.
762  * Lazy-allocate if needed. If this is a new entry its filter state is
763  * undefined at t0.
764  *
765  * imf is the filter set being modified.
766  * haddr is the source address in *host* byte-order.
767  *
768  * SMPng: May be called with locks held; malloc must not block.
769  */
770 static int
771 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
772     struct in_msource **plims)
773 {
774 	struct ip_msource	 find;
775 	struct ip_msource	*ims, *nims;
776 	struct in_msource	*lims;
777 	int			 error;
778 
779 	error = 0;
780 	ims = NULL;
781 	lims = NULL;
782 
783 	/* key is host byte order */
784 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
785 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
786 	lims = (struct in_msource *)ims;
787 	if (lims == NULL) {
788 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
789 			return (ENOSPC);
790 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
791 		    M_NOWAIT | M_ZERO);
792 		if (nims == NULL)
793 			return (ENOMEM);
794 		lims = (struct in_msource *)nims;
795 		lims->ims_haddr = find.ims_haddr;
796 		lims->imsl_st[0] = MCAST_UNDEFINED;
797 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
798 		++imf->imf_nsrc;
799 	}
800 
801 	*plims = lims;
802 
803 	return (error);
804 }
805 
806 /*
807  * Graft a source entry into an existing socket-layer filter set,
808  * maintaining any required invariants and checking allocations.
809  *
810  * The source is marked as being in the new filter mode at t1.
811  *
812  * Return the pointer to the new node, otherwise return NULL.
813  */
814 static struct in_msource *
815 imf_graft(struct in_mfilter *imf, const uint8_t st1,
816     const struct sockaddr_in *psin)
817 {
818 	struct ip_msource	*nims;
819 	struct in_msource	*lims;
820 
821 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
822 	    M_NOWAIT | M_ZERO);
823 	if (nims == NULL)
824 		return (NULL);
825 	lims = (struct in_msource *)nims;
826 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
827 	lims->imsl_st[0] = MCAST_UNDEFINED;
828 	lims->imsl_st[1] = st1;
829 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
830 	++imf->imf_nsrc;
831 
832 	return (lims);
833 }
834 
835 /*
836  * Prune a source entry from an existing socket-layer filter set,
837  * maintaining any required invariants and checking allocations.
838  *
839  * The source is marked as being left at t1, it is not freed.
840  *
841  * Return 0 if no error occurred, otherwise return an errno value.
842  */
843 static int
844 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
845 {
846 	struct ip_msource	 find;
847 	struct ip_msource	*ims;
848 	struct in_msource	*lims;
849 
850 	/* key is host byte order */
851 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
852 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
853 	if (ims == NULL)
854 		return (ENOENT);
855 	lims = (struct in_msource *)ims;
856 	lims->imsl_st[1] = MCAST_UNDEFINED;
857 	return (0);
858 }
859 
860 /*
861  * Revert socket-layer filter set deltas at t1 to t0 state.
862  */
863 static void
864 imf_rollback(struct in_mfilter *imf)
865 {
866 	struct ip_msource	*ims, *tims;
867 	struct in_msource	*lims;
868 
869 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
870 		lims = (struct in_msource *)ims;
871 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
872 			/* no change at t1 */
873 			continue;
874 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
875 			/* revert change to existing source at t1 */
876 			lims->imsl_st[1] = lims->imsl_st[0];
877 		} else {
878 			/* revert source added t1 */
879 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
880 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
881 			free(ims, M_INMFILTER);
882 			imf->imf_nsrc--;
883 		}
884 	}
885 	imf->imf_st[1] = imf->imf_st[0];
886 }
887 
888 /*
889  * Mark socket-layer filter set as INCLUDE {} at t1.
890  */
891 static void
892 imf_leave(struct in_mfilter *imf)
893 {
894 	struct ip_msource	*ims;
895 	struct in_msource	*lims;
896 
897 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
898 		lims = (struct in_msource *)ims;
899 		lims->imsl_st[1] = MCAST_UNDEFINED;
900 	}
901 	imf->imf_st[1] = MCAST_INCLUDE;
902 }
903 
904 /*
905  * Mark socket-layer filter set deltas as committed.
906  */
907 static void
908 imf_commit(struct in_mfilter *imf)
909 {
910 	struct ip_msource	*ims;
911 	struct in_msource	*lims;
912 
913 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
914 		lims = (struct in_msource *)ims;
915 		lims->imsl_st[0] = lims->imsl_st[1];
916 	}
917 	imf->imf_st[0] = imf->imf_st[1];
918 }
919 
920 /*
921  * Reap unreferenced sources from socket-layer filter set.
922  */
923 static void
924 imf_reap(struct in_mfilter *imf)
925 {
926 	struct ip_msource	*ims, *tims;
927 	struct in_msource	*lims;
928 
929 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
930 		lims = (struct in_msource *)ims;
931 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
932 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
933 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
934 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
935 			free(ims, M_INMFILTER);
936 			imf->imf_nsrc--;
937 		}
938 	}
939 }
940 
941 /*
942  * Purge socket-layer filter set.
943  */
944 static void
945 imf_purge(struct in_mfilter *imf)
946 {
947 	struct ip_msource	*ims, *tims;
948 
949 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
950 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
951 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
952 		free(ims, M_INMFILTER);
953 		imf->imf_nsrc--;
954 	}
955 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
956 	KASSERT(RB_EMPTY(&imf->imf_sources),
957 	    ("%s: imf_sources not empty", __func__));
958 }
959 
960 /*
961  * Look up a source filter entry for a multicast group.
962  *
963  * inm is the group descriptor to work with.
964  * haddr is the host-byte-order IPv4 address to look up.
965  * noalloc may be non-zero to suppress allocation of sources.
966  * *pims will be set to the address of the retrieved or allocated source.
967  *
968  * SMPng: NOTE: may be called with locks held.
969  * Return 0 if successful, otherwise return a non-zero error code.
970  */
971 static int
972 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
973     const int noalloc, struct ip_msource **pims)
974 {
975 	struct ip_msource	 find;
976 	struct ip_msource	*ims, *nims;
977 
978 	find.ims_haddr = haddr;
979 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
980 	if (ims == NULL && !noalloc) {
981 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
982 			return (ENOSPC);
983 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
984 		    M_NOWAIT | M_ZERO);
985 		if (nims == NULL)
986 			return (ENOMEM);
987 		nims->ims_haddr = haddr;
988 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
989 		++inm->inm_nsrc;
990 		ims = nims;
991 #ifdef KTR
992 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
993 		    haddr, ims);
994 #endif
995 	}
996 
997 	*pims = ims;
998 	return (0);
999 }
1000 
1001 /*
1002  * Merge socket-layer source into IGMP-layer source.
1003  * If rollback is non-zero, perform the inverse of the merge.
1004  */
1005 static void
1006 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1007     const int rollback)
1008 {
1009 	int n = rollback ? -1 : 1;
1010 
1011 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1012 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
1013 		    __func__, n, ims->ims_haddr);
1014 		ims->ims_st[1].ex -= n;
1015 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1016 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
1017 		    __func__, n, ims->ims_haddr);
1018 		ims->ims_st[1].in -= n;
1019 	}
1020 
1021 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1022 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
1023 		    __func__, n, ims->ims_haddr);
1024 		ims->ims_st[1].ex += n;
1025 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1026 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
1027 		    __func__, n, ims->ims_haddr);
1028 		ims->ims_st[1].in += n;
1029 	}
1030 }
1031 
1032 /*
1033  * Atomically update the global in_multi state, when a membership's
1034  * filter list is being updated in any way.
1035  *
1036  * imf is the per-inpcb-membership group filter pointer.
1037  * A fake imf may be passed for in-kernel consumers.
1038  *
1039  * XXX This is a candidate for a set-symmetric-difference style loop
1040  * which would eliminate the repeated lookup from root of ims nodes,
1041  * as they share the same key space.
1042  *
1043  * If any error occurred this function will back out of refcounts
1044  * and return a non-zero value.
1045  */
1046 static int
1047 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1048 {
1049 	struct ip_msource	*ims, *nims;
1050 	struct in_msource	*lims;
1051 	int			 schanged, error;
1052 	int			 nsrc0, nsrc1;
1053 
1054 	schanged = 0;
1055 	error = 0;
1056 	nsrc1 = nsrc0 = 0;
1057 	IN_MULTI_LIST_LOCK_ASSERT();
1058 
1059 	/*
1060 	 * Update the source filters first, as this may fail.
1061 	 * Maintain count of in-mode filters at t0, t1. These are
1062 	 * used to work out if we transition into ASM mode or not.
1063 	 * Maintain a count of source filters whose state was
1064 	 * actually modified by this operation.
