xref: /freebsd/sys/netinet/in_mcast.c (revision 81ea85a8845662ca329a954eeeb3e6d4124282a2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/gtaskqueue.h>
55 #include <sys/tree.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
98  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
99  *   it can be taken by code in net/if.c also.
100  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
101  *
102  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
103  * any need for in_multi itself to be virtualized -- it is bound to an ifp
104  * anyway no matter what happens.
105  */
106 struct mtx in_multi_list_mtx;
107 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
108 
109 struct mtx in_multi_free_mtx;
110 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
111 
112 struct sx in_multi_sx;
113 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
114 
115 int ifma_restart;
116 
117 /*
118  * Functions with non-static linkage defined in this file should be
119  * declared in in_var.h:
120  *  imo_multi_filter()
121  *  in_addmulti()
122  *  in_delmulti()
123  *  in_joingroup()
124  *  in_joingroup_locked()
125  *  in_leavegroup()
126  *  in_leavegroup_locked()
127  * and ip_var.h:
128  *  inp_freemoptions()
129  *  inp_getmoptions()
130  *  inp_setmoptions()
131  *
132  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
133  * and in_delmulti().
134  */
135 static void	imf_commit(struct in_mfilter *);
136 static int	imf_get_source(struct in_mfilter *imf,
137 		    const struct sockaddr_in *psin,
138 		    struct in_msource **);
139 static struct in_msource *
140 		imf_graft(struct in_mfilter *, const uint8_t,
141 		    const struct sockaddr_in *);
142 static void	imf_leave(struct in_mfilter *);
143 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
144 static void	imf_purge(struct in_mfilter *);
145 static void	imf_rollback(struct in_mfilter *);
146 static void	imf_reap(struct in_mfilter *);
147 static int	imo_grow(struct ip_moptions *);
148 static size_t	imo_match_group(const struct ip_moptions *,
149 		    const struct ifnet *, const struct sockaddr *);
150 static struct in_msource *
151 		imo_match_source(const struct ip_moptions *, const size_t,
152 		    const struct sockaddr *);
153 static void	ims_merge(struct ip_msource *ims,
154 		    const struct in_msource *lims, const int rollback);
155 static int	in_getmulti(struct ifnet *, const struct in_addr *,
156 		    struct in_multi **);
157 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
158 		    const int noalloc, struct ip_msource **pims);
159 #ifdef KTR
160 static int	inm_is_ifp_detached(const struct in_multi *);
161 #endif
162 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
163 static void	inm_purge(struct in_multi *);
164 static void	inm_reap(struct in_multi *);
165 static void inm_release(struct in_multi *);
166 static struct ip_moptions *
167 		inp_findmoptions(struct inpcb *);
168 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
169 static int	inp_join_group(struct inpcb *, struct sockopt *);
170 static int	inp_leave_group(struct inpcb *, struct sockopt *);
171 static struct ifnet *
172 		inp_lookup_mcast_ifp(const struct inpcb *,
173 		    const struct sockaddr_in *, const struct in_addr);
174 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
175 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
176 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
177 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
178 
179 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
180     "IPv4 multicast");
181 
182 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
183 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
184     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
185     "Max source filters per group");
186 
187 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
188 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
189     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
190     "Max source filters per socket");
191 
192 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
193 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
194     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
195 
196 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
197     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
198     "Per-interface stack-wide source filters");
199 
200 #ifdef KTR
201 /*
202  * Inline function which wraps assertions for a valid ifp.
203  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
204  * is detached.
205  */
206 static int __inline
207 inm_is_ifp_detached(const struct in_multi *inm)
208 {
209 	struct ifnet *ifp;
210 
211 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
212 	ifp = inm->inm_ifma->ifma_ifp;
213 	if (ifp != NULL) {
214 		/*
215 		 * Sanity check that netinet's notion of ifp is the
216 		 * same as net's.
217 		 */
218 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
219 	}
220 
221 	return (ifp == NULL);
222 }
223 #endif
224 
225 static struct grouptask free_gtask;
226 static struct in_multi_head inm_free_list;
227 static void inm_release_task(void *arg __unused);
228 static void inm_init(void)
229 {
230 	SLIST_INIT(&inm_free_list);
231 	taskqgroup_config_gtask_init(NULL, &free_gtask, inm_release_task, "inm release task");
232 }
233 
234 #ifdef EARLY_AP_STARTUP
235 SYSINIT(inm_init, SI_SUB_SMP + 1, SI_ORDER_FIRST,
236 	inm_init, NULL);
237 #else
238 SYSINIT(inm_init, SI_SUB_ROOT_CONF - 1, SI_ORDER_FIRST,
239 	inm_init, NULL);
240 #endif
241 
242 
243 void
244 inm_release_list_deferred(struct in_multi_head *inmh)
245 {
246 
247 	if (SLIST_EMPTY(inmh))
248 		return;
249 	mtx_lock(&in_multi_free_mtx);
250 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
251 	mtx_unlock(&in_multi_free_mtx);
252 	GROUPTASK_ENQUEUE(&free_gtask);
253 }
254 
255 void
256 inm_disconnect(struct in_multi *inm)
257 {
258 	struct ifnet *ifp;
259 	struct ifmultiaddr *ifma, *ll_ifma;
260 
261 	ifp = inm->inm_ifp;
262 	IF_ADDR_WLOCK_ASSERT(ifp);
263 	ifma = inm->inm_ifma;
264 
265 	if_ref(ifp);
266 	CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
267 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
268 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
269 		MPASS(ifma != ll_ifma);
270 		ifma->ifma_llifma = NULL;
271 		MPASS(ll_ifma->ifma_llifma == NULL);
272 		MPASS(ll_ifma->ifma_ifp == ifp);
273 		if (--ll_ifma->ifma_refcount == 0) {
274 			CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
275 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
276 			if_freemulti(ll_ifma);
277 			ifma_restart = true;
278 		}
279 	}
280 }
281 
282 void
283 inm_release_deferred(struct in_multi *inm)
284 {
285 	struct in_multi_head tmp;
286 
287 	IN_MULTI_LIST_LOCK_ASSERT();
288 	MPASS(inm->inm_refcount > 0);
289 	if (--inm->inm_refcount == 0) {
290 		SLIST_INIT(&tmp);
291 		inm_disconnect(inm);
292 		inm->inm_ifma->ifma_protospec = NULL;
293 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
294 		inm_release_list_deferred(&tmp);
295 	}
296 }
297 
298 static void
299 inm_release_task(void *arg __unused)
300 {
301 	struct in_multi_head inm_free_tmp;
302 	struct in_multi *inm, *tinm;
303 
304 	SLIST_INIT(&inm_free_tmp);
305 	mtx_lock(&in_multi_free_mtx);
306 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
307 	mtx_unlock(&in_multi_free_mtx);
308 	IN_MULTI_LOCK();
309 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
310 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
311 		MPASS(inm);
312 		inm_release(inm);
313 	}
314 	IN_MULTI_UNLOCK();
315 }
316 
317 /*
318  * Initialize an in_mfilter structure to a known state at t0, t1
319  * with an empty source filter list.
320  */
321 static __inline void
322 imf_init(struct in_mfilter *imf, const int st0, const int st1)
323 {
324 	memset(imf, 0, sizeof(struct in_mfilter));
325 	RB_INIT(&imf->imf_sources);
326 	imf->imf_st[0] = st0;
327 	imf->imf_st[1] = st1;
328 }
329 
330 /*
331  * Function for looking up an in_multi record for an IPv4 multicast address
332  * on a given interface. ifp must be valid. If no record found, return NULL.
333  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
334  */
335 struct in_multi *
336 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
337 {
338 	struct ifmultiaddr *ifma;
339 	struct in_multi *inm;
340 
341 	IN_MULTI_LIST_LOCK_ASSERT();
342 	IF_ADDR_LOCK_ASSERT(ifp);
343 
344 	inm = NULL;
345 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
346 		if (ifma->ifma_addr->sa_family != AF_INET ||
347 			ifma->ifma_protospec == NULL)
348 			continue;
349 		inm = (struct in_multi *)ifma->ifma_protospec;
350 		if (inm->inm_addr.s_addr == ina.s_addr)
351 			break;
352 		inm = NULL;
353 	}
354 	return (inm);
355 }
356 
357 /*
358  * Wrapper for inm_lookup_locked().
359  * The IF_ADDR_LOCK will be taken on ifp and released on return.
360  */
361 struct in_multi *
362 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
363 {
364 	struct in_multi *inm;
365 
366 	IN_MULTI_LIST_LOCK_ASSERT();
367 	IF_ADDR_RLOCK(ifp);
368 	inm = inm_lookup_locked(ifp, ina);
369 	IF_ADDR_RUNLOCK(ifp);
370 
371 	return (inm);
372 }
373 
374 /*
375  * Resize the ip_moptions vector to the next power-of-two minus 1.
376  * May be called with locks held; do not sleep.
377  */
378 static int
379 imo_grow(struct ip_moptions *imo)
380 {
381 	struct in_multi		**nmships;
382 	struct in_multi		**omships;
383 	struct in_mfilter	 *nmfilters;
384 	struct in_mfilter	 *omfilters;
385 	size_t			  idx;
386 	size_t			  newmax;
387 	size_t			  oldmax;
388 
389 	nmships = NULL;
390 	nmfilters = NULL;
391 	omships = imo->imo_membership;
392 	omfilters = imo->imo_mfilters;
393 	oldmax = imo->imo_max_memberships;
394 	newmax = ((oldmax + 1) * 2) - 1;
395 
396 	if (newmax <= IP_MAX_MEMBERSHIPS) {
397 		nmships = (struct in_multi **)realloc(omships,
398 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
399 		nmfilters = (struct in_mfilter *)realloc(omfilters,
400 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
401 		if (nmships != NULL && nmfilters != NULL) {
402 			/* Initialize newly allocated source filter heads. */
403 			for (idx = oldmax; idx < newmax; idx++) {
404 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
405 				    MCAST_EXCLUDE);
406 			}
407 			imo->imo_max_memberships = newmax;
408 			imo->imo_membership = nmships;
409 			imo->imo_mfilters = nmfilters;
410 		}
411 	}
412 
413 	if (nmships == NULL || nmfilters == NULL) {
414 		if (nmships != NULL)
415 			free(nmships, M_IPMOPTS);
416 		if (nmfilters != NULL)
417 			free(nmfilters, M_INMFILTER);
418 		return (ETOOMANYREFS);
419 	}
420 
421 	return (0);
422 }
423 
424 /*
425  * Find an IPv4 multicast group entry for this ip_moptions instance
426  * which matches the specified group, and optionally an interface.
427  * Return its index into the array, or -1 if not found.
428  */
429 static size_t
430 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
431     const struct sockaddr *group)
432 {
433 	const struct sockaddr_in *gsin;
434 	struct in_multi	**pinm;
435 	int		  idx;
436 	int		  nmships;
437 
438 	gsin = (const struct sockaddr_in *)group;
439 
440 	/* The imo_membership array may be lazy allocated. */
441 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
442 		return (-1);
443 
444 	nmships = imo->imo_num_memberships;
445 	pinm = &imo->imo_membership[0];
446 	for (idx = 0; idx < nmships; idx++, pinm++) {
447 		if (*pinm == NULL)
448 			continue;
449 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
450 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
451 			break;
452 		}
453 	}
454 	if (idx >= nmships)
455 		idx = -1;
456 
457 	return (idx);
458 }
459 
460 /*
461  * Find an IPv4 multicast source entry for this imo which matches
462  * the given group index for this socket, and source address.
