1 /*- 2 * Copyright (c) 2007-2009 Bruce Simpson. 3 * Copyright (c) 2005 Robert N. M. Watson. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * IPv4 multicast socket, group, and socket option processing module. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/protosw.h> 47 #include <sys/sysctl.h> 48 #include <sys/ktr.h> 49 #include <sys/taskqueue.h> 50 #include <sys/tree.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_dl.h> 55 #include <net/route.h> 56 #include <net/vnet.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_pcb.h> 61 #include <netinet/in_var.h> 62 #include <netinet/ip_var.h> 63 #include <netinet/igmp_var.h> 64 65 #ifndef KTR_IGMPV3 66 #define KTR_IGMPV3 KTR_INET 67 #endif 68 69 #ifndef __SOCKUNION_DECLARED 70 union sockunion { 71 struct sockaddr_storage ss; 72 struct sockaddr sa; 73 struct sockaddr_dl sdl; 74 struct sockaddr_in sin; 75 }; 76 typedef union sockunion sockunion_t; 77 #define __SOCKUNION_DECLARED 78 #endif /* __SOCKUNION_DECLARED */ 79 80 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 81 "IPv4 multicast PCB-layer source filter"); 82 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 83 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 84 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 85 "IPv4 multicast IGMP-layer source filter"); 86 87 /* 88 * Locking: 89 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 90 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 91 * it can be taken by code in net/if.c also. 92 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 93 * 94 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly 95 * any need for in_multi itself to be virtualized -- it is bound to an ifp 96 * anyway no matter what happens. 97 */ 98 struct mtx in_multi_mtx; 99 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF); 100 101 /* 102 * Functions with non-static linkage defined in this file should be 103 * declared in in_var.h: 104 * imo_multi_filter() 105 * in_addmulti() 106 * in_delmulti() 107 * in_joingroup() 108 * in_joingroup_locked() 109 * in_leavegroup() 110 * in_leavegroup_locked() 111 * and ip_var.h: 112 * inp_freemoptions() 113 * inp_getmoptions() 114 * inp_setmoptions() 115 * 116 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 117 * and in_delmulti(). 118 */ 119 static void imf_commit(struct in_mfilter *); 120 static int imf_get_source(struct in_mfilter *imf, 121 const struct sockaddr_in *psin, 122 struct in_msource **); 123 static struct in_msource * 124 imf_graft(struct in_mfilter *, const uint8_t, 125 const struct sockaddr_in *); 126 static void imf_leave(struct in_mfilter *); 127 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 128 static void imf_purge(struct in_mfilter *); 129 static void imf_rollback(struct in_mfilter *); 130 static void imf_reap(struct in_mfilter *); 131 static int imo_grow(struct ip_moptions *); 132 static size_t imo_match_group(const struct ip_moptions *, 133 const struct ifnet *, const struct sockaddr *); 134 static struct in_msource * 135 imo_match_source(const struct ip_moptions *, const size_t, 136 const struct sockaddr *); 137 static void ims_merge(struct ip_msource *ims, 138 const struct in_msource *lims, const int rollback); 139 static int in_getmulti(struct ifnet *, const struct in_addr *, 140 struct in_multi **); 141 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 142 const int noalloc, struct ip_msource **pims); 143 #ifdef KTR 144 static int inm_is_ifp_detached(const struct in_multi *); 145 #endif 146 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 147 static void inm_purge(struct in_multi *); 148 static void inm_reap(struct in_multi *); 149 static struct ip_moptions * 150 inp_findmoptions(struct inpcb *); 151 static void inp_freemoptions_internal(struct ip_moptions *); 152 static void inp_gcmoptions(void *, int); 153 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 154 static int inp_join_group(struct inpcb *, struct sockopt *); 155 static int inp_leave_group(struct inpcb *, struct sockopt *); 156 static struct ifnet * 157 inp_lookup_mcast_ifp(const struct inpcb *, 158 const struct sockaddr_in *, const struct in_addr); 159 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 160 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 161 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 162 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 163 164 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, 165 "IPv4 multicast"); 166 167 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 168 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 169 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0, 170 "Max source filters per group"); 171 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc); 172 173 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 174 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 175 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0, 