1065 	 */
1066 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1067 		lims = (struct in_msource *)ims;
1068 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1069 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1070 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1071 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1072 		++schanged;
1073 		if (error)
1074 			break;
1075 		ims_merge(nims, lims, 0);
1076 	}
1077 	if (error) {
1078 		struct ip_msource *bims;
1079 
1080 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1081 			lims = (struct in_msource *)ims;
1082 			if (lims->imsl_st[0] == lims->imsl_st[1])
1083 				continue;
1084 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1085 			if (bims == NULL)
1086 				continue;
1087 			ims_merge(bims, lims, 1);
1088 		}
1089 		goto out_reap;
1090 	}
1091 
1092 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1093 	    __func__, nsrc0, nsrc1);
1094 
1095 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1096 	if (imf->imf_st[0] == imf->imf_st[1] &&
1097 	    imf->imf_st[1] == MCAST_INCLUDE) {
1098 		if (nsrc1 == 0) {
1099 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1100 			--inm->inm_st[1].iss_in;
1101 		}
1102 	}
1103 
1104 	/* Handle filter mode transition on socket. */
1105 	if (imf->imf_st[0] != imf->imf_st[1]) {
1106 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1107 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1108 
1109 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1110 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1111 			--inm->inm_st[1].iss_ex;
1112 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1113 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1114 			--inm->inm_st[1].iss_in;
1115 		}
1116 
1117 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1118 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1119 			inm->inm_st[1].iss_ex++;
1120 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1121 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1122 			inm->inm_st[1].iss_in++;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Track inm filter state in terms of listener counts.
1128 	 * If there are any exclusive listeners, stack-wide
1129 	 * membership is exclusive.
1130 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1131 	 * If no listeners remain, state is undefined at t1,
1132 	 * and the IGMP lifecycle for this group should finish.
1133 	 */
1134 	if (inm->inm_st[1].iss_ex > 0) {
1135 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1136 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1137 	} else if (inm->inm_st[1].iss_in > 0) {
1138 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1139 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1140 	} else {
1141 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1142 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1143 	}
1144 
1145 	/* Decrement ASM listener count on transition out of ASM mode. */
1146 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1147 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1148 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1149 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1150 			--inm->inm_st[1].iss_asm;
1151 		}
1152 	}
1153 
1154 	/* Increment ASM listener count on transition to ASM mode. */
1155 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1156 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1157 		inm->inm_st[1].iss_asm++;
1158 	}
1159 
1160 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1161 	inm_print(inm);
1162 
1163 out_reap:
1164 	if (schanged > 0) {
1165 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1166 		inm_reap(inm);
1167 	}
1168 	return (error);
1169 }
1170 
1171 /*
1172  * Mark an in_multi's filter set deltas as committed.
1173  * Called by IGMP after a state change has been enqueued.
1174  */
1175 void
1176 inm_commit(struct in_multi *inm)
1177 {
1178 	struct ip_msource	*ims;
1179 
1180 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1181 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1182 	inm_print(inm);
1183 
1184 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1185 		ims->ims_st[0] = ims->ims_st[1];
1186 	}
1187 	inm->inm_st[0] = inm->inm_st[1];
1188 }
1189 
1190 /*
1191  * Reap unreferenced nodes from an in_multi's filter set.
1192  */
1193 static void
1194 inm_reap(struct in_multi *inm)
1195 {
1196 	struct ip_msource	*ims, *tims;
1197 
1198 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1199 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1200 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1201 		    ims->ims_stp != 0)
1202 			continue;
1203 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1204 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1205 		free(ims, M_IPMSOURCE);
1206 		inm->inm_nsrc--;
1207 	}
1208 }
1209 
1210 /*
1211  * Purge all source nodes from an in_multi's filter set.
1212  */
1213 static void
1214 inm_purge(struct in_multi *inm)
1215 {
1216 	struct ip_msource	*ims, *tims;
1217 
1218 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1219 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1220 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1221 		free(ims, M_IPMSOURCE);
1222 		inm->inm_nsrc--;
1223 	}
1224 }
1225 
1226 /*
1227  * Join a multicast group; unlocked entry point.
1228  *
1229  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1230  * is not held. Fortunately, ifp is unlikely to have been detached
1231  * at this point, so we assume it's OK to recurse.
1232  */
1233 int
1234 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1235     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1236 {
1237 	int error;
1238 
1239 	IN_MULTI_LOCK();
1240 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1241 	IN_MULTI_UNLOCK();
1242 
1243 	return (error);
1244 }
1245 
1246 /*
1247  * Join a multicast group; real entry point.
1248  *
1249  * Only preserves atomicity at inm level.
1250  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1251  *
1252  * If the IGMP downcall fails, the group is not joined, and an error
1253  * code is returned.
1254  */
1255 int
1256 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1257     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1258 {
1259 	struct in_mfilter	 timf;
1260 	struct in_multi		*inm;
1261 	int			 error;
1262 
1263 	IN_MULTI_LOCK_ASSERT();
1264 	IN_MULTI_LIST_UNLOCK_ASSERT();
1265 
1266 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1267 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1268 
1269 	error = 0;
1270 	inm = NULL;
1271 
1272 	/*
1273 	 * If no imf was specified (i.e. kernel consumer),
1274 	 * fake one up and assume it is an ASM join.
1275 	 */
1276 	if (imf == NULL) {
1277 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1278 		imf = &timf;
1279 	}
1280 
1281 	error = in_getmulti(ifp, gina, &inm);
1282 	if (error) {
1283 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1284 		return (error);
1285 	}
1286 	IN_MULTI_LIST_LOCK();
1287 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1288 	error = inm_merge(inm, imf);
1289 	if (error) {
1290 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1291 		goto out_inm_release;
1292 	}
1293 
1294 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1295 	error = igmp_change_state(inm);
1296 	if (error) {
1297 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1298 		goto out_inm_release;
1299 	}
1300 
1301  out_inm_release:
1302 	if (error) {
1303 
1304 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1305 		inm_release_deferred(inm);
1306 	} else {
1307 		*pinm = inm;
1308 	}
1309 	IN_MULTI_LIST_UNLOCK();
1310 
1311 	return (error);
1312 }
1313 
1314 /*
1315  * Leave a multicast group; unlocked entry point.
1316  */
1317 int
1318 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1319 {
1320 	int error;
1321 
1322 	IN_MULTI_LOCK();
1323 	error = in_leavegroup_locked(inm, imf);
1324 	IN_MULTI_UNLOCK();
1325 
1326 	return (error);
1327 }
1328 
1329 /*
1330  * Leave a multicast group; real entry point.
1331  * All source filters will be expunged.
1332  *
1333  * Only preserves atomicity at inm level.
1334  *
1335  * Holding the write lock for the INP which contains imf
1336  * is highly advisable. We can't assert for it as imf does not
1337  * contain a back-pointer to the owning inp.
1338  *
1339  * Note: This is not the same as inm_release(*) as this function also
1340  * makes a state change downcall into IGMP.
1341  */
1342 int
1343 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1344 {
1345 	struct in_mfilter	 timf;
1346 	int			 error;
1347 
1348 	error = 0;
1349 
1350 	IN_MULTI_LOCK_ASSERT();
1351 	IN_MULTI_LIST_UNLOCK_ASSERT();
1352 
1353 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1354 	    inm, ntohl(inm->inm_addr.s_addr),
1355 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1356 	    imf);
1357 
1358 	/*
1359 	 * If no imf was specified (i.e. kernel consumer),
1360 	 * fake one up and assume it is an ASM join.
1361 	 */
1362 	if (imf == NULL) {
1363 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1364 		imf = &timf;
1365 	}
1366 
1367 	/*
1368 	 * Begin state merge transaction at IGMP layer.
1369 	 *
1370 	 * As this particular invocation should not cause any memory
1371 	 * to be allocated, and there is no opportunity to roll back
1372 	 * the transaction, it MUST NOT fail.
1373 	 */
1374 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1375 	IN_MULTI_LIST_LOCK();
1376 	error = inm_merge(inm, imf);
1377 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1378 
1379 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1380 	CURVNET_SET(inm->inm_ifp->if_vnet);
1381 	error = igmp_change_state(inm);
1382 	IF_ADDR_WLOCK(inm->inm_ifp);
1383 	inm_release_deferred(inm);
1384 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1385 	IN_MULTI_LIST_UNLOCK();
1386 	CURVNET_RESTORE();
1387 	if (error)
1388 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1389 
1390 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1391 
1392 	return (error);
1393 }
1394 
1395 /*#ifndef BURN_BRIDGES*/
1396 /*
1397  * Join an IPv4 multicast group in (*,G) exclusive mode.
1398  * The group must be a 224.0.0.0/24 link-scope group.
1399  * This KPI is for legacy kernel consumers only.
1400  */
1401 struct in_multi *
1402 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1403 {
1404 	struct in_multi *pinm;
1405 	int error;
1406 #ifdef INVARIANTS
1407 	char addrbuf[INET_ADDRSTRLEN];
1408 #endif
1409 
1410 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1411 	    ("%s: %s not in 224.0.0.0/24", __func__,
1412 	    inet_ntoa_r(*ap, addrbuf)));
1413 
1414 	error = in_joingroup(ifp, ap, NULL, &pinm);
1415 	if (error != 0)
1416 		pinm = NULL;
1417 
1418 	return (pinm);
1419 }
1420 
1421 /*
1422  * Block or unblock an ASM multicast source on an inpcb.