463  *
464  * NOTE: This does not check if the entry is in-mode, merely if
465  * it exists, which may not be the desired behaviour.
466  */
467 static struct in_msource *
468 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
469     const struct sockaddr *src)
470 {
471 	struct ip_msource	 find;
472 	struct in_mfilter	*imf;
473 	struct ip_msource	*ims;
474 	const sockunion_t	*psa;
475 
476 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
477 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
478 	    ("%s: invalid index %d\n", __func__, (int)gidx));
479 
480 	/* The imo_mfilters array may be lazy allocated. */
481 	if (imo->imo_mfilters == NULL)
482 		return (NULL);
483 	imf = &imo->imo_mfilters[gidx];
484 
485 	/* Source trees are keyed in host byte order. */
486 	psa = (const sockunion_t *)src;
487 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
488 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
489 
490 	return ((struct in_msource *)ims);
491 }
492 
493 /*
494  * Perform filtering for multicast datagrams on a socket by group and source.
495  *
496  * Returns 0 if a datagram should be allowed through, or various error codes
497  * if the socket was not a member of the group, or the source was muted, etc.
498  */
499 int
500 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
501     const struct sockaddr *group, const struct sockaddr *src)
502 {
503 	size_t gidx;
504 	struct in_msource *ims;
505 	int mode;
506 
507 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
508 
509 	gidx = imo_match_group(imo, ifp, group);
510 	if (gidx == -1)
511 		return (MCAST_NOTGMEMBER);
512 
513 	/*
514 	 * Check if the source was included in an (S,G) join.
515 	 * Allow reception on exclusive memberships by default,
516 	 * reject reception on inclusive memberships by default.
517 	 * Exclude source only if an in-mode exclude filter exists.
518 	 * Include source only if an in-mode include filter exists.
519 	 * NOTE: We are comparing group state here at IGMP t1 (now)
520 	 * with socket-layer t0 (since last downcall).
521 	 */
522 	mode = imo->imo_mfilters[gidx].imf_st[1];
523 	ims = imo_match_source(imo, gidx, src);
524 
525 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
526 	    (ims != NULL && ims->imsl_st[0] != mode))
527 		return (MCAST_NOTSMEMBER);
528 
529 	return (MCAST_PASS);
530 }
531 
532 /*
533  * Find and return a reference to an in_multi record for (ifp, group),
534  * and bump its reference count.
535  * If one does not exist, try to allocate it, and update link-layer multicast
536  * filters on ifp to listen for group.
537  * Assumes the IN_MULTI lock is held across the call.
538  * Return 0 if successful, otherwise return an appropriate error code.
539  */
540 static int
541 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
542     struct in_multi **pinm)
543 {
544 	struct sockaddr_in	 gsin;
545 	struct ifmultiaddr	*ifma;
546 	struct in_ifinfo	*ii;
547 	struct in_multi		*inm;
548 	int error;
549 
550 	IN_MULTI_LOCK_ASSERT();
551 
552 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
553 	IN_MULTI_LIST_LOCK();
554 	inm = inm_lookup(ifp, *group);
555 	if (inm != NULL) {
556 		/*
557 		 * If we already joined this group, just bump the
558 		 * refcount and return it.
559 		 */
560 		KASSERT(inm->inm_refcount >= 1,
561 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
562 		inm_acquire_locked(inm);
563 		*pinm = inm;
564 	}
565 	IN_MULTI_LIST_UNLOCK();
566 	if (inm != NULL)
567 		return (0);
568 
569 	memset(&gsin, 0, sizeof(gsin));
570 	gsin.sin_family = AF_INET;
571 	gsin.sin_len = sizeof(struct sockaddr_in);
572 	gsin.sin_addr = *group;
573 
574 	/*
575 	 * Check if a link-layer group is already associated
576 	 * with this network-layer group on the given ifnet.
577 	 */
578 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
579 	if (error != 0)
580 		return (error);
581 
582 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
583 	IN_MULTI_LIST_LOCK();
584 	IF_ADDR_WLOCK(ifp);
585 
586 	/*
587 	 * If something other than netinet is occupying the link-layer
588 	 * group, print a meaningful error message and back out of
589 	 * the allocation.
590 	 * Otherwise, bump the refcount on the existing network-layer
591 	 * group association and return it.
592 	 */
593 	if (ifma->ifma_protospec != NULL) {
594 		inm = (struct in_multi *)ifma->ifma_protospec;
595 #ifdef INVARIANTS
596 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
597 		    __func__));
598 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
599 		    ("%s: ifma not AF_INET", __func__));
600 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
601 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
602 		    !in_hosteq(inm->inm_addr, *group)) {
603 			char addrbuf[INET_ADDRSTRLEN];
604 
605 			panic("%s: ifma %p is inconsistent with %p (%s)",
606 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
607 		}
608 #endif
609 		inm_acquire_locked(inm);
610 		*pinm = inm;
611 		goto out_locked;
612 	}
613 
614 	IF_ADDR_WLOCK_ASSERT(ifp);
615 
616 	/*
617 	 * A new in_multi record is needed; allocate and initialize it.
618 	 * We DO NOT perform an IGMP join as the in_ layer may need to
619 	 * push an initial source list down to IGMP to support SSM.
620 	 *
621 	 * The initial source filter state is INCLUDE, {} as per the RFC.
622 	 */
623 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
624 	if (inm == NULL) {
625 		IF_ADDR_WUNLOCK(ifp);
626 		IN_MULTI_LIST_UNLOCK();
627 		if_delmulti_ifma(ifma);
628 		return (ENOMEM);
629 	}
630 	inm->inm_addr = *group;
631 	inm->inm_ifp = ifp;
632 	inm->inm_igi = ii->ii_igmp;
633 	inm->inm_ifma = ifma;
634 	inm->inm_refcount = 1;
635 	inm->inm_state = IGMP_NOT_MEMBER;
636 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
637 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
638 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
639 	RB_INIT(&inm->inm_srcs);
640 
641 	ifma->ifma_protospec = inm;
642 
643 	*pinm = inm;
644  out_locked:
645 	IF_ADDR_WUNLOCK(ifp);
646 	IN_MULTI_LIST_UNLOCK();
647 	return (0);
648 }
649 
650 /*
651  * Drop a reference to an in_multi record.
652  *
653  * If the refcount drops to 0, free the in_multi record and
654  * delete the underlying link-layer membership.
655  */
656 static void
657 inm_release(struct in_multi *inm)
658 {
659 	struct ifmultiaddr *ifma;
660 	struct ifnet *ifp;
661 
662 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
663 	MPASS(inm->inm_refcount == 0);
664 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
665 
666 	ifma = inm->inm_ifma;
667 	ifp = inm->inm_ifp;
668 
669 	/* XXX this access is not covered by IF_ADDR_LOCK */
670 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
671 	if (ifp != NULL) {
672 		CURVNET_SET(ifp->if_vnet);
673 		inm_purge(inm);
674 		free(inm, M_IPMADDR);
675 		if_delmulti_ifma_flags(ifma, 1);
676 		CURVNET_RESTORE();
677 		if_rele(ifp);
678 	} else {
679 		inm_purge(inm);
680 		free(inm, M_IPMADDR);
681 		if_delmulti_ifma_flags(ifma, 1);
682 	}
683 }
684 
685 /*
686  * Clear recorded source entries for a group.
687  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
688  * FIXME: Should reap.
689  */
690 void
691 inm_clear_recorded(struct in_multi *inm)
692 {
693 	struct ip_msource	*ims;
694 
695 	IN_MULTI_LIST_LOCK_ASSERT();
696 
697 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
698 		if (ims->ims_stp) {
699 			ims->ims_stp = 0;
700 			--inm->inm_st[1].iss_rec;
701 		}
702 	}
703 	KASSERT(inm->inm_st[1].iss_rec == 0,
704 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
705 }
706 
707 /*
708  * Record a source as pending for a Source-Group IGMPv3 query.
709  * This lives here as it modifies the shared tree.
710  *
711  * inm is the group descriptor.
712  * naddr is the address of the source to record in network-byte order.
713  *
714  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
715  * lazy-allocate a source node in response to an SG query.
716  * Otherwise, no allocation is performed. This saves some memory
717  * with the trade-off that the source will not be reported to the
718  * router if joined in the window between the query response and
719  * the group actually being joined on the local host.
720  *
721  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
722  * This turns off the allocation of a recorded source entry if
723  * the group has not been joined.
724  *
725  * Return 0 if the source didn't exist or was already marked as recorded.
726  * Return 1 if the source was marked as recorded by this function.
727  * Return <0 if any error occurred (negated errno code).
728  */
729 int
730 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
731 {
732 	struct ip_msource	 find;
733 	struct ip_msource	*ims, *nims;
734 
735 	IN_MULTI_LIST_LOCK_ASSERT();
736 
737 	find.ims_haddr = ntohl(naddr);
738 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
739 	if (ims && ims->ims_stp)
740 		return (0);
741 	if (ims == NULL) {
742 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
743 			return (-ENOSPC);
744 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
745 		    M_NOWAIT | M_ZERO);
746 		if (nims == NULL)
747 			return (-ENOMEM);
748 		nims->ims_haddr = find.ims_haddr;
749 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
750 		++inm->inm_nsrc;
751 		ims = nims;
752 	}
753 
754 	/*
755 	 * Mark the source as recorded and update the recorded
756 	 * source count.
757 	 */
758 	++ims->ims_stp;
759 	++inm->inm_st[1].iss_rec;
760 
761 	return (1);
762 }
763 
764 /*
765  * Return a pointer to an in_msource owned by an in_mfilter,
766  * given its source address.
767  * Lazy-allocate if needed. If this is a new entry its filter state is
768  * undefined at t0.
769  *
770  * imf is the filter set being modified.
771  * haddr is the source address in *host* byte-order.
772  *
773  * SMPng: May be called with locks held; malloc must not block.
774  */
775 static int
776 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
777     struct in_msource **plims)
778 {
779 	struct ip_msource	 find;
780 	struct ip_msource	*ims, *nims;
781 	struct in_msource	*lims;
782 	int			 error;
783 
784 	error = 0;
785 	ims = NULL;
786 	lims = NULL;
787 
788 	/* key is host byte order */
789 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
790 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
791 	lims = (struct in_msource *)ims;
792 	if (lims == NULL) {
793 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
794 			return (ENOSPC);
795 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
796 		    M_NOWAIT | M_ZERO);
797 		if (nims == NULL)
798 			return (ENOMEM);
799 		lims = (struct in_msource *)nims;
800 		lims->ims_haddr = find.ims_haddr;
801 		lims->imsl_st[0] = MCAST_UNDEFINED;
802 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
803 		++imf->imf_nsrc;
804 	}
805 
806 	*plims = lims;
807 
808 	return (error);
809 }
810 
811 /*
812  * Graft a source entry into an existing socket-layer filter set,
813  * maintaining any required invariants and checking allocations.
814  *
815  * The source is marked as being in the new filter mode at t1.
816  *
817  * Return the pointer to the new node, otherwise return NULL.
818  */
819 static struct in_msource *
820 imf_graft(struct in_mfilter *imf, const uint8_t st1,
821     const struct sockaddr_in *psin)
822 {
823 	struct ip_msource	*nims;
824 	struct in_msource	*lims;
825 
826 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
827 	    M_NOWAIT | M_ZERO);
828 	if (nims == NULL)
829 		return (NULL);
830 	lims = (struct in_msource *)nims;
831 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
832 	lims->imsl_st[0] = MCAST_UNDEFINED;
833 	lims->imsl_st[1] = st1;
834 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
835 	++imf->imf_nsrc;
836 
837 	return (lims);
838 }
839 
840 /*
841  * Prune a source entry from an existing socket-layer filter set,
842  * maintaining any required invariants and checking allocations.