176 "Max source filters per socket"); 177 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc); 178 179 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 180 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN, 181 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 182 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop); 183 184 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 185 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 186 "Per-interface stack-wide source filters"); 187 188 static STAILQ_HEAD(, ip_moptions) imo_gc_list = 189 STAILQ_HEAD_INITIALIZER(imo_gc_list); 190 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL); 191 192 #ifdef KTR 193 /* 194 * Inline function which wraps assertions for a valid ifp. 195 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 196 * is detached. 197 */ 198 static int __inline 199 inm_is_ifp_detached(const struct in_multi *inm) 200 { 201 struct ifnet *ifp; 202 203 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 204 ifp = inm->inm_ifma->ifma_ifp; 205 if (ifp != NULL) { 206 /* 207 * Sanity check that netinet's notion of ifp is the 208 * same as net's. 209 */ 210 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 211 } 212 213 return (ifp == NULL); 214 } 215 #endif 216 217 /* 218 * Initialize an in_mfilter structure to a known state at t0, t1 219 * with an empty source filter list. 220 */ 221 static __inline void 222 imf_init(struct in_mfilter *imf, const int st0, const int st1) 223 { 224 memset(imf, 0, sizeof(struct in_mfilter)); 225 RB_INIT(&imf->imf_sources); 226 imf->imf_st[0] = st0; 227 imf->imf_st[1] = st1; 228 } 229 230 /* 231 * Function for looking up an in_multi record for an IPv4 multicast address 232 * on a given interface. ifp must be valid. If no record found, return NULL. 233 * The IN_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held. 234 */ 235 struct in_multi * 236 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 237 { 238 struct ifmultiaddr *ifma; 239 struct in_multi *inm; 240 241 IN_MULTI_LOCK_ASSERT(); 242 IF_ADDR_LOCK_ASSERT(ifp); 243 244 inm = NULL; 245 TAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 246 if (ifma->ifma_addr->sa_family == AF_INET) { 247 inm = (struct in_multi *)ifma->ifma_protospec; 248 if (inm->inm_addr.s_addr == ina.s_addr) 249 break; 250 inm = NULL; 251 } 252 } 253 return (inm); 254 } 255 256 /* 257 * Wrapper for inm_lookup_locked(). 258 * The IF_ADDR_LOCK will be taken on ifp and released on return. 259 */ 260 struct in_multi * 261 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 262 { 263 struct in_multi *inm; 264 265 IN_MULTI_LOCK_ASSERT(); 266 IF_ADDR_RLOCK(ifp); 267 inm = inm_lookup_locked(ifp, ina); 268 IF_ADDR_RUNLOCK(ifp); 269 270 return (inm); 271 } 272 273 /* 274 * Resize the ip_moptions vector to the next power-of-two minus 1. 275 * May be called with locks held; do not sleep. 276 */ 277 static int 278 imo_grow(struct ip_moptions *imo) 279 { 280 struct in_multi **nmships; 281 struct in_multi **omships; 282 struct in_mfilter *nmfilters; 283 struct in_mfilter *omfilters; 284 size_t idx; 285 size_t newmax; 286 size_t oldmax; 287 288 nmships = NULL; 289 nmfilters = NULL; 290 omships = imo->imo_membership; 291 omfilters = imo->imo_mfilters; 292 oldmax = imo->imo_max_memberships; 293 newmax = ((oldmax + 1) * 2) - 1; 294 295 if (newmax <= IP_MAX_MEMBERSHIPS) { 296 nmships = (struct in_multi **)realloc(omships, 297 sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT); 298 nmfilters = (struct in_mfilter *)realloc(omfilters, 299 sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT); 300 if (nmships != NULL && nmfilters != NULL) { 301 /* Initialize newly allocated source filter heads. */ 302 for (idx = oldmax; idx < newmax; idx++) { 303 imf_init(&nmfilters[idx], MCAST_UNDEFINED, 304 MCAST_EXCLUDE); 305 } 306 imo->imo_max_memberships = newmax; 307 imo->imo_membership = nmships; 308 imo->imo_mfilters = nmfilters; 309 } 310 } 311 312 if (nmships == NULL || nmfilters == NULL) { 313 if (nmships != NULL) 314 free(nmships, M_IPMOPTS); 315 if (nmfilters != NULL) 316 free(nmfilters, M_INMFILTER); 317 return (ETOOMANYREFS); 318 } 319 320 return (0); 321 } 322 323 /* 324 * Find an IPv4 multicast group entry for this ip_moptions instance 325 * which matches the specified group, and optionally an interface. 326 * Return its index into the array, or -1 if not found. 327 */ 328 static size_t 329 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 330 const struct sockaddr *group) 331 { 332 const struct sockaddr_in *gsin; 333 struct in_multi **pinm; 334 int idx; 335 int nmships; 336 337 gsin = (const struct sockaddr_in *)group; 338 339 /* The imo_membership array may be lazy allocated. */ 340 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) 341 return (-1); 342 343 nmships = imo->imo_num_memberships; 344 pinm = &imo->imo_membership[0]; 345 for (idx = 0; idx < nmships; idx++, pinm++) { 346 if (*pinm == NULL) 347 continue; 348 if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) && 349 in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) { 350 break; 351 } 352 } 353 if (idx >= nmships) 354 idx = -1; 355 356 return (idx); 357 } 358 359 /* 360 * Find an IPv4 multicast source entry for this imo which matches 361 * the given group index for this socket, and source address. 