1423  * This implements the delta-based API described in RFC 3678.
1424  *
1425  * The delta-based API applies only to exclusive-mode memberships.
1426  * An IGMP downcall will be performed.
1427  *
1428  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1429  *
1430  * Return 0 if successful, otherwise return an appropriate error code.
1431  */
1432 static int
1433 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1434 {
1435 	struct group_source_req		 gsr;
1436 	sockunion_t			*gsa, *ssa;
1437 	struct ifnet			*ifp;
1438 	struct in_mfilter		*imf;
1439 	struct ip_moptions		*imo;
1440 	struct in_msource		*ims;
1441 	struct in_multi			*inm;
1442 	size_t				 idx;
1443 	uint16_t			 fmode;
1444 	int				 error, doblock;
1445 
1446 	ifp = NULL;
1447 	error = 0;
1448 	doblock = 0;
1449 
1450 	memset(&gsr, 0, sizeof(struct group_source_req));
1451 	gsa = (sockunion_t *)&gsr.gsr_group;
1452 	ssa = (sockunion_t *)&gsr.gsr_source;
1453 
1454 	switch (sopt->sopt_name) {
1455 	case IP_BLOCK_SOURCE:
1456 	case IP_UNBLOCK_SOURCE: {
1457 		struct ip_mreq_source	 mreqs;
1458 
1459 		error = sooptcopyin(sopt, &mreqs,
1460 		    sizeof(struct ip_mreq_source),
1461 		    sizeof(struct ip_mreq_source));
1462 		if (error)
1463 			return (error);
1464 
1465 		gsa->sin.sin_family = AF_INET;
1466 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1467 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1468 
1469 		ssa->sin.sin_family = AF_INET;
1470 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1471 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1472 
1473 		if (!in_nullhost(mreqs.imr_interface))
1474 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1475 
1476 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1477 			doblock = 1;
1478 
1479 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1480 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1481 		break;
1482 	    }
1483 
1484 	case MCAST_BLOCK_SOURCE:
1485 	case MCAST_UNBLOCK_SOURCE:
1486 		error = sooptcopyin(sopt, &gsr,
1487 		    sizeof(struct group_source_req),
1488 		    sizeof(struct group_source_req));
1489 		if (error)
1490 			return (error);
1491 
1492 		if (gsa->sin.sin_family != AF_INET ||
1493 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1494 			return (EINVAL);
1495 
1496 		if (ssa->sin.sin_family != AF_INET ||
1497 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1498 			return (EINVAL);
1499 
1500 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1501 			return (EADDRNOTAVAIL);
1502 
1503 		ifp = ifnet_byindex(gsr.gsr_interface);
1504 
1505 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1506 			doblock = 1;
1507 		break;
1508 
1509 	default:
1510 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1511 		    __func__, sopt->sopt_name);
1512 		return (EOPNOTSUPP);
1513 		break;
1514 	}
1515 
1516 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1517 		return (EINVAL);
1518 
1519 	/*
1520 	 * Check if we are actually a member of this group.
1521 	 */
1522 	imo = inp_findmoptions(inp);
1523 	idx = imo_match_group(imo, ifp, &gsa->sa);
1524 	if (idx == -1 || imo->imo_mfilters == NULL) {
1525 		error = EADDRNOTAVAIL;
1526 		goto out_inp_locked;
1527 	}
1528 
1529 	KASSERT(imo->imo_mfilters != NULL,
1530 	    ("%s: imo_mfilters not allocated", __func__));
1531 	imf = &imo->imo_mfilters[idx];
1532 	inm = imo->imo_membership[idx];
1533 
1534 	/*
1535 	 * Attempting to use the delta-based API on an
1536 	 * non exclusive-mode membership is an error.
1537 	 */
1538 	fmode = imf->imf_st[0];
1539 	if (fmode != MCAST_EXCLUDE) {
1540 		error = EINVAL;
1541 		goto out_inp_locked;
1542 	}
1543 
1544 	/*
1545 	 * Deal with error cases up-front:
1546 	 *  Asked to block, but already blocked; or
1547 	 *  Asked to unblock, but nothing to unblock.
1548 	 * If adding a new block entry, allocate it.
1549 	 */
1550 	ims = imo_match_source(imo, idx, &ssa->sa);
1551 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1552 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1553 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1554 		error = EADDRNOTAVAIL;
1555 		goto out_inp_locked;
1556 	}
1557 
1558 	INP_WLOCK_ASSERT(inp);
1559 
1560 	/*
1561 	 * Begin state merge transaction at socket layer.
1562 	 */
1563 	if (doblock) {
1564 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1565 		ims = imf_graft(imf, fmode, &ssa->sin);
1566 		if (ims == NULL)
1567 			error = ENOMEM;
1568 	} else {
1569 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1570 		error = imf_prune(imf, &ssa->sin);
1571 	}
1572 
1573 	if (error) {
1574 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1575 		goto out_imf_rollback;
1576 	}
1577 
1578 	/*
1579 	 * Begin state merge transaction at IGMP layer.
1580 	 */
1581 	IN_MULTI_LOCK();
1582 	IN_MULTI_LIST_LOCK();
1583 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1584 	error = inm_merge(inm, imf);
1585 	if (error) {
1586 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1587 		goto out_in_multi_locked;
1588 	}
1589 
1590 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1591 	error = igmp_change_state(inm);
1592 	if (error)
1593 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1594 
1595 out_in_multi_locked:
1596 
1597 	IN_MULTI_UNLOCK();
1598 	IN_MULTI_UNLOCK();
1599 out_imf_rollback:
1600 	if (error)
1601 		imf_rollback(imf);
1602 	else
1603 		imf_commit(imf);
1604 
1605 	imf_reap(imf);
1606 
1607 out_inp_locked:
1608 	INP_WUNLOCK(inp);
1609 	return (error);
1610 }
1611 
1612 /*
1613  * Given an inpcb, return its multicast options structure pointer.  Accepts
1614  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1615  *
1616  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1617  * SMPng: NOTE: Returns with the INP write lock held.
1618  */
1619 static struct ip_moptions *
1620 inp_findmoptions(struct inpcb *inp)
1621 {
1622 	struct ip_moptions	 *imo;
1623 	struct in_multi		**immp;
1624 	struct in_mfilter	 *imfp;
1625 	size_t			  idx;
1626 
1627 	INP_WLOCK(inp);
1628 	if (inp->inp_moptions != NULL)
1629 		return (inp->inp_moptions);
1630 
1631 	INP_WUNLOCK(inp);
1632 
1633 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1634 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1635 	    M_WAITOK | M_ZERO);
1636 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1637 	    M_INMFILTER, M_WAITOK);
1638 
1639 	imo->imo_multicast_ifp = NULL;
1640 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1641 	imo->imo_multicast_vif = -1;
1642 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1643 	imo->imo_multicast_loop = in_mcast_loop;
1644 	imo->imo_num_memberships = 0;
1645 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1646 	imo->imo_membership = immp;
1647 
1648 	/* Initialize per-group source filters. */
1649 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1650 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1651 	imo->imo_mfilters = imfp;
1652 
1653 	INP_WLOCK(inp);
1654 	if (inp->inp_moptions != NULL) {
1655 		free(imfp, M_INMFILTER);
1656 		free(immp, M_IPMOPTS);
1657 		free(imo, M_IPMOPTS);
1658 		return (inp->inp_moptions);
1659 	}
1660 	inp->inp_moptions = imo;
1661 	return (imo);
1662 }
1663 
1664 static void
1665 inp_gcmoptions(epoch_context_t ctx)
1666 {
1667 	struct ip_moptions *imo;
1668 	struct in_mfilter	*imf;
1669 	struct in_multi *inm;
1670 	struct ifnet *ifp;
1671 	size_t			 idx, nmships;
1672 
1673 	imo =  __containerof(ctx, struct ip_moptions, imo_epoch_ctx);
1674 
1675 	nmships = imo->imo_num_memberships;
1676 	for (idx = 0; idx < nmships; ++idx) {
1677 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1678 		if (imf)
1679 			imf_leave(imf);
1680 		inm = imo->imo_membership[idx];
1681 		ifp = inm->inm_ifp;
1682 		if (ifp != NULL) {
1683 			CURVNET_SET(ifp->if_vnet);
1684 			(void)in_leavegroup(inm, imf);
1685 			CURVNET_RESTORE();
1686 		} else {
1687 			(void)in_leavegroup(inm, imf);
1688 		}
1689 		if (imf)
1690 			imf_purge(imf);
1691 	}
1692 
1693 	if (imo->imo_mfilters)
1694 		free(imo->imo_mfilters, M_INMFILTER);
1695 	free(imo->imo_membership, M_IPMOPTS);
1696 	free(imo, M_IPMOPTS);
1697 }
1698 
1699 /*
1700  * Discard the IP multicast options (and source filters).  To minimize
1701  * the amount of work done while holding locks such as the INP's
1702  * pcbinfo lock (which is used in the receive path), the free
1703  * operation is deferred to the epoch callback task.