843  *
844  * The source is marked as being left at t1, it is not freed.
845  *
846  * Return 0 if no error occurred, otherwise return an errno value.
847  */
848 static int
849 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
850 {
851 	struct ip_msource	 find;
852 	struct ip_msource	*ims;
853 	struct in_msource	*lims;
854 
855 	/* key is host byte order */
856 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
857 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
858 	if (ims == NULL)
859 		return (ENOENT);
860 	lims = (struct in_msource *)ims;
861 	lims->imsl_st[1] = MCAST_UNDEFINED;
862 	return (0);
863 }
864 
865 /*
866  * Revert socket-layer filter set deltas at t1 to t0 state.
867  */
868 static void
869 imf_rollback(struct in_mfilter *imf)
870 {
871 	struct ip_msource	*ims, *tims;
872 	struct in_msource	*lims;
873 
874 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
875 		lims = (struct in_msource *)ims;
876 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
877 			/* no change at t1 */
878 			continue;
879 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
880 			/* revert change to existing source at t1 */
881 			lims->imsl_st[1] = lims->imsl_st[0];
882 		} else {
883 			/* revert source added t1 */
884 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
885 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
886 			free(ims, M_INMFILTER);
887 			imf->imf_nsrc--;
888 		}
889 	}
890 	imf->imf_st[1] = imf->imf_st[0];
891 }
892 
893 /*
894  * Mark socket-layer filter set as INCLUDE {} at t1.
895  */
896 static void
897 imf_leave(struct in_mfilter *imf)
898 {
899 	struct ip_msource	*ims;
900 	struct in_msource	*lims;
901 
902 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
903 		lims = (struct in_msource *)ims;
904 		lims->imsl_st[1] = MCAST_UNDEFINED;
905 	}
906 	imf->imf_st[1] = MCAST_INCLUDE;
907 }
908 
909 /*
910  * Mark socket-layer filter set deltas as committed.
911  */
912 static void
913 imf_commit(struct in_mfilter *imf)
914 {
915 	struct ip_msource	*ims;
916 	struct in_msource	*lims;
917 
918 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
919 		lims = (struct in_msource *)ims;
920 		lims->imsl_st[0] = lims->imsl_st[1];
921 	}
922 	imf->imf_st[0] = imf->imf_st[1];
923 }
924 
925 /*
926  * Reap unreferenced sources from socket-layer filter set.
927  */
928 static void
929 imf_reap(struct in_mfilter *imf)
930 {
931 	struct ip_msource	*ims, *tims;
932 	struct in_msource	*lims;
933 
934 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
935 		lims = (struct in_msource *)ims;
936 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
937 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
938 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
939 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
940 			free(ims, M_INMFILTER);
941 			imf->imf_nsrc--;
942 		}
943 	}
944 }
945 
946 /*
947  * Purge socket-layer filter set.
948  */
949 static void
950 imf_purge(struct in_mfilter *imf)
951 {
952 	struct ip_msource	*ims, *tims;
953 
954 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
955 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
956 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
957 		free(ims, M_INMFILTER);
958 		imf->imf_nsrc--;
959 	}
960 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
961 	KASSERT(RB_EMPTY(&imf->imf_sources),
962 	    ("%s: imf_sources not empty", __func__));
963 }
964 
965 /*
966  * Look up a source filter entry for a multicast group.
967  *
968  * inm is the group descriptor to work with.
969  * haddr is the host-byte-order IPv4 address to look up.
970  * noalloc may be non-zero to suppress allocation of sources.
971  * *pims will be set to the address of the retrieved or allocated source.
972  *
973  * SMPng: NOTE: may be called with locks held.
974  * Return 0 if successful, otherwise return a non-zero error code.
975  */
976 static int
977 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
978     const int noalloc, struct ip_msource **pims)
979 {
980 	struct ip_msource	 find;
981 	struct ip_msource	*ims, *nims;
982 
983 	find.ims_haddr = haddr;
984 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
985 	if (ims == NULL && !noalloc) {
986 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
987 			return (ENOSPC);
988 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
989 		    M_NOWAIT | M_ZERO);
990 		if (nims == NULL)
991 			return (ENOMEM);
992 		nims->ims_haddr = haddr;
993 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
994 		++inm->inm_nsrc;
995 		ims = nims;
996 #ifdef KTR
997 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
998 		    haddr, ims);
999 #endif
1000 	}
1001 
1002 	*pims = ims;
1003 	return (0);
1004 }
1005 
1006 /*
1007  * Merge socket-layer source into IGMP-layer source.
1008  * If rollback is non-zero, perform the inverse of the merge.
1009  */
1010 static void
1011 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1012     const int rollback)
1013 {
1014 	int n = rollback ? -1 : 1;
1015 
1016 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1017 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
1018 		    __func__, n, ims->ims_haddr);
1019 		ims->ims_st[1].ex -= n;
1020 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1021 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
1022 		    __func__, n, ims->ims_haddr);
1023 		ims->ims_st[1].in -= n;
1024 	}
1025 
1026 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1027 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
1028 		    __func__, n, ims->ims_haddr);
1029 		ims->ims_st[1].ex += n;
1030 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1031 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
1032 		    __func__, n, ims->ims_haddr);
1033 		ims->ims_st[1].in += n;
1034 	}
1035 }
1036 
1037 /*
1038  * Atomically update the global in_multi state, when a membership's
1039  * filter list is being updated in any way.
1040  *
1041  * imf is the per-inpcb-membership group filter pointer.
1042  * A fake imf may be passed for in-kernel consumers.
1043  *
1044  * XXX This is a candidate for a set-symmetric-difference style loop
1045  * which would eliminate the repeated lookup from root of ims nodes,
1046  * as they share the same key space.
1047  *
1048  * If any error occurred this function will back out of refcounts
1049  * and return a non-zero value.
1050  */
1051 static int
1052 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1053 {
1054 	struct ip_msource	*ims, *nims;
1055 	struct in_msource	*lims;
1056 	int			 schanged, error;
1057 	int			 nsrc0, nsrc1;
1058 
1059 	schanged = 0;
1060 	error = 0;
1061 	nsrc1 = nsrc0 = 0;
1062 	IN_MULTI_LIST_LOCK_ASSERT();
1063 
1064 	/*
1065 	 * Update the source filters first, as this may fail.
1066 	 * Maintain count of in-mode filters at t0, t1. These are
1067 	 * used to work out if we transition into ASM mode or not.
1068 	 * Maintain a count of source filters whose state was
1069 	 * actually modified by this operation.
1070 	 */
1071 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1072 		lims = (struct in_msource *)ims;
1073 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1074 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1075 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1076 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1077 		++schanged;
1078 		if (error)
1079 			break;
1080 		ims_merge(nims, lims, 0);
1081 	}
1082 	if (error) {
1083 		struct ip_msource *bims;
1084 
1085 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1086 			lims = (struct in_msource *)ims;
1087 			if (lims->imsl_st[0] == lims->imsl_st[1])
1088 				continue;
1089 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1090 			if (bims == NULL)
1091 				continue;
1092 			ims_merge(bims, lims, 1);
1093 		}
1094 		goto out_reap;
1095 	}
1096 
1097 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1098 	    __func__, nsrc0, nsrc1);
1099 
1100 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1101 	if (imf->imf_st[0] == imf->imf_st[1] &&
1102 	    imf->imf_st[1] == MCAST_INCLUDE) {
1103 		if (nsrc1 == 0) {
1104 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1105 			--inm->inm_st[1].iss_in;
1106 		}
1107 	}
1108 
1109 	/* Handle filter mode transition on socket. */
1110 	if (imf->imf_st[0] != imf->imf_st[1]) {
1111 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1112 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1113 
1114 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1115 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1116 			--inm->inm_st[1].iss_ex;
1117 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1118 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1119 			--inm->inm_st[1].iss_in;
1120 		}
1121 
1122 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1123 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1124 			inm->inm_st[1].iss_ex++;
1125 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1126 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1127 			inm->inm_st[1].iss_in++;
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * Track inm filter state in terms of listener counts.
1133 	 * If there are any exclusive listeners, stack-wide
1134 	 * membership is exclusive.
1135 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1136 	 * If no listeners remain, state is undefined at t1,
1137 	 * and the IGMP lifecycle for this group should finish.
1138 	 */
1139 	if (inm->inm_st[1].iss_ex > 0) {
1140 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1141 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1142 	} else if (inm->inm_st[1].iss_in > 0) {
1143 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1144 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1145 	} else {
1146 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1147 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1148 	}
1149 
1150 	/* Decrement ASM listener count on transition out of ASM mode. */
1151 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1152 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1153 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1154 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1155 			--inm->inm_st[1].iss_asm;
1156 		}
1157 	}
1158 
1159 	/* Increment ASM listener count on transition to ASM mode. */
1160 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1161 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1162 		inm->inm_st[1].iss_asm++;
1163 	}
1164 
1165 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1166 	inm_print(inm);
1167 
1168 out_reap:
1169 	if (schanged > 0) {
1170 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1171 		inm_reap(inm);
1172 	}
1173 	return (error);
1174 }
1175 
1176 /*
1177  * Mark an in_multi's filter set deltas as committed.
1178  * Called by IGMP after a state change has been enqueued.
1179  */
1180 void
1181 inm_commit(struct in_multi *inm)
1182 {
1183 	struct ip_msource	*ims;
1184 
1185 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1186 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1187 	inm_print(inm);
1188 
1189 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1190 		ims->ims_st[0] = ims->ims_st[1];
1191 	}
1192 	inm->inm_st[0] = inm->inm_st[1];
1193 }
1194 
1195 /*
1196  * Reap unreferenced nodes from an in_multi's filter set.
1197  */
1198 static void
1199 inm_reap(struct in_multi *inm)
1200 {
1201 	struct ip_msource	*ims, *tims;
1202 
1203 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1204 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1205 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1206 		    ims->ims_stp != 0)
1207 			continue;
1208 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1209 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1210 		free(ims, M_IPMSOURCE);
1211 		inm->inm_nsrc--;
1212 	}
1213 }
1214 
1215 /*
1216  * Purge all source nodes from an in_multi's filter set.
1217  */
1218 static void
1219 inm_purge(struct in_multi *inm)
1220 {
1221 	struct ip_msource	*ims, *tims;
1222 
1223 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1224 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1225 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1226 		free(ims, M_IPMSOURCE);
1227 		inm->inm_nsrc--;
1228 	}
1229 }
1230 
1231 /*
1232  * Join a multicast group; unlocked entry point.
1233  *
1234  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1235  * is not held. Fortunately, ifp is unlikely to have been detached
1236  * at this point, so we assume it's OK to recurse.
1237  */
1238 int
1239 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1240     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1241 {
1242 	int error;
1243 
1244 	IN_MULTI_LOCK();
1245 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1246 	IN_MULTI_UNLOCK();
1247 
1248 	return (error);
1249 }
1250 
1251 /*
1252  * Join a multicast group; real entry point.
1253  *
1254  * Only preserves atomicity at inm level.
1255  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1256  *
1257  * If the IGMP downcall fails, the group is not joined, and an error
1258  * code is returned.