362 * 363 * NOTE: This does not check if the entry is in-mode, merely if 364 * it exists, which may not be the desired behaviour. 365 */ 366 static struct in_msource * 367 imo_match_source(const struct ip_moptions *imo, const size_t gidx, 368 const struct sockaddr *src) 369 { 370 struct ip_msource find; 371 struct in_mfilter *imf; 372 struct ip_msource *ims; 373 const sockunion_t *psa; 374 375 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 376 KASSERT(gidx != -1 && gidx < imo->imo_num_memberships, 377 ("%s: invalid index %d\n", __func__, (int)gidx)); 378 379 /* The imo_mfilters array may be lazy allocated. */ 380 if (imo->imo_mfilters == NULL) 381 return (NULL); 382 imf = &imo->imo_mfilters[gidx]; 383 384 /* Source trees are keyed in host byte order. */ 385 psa = (const sockunion_t *)src; 386 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 387 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 388 389 return ((struct in_msource *)ims); 390 } 391 392 /* 393 * Perform filtering for multicast datagrams on a socket by group and source. 394 * 395 * Returns 0 if a datagram should be allowed through, or various error codes 396 * if the socket was not a member of the group, or the source was muted, etc. 397 */ 398 int 399 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 400 const struct sockaddr *group, const struct sockaddr *src) 401 { 402 size_t gidx; 403 struct in_msource *ims; 404 int mode; 405 406 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 407 408 gidx = imo_match_group(imo, ifp, group); 409 if (gidx == -1) 410 return (MCAST_NOTGMEMBER); 411 412 /* 413 * Check if the source was included in an (S,G) join. 414 * Allow reception on exclusive memberships by default, 415 * reject reception on inclusive memberships by default. 416 * Exclude source only if an in-mode exclude filter exists. 417 * Include source only if an in-mode include filter exists. 418 * NOTE: We are comparing group state here at IGMP t1 (now) 419 * with socket-layer t0 (since last downcall). 420 */ 421 mode = imo->imo_mfilters[gidx].imf_st[1]; 422 ims = imo_match_source(imo, gidx, src); 423 424 if ((ims == NULL && mode == MCAST_INCLUDE) || 425 (ims != NULL && ims->imsl_st[0] != mode)) 426 return (MCAST_NOTSMEMBER); 427 428 return (MCAST_PASS); 429 } 430 431 /* 432 * Find and return a reference to an in_multi record for (ifp, group), 433 * and bump its reference count. 434 * If one does not exist, try to allocate it, and update link-layer multicast 435 * filters on ifp to listen for group. 436 * Assumes the IN_MULTI lock is held across the call. 437 * Return 0 if successful, otherwise return an appropriate error code. 438 */ 439 static int 440 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 441 struct in_multi **pinm) 442 { 443 struct sockaddr_in gsin; 444 struct ifmultiaddr *ifma; 445 struct in_ifinfo *ii; 446 struct in_multi *inm; 447 int error; 448 449 IN_MULTI_LOCK_ASSERT(); 450 451 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 452 453 inm = inm_lookup(ifp, *group); 454 if (inm != NULL) { 455 /* 456 * If we already joined this group, just bump the 457 * refcount and return it. 458 */ 459 KASSERT(inm->inm_refcount >= 1, 460 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 461 ++inm->inm_refcount; 462 *pinm = inm; 463 return (0); 464 } 465 466 memset(&gsin, 0, sizeof(gsin)); 467 gsin.sin_family = AF_INET; 468 gsin.sin_len = sizeof(struct sockaddr_in); 469 gsin.sin_addr = *group; 470 471 /* 472 * Check if a link-layer group is already associated 473 * with this network-layer group on the given ifnet. 474 */ 475 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 476 if (error != 0) 477 return (error); 478 479 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 480 IF_ADDR_WLOCK(ifp); 481 482 /* 483 * If something other than netinet is occupying the link-layer 484 * group, print a meaningful error message and back out of 485 * the allocation. 