1704  */
1705 void
1706 inp_freemoptions(struct ip_moptions *imo)
1707 {
1708 	if (imo == NULL)
1709 		return;
1710 	epoch_call(net_epoch_preempt, &imo->imo_epoch_ctx, inp_gcmoptions);
1711 }
1712 
1713 /*
1714  * Atomically get source filters on a socket for an IPv4 multicast group.
1715  * Called with INP lock held; returns with lock released.
1716  */
1717 static int
1718 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1719 {
1720 	struct __msfilterreq	 msfr;
1721 	sockunion_t		*gsa;
1722 	struct ifnet		*ifp;
1723 	struct ip_moptions	*imo;
1724 	struct in_mfilter	*imf;
1725 	struct ip_msource	*ims;
1726 	struct in_msource	*lims;
1727 	struct sockaddr_in	*psin;
1728 	struct sockaddr_storage	*ptss;
1729 	struct sockaddr_storage	*tss;
1730 	int			 error;
1731 	size_t			 idx, nsrcs, ncsrcs;
1732 
1733 	INP_WLOCK_ASSERT(inp);
1734 
1735 	imo = inp->inp_moptions;
1736 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1737 
1738 	INP_WUNLOCK(inp);
1739 
1740 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1741 	    sizeof(struct __msfilterreq));
1742 	if (error)
1743 		return (error);
1744 
1745 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1746 		return (EINVAL);
1747 
1748 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1749 	if (ifp == NULL)
1750 		return (EINVAL);
1751 
1752 	INP_WLOCK(inp);
1753 
1754 	/*
1755 	 * Lookup group on the socket.
1756 	 */
1757 	gsa = (sockunion_t *)&msfr.msfr_group;
1758 	idx = imo_match_group(imo, ifp, &gsa->sa);
1759 	if (idx == -1 || imo->imo_mfilters == NULL) {
1760 		INP_WUNLOCK(inp);
1761 		return (EADDRNOTAVAIL);
1762 	}
1763 	imf = &imo->imo_mfilters[idx];
1764 
1765 	/*
1766 	 * Ignore memberships which are in limbo.
1767 	 */
1768 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1769 		INP_WUNLOCK(inp);
1770 		return (EAGAIN);
1771 	}
1772 	msfr.msfr_fmode = imf->imf_st[1];
1773 
1774 	/*
1775 	 * If the user specified a buffer, copy out the source filter
1776 	 * entries to userland gracefully.
1777 	 * We only copy out the number of entries which userland
1778 	 * has asked for, but we always tell userland how big the
1779 	 * buffer really needs to be.
1780 	 */
1781 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1782 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1783 	tss = NULL;
1784 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1785 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1786 		    M_TEMP, M_NOWAIT | M_ZERO);
1787 		if (tss == NULL) {
1788 			INP_WUNLOCK(inp);
1789 			return (ENOBUFS);
1790 		}
1791 	}
1792 
1793 	/*
1794 	 * Count number of sources in-mode at t0.
1795 	 * If buffer space exists and remains, copy out source entries.
1796 	 */
1797 	nsrcs = msfr.msfr_nsrcs;
1798 	ncsrcs = 0;
1799 	ptss = tss;
1800 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1801 		lims = (struct in_msource *)ims;
1802 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1803 		    lims->imsl_st[0] != imf->imf_st[0])
1804 			continue;
1805 		++ncsrcs;
1806 		if (tss != NULL && nsrcs > 0) {
1807 			psin = (struct sockaddr_in *)ptss;
1808 			psin->sin_family = AF_INET;
1809 			psin->sin_len = sizeof(struct sockaddr_in);
1810 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1811 			psin->sin_port = 0;
1812 			++ptss;
1813 			--nsrcs;
1814 		}
1815 	}
1816 
1817 	INP_WUNLOCK(inp);
1818 
1819 	if (tss != NULL) {
1820 		error = copyout(tss, msfr.msfr_srcs,
1821 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1822 		free(tss, M_TEMP);
1823 		if (error)
1824 			return (error);
1825 	}
1826 
1827 	msfr.msfr_nsrcs = ncsrcs;
1828 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1829 
1830 	return (error);
1831 }
1832 
1833 /*
1834  * Return the IP multicast options in response to user getsockopt().
1835  */
1836 int
1837 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1838 {
1839 	struct rm_priotracker	 in_ifa_tracker;
1840 	struct ip_mreqn		 mreqn;
1841 	struct ip_moptions	*imo;
1842 	struct ifnet		*ifp;
1843 	struct in_ifaddr	*ia;
1844 	int			 error, optval;
1845 	u_char			 coptval;
1846 
1847 	INP_WLOCK(inp);
1848 	imo = inp->inp_moptions;
1849 	/*
1850 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1851 	 * or is a divert socket, reject it.
1852 	 */
1853 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1854 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1855 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1856 		INP_WUNLOCK(inp);
1857 		return (EOPNOTSUPP);
1858 	}
1859 
1860 	error = 0;
1861 	switch (sopt->sopt_name) {
1862 	case IP_MULTICAST_VIF:
1863 		if (imo != NULL)
1864 			optval = imo->imo_multicast_vif;
1865 		else
1866 			optval = -1;
1867 		INP_WUNLOCK(inp);
1868 		error = sooptcopyout(sopt, &optval, sizeof(int));
1869 		break;
1870 
1871 	case IP_MULTICAST_IF:
1872 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1873 		if (imo != NULL) {
1874 			ifp = imo->imo_multicast_ifp;
1875 			if (!in_nullhost(imo->imo_multicast_addr)) {
1876 				mreqn.imr_address = imo->imo_multicast_addr;
1877 			} else if (ifp != NULL) {
1878 				mreqn.imr_ifindex = ifp->if_index;
1879 				NET_EPOCH_ENTER();
1880 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1881 				if (ia != NULL)
1882 					mreqn.imr_address =
1883 					    IA_SIN(ia)->sin_addr;
1884 				NET_EPOCH_EXIT();
1885 			}
1886 		}
1887 		INP_WUNLOCK(inp);
1888 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1889 			error = sooptcopyout(sopt, &mreqn,
1890 			    sizeof(struct ip_mreqn));
1891 		} else {
1892 			error = sooptcopyout(sopt, &mreqn.imr_address,
1893 			    sizeof(struct in_addr));
1894 		}
1895 		break;
1896 
1897 	case IP_MULTICAST_TTL:
1898 		if (imo == NULL)
1899 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1900 		else
1901 			optval = coptval = imo->imo_multicast_ttl;
1902 		INP_WUNLOCK(inp);
1903 		if (sopt->sopt_valsize == sizeof(u_char))
1904 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1905 		else
1906 			error = sooptcopyout(sopt, &optval, sizeof(int));
1907 		break;
1908 
1909 	case IP_MULTICAST_LOOP:
1910 		if (imo == NULL)
1911 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1912 		else
1913 			optval = coptval = imo->imo_multicast_loop;
1914 		INP_WUNLOCK(inp);
1915 		if (sopt->sopt_valsize == sizeof(u_char))
1916 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1917 		else
1918 			error = sooptcopyout(sopt, &optval, sizeof(int));
1919 		break;
1920 
1921 	case IP_MSFILTER:
1922 		if (imo == NULL) {
1923 			error = EADDRNOTAVAIL;
1924 			INP_WUNLOCK(inp);
1925 		} else {
1926 			error = inp_get_source_filters(inp, sopt);
1927 		}
1928 		break;
1929 
1930 	default:
1931 		INP_WUNLOCK(inp);
1932 		error = ENOPROTOOPT;
1933 		break;
1934 	}
1935 
1936 	INP_UNLOCK_ASSERT(inp);
1937 
1938 	return (error);
1939 }
1940 
1941 /*
1942  * Look up the ifnet to use for a multicast group membership,
1943  * given the IPv4 address of an interface, and the IPv4 group address.
1944  *
1945  * This routine exists to support legacy multicast applications
1946  * which do not understand that multicast memberships are scoped to
1947  * specific physical links in the networking stack, or which need
1948  * to join link-scope groups before IPv4 addresses are configured.
1949  *
1950  * If inp is non-NULL, use this socket's current FIB number for any
1951  * required FIB lookup.
1952  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1953  * and use its ifp; usually, this points to the default next-hop.
1954  *
1955  * If the FIB lookup fails, attempt to use the first non-loopback
1956  * interface with multicast capability in the system as a
1957  * last resort. The legacy IPv4 ASM API requires that we do
1958  * this in order to allow groups to be joined when the routing
1959  * table has not yet been populated during boot.