1259  */
1260 int
1261 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1262     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1263 {
1264 	struct in_mfilter	 timf;
1265 	struct in_multi		*inm;
1266 	int			 error;
1267 
1268 	IN_MULTI_LOCK_ASSERT();
1269 	IN_MULTI_LIST_UNLOCK_ASSERT();
1270 
1271 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1272 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1273 
1274 	error = 0;
1275 	inm = NULL;
1276 
1277 	/*
1278 	 * If no imf was specified (i.e. kernel consumer),
1279 	 * fake one up and assume it is an ASM join.
1280 	 */
1281 	if (imf == NULL) {
1282 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1283 		imf = &timf;
1284 	}
1285 
1286 	error = in_getmulti(ifp, gina, &inm);
1287 	if (error) {
1288 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1289 		return (error);
1290 	}
1291 	IN_MULTI_LIST_LOCK();
1292 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1293 	error = inm_merge(inm, imf);
1294 	if (error) {
1295 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1296 		goto out_inm_release;
1297 	}
1298 
1299 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1300 	error = igmp_change_state(inm);
1301 	if (error) {
1302 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1303 		goto out_inm_release;
1304 	}
1305 
1306  out_inm_release:
1307 	if (error) {
1308 
1309 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1310 		inm_release_deferred(inm);
1311 	} else {
1312 		*pinm = inm;
1313 	}
1314 	IN_MULTI_LIST_UNLOCK();
1315 
1316 	return (error);
1317 }
1318 
1319 /*
1320  * Leave a multicast group; unlocked entry point.
1321  */
1322 int
1323 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1324 {
1325 	int error;
1326 
1327 	IN_MULTI_LOCK();
1328 	error = in_leavegroup_locked(inm, imf);
1329 	IN_MULTI_UNLOCK();
1330 
1331 	return (error);
1332 }
1333 
1334 /*
1335  * Leave a multicast group; real entry point.
1336  * All source filters will be expunged.
1337  *
1338  * Only preserves atomicity at inm level.
1339  *
1340  * Holding the write lock for the INP which contains imf
1341  * is highly advisable. We can't assert for it as imf does not
1342  * contain a back-pointer to the owning inp.
1343  *
1344  * Note: This is not the same as inm_release(*) as this function also
1345  * makes a state change downcall into IGMP.
1346  */
1347 int
1348 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1349 {
1350 	struct in_mfilter	 timf;
1351 	int			 error;
1352 
1353 	error = 0;
1354 
1355 	IN_MULTI_LOCK_ASSERT();
1356 	IN_MULTI_LIST_UNLOCK_ASSERT();
1357 
1358 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1359 	    inm, ntohl(inm->inm_addr.s_addr),
1360 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1361 	    imf);
1362 
1363 	/*
1364 	 * If no imf was specified (i.e. kernel consumer),
1365 	 * fake one up and assume it is an ASM join.
1366 	 */
1367 	if (imf == NULL) {
1368 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1369 		imf = &timf;
1370 	}
1371 
1372 	/*
1373 	 * Begin state merge transaction at IGMP layer.
1374 	 *
1375 	 * As this particular invocation should not cause any memory
1376 	 * to be allocated, and there is no opportunity to roll back
1377 	 * the transaction, it MUST NOT fail.
1378 	 */
1379 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1380 	IN_MULTI_LIST_LOCK();
1381 	error = inm_merge(inm, imf);
1382 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1383 
1384 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1385 	CURVNET_SET(inm->inm_ifp->if_vnet);
1386 	error = igmp_change_state(inm);
1387 	IF_ADDR_WLOCK(inm->inm_ifp);
1388 	inm_release_deferred(inm);
1389 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1390 	IN_MULTI_LIST_UNLOCK();
1391 	CURVNET_RESTORE();
1392 	if (error)
1393 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1394 
1395 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1396 
1397 	return (error);
1398 }
1399 
1400 /*#ifndef BURN_BRIDGES*/
1401 /*
1402  * Join an IPv4 multicast group in (*,G) exclusive mode.
1403  * The group must be a 224.0.0.0/24 link-scope group.
1404  * This KPI is for legacy kernel consumers only.
1405  */
1406 struct in_multi *
1407 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1408 {
1409 	struct in_multi *pinm;
1410 	int error;
1411 #ifdef INVARIANTS
1412 	char addrbuf[INET_ADDRSTRLEN];
1413 #endif
1414 
1415 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1416 	    ("%s: %s not in 224.0.0.0/24", __func__,
1417 	    inet_ntoa_r(*ap, addrbuf)));
1418 
1419 	error = in_joingroup(ifp, ap, NULL, &pinm);
1420 	if (error != 0)
1421 		pinm = NULL;
1422 
1423 	return (pinm);
1424 }
1425 
1426 /*
1427  * Block or unblock an ASM multicast source on an inpcb.
1428  * This implements the delta-based API described in RFC 3678.
1429  *
1430  * The delta-based API applies only to exclusive-mode memberships.
1431  * An IGMP downcall will be performed.
1432  *
1433  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1434  *
1435  * Return 0 if successful, otherwise return an appropriate error code.
1436  */
1437 static int
1438 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1439 {
1440 	struct group_source_req		 gsr;
1441 	sockunion_t			*gsa, *ssa;
1442 	struct ifnet			*ifp;
1443 	struct in_mfilter		*imf;
1444 	struct ip_moptions		*imo;
1445 	struct in_msource		*ims;
1446 	struct in_multi			*inm;
1447 	size_t				 idx;
1448 	uint16_t			 fmode;
1449 	int				 error, doblock;
1450 
1451 	ifp = NULL;
1452 	error = 0;
1453 	doblock = 0;
1454 
1455 	memset(&gsr, 0, sizeof(struct group_source_req));
1456 	gsa = (sockunion_t *)&gsr.gsr_group;
1457 	ssa = (sockunion_t *)&gsr.gsr_source;
1458 
1459 	switch (sopt->sopt_name) {
1460 	case IP_BLOCK_SOURCE:
1461 	case IP_UNBLOCK_SOURCE: {
1462 		struct ip_mreq_source	 mreqs;
1463 
1464 		error = sooptcopyin(sopt, &mreqs,
1465 		    sizeof(struct ip_mreq_source),
1466 		    sizeof(struct ip_mreq_source));
1467 		if (error)
1468 			return (error);
1469 
1470 		gsa->sin.sin_family = AF_INET;
1471 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1472 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1473 
1474 		ssa->sin.sin_family = AF_INET;
1475 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1476 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1477 
1478 		if (!in_nullhost(mreqs.imr_interface))
1479 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1480 
1481 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1482 			doblock = 1;
1483 
1484 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1485 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1486 		break;
1487 	    }
1488 
1489 	case MCAST_BLOCK_SOURCE:
1490 	case MCAST_UNBLOCK_SOURCE:
1491 		error = sooptcopyin(sopt, &gsr,
1492 		    sizeof(struct group_source_req),
1493 		    sizeof(struct group_source_req));
1494 		if (error)
1495 			return (error);
1496 
1497 		if (gsa->sin.sin_family != AF_INET ||
1498 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1499 			return (EINVAL);
1500 
1501 		if (ssa->sin.sin_family != AF_INET ||
1502 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1503 			return (EINVAL);
1504 
1505 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1506 			return (EADDRNOTAVAIL);
1507 
1508 		ifp = ifnet_byindex(gsr.gsr_interface);
1509 
1510 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1511 			doblock = 1;
1512 		break;
1513 
1514 	default:
1515 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1516 		    __func__, sopt->sopt_name);
1517 		return (EOPNOTSUPP);
1518 		break;
1519 	}
1520 
1521 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1522 		return (EINVAL);
1523 
1524 	/*
1525 	 * Check if we are actually a member of this group.
1526 	 */
1527 	imo = inp_findmoptions(inp);
1528 	idx = imo_match_group(imo, ifp, &gsa->sa);
1529 	if (idx == -1 || imo->imo_mfilters == NULL) {
1530 		error = EADDRNOTAVAIL;
1531 		goto out_inp_locked;
1532 	}
1533 
1534 	KASSERT(imo->imo_mfilters != NULL,
1535 	    ("%s: imo_mfilters not allocated", __func__));
1536 	imf = &imo->imo_mfilters[idx];
1537 	inm = imo->imo_membership[idx];
1538 
1539 	/*
1540 	 * Attempting to use the delta-based API on an
1541 	 * non exclusive-mode membership is an error.
1542 	 */
1543 	fmode = imf->imf_st[0];
1544 	if (fmode != MCAST_EXCLUDE) {
1545 		error = EINVAL;
1546 		goto out_inp_locked;
1547 	}
1548 
1549 	/*
1550 	 * Deal with error cases up-front:
1551 	 *  Asked to block, but already blocked; or
1552 	 *  Asked to unblock, but nothing to unblock.
1553 	 * If adding a new block entry, allocate it.
1554 	 */
1555 	ims = imo_match_source(imo, idx, &ssa->sa);
1556 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1557 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1558 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1559 		error = EADDRNOTAVAIL;
1560 		goto out_inp_locked;
1561 	}
1562 
1563 	INP_WLOCK_ASSERT(inp);
1564 
1565 	/*
1566 	 * Begin state merge transaction at socket layer.
1567 	 */
1568 	if (doblock) {
1569 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1570 		ims = imf_graft(imf, fmode, &ssa->sin);
1571 		if (ims == NULL)
1572 			error = ENOMEM;
1573 	} else {
1574 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1575 		error = imf_prune(imf, &ssa->sin);
1576 	}
1577 
1578 	if (error) {
1579 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1580 		goto out_imf_rollback;
1581 	}
1582 
1583 	/*
1584 	 * Begin state merge transaction at IGMP layer.
1585 	 */
1586 	IN_MULTI_LOCK();
1587 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1588 	IN_MULTI_LIST_LOCK();
1589 	error = inm_merge(inm, imf);
1590 	if (error) {
1591 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1592 		IN_MULTI_LIST_UNLOCK();
1593 		goto out_in_multi_locked;
1594 	}
1595 
1596 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1597 	error = igmp_change_state(inm);
1598 	IN_MULTI_LIST_UNLOCK();
1599 	if (error)
1600 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1601 
1602 out_in_multi_locked:
1603 
1604 	IN_MULTI_UNLOCK();
1605 out_imf_rollback:
1606 	if (error)
1607 		imf_rollback(imf);
1608 	else
1609 		imf_commit(imf);
1610 
1611 	imf_reap(imf);
1612 
1613 out_inp_locked:
1614 	INP_WUNLOCK(inp);
1615 	return (error);
1616 }
1617 
1618 /*
1619  * Given an inpcb, return its multicast options structure pointer.  Accepts
1620  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1621  *
1622  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1623  * SMPng: NOTE: Returns with the INP write lock held.