486 * Otherwise, bump the refcount on the existing network-layer 487 * group association and return it. 488 */ 489 if (ifma->ifma_protospec != NULL) { 490 inm = (struct in_multi *)ifma->ifma_protospec; 491 #ifdef INVARIANTS 492 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 493 __func__)); 494 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 495 ("%s: ifma not AF_INET", __func__)); 496 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 497 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 498 !in_hosteq(inm->inm_addr, *group)) 499 panic("%s: ifma %p is inconsistent with %p (%s)", 500 __func__, ifma, inm, inet_ntoa(*group)); 501 #endif 502 ++inm->inm_refcount; 503 *pinm = inm; 504 IF_ADDR_WUNLOCK(ifp); 505 return (0); 506 } 507 508 IF_ADDR_WLOCK_ASSERT(ifp); 509 510 /* 511 * A new in_multi record is needed; allocate and initialize it. 512 * We DO NOT perform an IGMP join as the in_ layer may need to 513 * push an initial source list down to IGMP to support SSM. 514 * 515 * The initial source filter state is INCLUDE, {} as per the RFC. 516 */ 517 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 518 if (inm == NULL) { 519 if_delmulti_ifma(ifma); 520 IF_ADDR_WUNLOCK(ifp); 521 return (ENOMEM); 522 } 523 inm->inm_addr = *group; 524 inm->inm_ifp = ifp; 525 inm->inm_igi = ii->ii_igmp; 526 inm->inm_ifma = ifma; 527 inm->inm_refcount = 1; 528 inm->inm_state = IGMP_NOT_MEMBER; 529 530 /* 531 * Pending state-changes per group are subject to a bounds check. 532 */ 533 IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 534 535 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 536 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 537 RB_INIT(&inm->inm_srcs); 538 539 ifma->ifma_protospec = inm; 540 541 *pinm = inm; 542 543 IF_ADDR_WUNLOCK(ifp); 544 return (0); 545 } 546 547 /* 548 * Drop a reference to an in_multi record. 549 * 550 * If the refcount drops to 0, free the in_multi record and 551 * delete the underlying link-layer membership. 552 */ 553 void 554 inm_release_locked(struct in_multi *inm) 555 { 556 struct ifmultiaddr *ifma; 557 558 IN_MULTI_LOCK_ASSERT(); 559 560 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 561 562 if (--inm->inm_refcount > 0) { 563 CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__, 564 inm->inm_refcount); 565 return; 566 } 567 568 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 569 570 ifma = inm->inm_ifma; 571 572 /* XXX this access is not covered by IF_ADDR_LOCK */ 573 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 574 KASSERT(ifma->ifma_protospec == inm, 575 ("%s: ifma_protospec != inm", __func__)); 576 ifma->ifma_protospec = NULL; 577 578 inm_purge(inm); 579 580 free(inm, M_IPMADDR); 581 582 if_delmulti_ifma(ifma); 583 } 584 585 /* 586 * Clear recorded source entries for a group. 587 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 588 * FIXME: Should reap. 589 */ 590 void 591 inm_clear_recorded(struct in_multi *inm) 592 { 593 struct ip_msource *ims; 594 595 IN_MULTI_LOCK_ASSERT(); 596 597 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 598 if (ims->ims_stp) { 599 ims->ims_stp = 0; 600 --inm->inm_st[1].iss_rec; 601 } 602 } 603 KASSERT(inm->inm_st[1].iss_rec == 0, 604 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 605 } 606 607 /* 608 * Record a source as pending for a Source-Group IGMPv3 query. 609 * This lives here as it modifies the shared tree. 610 * 611 * inm is the group descriptor. 612 * naddr is the address of the source to record in network-byte order. 613 * 614 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 615 * lazy-allocate a source node in response to an SG query. 616 * Otherwise, no allocation is performed. This saves some memory 617 * with the trade-off that the source will not be reported to the 618 * router if joined in the window between the query response and 619 * the group actually being joined on the local host. 620 * 621 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 622 * This turns off the allocation of a recorded source entry if 623 * the group has not been joined. 624 * 625 * Return 0 if the source didn't exist or was already marked as recorded. 626 * Return 1 if the source was marked as recorded by this function. 627 * Return <0 if any error occured (negated errno code). 628 */ 629 int 630 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 631 { 632 struct ip_msource find; 633 struct ip_msource *ims, *nims; 634 635 IN_MULTI_LOCK_ASSERT(); 636 637 find.ims_haddr = ntohl(naddr); 638 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 639 if (ims && ims->ims_stp) 640 return (0); 641 if (ims == NULL) { 642 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 643 return (-ENOSPC); 644 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 645 M_NOWAIT | M_ZERO); 646 if (nims == NULL) 647 return (-ENOMEM); 648 nims->ims_haddr = find.ims_haddr; 649 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 650 ++inm->inm_nsrc; 651 ims = nims; 652 } 653 654 /* 655 * Mark the source as recorded and update the recorded 656 * source count. 657 */ 658 ++ims->ims_stp; 659 ++inm->inm_st[1].iss_rec; 660 661 return (1); 662 } 663 664 /* 665 * Return a pointer to an in_msource owned by an in_mfilter, 666 * given its source address. 667 * Lazy-allocate if needed. If this is a new entry its filter state is 668 * undefined at t0. 669 * 670 * imf is the filter set being modified. 671 * haddr is the source address in *host* byte-order. 672 * 673 * SMPng: May be called with locks held; malloc must not block. 