1960  *
1961  * Returns NULL if no ifp could be found.
1962  *
1963  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1964  * FUTURE: Implement IPv4 source-address selection.
1965  */
1966 static struct ifnet *
1967 inp_lookup_mcast_ifp(const struct inpcb *inp,
1968     const struct sockaddr_in *gsin, const struct in_addr ina)
1969 {
1970 	struct rm_priotracker in_ifa_tracker;
1971 	struct ifnet *ifp;
1972 	struct nhop4_basic nh4;
1973 	uint32_t fibnum;
1974 
1975 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1976 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1977 	    ("%s: not multicast", __func__));
1978 
1979 	ifp = NULL;
1980 	if (!in_nullhost(ina)) {
1981 		INADDR_TO_IFP(ina, ifp);
1982 	} else {
1983 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1984 		if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0)
1985 			ifp = nh4.nh_ifp;
1986 		else {
1987 			struct in_ifaddr *ia;
1988 			struct ifnet *mifp;
1989 
1990 			mifp = NULL;
1991 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1992 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1993 				mifp = ia->ia_ifp;
1994 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1995 				     (mifp->if_flags & IFF_MULTICAST)) {
1996 					ifp = mifp;
1997 					break;
1998 				}
1999 			}
2000 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2001 		}
2002 	}
2003 
2004 	return (ifp);
2005 }
2006 
2007 /*
2008  * Join an IPv4 multicast group, possibly with a source.
2009  */
2010 static int
2011 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2012 {
2013 	struct group_source_req		 gsr;
2014 	sockunion_t			*gsa, *ssa;
2015 	struct ifnet			*ifp;
2016 	struct in_mfilter		*imf;
2017 	struct ip_moptions		*imo;
2018 	struct in_multi			*inm;
2019 	struct in_msource		*lims;
2020 	size_t				 idx;
2021 	int				 error, is_new;
2022 
2023 	ifp = NULL;
2024 	imf = NULL;
2025 	lims = NULL;
2026 	error = 0;
2027 	is_new = 0;
2028 
2029 	memset(&gsr, 0, sizeof(struct group_source_req));
2030 	gsa = (sockunion_t *)&gsr.gsr_group;
2031 	gsa->ss.ss_family = AF_UNSPEC;
2032 	ssa = (sockunion_t *)&gsr.gsr_source;
2033 	ssa->ss.ss_family = AF_UNSPEC;
2034 
2035 	switch (sopt->sopt_name) {
2036 	case IP_ADD_MEMBERSHIP:
2037 	case IP_ADD_SOURCE_MEMBERSHIP: {
2038 		struct ip_mreq_source	 mreqs;
2039 
2040 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2041 			error = sooptcopyin(sopt, &mreqs,
2042 			    sizeof(struct ip_mreq),
2043 			    sizeof(struct ip_mreq));
2044 			/*
2045 			 * Do argument switcharoo from ip_mreq into
2046 			 * ip_mreq_source to avoid using two instances.
2047 			 */
2048 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2049 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2050 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2051 			error = sooptcopyin(sopt, &mreqs,
2052 			    sizeof(struct ip_mreq_source),
2053 			    sizeof(struct ip_mreq_source));
2054 		}
2055 		if (error)
2056 			return (error);
2057 
2058 		gsa->sin.sin_family = AF_INET;
2059 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2060 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2061 
2062 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2063 			ssa->sin.sin_family = AF_INET;
2064 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2065 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2066 		}
2067 
2068 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2069 			return (EINVAL);
2070 
2071 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2072 		    mreqs.imr_interface);
2073 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2074 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2075 		break;
2076 	}
2077 
2078 	case MCAST_JOIN_GROUP:
2079 	case MCAST_JOIN_SOURCE_GROUP:
2080 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2081 			error = sooptcopyin(sopt, &gsr,
2082 			    sizeof(struct group_req),
2083 			    sizeof(struct group_req));
2084 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2085 			error = sooptcopyin(sopt, &gsr,
2086 			    sizeof(struct group_source_req),
2087 			    sizeof(struct group_source_req));
2088 		}
2089 		if (error)
2090 			return (error);
2091 
2092 		if (gsa->sin.sin_family != AF_INET ||
2093 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2094 			return (EINVAL);
2095 
2096 		/*
2097 		 * Overwrite the port field if present, as the sockaddr
2098 		 * being copied in may be matched with a binary comparison.
2099 		 */
2100 		gsa->sin.sin_port = 0;
2101 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2102 			if (ssa->sin.sin_family != AF_INET ||
2103 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2104 				return (EINVAL);
2105 			ssa->sin.sin_port = 0;
2106 		}
2107 
2108 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2109 			return (EINVAL);
2110 
2111 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2112 			return (EADDRNOTAVAIL);
2113 		ifp = ifnet_byindex(gsr.gsr_interface);
2114 		break;
2115 
2116 	default:
2117 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2118 		    __func__, sopt->sopt_name);
2119 		return (EOPNOTSUPP);
2120 		break;
2121 	}
2122 
2123 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2124 		return (EADDRNOTAVAIL);
2125 
2126 	imo = inp_findmoptions(inp);
2127 	idx = imo_match_group(imo, ifp, &gsa->sa);
2128 	if (idx == -1) {
2129 		is_new = 1;
2130 	} else {
2131 		inm = imo->imo_membership[idx];
2132 		imf = &imo->imo_mfilters[idx];
2133 		if (ssa->ss.ss_family != AF_UNSPEC) {
2134 			/*
2135 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2136 			 * is an error. On an existing inclusive membership,
2137 			 * it just adds the source to the filter list.
2138 			 */
2139 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2140 				error = EINVAL;
2141 				goto out_inp_locked;
2142 			}
2143 			/*
2144 			 * Throw out duplicates.
2145 			 *
2146 			 * XXX FIXME: This makes a naive assumption that
2147 			 * even if entries exist for *ssa in this imf,
2148 			 * they will be rejected as dupes, even if they
2149 			 * are not valid in the current mode (in-mode).
2150 			 *
2151 			 * in_msource is transactioned just as for anything
2152 			 * else in SSM -- but note naive use of inm_graft()
2153 			 * below for allocating new filter entries.
2154 			 *
2155 			 * This is only an issue if someone mixes the
2156 			 * full-state SSM API with the delta-based API,
2157 			 * which is discouraged in the relevant RFCs.
2158 			 */
2159 			lims = imo_match_source(imo, idx, &ssa->sa);
2160 			if (lims != NULL /*&&
2161 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2162 				error = EADDRNOTAVAIL;
2163 				goto out_inp_locked;
2164 			}
2165 		} else {
2166 			/*
2167 			 * MCAST_JOIN_GROUP on an existing exclusive
2168 			 * membership is an error; return EADDRINUSE
2169 			 * to preserve 4.4BSD API idempotence, and
2170 			 * avoid tedious detour to code below.
2171 			 * NOTE: This is bending RFC 3678 a bit.
2172 			 *
2173 			 * On an existing inclusive membership, this is also
2174 			 * an error; if you want to change filter mode,
2175 			 * you must use the userland API setsourcefilter().
2176 			 * XXX We don't reject this for imf in UNDEFINED
2177 			 * state at t1, because allocation of a filter
2178 			 * is atomic with allocation of a membership.
2179 			 */
2180 			error = EINVAL;
2181 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2182 				error = EADDRINUSE;
2183 			goto out_inp_locked;
2184 		}
2185 	}
2186 
2187 	/*
2188 	 * Begin state merge transaction at socket layer.
2189 	 */
2190 	INP_WLOCK_ASSERT(inp);
2191 
2192 	if (is_new) {
2193 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2194 			error = imo_grow(imo);
2195 			if (error)
2196 				goto out_inp_locked;
2197 		}
2198 		/*
2199 		 * Allocate the new slot upfront so we can deal with
2200 		 * grafting the new source filter in same code path
2201 		 * as for join-source on existing membership.
2202 		 */
2203 		idx = imo->imo_num_memberships;
2204 		imo->imo_membership[idx] = NULL;
2205 		imo->imo_num_memberships++;
2206 		KASSERT(imo->imo_mfilters != NULL,
2207 		    ("%s: imf_mfilters vector was not allocated", __func__));
2208 		imf = &imo->imo_mfilters[idx];
2209 		KASSERT(RB_EMPTY(&imf->imf_sources),
2210 		    ("%s: imf_sources not empty", __func__));
2211 	}
2212 
2213 	/*
2214 	 * Graft new source into filter list for this inpcb's
2215 	 * membership of the group. The in_multi may not have
2216 	 * been allocated yet if this is a new membership, however,
2217 	 * the in_mfilter slot will be allocated and must be initialized.
2218 	 *
2219 	 * Note: Grafting of exclusive mode filters doesn't happen
2220 	 * in this path.
2221 	 * XXX: Should check for non-NULL lims (node exists but may
2222 	 * not be in-mode) for interop with full-state API.