1624  */
1625 static struct ip_moptions *
1626 inp_findmoptions(struct inpcb *inp)
1627 {
1628 	struct ip_moptions	 *imo;
1629 	struct in_multi		**immp;
1630 	struct in_mfilter	 *imfp;
1631 	size_t			  idx;
1632 
1633 	INP_WLOCK(inp);
1634 	if (inp->inp_moptions != NULL)
1635 		return (inp->inp_moptions);
1636 
1637 	INP_WUNLOCK(inp);
1638 
1639 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1640 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1641 	    M_WAITOK | M_ZERO);
1642 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1643 	    M_INMFILTER, M_WAITOK);
1644 
1645 	imo->imo_multicast_ifp = NULL;
1646 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1647 	imo->imo_multicast_vif = -1;
1648 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1649 	imo->imo_multicast_loop = in_mcast_loop;
1650 	imo->imo_num_memberships = 0;
1651 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1652 	imo->imo_membership = immp;
1653 
1654 	/* Initialize per-group source filters. */
1655 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1656 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1657 	imo->imo_mfilters = imfp;
1658 
1659 	INP_WLOCK(inp);
1660 	if (inp->inp_moptions != NULL) {
1661 		free(imfp, M_INMFILTER);
1662 		free(immp, M_IPMOPTS);
1663 		free(imo, M_IPMOPTS);
1664 		return (inp->inp_moptions);
1665 	}
1666 	inp->inp_moptions = imo;
1667 	return (imo);
1668 }
1669 
1670 static void
1671 inp_gcmoptions(epoch_context_t ctx)
1672 {
1673 	struct ip_moptions *imo;
1674 	struct in_mfilter	*imf;
1675 	struct in_multi *inm;
1676 	struct ifnet *ifp;
1677 	size_t			 idx, nmships;
1678 
1679 	imo =  __containerof(ctx, struct ip_moptions, imo_epoch_ctx);
1680 
1681 	nmships = imo->imo_num_memberships;
1682 	for (idx = 0; idx < nmships; ++idx) {
1683 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1684 		if (imf)
1685 			imf_leave(imf);
1686 		inm = imo->imo_membership[idx];
1687 		ifp = inm->inm_ifp;
1688 		if (ifp != NULL) {
1689 			CURVNET_SET(ifp->if_vnet);
1690 			(void)in_leavegroup(inm, imf);
1691 			CURVNET_RESTORE();
1692 		} else {
1693 			(void)in_leavegroup(inm, imf);
1694 		}
1695 		if (imf)
1696 			imf_purge(imf);
1697 	}
1698 
1699 	if (imo->imo_mfilters)
1700 		free(imo->imo_mfilters, M_INMFILTER);
1701 	free(imo->imo_membership, M_IPMOPTS);
1702 	free(imo, M_IPMOPTS);
1703 }
1704 
1705 /*
1706  * Discard the IP multicast options (and source filters).  To minimize
1707  * the amount of work done while holding locks such as the INP's
1708  * pcbinfo lock (which is used in the receive path), the free
1709  * operation is deferred to the epoch callback task.
1710  */
1711 void
1712 inp_freemoptions(struct ip_moptions *imo)
1713 {
1714 	if (imo == NULL)
1715 		return;
1716 	epoch_call(net_epoch_preempt, &imo->imo_epoch_ctx, inp_gcmoptions);
1717 }
1718 
1719 /*
1720  * Atomically get source filters on a socket for an IPv4 multicast group.
1721  * Called with INP lock held; returns with lock released.
1722  */
1723 static int
1724 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1725 {
1726 	struct __msfilterreq	 msfr;
1727 	sockunion_t		*gsa;
1728 	struct ifnet		*ifp;
1729 	struct ip_moptions	*imo;
1730 	struct in_mfilter	*imf;
1731 	struct ip_msource	*ims;
1732 	struct in_msource	*lims;
1733 	struct sockaddr_in	*psin;
1734 	struct sockaddr_storage	*ptss;
1735 	struct sockaddr_storage	*tss;
1736 	int			 error;
1737 	size_t			 idx, nsrcs, ncsrcs;
1738 
1739 	INP_WLOCK_ASSERT(inp);
1740 
1741 	imo = inp->inp_moptions;
1742 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1743 
1744 	INP_WUNLOCK(inp);
1745 
1746 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1747 	    sizeof(struct __msfilterreq));
1748 	if (error)
1749 		return (error);
1750 
1751 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1752 		return (EINVAL);
1753 
1754 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1755 	if (ifp == NULL)
1756 		return (EINVAL);
1757 
1758 	INP_WLOCK(inp);
1759 
1760 	/*
1761 	 * Lookup group on the socket.
1762 	 */
1763 	gsa = (sockunion_t *)&msfr.msfr_group;
1764 	idx = imo_match_group(imo, ifp, &gsa->sa);
1765 	if (idx == -1 || imo->imo_mfilters == NULL) {
1766 		INP_WUNLOCK(inp);
1767 		return (EADDRNOTAVAIL);
1768 	}
1769 	imf = &imo->imo_mfilters[idx];
1770 
1771 	/*
1772 	 * Ignore memberships which are in limbo.
1773 	 */
1774 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1775 		INP_WUNLOCK(inp);
1776 		return (EAGAIN);
1777 	}
1778 	msfr.msfr_fmode = imf->imf_st[1];
1779 
1780 	/*
1781 	 * If the user specified a buffer, copy out the source filter
1782 	 * entries to userland gracefully.
1783 	 * We only copy out the number of entries which userland
1784 	 * has asked for, but we always tell userland how big the
1785 	 * buffer really needs to be.
1786 	 */
1787 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1788 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1789 	tss = NULL;
1790 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1791 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1792 		    M_TEMP, M_NOWAIT | M_ZERO);
1793 		if (tss == NULL) {
1794 			INP_WUNLOCK(inp);
1795 			return (ENOBUFS);
1796 		}
1797 	}
1798 
1799 	/*
1800 	 * Count number of sources in-mode at t0.
1801 	 * If buffer space exists and remains, copy out source entries.
1802 	 */
1803 	nsrcs = msfr.msfr_nsrcs;
1804 	ncsrcs = 0;
1805 	ptss = tss;
1806 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1807 		lims = (struct in_msource *)ims;
1808 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1809 		    lims->imsl_st[0] != imf->imf_st[0])
1810 			continue;
1811 		++ncsrcs;
1812 		if (tss != NULL && nsrcs > 0) {
1813 			psin = (struct sockaddr_in *)ptss;
1814 			psin->sin_family = AF_INET;
1815 			psin->sin_len = sizeof(struct sockaddr_in);
1816 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1817 			psin->sin_port = 0;
1818 			++ptss;
1819 			--nsrcs;
1820 		}
1821 	}
1822 
1823 	INP_WUNLOCK(inp);
1824 
1825 	if (tss != NULL) {
1826 		error = copyout(tss, msfr.msfr_srcs,
1827 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1828 		free(tss, M_TEMP);
1829 		if (error)
1830 			return (error);
1831 	}
1832 
1833 	msfr.msfr_nsrcs = ncsrcs;
1834 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1835 
1836 	return (error);
1837 }
1838 
1839 /*
1840  * Return the IP multicast options in response to user getsockopt().
1841  */
1842 int
1843 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1844 {
1845 	struct rm_priotracker	 in_ifa_tracker;
1846 	struct ip_mreqn		 mreqn;
1847 	struct ip_moptions	*imo;
1848 	struct ifnet		*ifp;
1849 	struct in_ifaddr	*ia;
1850 	int			 error, optval;
1851 	u_char			 coptval;
1852 
1853 	INP_WLOCK(inp);
1854 	imo = inp->inp_moptions;
1855 	/*
1856 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1857 	 * or is a divert socket, reject it.
1858 	 */
1859 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1860 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1861 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1862 		INP_WUNLOCK(inp);
1863 		return (EOPNOTSUPP);
1864 	}
1865 
1866 	error = 0;
1867 	switch (sopt->sopt_name) {
1868 	case IP_MULTICAST_VIF:
1869 		if (imo != NULL)
1870 			optval = imo->imo_multicast_vif;
1871 		else
1872 			optval = -1;
1873 		INP_WUNLOCK(inp);
1874 		error = sooptcopyout(sopt, &optval, sizeof(int));
1875 		break;
1876 
1877 	case IP_MULTICAST_IF:
1878 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1879 		if (imo != NULL) {
1880 			ifp = imo->imo_multicast_ifp;
1881 			if (!in_nullhost(imo->imo_multicast_addr)) {
1882 				mreqn.imr_address = imo->imo_multicast_addr;
1883 			} else if (ifp != NULL) {
1884 				mreqn.imr_ifindex = ifp->if_index;
1885 				NET_EPOCH_ENTER();
1886 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1887 				if (ia != NULL)
1888 					mreqn.imr_address =
1889 					    IA_SIN(ia)->sin_addr;
1890 				NET_EPOCH_EXIT();
1891 			}
1892 		}
1893 		INP_WUNLOCK(inp);
1894 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1895 			error = sooptcopyout(sopt, &mreqn,
1896 			    sizeof(struct ip_mreqn));
1897 		} else {
1898 			error = sooptcopyout(sopt, &mreqn.imr_address,
1899 			    sizeof(struct in_addr));
1900 		}
1901 		break;
1902 
1903 	case IP_MULTICAST_TTL:
1904 		if (imo == NULL)
1905 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1906 		else
1907 			optval = coptval = imo->imo_multicast_ttl;
1908 		INP_WUNLOCK(inp);
1909 		if (sopt->sopt_valsize == sizeof(u_char))
1910 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1911 		else
1912 			error = sooptcopyout(sopt, &optval, sizeof(int));
1913 		break;
1914 
1915 	case IP_MULTICAST_LOOP:
1916 		if (imo == NULL)
1917 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1918 		else
1919 			optval = coptval = imo->imo_multicast_loop;
1920 		INP_WUNLOCK(inp);
1921 		if (sopt->sopt_valsize == sizeof(u_char))
1922 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1923 		else
1924 			error = sooptcopyout(sopt, &optval, sizeof(int));
1925 		break;
1926 
1927 	case IP_MSFILTER:
1928 		if (imo == NULL) {
1929 			error = EADDRNOTAVAIL;
1930 			INP_WUNLOCK(inp);
1931 		} else {
1932 			error = inp_get_source_filters(inp, sopt);
1933 		}
1934 		break;
1935 
1936 	default:
1937 		INP_WUNLOCK(inp);
1938 		error = ENOPROTOOPT;
1939 		break;
1940 	}
1941 
1942 	INP_UNLOCK_ASSERT(inp);
1943 
1944 	return (error);
1945 }
1946 
1947 /*
1948  * Look up the ifnet to use for a multicast group membership,
1949  * given the IPv4 address of an interface, and the IPv4 group address.
1950  *
1951  * This routine exists to support legacy multicast applications
1952  * which do not understand that multicast memberships are scoped to
1953  * specific physical links in the networking stack, or which need
1954  * to join link-scope groups before IPv4 addresses are configured.
1955  *
1956  * If inp is non-NULL, use this socket's current FIB number for any
1957  * required FIB lookup.
1958  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1959  * and use its ifp; usually, this points to the default next-hop.
1960  *
1961  * If the FIB lookup fails, attempt to use the first non-loopback
1962  * interface with multicast capability in the system as a
1963  * last resort. The legacy IPv4 ASM API requires that we do
1964  * this in order to allow groups to be joined when the routing
1965  * table has not yet been populated during boot.
1966  *
1967  * Returns NULL if no ifp could be found.
1968  *
1969  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1970  * FUTURE: Implement IPv4 source-address selection.
1971  */
1972 static struct ifnet *
1973 inp_lookup_mcast_ifp(const struct inpcb *inp,
1974     const struct sockaddr_in *gsin, const struct in_addr ina)
1975 {
1976 	struct rm_priotracker in_ifa_tracker;
1977 	struct ifnet *ifp;
1978 	struct nhop4_basic nh4;
1979 	uint32_t fibnum;
1980 
1981 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1982 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1983 	    ("%s: not multicast", __func__));
1984 
1985 	ifp = NULL;
1986 	if (!in_nullhost(ina)) {
1987 		INADDR_TO_IFP(ina, ifp);
1988 	} else {
1989 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1990 		if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0)
1991 			ifp = nh4.nh_ifp;
1992 		else {
1993 			struct in_ifaddr *ia;
1994 			struct ifnet *mifp;
1995 
1996 			mifp = NULL;
1997 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1998 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1999 				mifp = ia->ia_ifp;
2000 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
2001 				     (mifp->if_flags & IFF_MULTICAST)) {
2002 					ifp = mifp;
2003 					break;
2004 				}
2005 			}
2006 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2007 		}
2008 	}
2009 
2010 	return (ifp);
2011 }
2012 
2013 /*
2014  * Join an IPv4 multicast group, possibly with a source.