674 */ 675 static int 676 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 677 struct in_msource **plims) 678 { 679 struct ip_msource find; 680 struct ip_msource *ims, *nims; 681 struct in_msource *lims; 682 int error; 683 684 error = 0; 685 ims = NULL; 686 lims = NULL; 687 688 /* key is host byte order */ 689 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 690 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 691 lims = (struct in_msource *)ims; 692 if (lims == NULL) { 693 if (imf->imf_nsrc == in_mcast_maxsocksrc) 694 return (ENOSPC); 695 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 696 M_NOWAIT | M_ZERO); 697 if (nims == NULL) 698 return (ENOMEM); 699 lims = (struct in_msource *)nims; 700 lims->ims_haddr = find.ims_haddr; 701 lims->imsl_st[0] = MCAST_UNDEFINED; 702 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 703 ++imf->imf_nsrc; 704 } 705 706 *plims = lims; 707 708 return (error); 709 } 710 711 /* 712 * Graft a source entry into an existing socket-layer filter set, 713 * maintaining any required invariants and checking allocations. 714 * 715 * The source is marked as being in the new filter mode at t1. 716 * 717 * Return the pointer to the new node, otherwise return NULL. 718 */ 719 static struct in_msource * 720 imf_graft(struct in_mfilter *imf, const uint8_t st1, 721 const struct sockaddr_in *psin) 722 { 723 struct ip_msource *nims; 724 struct in_msource *lims; 725 726 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 727 M_NOWAIT | M_ZERO); 728 if (nims == NULL) 729 return (NULL); 730 lims = (struct in_msource *)nims; 731 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 732 lims->imsl_st[0] = MCAST_UNDEFINED; 733 lims->imsl_st[1] = st1; 734 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 735 ++imf->imf_nsrc; 736 737 return (lims); 738 } 739 740 /* 741 * Prune a source entry from an existing socket-layer filter set, 742 * maintaining any required invariants and checking allocations. 743 * 744 * The source is marked as being left at t1, it is not freed. 745 * 746 * Return 0 if no error occurred, otherwise return an errno value. 747 */ 748 static int 749 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 750 { 751 struct ip_msource find; 752 struct ip_msource *ims; 753 struct in_msource *lims; 754 755 /* key is host byte order */ 756 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 757 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 758 if (ims == NULL) 759 return (ENOENT); 760 lims = (struct in_msource *)ims; 761 lims->imsl_st[1] = MCAST_UNDEFINED; 762 return (0); 763 } 764 765 /* 766 * Revert socket-layer filter set deltas at t1 to t0 state. 767 */ 768 static void 769 imf_rollback(struct in_mfilter *imf) 770 { 771 struct ip_msource *ims, *tims; 772 struct in_msource *lims; 773 774 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 775 lims = (struct in_msource *)ims; 776 if (lims->imsl_st[0] == lims->imsl_st[1]) { 777 /* no change at t1 */ 778 continue; 779 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 780 /* revert change to existing source at t1 */ 781 lims->imsl_st[1] = lims->imsl_st[0]; 782 } else { 783 /* revert source added t1 */ 784 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 785 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 786 free(ims, M_INMFILTER); 787 imf->imf_nsrc--; 788 } 789 } 790 imf->imf_st[1] = imf->imf_st[0]; 791 } 792 793 /* 794 * Mark socket-layer filter set as INCLUDE {} at t1. 795 */ 796 static void 797 imf_leave(struct in_mfilter *imf) 798 { 799 struct ip_msource *ims; 800 struct in_msource *lims; 801 802 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 803 lims = (struct in_msource *)ims; 804 lims->imsl_st[1] = MCAST_UNDEFINED; 805 } 806 imf->imf_st[1] = MCAST_INCLUDE; 807 } 808 809 /* 810 * Mark socket-layer filter set deltas as committed. 811 */ 812 static void 813 imf_commit(struct in_mfilter *imf) 814 { 815 struct ip_msource *ims; 816 struct in_msource *lims; 817 818 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 819 lims = (struct in_msource *)ims; 820 lims->imsl_st[0] = lims->imsl_st[1]; 821 } 822 imf->imf_st[0] = imf->imf_st[1]; 823 } 824 825 /* 826 * Reap unreferenced sources from socket-layer filter set. 827 */ 828 static void 829 imf_reap(struct in_mfilter *imf) 830 { 831 struct ip_msource *ims, *tims; 832 struct in_msource *lims; 833 834 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 835 lims = (struct in_msource *)ims; 836 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 837 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 838 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 839 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 840 free(ims, M_INMFILTER); 841 imf->imf_nsrc--; 842 } 843 } 844 } 845 846 /* 847 * Purge socket-layer filter set. 848 */ 849 static void 850 imf_purge(struct in_mfilter *imf) 851 { 852 struct ip_msource *ims, *tims; 853 854 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 855 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 856 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 857 free(ims, M_INMFILTER); 858 imf->imf_nsrc--; 859 } 860 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 861 KASSERT(RB_EMPTY(&imf->imf_sources), 862 ("%s: imf_sources not empty", __func__)); 863 } 864 865 /* 866 * Look up a source filter entry for a multicast group. 