2223 	 */
2224 	if (ssa->ss.ss_family != AF_UNSPEC) {
2225 		/* Membership starts in IN mode */
2226 		if (is_new) {
2227 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2228 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2229 		} else {
2230 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2231 		}
2232 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2233 		if (lims == NULL) {
2234 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2235 			    __func__);
2236 			error = ENOMEM;
2237 			goto out_imo_free;
2238 		}
2239 	} else {
2240 		/* No address specified; Membership starts in EX mode */
2241 		if (is_new) {
2242 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2243 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2244 		}
2245 	}
2246 
2247 	/*
2248 	 * Begin state merge transaction at IGMP layer.
2249 	 */
2250 	in_pcbref(inp);
2251 	INP_WUNLOCK(inp);
2252 	IN_MULTI_LOCK();
2253 
2254 	if (is_new) {
2255 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2256 		    &inm);
2257 		if (error) {
2258                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2259                             __func__);
2260                         IN_MULTI_LIST_UNLOCK();
2261 			goto out_imo_free;
2262                 }
2263 		imo->imo_membership[idx] = inm;
2264 	} else {
2265 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2266 		IN_MULTI_LIST_LOCK();
2267 		error = inm_merge(inm, imf);
2268 		if (error) {
2269 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2270 				 __func__);
2271 			IN_MULTI_LIST_UNLOCK();
2272 			goto out_in_multi_locked;
2273 		}
2274 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2275 		error = igmp_change_state(inm);
2276 		IN_MULTI_LIST_UNLOCK();
2277 		if (error) {
2278 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2279 			    __func__);
2280 			goto out_in_multi_locked;
2281 		}
2282 	}
2283 
2284 out_in_multi_locked:
2285 
2286 	IN_MULTI_UNLOCK();
2287 	INP_WLOCK(inp);
2288 	if (in_pcbrele_wlocked(inp))
2289 		return (ENXIO);
2290 	if (error) {
2291 		imf_rollback(imf);
2292 		if (is_new)
2293 			imf_purge(imf);
2294 		else
2295 			imf_reap(imf);
2296 	} else {
2297 		imf_commit(imf);
2298 	}
2299 
2300 out_imo_free:
2301 	if (error && is_new) {
2302 		imo->imo_membership[idx] = NULL;
2303 		--imo->imo_num_memberships;
2304 	}
2305 
2306 out_inp_locked:
2307 	INP_WUNLOCK(inp);
2308 	return (error);
2309 }
2310 
2311 /*
2312  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2313  */
2314 static int
2315 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2316 {
2317 	struct group_source_req		 gsr;
2318 	struct ip_mreq_source		 mreqs;
2319 	sockunion_t			*gsa, *ssa;
2320 	struct ifnet			*ifp;
2321 	struct in_mfilter		*imf;
2322 	struct ip_moptions		*imo;
2323 	struct in_msource		*ims;
2324 	struct in_multi			*inm;
2325 	size_t				 idx;
2326 	int				 error, is_final;
2327 
2328 	ifp = NULL;
2329 	error = 0;
2330 	is_final = 1;
2331 
2332 	memset(&gsr, 0, sizeof(struct group_source_req));
2333 	gsa = (sockunion_t *)&gsr.gsr_group;
2334 	gsa->ss.ss_family = AF_UNSPEC;
2335 	ssa = (sockunion_t *)&gsr.gsr_source;
2336 	ssa->ss.ss_family = AF_UNSPEC;
2337 
2338 	switch (sopt->sopt_name) {
2339 	case IP_DROP_MEMBERSHIP:
2340 	case IP_DROP_SOURCE_MEMBERSHIP:
2341 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2342 			error = sooptcopyin(sopt, &mreqs,
2343 			    sizeof(struct ip_mreq),
2344 			    sizeof(struct ip_mreq));
2345 			/*
2346 			 * Swap interface and sourceaddr arguments,
2347 			 * as ip_mreq and ip_mreq_source are laid
2348 			 * out differently.
2349 			 */
2350 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2351 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2352 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2353 			error = sooptcopyin(sopt, &mreqs,
2354 			    sizeof(struct ip_mreq_source),
2355 			    sizeof(struct ip_mreq_source));
2356 		}
2357 		if (error)
2358 			return (error);
2359 
2360 		gsa->sin.sin_family = AF_INET;
2361 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2362 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2363 
2364 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2365 			ssa->sin.sin_family = AF_INET;
2366 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2367 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2368 		}
2369 
2370 		/*
2371 		 * Attempt to look up hinted ifp from interface address.
2372 		 * Fallthrough with null ifp iff lookup fails, to
2373 		 * preserve 4.4BSD mcast API idempotence.
2374 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2375 		 * using an IPv4 address as a key is racy.
2376 		 */
2377 		if (!in_nullhost(mreqs.imr_interface))
2378 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2379 
2380 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2381 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2382 
2383 		break;
2384 
2385 	case MCAST_LEAVE_GROUP:
2386 	case MCAST_LEAVE_SOURCE_GROUP:
2387 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2388 			error = sooptcopyin(sopt, &gsr,
2389 			    sizeof(struct group_req),
2390 			    sizeof(struct group_req));
2391 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2392 			error = sooptcopyin(sopt, &gsr,
2393 			    sizeof(struct group_source_req),
2394 			    sizeof(struct group_source_req));
2395 		}
2396 		if (error)
2397 			return (error);
2398 
2399 		if (gsa->sin.sin_family != AF_INET ||
2400 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2401 			return (EINVAL);
2402 
2403 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2404 			if (ssa->sin.sin_family != AF_INET ||
2405 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2406 				return (EINVAL);
2407 		}
2408 
2409 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2410 			return (EADDRNOTAVAIL);
2411 
2412 		ifp = ifnet_byindex(gsr.gsr_interface);
2413 
2414 		if (ifp == NULL)
2415 			return (EADDRNOTAVAIL);
2416 		break;
2417 
2418 	default:
2419 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2420 		    __func__, sopt->sopt_name);
2421 		return (EOPNOTSUPP);
2422 		break;
2423 	}
2424 
2425 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2426 		return (EINVAL);
2427 
2428 	/*
2429 	 * Find the membership in the membership array.
2430 	 */
2431 	imo = inp_findmoptions(inp);
2432 	idx = imo_match_group(imo, ifp, &gsa->sa);
2433 	if (idx == -1) {
2434 		error = EADDRNOTAVAIL;
2435 		goto out_inp_locked;
2436 	}
2437 	inm = imo->imo_membership[idx];
2438 	imf = &imo->imo_mfilters[idx];
2439 
2440 	if (ssa->ss.ss_family != AF_UNSPEC)
2441 		is_final = 0;
2442 
2443 	/*
2444 	 * Begin state merge transaction at socket layer.
2445 	 */
2446 	INP_WLOCK_ASSERT(inp);
2447 
2448 	/*
2449 	 * If we were instructed only to leave a given source, do so.
2450 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2451 	 */
2452 	if (is_final) {
2453 		imf_leave(imf);
2454 	} else {
2455 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2456 			error = EADDRNOTAVAIL;
2457 			goto out_inp_locked;
2458 		}
2459 		ims = imo_match_source(imo, idx, &ssa->sa);
2460 		if (ims == NULL) {
2461 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2462 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2463 			error = EADDRNOTAVAIL;
2464 			goto out_inp_locked;
2465 		}
2466 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2467 		error = imf_prune(imf, &ssa->sin);
2468 		if (error) {
2469 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2470 			    __func__);
2471 			goto out_inp_locked;
2472 		}
2473 	}
2474 
2475 	/*
2476 	 * Begin state merge transaction at IGMP layer.
2477 	 */
2478 	in_pcbref(inp);
2479 	INP_WUNLOCK(inp);
2480 	IN_MULTI_LOCK();
2481 
2482 	if (is_final) {
2483 		/*
2484 		 * Give up the multicast address record to which
2485 		 * the membership points.
2486 		 */
2487 		(void)in_leavegroup_locked(inm, imf);
2488 	} else {
2489 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2490 		IN_MULTI_LIST_LOCK();
2491 		error = inm_merge(inm, imf);
2492 		if (error) {
2493 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2494 			    __func__);
2495 			goto out_in_multi_locked;
2496 		}
2497 
2498 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2499 		error = igmp_change_state(inm);
2500 		IN_MULTI_LIST_UNLOCK();
2501 		if (error) {
2502 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2503 			    __func__);
2504 		}
2505 	}
2506 
2507 out_in_multi_locked:
2508 
2509 	IN_MULTI_UNLOCK();
2510 	INP_WLOCK(inp);
2511 	if (in_pcbrele_wlocked(inp))
2512 		return (ENXIO);
2513 
2514 	if (error)
2515 		imf_rollback(imf);
2516 	else
2517 		imf_commit(imf);
2518 
2519 	imf_reap(imf);
2520 
2521 	if (is_final) {
2522 		/* Remove the gap in the membership and filter array. */
2523 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2524 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2525 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2526 		}
2527 		imo->imo_num_memberships--;
2528 	}
2529 
2530 out_inp_locked:
2531 	INP_WUNLOCK(inp);
2532 	return (error);
2533 }
2534 
2535 /*
2536  * Select the interface for transmitting IPv4 multicast datagrams.