2015  */
2016 static int
2017 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2018 {
2019 	struct group_source_req		 gsr;
2020 	sockunion_t			*gsa, *ssa;
2021 	struct ifnet			*ifp;
2022 	struct in_mfilter		*imf;
2023 	struct ip_moptions		*imo;
2024 	struct in_multi			*inm;
2025 	struct in_msource		*lims;
2026 	size_t				 idx;
2027 	int				 error, is_new;
2028 
2029 	ifp = NULL;
2030 	imf = NULL;
2031 	lims = NULL;
2032 	error = 0;
2033 	is_new = 0;
2034 
2035 	memset(&gsr, 0, sizeof(struct group_source_req));
2036 	gsa = (sockunion_t *)&gsr.gsr_group;
2037 	gsa->ss.ss_family = AF_UNSPEC;
2038 	ssa = (sockunion_t *)&gsr.gsr_source;
2039 	ssa->ss.ss_family = AF_UNSPEC;
2040 
2041 	switch (sopt->sopt_name) {
2042 	case IP_ADD_MEMBERSHIP:
2043 	case IP_ADD_SOURCE_MEMBERSHIP: {
2044 		struct ip_mreq_source	 mreqs;
2045 
2046 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2047 			error = sooptcopyin(sopt, &mreqs,
2048 			    sizeof(struct ip_mreq),
2049 			    sizeof(struct ip_mreq));
2050 			/*
2051 			 * Do argument switcharoo from ip_mreq into
2052 			 * ip_mreq_source to avoid using two instances.
2053 			 */
2054 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2055 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2056 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2057 			error = sooptcopyin(sopt, &mreqs,
2058 			    sizeof(struct ip_mreq_source),
2059 			    sizeof(struct ip_mreq_source));
2060 		}
2061 		if (error)
2062 			return (error);
2063 
2064 		gsa->sin.sin_family = AF_INET;
2065 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2066 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2067 
2068 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2069 			ssa->sin.sin_family = AF_INET;
2070 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2071 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2072 		}
2073 
2074 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2075 			return (EINVAL);
2076 
2077 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2078 		    mreqs.imr_interface);
2079 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2080 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2081 		break;
2082 	}
2083 
2084 	case MCAST_JOIN_GROUP:
2085 	case MCAST_JOIN_SOURCE_GROUP:
2086 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2087 			error = sooptcopyin(sopt, &gsr,
2088 			    sizeof(struct group_req),
2089 			    sizeof(struct group_req));
2090 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2091 			error = sooptcopyin(sopt, &gsr,
2092 			    sizeof(struct group_source_req),
2093 			    sizeof(struct group_source_req));
2094 		}
2095 		if (error)
2096 			return (error);
2097 
2098 		if (gsa->sin.sin_family != AF_INET ||
2099 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2100 			return (EINVAL);
2101 
2102 		/*
2103 		 * Overwrite the port field if present, as the sockaddr
2104 		 * being copied in may be matched with a binary comparison.
2105 		 */
2106 		gsa->sin.sin_port = 0;
2107 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2108 			if (ssa->sin.sin_family != AF_INET ||
2109 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2110 				return (EINVAL);
2111 			ssa->sin.sin_port = 0;
2112 		}
2113 
2114 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2115 			return (EINVAL);
2116 
2117 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2118 			return (EADDRNOTAVAIL);
2119 		ifp = ifnet_byindex(gsr.gsr_interface);
2120 		break;
2121 
2122 	default:
2123 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2124 		    __func__, sopt->sopt_name);
2125 		return (EOPNOTSUPP);
2126 		break;
2127 	}
2128 
2129 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2130 		return (EADDRNOTAVAIL);
2131 
2132 	imo = inp_findmoptions(inp);
2133 	idx = imo_match_group(imo, ifp, &gsa->sa);
2134 	if (idx == -1) {
2135 		is_new = 1;
2136 	} else {
2137 		inm = imo->imo_membership[idx];
2138 		imf = &imo->imo_mfilters[idx];
2139 		if (ssa->ss.ss_family != AF_UNSPEC) {
2140 			/*
2141 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2142 			 * is an error. On an existing inclusive membership,
2143 			 * it just adds the source to the filter list.
2144 			 */
2145 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2146 				error = EINVAL;
2147 				goto out_inp_locked;
2148 			}
2149 			/*
2150 			 * Throw out duplicates.
2151 			 *
2152 			 * XXX FIXME: This makes a naive assumption that
2153 			 * even if entries exist for *ssa in this imf,
2154 			 * they will be rejected as dupes, even if they
2155 			 * are not valid in the current mode (in-mode).
2156 			 *
2157 			 * in_msource is transactioned just as for anything
2158 			 * else in SSM -- but note naive use of inm_graft()
2159 			 * below for allocating new filter entries.
2160 			 *
2161 			 * This is only an issue if someone mixes the
2162 			 * full-state SSM API with the delta-based API,
2163 			 * which is discouraged in the relevant RFCs.
2164 			 */
2165 			lims = imo_match_source(imo, idx, &ssa->sa);
2166 			if (lims != NULL /*&&
2167 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2168 				error = EADDRNOTAVAIL;
2169 				goto out_inp_locked;
2170 			}
2171 		} else {
2172 			/*
2173 			 * MCAST_JOIN_GROUP on an existing exclusive
2174 			 * membership is an error; return EADDRINUSE
2175 			 * to preserve 4.4BSD API idempotence, and
2176 			 * avoid tedious detour to code below.
2177 			 * NOTE: This is bending RFC 3678 a bit.
2178 			 *
2179 			 * On an existing inclusive membership, this is also
2180 			 * an error; if you want to change filter mode,
2181 			 * you must use the userland API setsourcefilter().
2182 			 * XXX We don't reject this for imf in UNDEFINED
2183 			 * state at t1, because allocation of a filter
2184 			 * is atomic with allocation of a membership.
2185 			 */
2186 			error = EINVAL;
2187 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2188 				error = EADDRINUSE;
2189 			goto out_inp_locked;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * Begin state merge transaction at socket layer.
2195 	 */
2196 	INP_WLOCK_ASSERT(inp);
2197 
2198 	if (is_new) {
2199 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2200 			error = imo_grow(imo);
2201 			if (error)
2202 				goto out_inp_locked;
2203 		}
2204 		/*
2205 		 * Allocate the new slot upfront so we can deal with
2206 		 * grafting the new source filter in same code path
2207 		 * as for join-source on existing membership.
2208 		 */
2209 		idx = imo->imo_num_memberships;
2210 		imo->imo_membership[idx] = NULL;
2211 		imo->imo_num_memberships++;
2212 		KASSERT(imo->imo_mfilters != NULL,
2213 		    ("%s: imf_mfilters vector was not allocated", __func__));
2214 		imf = &imo->imo_mfilters[idx];
2215 		KASSERT(RB_EMPTY(&imf->imf_sources),
2216 		    ("%s: imf_sources not empty", __func__));
2217 	}
2218 
2219 	/*
2220 	 * Graft new source into filter list for this inpcb's
2221 	 * membership of the group. The in_multi may not have
2222 	 * been allocated yet if this is a new membership, however,
2223 	 * the in_mfilter slot will be allocated and must be initialized.
2224 	 *
2225 	 * Note: Grafting of exclusive mode filters doesn't happen
2226 	 * in this path.
2227 	 * XXX: Should check for non-NULL lims (node exists but may
2228 	 * not be in-mode) for interop with full-state API.
2229 	 */
2230 	if (ssa->ss.ss_family != AF_UNSPEC) {
2231 		/* Membership starts in IN mode */
2232 		if (is_new) {
2233 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2234 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2235 		} else {
2236 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2237 		}
2238 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2239 		if (lims == NULL) {
2240 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2241 			    __func__);
2242 			error = ENOMEM;
2243 			goto out_imo_free;
2244 		}
2245 	} else {
2246 		/* No address specified; Membership starts in EX mode */
2247 		if (is_new) {
2248 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2249 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * Begin state merge transaction at IGMP layer.
2255 	 */
2256 	in_pcbref(inp);
2257 	INP_WUNLOCK(inp);
2258 	IN_MULTI_LOCK();
2259 
2260 	if (is_new) {
2261 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2262 		    &inm);
2263 		if (error) {
2264                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2265                             __func__);
2266                         IN_MULTI_LIST_UNLOCK();
2267 			goto out_imo_free;
2268                 }
2269 		imo->imo_membership[idx] = inm;
2270 	} else {
2271 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2272 		IN_MULTI_LIST_LOCK();
2273 		error = inm_merge(inm, imf);
2274 		if (error) {
2275 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2276 				 __func__);
2277 			IN_MULTI_LIST_UNLOCK();
2278 			goto out_in_multi_locked;
2279 		}
2280 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2281 		error = igmp_change_state(inm);
2282 		IN_MULTI_LIST_UNLOCK();
2283 		if (error) {
2284 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2285 			    __func__);
2286 			goto out_in_multi_locked;
2287 		}
2288 	}
2289 
2290 out_in_multi_locked:
2291 
2292 	IN_MULTI_UNLOCK();
2293 	INP_WLOCK(inp);
2294 	if (in_pcbrele_wlocked(inp))
2295 		return (ENXIO);
2296 	if (error) {
2297 		imf_rollback(imf);
2298 		if (is_new)
2299 			imf_purge(imf);
2300 		else
2301 			imf_reap(imf);
2302 	} else {
2303 		imf_commit(imf);
2304 	}
2305 
2306 out_imo_free:
2307 	if (error && is_new) {
2308 		imo->imo_membership[idx] = NULL;
2309 		--imo->imo_num_memberships;
2310 	}
2311 
2312 out_inp_locked:
2313 	INP_WUNLOCK(inp);
2314 	return (error);
2315 }
2316 
2317 /*
2318  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2319  */
2320 static int
2321 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2322 {
2323 	struct group_source_req		 gsr;
2324 	struct ip_mreq_source		 mreqs;
2325 	sockunion_t			*gsa, *ssa;
2326 	struct ifnet			*ifp;
2327 	struct in_mfilter		*imf;
2328 	struct ip_moptions		*imo;
2329 	struct in_msource		*ims;
2330 	struct in_multi			*inm;
2331 	size_t				 idx;
2332 	int				 error, is_final;
2333 
2334 	ifp = NULL;
2335 	error = 0;
2336 	is_final = 1;
2337 
2338 	memset(&gsr, 0, sizeof(struct group_source_req));
2339 	gsa = (sockunion_t *)&gsr.gsr_group;
2340 	gsa->ss.ss_family = AF_UNSPEC;
2341 	ssa = (sockunion_t *)&gsr.gsr_source;
2342 	ssa->ss.ss_family = AF_UNSPEC;
2343 
2344 	switch (sopt->sopt_name) {
2345 	case IP_DROP_MEMBERSHIP:
2346 	case IP_DROP_SOURCE_MEMBERSHIP:
2347 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2348 			error = sooptcopyin(sopt, &mreqs,
2349 			    sizeof(struct ip_mreq),
2350 			    sizeof(struct ip_mreq));
2351 			/*
2352 			 * Swap interface and sourceaddr arguments,
2353 			 * as ip_mreq and ip_mreq_source are laid
2354 			 * out differently.