867 * 868 * inm is the group descriptor to work with. 869 * haddr is the host-byte-order IPv4 address to look up. 870 * noalloc may be non-zero to suppress allocation of sources. 871 * *pims will be set to the address of the retrieved or allocated source. 872 * 873 * SMPng: NOTE: may be called with locks held. 874 * Return 0 if successful, otherwise return a non-zero error code. 875 */ 876 static int 877 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 878 const int noalloc, struct ip_msource **pims) 879 { 880 struct ip_msource find; 881 struct ip_msource *ims, *nims; 882 #ifdef KTR 883 struct in_addr ia; 884 #endif 885 886 find.ims_haddr = haddr; 887 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 888 if (ims == NULL && !noalloc) { 889 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 890 return (ENOSPC); 891 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 892 M_NOWAIT | M_ZERO); 893 if (nims == NULL) 894 return (ENOMEM); 895 nims->ims_haddr = haddr; 896 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 897 ++inm->inm_nsrc; 898 ims = nims; 899 #ifdef KTR 900 ia.s_addr = htonl(haddr); 901 CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__, 902 inet_ntoa(ia), ims); 903 #endif 904 } 905 906 *pims = ims; 907 return (0); 908 } 909 910 /* 911 * Merge socket-layer source into IGMP-layer source. 912 * If rollback is non-zero, perform the inverse of the merge. 913 */ 914 static void 915 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 916 const int rollback) 917 { 918 int n = rollback ? -1 : 1; 919 #ifdef KTR 920 struct in_addr ia; 921 922 ia.s_addr = htonl(ims->ims_haddr); 923 #endif 924 925 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 926 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s", 927 __func__, n, inet_ntoa(ia)); 928 ims->ims_st[1].ex -= n; 929 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 930 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s", 931 __func__, n, inet_ntoa(ia)); 932 ims->ims_st[1].in -= n; 933 } 934 935 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 936 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s", 937 __func__, n, inet_ntoa(ia)); 938 ims->ims_st[1].ex += n; 939 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 940 CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s", 941 __func__, n, inet_ntoa(ia)); 942 ims->ims_st[1].in += n; 943 } 944 } 945 946 /* 947 * Atomically update the global in_multi state, when a membership's 948 * filter list is being updated in any way. 949 * 950 * imf is the per-inpcb-membership group filter pointer. 951 * A fake imf may be passed for in-kernel consumers. 952 * 953 * XXX This is a candidate for a set-symmetric-difference style loop 954 * which would eliminate the repeated lookup from root of ims nodes, 955 * as they share the same key space. 956 * 957 * If any error occurred this function will back out of refcounts 958 * and return a non-zero value. 959 */ 960 static int 961 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 962 { 963 struct ip_msource *ims, *nims; 964 struct in_msource *lims; 965 int schanged, error; 966 int nsrc0, nsrc1; 967 968 schanged = 0; 969 error = 0; 970 nsrc1 = nsrc0 = 0; 971 972 /* 973 * Update the source filters first, as this may fail. 974 * Maintain count of in-mode filters at t0, t1. These are 975 * used to work out if we transition into ASM mode or not. 976 * Maintain a count of source filters whose state was 977 * actually modified by this operation. 978 */ 979 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 980 lims = (struct in_msource *)ims; 981 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 982 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 983 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 984 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 985 ++schanged; 986 if (error) 987 break; 988 ims_merge(nims, lims, 0); 989 } 990 if (error) { 991 struct ip_msource *bims; 992 993 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 994 lims = (struct in_msource *)ims; 995 if (lims->imsl_st[0] == lims->imsl_st[1]) 996 continue; 997 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 998 if (bims == NULL) 999 continue; 1000 ims_merge(bims, lims, 1); 1001 } 1002 goto out_reap; 1003 } 1004 1005 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1006 __func__, nsrc0, nsrc1); 1007 1008 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1009 if (imf->imf_st[0] == imf->imf_st[1] && 1010 