2537  *
2538  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2539  * may be passed to this socket option. An address of INADDR_ANY or an
2540  * interface index of 0 is used to remove a previous selection.
2541  * When no interface is selected, one is chosen for every send.
2542  */
2543 static int
2544 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2545 {
2546 	struct in_addr		 addr;
2547 	struct ip_mreqn		 mreqn;
2548 	struct ifnet		*ifp;
2549 	struct ip_moptions	*imo;
2550 	int			 error;
2551 
2552 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2553 		/*
2554 		 * An interface index was specified using the
2555 		 * Linux-derived ip_mreqn structure.
2556 		 */
2557 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2558 		    sizeof(struct ip_mreqn));
2559 		if (error)
2560 			return (error);
2561 
2562 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2563 			return (EINVAL);
2564 
2565 		if (mreqn.imr_ifindex == 0) {
2566 			ifp = NULL;
2567 		} else {
2568 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2569 			if (ifp == NULL)
2570 				return (EADDRNOTAVAIL);
2571 		}
2572 	} else {
2573 		/*
2574 		 * An interface was specified by IPv4 address.
2575 		 * This is the traditional BSD usage.
2576 		 */
2577 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2578 		    sizeof(struct in_addr));
2579 		if (error)
2580 			return (error);
2581 		if (in_nullhost(addr)) {
2582 			ifp = NULL;
2583 		} else {
2584 			INADDR_TO_IFP(addr, ifp);
2585 			if (ifp == NULL)
2586 				return (EADDRNOTAVAIL);
2587 		}
2588 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2589 		    ntohl(addr.s_addr));
2590 	}
2591 
2592 	/* Reject interfaces which do not support multicast. */
2593 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2594 		return (EOPNOTSUPP);
2595 
2596 	imo = inp_findmoptions(inp);
2597 	imo->imo_multicast_ifp = ifp;
2598 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2599 	INP_WUNLOCK(inp);
2600 
2601 	return (0);
2602 }
2603 
2604 /*
2605  * Atomically set source filters on a socket for an IPv4 multicast group.
2606  *
2607  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2608  */
2609 static int
2610 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2611 {
2612 	struct __msfilterreq	 msfr;
2613 	sockunion_t		*gsa;
2614 	struct ifnet		*ifp;
2615 	struct in_mfilter	*imf;
2616 	struct ip_moptions	*imo;
2617 	struct in_multi		*inm;
2618 	size_t			 idx;
2619 	int			 error;
2620 
2621 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2622 	    sizeof(struct __msfilterreq));
2623 	if (error)
2624 		return (error);
2625 
2626 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2627 		return (ENOBUFS);
2628 
2629 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2630 	     msfr.msfr_fmode != MCAST_INCLUDE))
2631 		return (EINVAL);
2632 
2633 	if (msfr.msfr_group.ss_family != AF_INET ||
2634 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2635 		return (EINVAL);
2636 
2637 	gsa = (sockunion_t *)&msfr.msfr_group;
2638 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2639 		return (EINVAL);
2640 
2641 	gsa->sin.sin_port = 0;	/* ignore port */
2642 
2643 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2644 		return (EADDRNOTAVAIL);
2645 
2646 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2647 	if (ifp == NULL)
2648 		return (EADDRNOTAVAIL);
2649 
2650 	/*
2651 	 * Take the INP write lock.
2652 	 * Check if this socket is a member of this group.
2653 	 */
2654 	imo = inp_findmoptions(inp);
2655 	idx = imo_match_group(imo, ifp, &gsa->sa);
2656 	if (idx == -1 || imo->imo_mfilters == NULL) {
2657 		error = EADDRNOTAVAIL;
2658 		goto out_inp_locked;
2659 	}
2660 	inm = imo->imo_membership[idx];
2661 	imf = &imo->imo_mfilters[idx];
2662 
2663 	/*
2664 	 * Begin state merge transaction at socket layer.
2665 	 */
2666 	INP_WLOCK_ASSERT(inp);
2667 
2668 	imf->imf_st[1] = msfr.msfr_fmode;
2669 
2670 	/*
2671 	 * Apply any new source filters, if present.
2672 	 * Make a copy of the user-space source vector so
2673 	 * that we may copy them with a single copyin. This
2674 	 * allows us to deal with page faults up-front.
2675 	 */
2676 	if (msfr.msfr_nsrcs > 0) {
2677 		struct in_msource	*lims;
2678 		struct sockaddr_in	*psin;
2679 		struct sockaddr_storage	*kss, *pkss;
2680 		int			 i;
2681 
2682 		INP_WUNLOCK(inp);
2683 
2684 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2685 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2686 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2687 		    M_TEMP, M_WAITOK);
2688 		error = copyin(msfr.msfr_srcs, kss,
2689 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2690 		if (error) {
2691 			free(kss, M_TEMP);
2692 			return (error);
2693 		}
2694 
2695 		INP_WLOCK(inp);
2696 
2697 		/*
2698 		 * Mark all source filters as UNDEFINED at t1.
2699 		 * Restore new group filter mode, as imf_leave()
2700 		 * will set it to INCLUDE.
2701 		 */
2702 		imf_leave(imf);
2703 		imf->imf_st[1] = msfr.msfr_fmode;
2704 
2705 		/*
2706 		 * Update socket layer filters at t1, lazy-allocating
2707 		 * new entries. This saves a bunch of memory at the
2708 		 * cost of one RB_FIND() per source entry; duplicate
2709 		 * entries in the msfr_nsrcs vector are ignored.
2710 		 * If we encounter an error, rollback transaction.
2711 		 *
2712 		 * XXX This too could be replaced with a set-symmetric
2713 		 * difference like loop to avoid walking from root
2714 		 * every time, as the key space is common.
2715 		 */
2716 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2717 			psin = (struct sockaddr_in *)pkss;
2718 			if (psin->sin_family != AF_INET) {
2719 				error = EAFNOSUPPORT;
2720 				break;
2721 			}
2722 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2723 				error = EINVAL;
2724 				break;
2725 			}
2726 			error = imf_get_source(imf, psin, &lims);
2727 			if (error)
2728 				break;
2729 			lims->imsl_st[1] = imf->imf_st[1];
2730 		}
2731 		free(kss, M_TEMP);
2732 	}
2733 
2734 	if (error)
2735 		goto out_imf_rollback;
2736 
2737 	INP_WLOCK_ASSERT(inp);
2738 	IN_MULTI_LOCK();
2739 	IN_MULTI_LIST_LOCK();
2740 
2741 	/*
2742 	 * Begin state merge transaction at IGMP layer.
2743 	 */
2744 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2745 	error = inm_merge(inm, imf);
2746 	if (error) {
2747 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2748 		IN_MULTI_LIST_UNLOCK();
2749 		goto out_in_multi_locked;
2750 	}
2751 
2752 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2753 	error = igmp_change_state(inm);
2754 	IN_MULTI_LIST_UNLOCK();
2755 	if (error)
2756 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2757 
2758 out_in_multi_locked:
2759 
2760 	IN_MULTI_UNLOCK();
2761 
2762 out_imf_rollback:
2763 	if (error)
2764 		imf_rollback(imf);
2765 	else
2766 		imf_commit(imf);
2767 
2768 	imf_reap(imf);
2769 
2770 out_inp_locked:
2771 	INP_WUNLOCK(inp);
2772 	return (error);
2773 }
2774 
2775 /*
2776  * Set the IP multicast options in response to user setsockopt().
2777  *
2778  * Many of the socket options handled in this function duplicate the
2779  * functionality of socket options in the regular unicast API. However,
2780  * it is not possible to merge the duplicate code, because the idempotence
2781  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2782  * the effects of these options must be treated as separate and distinct.
2783  *
2784  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2785  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2786  * is refactored to no longer use vifs.
2787  */
2788 int
2789 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2790 {
2791 	struct ip_moptions	*imo;
2792 	int			 error;
2793 
2794 	error = 0;
2795 
2796 	/*
2797 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2798 	 * or is a divert socket, reject it.
2799 	 */
2800 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2801 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2802 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2803 		return (EOPNOTSUPP);
2804 
2805 	switch (sopt->sopt_name) {
2806 	case IP_MULTICAST_VIF: {
2807 		int vifi;
2808 		/*
2809 		 * Select a multicast VIF for transmission.
2810 		 * Only useful if multicast forwarding is active.