2355 			 */
2356 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2357 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2358 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2359 			error = sooptcopyin(sopt, &mreqs,
2360 			    sizeof(struct ip_mreq_source),
2361 			    sizeof(struct ip_mreq_source));
2362 		}
2363 		if (error)
2364 			return (error);
2365 
2366 		gsa->sin.sin_family = AF_INET;
2367 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2368 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2369 
2370 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2371 			ssa->sin.sin_family = AF_INET;
2372 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2373 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2374 		}
2375 
2376 		/*
2377 		 * Attempt to look up hinted ifp from interface address.
2378 		 * Fallthrough with null ifp iff lookup fails, to
2379 		 * preserve 4.4BSD mcast API idempotence.
2380 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2381 		 * using an IPv4 address as a key is racy.
2382 		 */
2383 		if (!in_nullhost(mreqs.imr_interface))
2384 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2385 
2386 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2387 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2388 
2389 		break;
2390 
2391 	case MCAST_LEAVE_GROUP:
2392 	case MCAST_LEAVE_SOURCE_GROUP:
2393 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2394 			error = sooptcopyin(sopt, &gsr,
2395 			    sizeof(struct group_req),
2396 			    sizeof(struct group_req));
2397 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2398 			error = sooptcopyin(sopt, &gsr,
2399 			    sizeof(struct group_source_req),
2400 			    sizeof(struct group_source_req));
2401 		}
2402 		if (error)
2403 			return (error);
2404 
2405 		if (gsa->sin.sin_family != AF_INET ||
2406 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2407 			return (EINVAL);
2408 
2409 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2410 			if (ssa->sin.sin_family != AF_INET ||
2411 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2412 				return (EINVAL);
2413 		}
2414 
2415 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2416 			return (EADDRNOTAVAIL);
2417 
2418 		ifp = ifnet_byindex(gsr.gsr_interface);
2419 
2420 		if (ifp == NULL)
2421 			return (EADDRNOTAVAIL);
2422 		break;
2423 
2424 	default:
2425 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2426 		    __func__, sopt->sopt_name);
2427 		return (EOPNOTSUPP);
2428 		break;
2429 	}
2430 
2431 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2432 		return (EINVAL);
2433 
2434 	/*
2435 	 * Find the membership in the membership array.
2436 	 */
2437 	imo = inp_findmoptions(inp);
2438 	idx = imo_match_group(imo, ifp, &gsa->sa);
2439 	if (idx == -1) {
2440 		error = EADDRNOTAVAIL;
2441 		goto out_inp_locked;
2442 	}
2443 	inm = imo->imo_membership[idx];
2444 	imf = &imo->imo_mfilters[idx];
2445 
2446 	if (ssa->ss.ss_family != AF_UNSPEC)
2447 		is_final = 0;
2448 
2449 	/*
2450 	 * Begin state merge transaction at socket layer.
2451 	 */
2452 	INP_WLOCK_ASSERT(inp);
2453 
2454 	/*
2455 	 * If we were instructed only to leave a given source, do so.
2456 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2457 	 */
2458 	if (is_final) {
2459 		imf_leave(imf);
2460 	} else {
2461 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2462 			error = EADDRNOTAVAIL;
2463 			goto out_inp_locked;
2464 		}
2465 		ims = imo_match_source(imo, idx, &ssa->sa);
2466 		if (ims == NULL) {
2467 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2468 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2469 			error = EADDRNOTAVAIL;
2470 			goto out_inp_locked;
2471 		}
2472 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2473 		error = imf_prune(imf, &ssa->sin);
2474 		if (error) {
2475 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2476 			    __func__);
2477 			goto out_inp_locked;
2478 		}
2479 	}
2480 
2481 	/*
2482 	 * Begin state merge transaction at IGMP layer.
2483 	 */
2484 	in_pcbref(inp);
2485 	INP_WUNLOCK(inp);
2486 	IN_MULTI_LOCK();
2487 
2488 	if (is_final) {
2489 		/*
2490 		 * Give up the multicast address record to which
2491 		 * the membership points.
2492 		 */
2493 		(void)in_leavegroup_locked(inm, imf);
2494 	} else {
2495 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2496 		IN_MULTI_LIST_LOCK();
2497 		error = inm_merge(inm, imf);
2498 		if (error) {
2499 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2500 			    __func__);
2501 			IN_MULTI_LIST_UNLOCK();
2502 			goto out_in_multi_locked;
2503 		}
2504 
2505 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2506 		error = igmp_change_state(inm);
2507 		IN_MULTI_LIST_UNLOCK();
2508 		if (error) {
2509 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2510 			    __func__);
2511 		}
2512 	}
2513 
2514 out_in_multi_locked:
2515 
2516 	IN_MULTI_UNLOCK();
2517 	INP_WLOCK(inp);
2518 	if (in_pcbrele_wlocked(inp))
2519 		return (ENXIO);
2520 
2521 	if (error)
2522 		imf_rollback(imf);
2523 	else
2524 		imf_commit(imf);
2525 
2526 	imf_reap(imf);
2527 
2528 	if (is_final) {
2529 		/* Remove the gap in the membership and filter array. */
2530 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2531 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2532 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2533 		}
2534 		imo->imo_num_memberships--;
2535 	}
2536 
2537 out_inp_locked:
2538 	INP_WUNLOCK(inp);
2539 	return (error);
2540 }
2541 
2542 /*
2543  * Select the interface for transmitting IPv4 multicast datagrams.
2544  *
2545  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2546  * may be passed to this socket option. An address of INADDR_ANY or an
2547  * interface index of 0 is used to remove a previous selection.
2548  * When no interface is selected, one is chosen for every send.
2549  */
2550 static int
2551 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2552 {
2553 	struct in_addr		 addr;
2554 	struct ip_mreqn		 mreqn;
2555 	struct ifnet		*ifp;
2556 	struct ip_moptions	*imo;
2557 	int			 error;
2558 
2559 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2560 		/*
2561 		 * An interface index was specified using the
2562 		 * Linux-derived ip_mreqn structure.
2563 		 */
2564 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2565 		    sizeof(struct ip_mreqn));
2566 		if (error)
2567 			return (error);
2568 
2569 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2570 			return (EINVAL);
2571 
2572 		if (mreqn.imr_ifindex == 0) {
2573 			ifp = NULL;
2574 		} else {
2575 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2576 			if (ifp == NULL)
2577 				return (EADDRNOTAVAIL);
2578 		}
2579 	} else {
2580 		/*
2581 		 * An interface was specified by IPv4 address.
2582 		 * This is the traditional BSD usage.
2583 		 */
2584 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2585 		    sizeof(struct in_addr));
2586 		if (error)
2587 			return (error);
2588 		if (in_nullhost(addr)) {
2589 			ifp = NULL;
2590 		} else {
2591 			INADDR_TO_IFP(addr, ifp);
2592 			if (ifp == NULL)
2593 				return (EADDRNOTAVAIL);
2594 		}
2595 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2596 		    ntohl(addr.s_addr));
2597 	}
2598 
2599 	/* Reject interfaces which do not support multicast. */
2600 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2601 		return (EOPNOTSUPP);
2602 
2603 	imo = inp_findmoptions(inp);
2604 	imo->imo_multicast_ifp = ifp;
2605 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2606 	INP_WUNLOCK(inp);
2607 
2608 	return (0);
2609 }
2610 
2611 /*
2612  * Atomically set source filters on a socket for an IPv4 multicast group.
2613  *
2614  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2615  */
2616 static int
2617 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2618 {
2619 	struct __msfilterreq	 msfr;
2620 	sockunion_t		*gsa;
2621 	struct ifnet		*ifp;
2622 	struct in_mfilter	*imf;
2623 	struct ip_moptions	*imo;
2624 	struct in_multi		*inm;
2625 	size_t			 idx;
2626 	int			 error;
2627 
2628 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2629 	    sizeof(struct __msfilterreq));
2630 	if (error)
2631 		return (error);
2632 
2633 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2634 		return (ENOBUFS);
2635 
2636 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2637 	     msfr.msfr_fmode != MCAST_INCLUDE))
2638 		return (EINVAL);
2639 
2640 	if (msfr.msfr_group.ss_family != AF_INET ||
2641 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2642 		return (EINVAL);
2643 
2644 	gsa = (sockunion_t *)&msfr.msfr_group;
2645 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2646 		return (EINVAL);
2647 
2648 	gsa->sin.sin_port = 0;	/* ignore port */
2649 
2650 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2651 		return (EADDRNOTAVAIL);
2652 
2653 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2654 	if (ifp == NULL)
2655 		return (EADDRNOTAVAIL);
2656 
2657 	/*
2658 	 * Take the INP write lock.
2659 	 * Check if this socket is a member of this group.
2660 	 */
2661 	imo = inp_findmoptions(inp);
2662 	idx = imo_match_group(imo, ifp, &gsa->sa);
2663 	if (idx == -1 || imo->imo_mfilters == NULL) {
2664 		error = EADDRNOTAVAIL;
2665 		goto out_inp_locked;
2666 	}
2667 	inm = imo->imo_membership[idx];
2668 	imf = &imo->imo_mfilters[idx];
2669 
2670 	/*
2671 	 * Begin state merge transaction at socket layer.
2672 	 */
2673 	INP_WLOCK_ASSERT(inp);
2674 
2675 	imf->imf_st[1] = msfr.msfr_fmode;
2676 
2677 	/*
2678 	 * Apply any new source filters, if present.
2679 	 * Make a copy of the user-space source vector so
2680 	 * that we may copy them with a single copyin. This
2681 	 * allows us to deal with page faults up-front.
2682 	 */
2683 	if (msfr.msfr_nsrcs > 0) {
2684 		struct in_msource	*lims;
2685 		struct sockaddr_in	*psin;
2686 		struct sockaddr_storage	*kss, *pkss;
2687 		int			 i;
2688 
2689 		INP_WUNLOCK(inp);
2690 
2691 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2692 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2693 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2694 		    M_TEMP, M_WAITOK);
2695 		error = copyin(msfr.msfr_srcs, kss,
2696 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2697 		if (error) {
2698 			free(kss, M_TEMP);
2699 			return (error);
2700 		}
2701 
2702 		INP_WLOCK(inp);
2703 
2704 		/*
2705 		 * Mark all source filters as UNDEFINED at t1.
2706 		 * Restore new group filter mode, as imf_leave()
2707 		 * will set it to INCLUDE.
2708 		 */
2709 		imf_leave(imf);
2710 		imf->imf_st[1] = msfr.msfr_fmode;
2711 
2712 		/*
2713 		 * Update socket layer filters at t1, lazy-allocating
2714 		 * new entries. This saves a bunch of memory at the
2715 		 * cost of one RB_FIND() per source entry; duplicate
2716 		 * entries in the msfr_nsrcs vector are ignored.
2717 		 * If we encounter an error, rollback transaction.
2718 		 *
2719 		 * XXX This too could be replaced with a set-symmetric
2720 		 * difference like loop to avoid walking from root
2721 		 * every time, as the key space is common.