imf->imf_st[1] == MCAST_INCLUDE) { 1011 if (nsrc1 == 0) { 1012 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1013 --inm->inm_st[1].iss_in; 1014 } 1015 } 1016 1017 /* Handle filter mode transition on socket. */ 1018 if (imf->imf_st[0] != imf->imf_st[1]) { 1019 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1020 __func__, imf->imf_st[0], imf->imf_st[1]); 1021 1022 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1023 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1024 --inm->inm_st[1].iss_ex; 1025 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1026 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1027 --inm->inm_st[1].iss_in; 1028 } 1029 1030 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1031 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1032 inm->inm_st[1].iss_ex++; 1033 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1034 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1035 inm->inm_st[1].iss_in++; 1036 } 1037 } 1038 1039 /* 1040 * Track inm filter state in terms of listener counts. 1041 * If there are any exclusive listeners, stack-wide 1042 * membership is exclusive. 1043 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1044 * If no listeners remain, state is undefined at t1, 1045 * and the IGMP lifecycle for this group should finish. 1046 */ 1047 if (inm->inm_st[1].iss_ex > 0) { 1048 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1049 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1050 } else if (inm->inm_st[1].iss_in > 0) { 1051 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1052 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1053 } else { 1054 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1055 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1056 } 1057 1058 /* Decrement ASM listener count on transition out of ASM mode. */ 1059 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1060 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1061 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1062 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1063 --inm->inm_st[1].iss_asm; 1064 } 1065 1066 /* Increment ASM listener count on transition to ASM mode. */ 1067 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1068 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1069 inm->inm_st[1].iss_asm++; 1070 } 1071 1072 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1073 inm_print(inm); 1074 1075 out_reap: 1076 if (schanged > 0) { 1077 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1078 inm_reap(inm); 1079 } 1080 return (error); 1081 } 1082 1083 /* 1084 * Mark an in_multi's filter set deltas as committed. 1085 * Called by IGMP after a state change has been enqueued. 1086 */ 1087 void 1088 inm_commit(struct in_multi *inm) 1089 { 1090 struct ip_msource *ims; 1091 1092 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1093 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1094 inm_print(inm); 1095 1096 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1097 ims->ims_st[0] = ims->ims_st[1]; 1098 } 1099 inm->inm_st[0] = inm->inm_st[1]; 1100 } 1101 1102 /* 1103 * Reap unreferenced nodes from an in_multi's filter set. 1104 */ 1105 static void 1106 inm_reap(struct in_multi *inm) 1107 { 1108 struct ip_msource *ims, *tims; 1109 1110 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1111 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1112 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1113 ims->ims_stp != 0) 1114 continue; 1115 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1116 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1117 free(ims, M_IPMSOURCE); 1118 inm->inm_nsrc--; 1119 } 1120 } 1121 1122 /* 1123 * Purge all source nodes from an in_multi's filter set. 1124 */ 1125 static void 1126 inm_purge(struct in_multi *inm) 1127 { 1128 struct ip_msource *ims, *tims; 1129 1130 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1131 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1132 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1133 free(ims, M_IPMSOURCE); 1134 inm->inm_nsrc--; 1135 } 1136 } 1137 1138 /* 1139 * Join a multicast group; unlocked entry point. 1140 * 1141 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1142 * is not held. Fortunately, ifp is unlikely to have been detached 1143 * at this point, so we assume it's OK to recurse. 1144 */ 1145 int 1146 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1147 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1148 { 1149 int error; 1150 1151 IN_MULTI_LOCK(); 1152 error = in_joingroup_locked(ifp, gina, imf, pinm); 1153 IN_MULTI_UNLOCK(); 1154 1155 return (error); 1156 } 1157 1158 /* 1159 * Join a multicast group; real entry point. 1160 * 1161 * Only preserves atomicity at inm level. 1162 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1163 * 1164 * If the IGMP downcall fails, the group is not joined, and an error 1165 * code is returned. 