2811 		 */
2812 		if (legal_vif_num == NULL) {
2813 			error = EOPNOTSUPP;
2814 			break;
2815 		}
2816 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2817 		if (error)
2818 			break;
2819 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2820 			error = EINVAL;
2821 			break;
2822 		}
2823 		imo = inp_findmoptions(inp);
2824 		imo->imo_multicast_vif = vifi;
2825 		INP_WUNLOCK(inp);
2826 		break;
2827 	}
2828 
2829 	case IP_MULTICAST_IF:
2830 		error = inp_set_multicast_if(inp, sopt);
2831 		break;
2832 
2833 	case IP_MULTICAST_TTL: {
2834 		u_char ttl;
2835 
2836 		/*
2837 		 * Set the IP time-to-live for outgoing multicast packets.
2838 		 * The original multicast API required a char argument,
2839 		 * which is inconsistent with the rest of the socket API.
2840 		 * We allow either a char or an int.
2841 		 */
2842 		if (sopt->sopt_valsize == sizeof(u_char)) {
2843 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2844 			    sizeof(u_char));
2845 			if (error)
2846 				break;
2847 		} else {
2848 			u_int ittl;
2849 
2850 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2851 			    sizeof(u_int));
2852 			if (error)
2853 				break;
2854 			if (ittl > 255) {
2855 				error = EINVAL;
2856 				break;
2857 			}
2858 			ttl = (u_char)ittl;
2859 		}
2860 		imo = inp_findmoptions(inp);
2861 		imo->imo_multicast_ttl = ttl;
2862 		INP_WUNLOCK(inp);
2863 		break;
2864 	}
2865 
2866 	case IP_MULTICAST_LOOP: {
2867 		u_char loop;
2868 
2869 		/*
2870 		 * Set the loopback flag for outgoing multicast packets.
2871 		 * Must be zero or one.  The original multicast API required a
2872 		 * char argument, which is inconsistent with the rest
2873 		 * of the socket API.  We allow either a char or an int.
2874 		 */
2875 		if (sopt->sopt_valsize == sizeof(u_char)) {
2876 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2877 			    sizeof(u_char));
2878 			if (error)
2879 				break;
2880 		} else {
2881 			u_int iloop;
2882 
2883 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2884 					    sizeof(u_int));
2885 			if (error)
2886 				break;
2887 			loop = (u_char)iloop;
2888 		}
2889 		imo = inp_findmoptions(inp);
2890 		imo->imo_multicast_loop = !!loop;
2891 		INP_WUNLOCK(inp);
2892 		break;
2893 	}
2894 
2895 	case IP_ADD_MEMBERSHIP:
2896 	case IP_ADD_SOURCE_MEMBERSHIP:
2897 	case MCAST_JOIN_GROUP:
2898 	case MCAST_JOIN_SOURCE_GROUP:
2899 		error = inp_join_group(inp, sopt);
2900 		break;
2901 
2902 	case IP_DROP_MEMBERSHIP:
2903 	case IP_DROP_SOURCE_MEMBERSHIP:
2904 	case MCAST_LEAVE_GROUP:
2905 	case MCAST_LEAVE_SOURCE_GROUP:
2906 		error = inp_leave_group(inp, sopt);
2907 		break;
2908 
2909 	case IP_BLOCK_SOURCE:
2910 	case IP_UNBLOCK_SOURCE:
2911 	case MCAST_BLOCK_SOURCE:
2912 	case MCAST_UNBLOCK_SOURCE:
2913 		error = inp_block_unblock_source(inp, sopt);
2914 		break;
2915 
2916 	case IP_MSFILTER:
2917 		error = inp_set_source_filters(inp, sopt);
2918 		break;
2919 
2920 	default:
2921 		error = EOPNOTSUPP;
2922 		break;
2923 	}
2924 
2925 	INP_UNLOCK_ASSERT(inp);
2926 
2927 	return (error);
2928 }
2929 
2930 /*
2931  * Expose IGMP's multicast filter mode and source list(s) to userland,
2932  * keyed by (ifindex, group).
2933  * The filter mode is written out as a uint32_t, followed by
2934  * 0..n of struct in_addr.
2935  * For use by ifmcstat(8).
2936  * SMPng: NOTE: unlocked read of ifindex space.
2937  */
2938 static int
2939 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2940 {
2941 	struct in_addr			 src, group;
2942 	struct ifnet			*ifp;
2943 	struct ifmultiaddr		*ifma;
2944 	struct in_multi			*inm;
2945 	struct ip_msource		*ims;
2946 	int				*name;
2947 	int				 retval;
2948 	u_int				 namelen;
2949 	uint32_t			 fmode, ifindex;
2950 
2951 	name = (int *)arg1;
2952 	namelen = arg2;
2953 
2954 	if (req->newptr != NULL)
2955 		return (EPERM);
2956 
2957 	if (namelen != 2)
2958 		return (EINVAL);
2959 
2960 	ifindex = name[0];
2961 	if (ifindex <= 0 || ifindex > V_if_index) {
2962 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2963 		    __func__, ifindex);
2964 		return (ENOENT);
2965 	}
2966 
2967 	group.s_addr = name[1];
2968 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2969 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2970 		    __func__, ntohl(group.s_addr));
2971 		return (EINVAL);
2972 	}
2973 
2974 	ifp = ifnet_byindex(ifindex);
2975 	if (ifp == NULL) {
2976 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2977 		    __func__, ifindex);
2978 		return (ENOENT);
2979 	}
2980 
2981 	retval = sysctl_wire_old_buffer(req,
2982 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2983 	if (retval)
2984 		return (retval);
2985 
2986 	IN_MULTI_LIST_LOCK();
2987 
2988 	IF_ADDR_RLOCK(ifp);
2989 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2990 		if (ifma->ifma_addr->sa_family != AF_INET ||
2991 		    ifma->ifma_protospec == NULL)
2992 			continue;
2993 		inm = (struct in_multi *)ifma->ifma_protospec;
2994 		if (!in_hosteq(inm->inm_addr, group))
2995 			continue;
2996 		fmode = inm->inm_st[1].iss_fmode;
2997 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2998 		if (retval != 0)
2999 			break;
3000 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3001 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
3002 			    ims->ims_haddr);
3003 			/*
3004 			 * Only copy-out sources which are in-mode.
3005 			 */
3006 			if (fmode != ims_get_mode(inm, ims, 1)) {
3007 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
3008 				    __func__);
3009 				continue;
3010 			}
3011 			src.s_addr = htonl(ims->ims_haddr);
3012 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3013 			if (retval != 0)
3014 				break;
3015 		}
3016 	}
3017 	IF_ADDR_RUNLOCK(ifp);
3018 
3019 	IN_MULTI_LIST_UNLOCK();
3020 
3021 	return (retval);
3022 }
3023 
3024 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
3025 
3026 static const char *inm_modestrs[] = { "un", "in", "ex" };
3027 
3028 static const char *
3029 inm_mode_str(const int mode)
3030 {
3031 
3032 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3033 		return (inm_modestrs[mode]);
3034 	return ("??");
3035 }
3036 
3037 static const char *inm_statestrs[] = {
3038 	"not-member",
3039 	"silent",
3040 	"idle",
3041 	"lazy",
3042 	"sleeping",
3043 	"awakening",
3044 	"query-pending",
3045 	"sg-query-pending",
3046 	"leaving"
3047 };
3048 
3049 static const char *
3050 inm_state_str(const int state)
3051 {
3052 
3053 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3054 		return (inm_statestrs[state]);
3055 	return ("??");
3056 }
3057 
3058 /*
3059  * Dump an in_multi structure to the console.
3060  */
3061 void
3062 inm_print(const struct in_multi *inm)
3063 {
3064 	int t;
3065 	char addrbuf[INET_ADDRSTRLEN];
3066 
3067 	if ((ktr_mask & KTR_IGMPV3) == 0)
3068 		return;
3069 
3070 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3071 	printf("addr %s ifp %p(%s) ifma %p\n",
3072 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3073 	    inm->inm_ifp,
3074 	    inm->inm_ifp->if_xname,
3075 	    inm->inm_ifma);
3076 	printf("timer %u state %s refcount %u scq.len %u\n",
3077 	    inm->inm_timer,
3078 	    inm_state_str(inm->inm_state),
3079 	    inm->inm_refcount,
3080 	    inm->inm_scq.mq_len);
3081 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3082 	    inm->inm_igi,
3083 	    inm->inm_nsrc,
3084 	    inm->inm_sctimer,
3085 	    inm->inm_scrv);
3086 	for (t = 0; t < 2; t++) {
3087 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3088 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3089 		    inm->inm_st[t].iss_asm,
3090 		    inm->inm_st[t].iss_ex,
3091 		    inm->inm_st[t].iss_in,
3092 		    inm->inm_st[t].iss_rec);
3093 	}
3094 	printf("%s: --- end inm %p ---\n", __func__, inm);
3095 }
3096 
3097 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3098 
3099 void
3100 inm_print(const struct in_multi *inm)
3101 {
3102 
3103 }
3104 
3105 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3106 
3107 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3108