2722 		 */
2723 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2724 			psin = (struct sockaddr_in *)pkss;
2725 			if (psin->sin_family != AF_INET) {
2726 				error = EAFNOSUPPORT;
2727 				break;
2728 			}
2729 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2730 				error = EINVAL;
2731 				break;
2732 			}
2733 			error = imf_get_source(imf, psin, &lims);
2734 			if (error)
2735 				break;
2736 			lims->imsl_st[1] = imf->imf_st[1];
2737 		}
2738 		free(kss, M_TEMP);
2739 	}
2740 
2741 	if (error)
2742 		goto out_imf_rollback;
2743 
2744 	INP_WLOCK_ASSERT(inp);
2745 	IN_MULTI_LOCK();
2746 
2747 	/*
2748 	 * Begin state merge transaction at IGMP layer.
2749 	 */
2750 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2751 	IN_MULTI_LIST_LOCK();
2752 	error = inm_merge(inm, imf);
2753 	if (error) {
2754 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2755 		IN_MULTI_LIST_UNLOCK();
2756 		goto out_in_multi_locked;
2757 	}
2758 
2759 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2760 	error = igmp_change_state(inm);
2761 	IN_MULTI_LIST_UNLOCK();
2762 	if (error)
2763 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2764 
2765 out_in_multi_locked:
2766 
2767 	IN_MULTI_UNLOCK();
2768 
2769 out_imf_rollback:
2770 	if (error)
2771 		imf_rollback(imf);
2772 	else
2773 		imf_commit(imf);
2774 
2775 	imf_reap(imf);
2776 
2777 out_inp_locked:
2778 	INP_WUNLOCK(inp);
2779 	return (error);
2780 }
2781 
2782 /*
2783  * Set the IP multicast options in response to user setsockopt().
2784  *
2785  * Many of the socket options handled in this function duplicate the
2786  * functionality of socket options in the regular unicast API. However,
2787  * it is not possible to merge the duplicate code, because the idempotence
2788  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2789  * the effects of these options must be treated as separate and distinct.
2790  *
2791  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2792  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2793  * is refactored to no longer use vifs.
2794  */
2795 int
2796 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2797 {
2798 	struct ip_moptions	*imo;
2799 	int			 error;
2800 
2801 	error = 0;
2802 
2803 	/*
2804 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2805 	 * or is a divert socket, reject it.
2806 	 */
2807 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2808 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2809 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2810 		return (EOPNOTSUPP);
2811 
2812 	switch (sopt->sopt_name) {
2813 	case IP_MULTICAST_VIF: {
2814 		int vifi;
2815 		/*
2816 		 * Select a multicast VIF for transmission.
2817 		 * Only useful if multicast forwarding is active.
2818 		 */
2819 		if (legal_vif_num == NULL) {
2820 			error = EOPNOTSUPP;
2821 			break;
2822 		}
2823 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2824 		if (error)
2825 			break;
2826 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2827 			error = EINVAL;
2828 			break;
2829 		}
2830 		imo = inp_findmoptions(inp);
2831 		imo->imo_multicast_vif = vifi;
2832 		INP_WUNLOCK(inp);
2833 		break;
2834 	}
2835 
2836 	case IP_MULTICAST_IF:
2837 		error = inp_set_multicast_if(inp, sopt);
2838 		break;
2839 
2840 	case IP_MULTICAST_TTL: {
2841 		u_char ttl;
2842 
2843 		/*
2844 		 * Set the IP time-to-live for outgoing multicast packets.
2845 		 * The original multicast API required a char argument,
2846 		 * which is inconsistent with the rest of the socket API.
2847 		 * We allow either a char or an int.
2848 		 */
2849 		if (sopt->sopt_valsize == sizeof(u_char)) {
2850 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2851 			    sizeof(u_char));
2852 			if (error)
2853 				break;
2854 		} else {
2855 			u_int ittl;
2856 
2857 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2858 			    sizeof(u_int));
2859 			if (error)
2860 				break;
2861 			if (ittl > 255) {
2862 				error = EINVAL;
2863 				break;
2864 			}
2865 			ttl = (u_char)ittl;
2866 		}
2867 		imo = inp_findmoptions(inp);
2868 		imo->imo_multicast_ttl = ttl;
2869 		INP_WUNLOCK(inp);
2870 		break;
2871 	}
2872 
2873 	case IP_MULTICAST_LOOP: {
2874 		u_char loop;
2875 
2876 		/*
2877 		 * Set the loopback flag for outgoing multicast packets.
2878 		 * Must be zero or one.  The original multicast API required a
2879 		 * char argument, which is inconsistent with the rest
2880 		 * of the socket API.  We allow either a char or an int.
2881 		 */
2882 		if (sopt->sopt_valsize == sizeof(u_char)) {
2883 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2884 			    sizeof(u_char));
2885 			if (error)
2886 				break;
2887 		} else {
2888 			u_int iloop;
2889 
2890 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2891 					    sizeof(u_int));
2892 			if (error)
2893 				break;
2894 			loop = (u_char)iloop;
2895 		}
2896 		imo = inp_findmoptions(inp);
2897 		imo->imo_multicast_loop = !!loop;
2898 		INP_WUNLOCK(inp);
2899 		break;
2900 	}
2901 
2902 	case IP_ADD_MEMBERSHIP:
2903 	case IP_ADD_SOURCE_MEMBERSHIP:
2904 	case MCAST_JOIN_GROUP:
2905 	case MCAST_JOIN_SOURCE_GROUP:
2906 		error = inp_join_group(inp, sopt);
2907 		break;
2908 
2909 	case IP_DROP_MEMBERSHIP:
2910 	case IP_DROP_SOURCE_MEMBERSHIP:
2911 	case MCAST_LEAVE_GROUP:
2912 	case MCAST_LEAVE_SOURCE_GROUP:
2913 		error = inp_leave_group(inp, sopt);
2914 		break;
2915 
2916 	case IP_BLOCK_SOURCE:
2917 	case IP_UNBLOCK_SOURCE:
2918 	case MCAST_BLOCK_SOURCE:
2919 	case MCAST_UNBLOCK_SOURCE:
2920 		error = inp_block_unblock_source(inp, sopt);
2921 		break;
2922 
2923 	case IP_MSFILTER:
2924 		error = inp_set_source_filters(inp, sopt);
2925 		break;
2926 
2927 	default:
2928 		error = EOPNOTSUPP;
2929 		break;
2930 	}
2931 
2932 	INP_UNLOCK_ASSERT(inp);
2933 
2934 	return (error);
2935 }
2936 
2937 /*
2938  * Expose IGMP's multicast filter mode and source list(s) to userland,
2939  * keyed by (ifindex, group).
2940  * The filter mode is written out as a uint32_t, followed by
2941  * 0..n of struct in_addr.
2942  * For use by ifmcstat(8).
2943  * SMPng: NOTE: unlocked read of ifindex space.
2944  */
2945 static int
2946 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2947 {
2948 	struct in_addr			 src, group;
2949 	struct ifnet			*ifp;
2950 	struct ifmultiaddr		*ifma;
2951 	struct in_multi			*inm;
2952 	struct ip_msource		*ims;
2953 	int				*name;
2954 	int				 retval;
2955 	u_int				 namelen;
2956 	uint32_t			 fmode, ifindex;
2957 
2958 	name = (int *)arg1;
2959 	namelen = arg2;
2960 
2961 	if (req->newptr != NULL)
2962 		return (EPERM);
2963 
2964 	if (namelen != 2)
2965 		return (EINVAL);
2966 
2967 	ifindex = name[0];
2968 	if (ifindex <= 0 || ifindex > V_if_index) {
2969 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2970 		    __func__, ifindex);
2971 		return (ENOENT);
2972 	}
2973 
2974 	group.s_addr = name[1];
2975 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2976 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2977 		    __func__, ntohl(group.s_addr));
2978 		return (EINVAL);
2979 	}
2980 
2981 	ifp = ifnet_byindex(ifindex);
2982 	if (ifp == NULL) {
2983 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2984 		    __func__, ifindex);
2985 		return (ENOENT);
2986 	}
2987 
2988 	retval = sysctl_wire_old_buffer(req,
2989 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2990 	if (retval)
2991 		return (retval);
2992 
2993 	IN_MULTI_LIST_LOCK();
2994 
2995 	IF_ADDR_RLOCK(ifp);
2996 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2997 		if (ifma->ifma_addr->sa_family != AF_INET ||
2998 		    ifma->ifma_protospec == NULL)
2999 			continue;
3000 		inm = (struct in_multi *)ifma->ifma_protospec;
3001 		if (!in_hosteq(inm->inm_addr, group))
3002 			continue;
3003 		fmode = inm->inm_st[1].iss_fmode;
3004 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
3005 		if (retval != 0)
3006 			break;
3007 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3008 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
3009 			    ims->ims_haddr);
3010 			/*
3011 			 * Only copy-out sources which are in-mode.
3012 			 */
3013 			if (fmode != ims_get_mode(inm, ims, 1)) {
3014 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
3015 				    __func__);
3016 				continue;
3017 			}
3018 			src.s_addr = htonl(ims->ims_haddr);
3019 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3020 			if (retval != 0)
3021 				break;
3022 		}
3023 	}
3024 	IF_ADDR_RUNLOCK(ifp);
3025 
3026 	IN_MULTI_LIST_UNLOCK();
3027 
3028 	return (retval);
3029 }
3030 
3031 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
3032 
3033 static const char *inm_modestrs[] = { "un", "in", "ex" };
3034 
3035 static const char *
3036 inm_mode_str(const int mode)
3037 {
3038 
3039 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3040 		return (inm_modestrs[mode]);
3041 	return ("??");
3042 }
3043 
3044 static const char *inm_statestrs[] = {
3045 	"not-member",
3046 	"silent",
3047 	"idle",
3048 	"lazy",
3049 	"sleeping",
3050 	"awakening",
3051 	"query-pending",
3052 	"sg-query-pending",
3053 	"leaving"
3054 };
3055 
3056 static const char *
3057 inm_state_str(const int state)
3058 {
3059 
3060 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3061 		return (inm_statestrs[state]);
3062 	return ("??");
3063 }
3064 
3065 /*
3066  * Dump an in_multi structure to the console.
3067  */
3068 void
3069 inm_print(const struct in_multi *inm)
3070 {
3071 	int t;
3072 	char addrbuf[INET_ADDRSTRLEN];
3073 
3074 	if ((ktr_mask & KTR_IGMPV3) == 0)
3075 		return;
3076 
3077 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3078 	printf("addr %s ifp %p(%s) ifma %p\n",
3079 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3080 	    inm->inm_ifp,
3081 	    inm->inm_ifp->if_xname,
3082 	    inm->inm_ifma);
3083 	printf("timer %u state %s refcount %u scq.len %u\n",
3084 	    inm->inm_timer,
3085 	    inm_state_str(inm->inm_state),
3086 	    inm->inm_refcount,
3087 	    inm->inm_scq.mq_len);
3088 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3089 	    inm->inm_igi,
3090 	    inm->inm_nsrc,
3091 	    inm->inm_sctimer,
3092 	    inm->inm_scrv);
3093 	for (t = 0; t < 2; t++) {
3094 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3095 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3096 		    inm->inm_st[t].iss_asm,
3097 		    inm->inm_st[t].iss_ex,
3098 		    inm->inm_st[t].iss_in,
3099 		    inm->inm_st[t].iss_rec);
3100 	}
3101 	printf("%s: --- end inm %p ---\n", __func__, inm);
3102 }
3103 
3104 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3105 
3106 void
3107 inm_print(const struct in_multi *inm)
3108 {
3109 
3110 }
3111 
3112 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3113 
3114 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3115