1166 */ 1167 int 1168 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1169 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1170 { 1171 struct in_mfilter timf; 1172 struct in_multi *inm; 1173 int error; 1174 1175 IN_MULTI_LOCK_ASSERT(); 1176 1177 CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__, 1178 inet_ntoa(*gina), ifp, ifp->if_xname); 1179 1180 error = 0; 1181 inm = NULL; 1182 1183 /* 1184 * If no imf was specified (i.e. kernel consumer), 1185 * fake one up and assume it is an ASM join. 1186 */ 1187 if (imf == NULL) { 1188 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1189 imf = &timf; 1190 } 1191 1192 error = in_getmulti(ifp, gina, &inm); 1193 if (error) { 1194 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1195 return (error); 1196 } 1197 1198 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1199 error = inm_merge(inm, imf); 1200 if (error) { 1201 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1202 goto out_inm_release; 1203 } 1204 1205 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1206 error = igmp_change_state(inm); 1207 if (error) { 1208 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1209 goto out_inm_release; 1210 } 1211 1212 out_inm_release: 1213 if (error) { 1214 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1215 inm_release_locked(inm); 1216 } else { 1217 *pinm = inm; 1218 } 1219 1220 return (error); 1221 } 1222 1223 /* 1224 * Leave a multicast group; unlocked entry point. 1225 */ 1226 int 1227 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1228 { 1229 int error; 1230 1231 IN_MULTI_LOCK(); 1232 error = in_leavegroup_locked(inm, imf); 1233 IN_MULTI_UNLOCK(); 1234 1235 return (error); 1236 } 1237 1238 /* 1239 * Leave a multicast group; real entry point. 1240 * All source filters will be expunged. 1241 * 1242 * Only preserves atomicity at inm level. 1243 * 1244 * Holding the write lock for the INP which contains imf 1245 * is highly advisable. We can't assert for it as imf does not 1246 * contain a back-pointer to the owning inp. 1247 * 1248 * Note: This is not the same as inm_release(*) as this function also 1249 * makes a state change downcall into IGMP. 1250 */ 1251 int 1252 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1253 { 1254 struct in_mfilter timf; 1255 int error; 1256 1257 error = 0; 1258 1259 IN_MULTI_LOCK_ASSERT(); 1260 1261 CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__, 1262 inm, inet_ntoa(inm->inm_addr), 1263 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1264 imf); 1265 1266 /* 1267 * If no imf was specified (i.e. kernel consumer), 1268 * fake one up and assume it is an ASM join. 1269 */ 1270 if (imf == NULL) { 1271 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1272 imf = &timf; 1273 } 1274 1275 /* 1276 * Begin state merge transaction at IGMP layer. 1277 * 1278 * As this particular invocation should not cause any memory 1279 * to be allocated, and there is no opportunity to roll back 1280 * the transaction, it MUST NOT fail. 1281 */ 1282 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1283 error = inm_merge(inm, imf); 1284 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1285 1286 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1287 CURVNET_SET(inm->inm_ifp->if_vnet); 1288 error = igmp_change_state(inm); 1289 CURVNET_RESTORE(); 1290 if (error) 1291 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1292 1293 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1294 inm_release_locked(inm); 1295 1296 return (error); 1297 } 1298 1299 /*#ifndef BURN_BRIDGES*/ 1300 /* 1301 * Join an IPv4 multicast group in (*,G) exclusive mode. 1302 * The group must be a 224.0.0.0/24 link-scope group. 1303 * This KPI is for legacy kernel consumers only. 1304 */ 1305 struct in_multi * 1306 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1307 { 1308 struct in_multi *pinm; 1309 int error; 1310 1311 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1312 ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap))); 1313 1314 error = in_joingroup(ifp, ap, NULL, &pinm); 1315 if (error != 0) 1316 pinm = NULL; 1317 1318 return (pinm); 1319 } 1320 1321 /* 1322 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. 1323 * This KPI is for legacy kernel consumers only. 1324 */ 1325 void 1326 in_delmulti(struct in_multi *inm) 1327 { 1328 1329 (void)in_leavegroup(inm, NULL); 1330 } 1331 /*#endif*/ 1332 1333 /* 1334 * Block or unblock an ASM multicast source on an inpcb. 1335 * This implements the delta-based API described in RFC 3678. 1336 * 1337 * The delta-based API applies only to exclusive-mode memberships. 1338 * An IGMP downcall will be performed. 1339 * 1340 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1341 * 1342 * Return 0 if successful, otherwise return an appropriate error code. 1343 */ 1344 static int 1345 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1346 { 1347 struct group_source_req gsr; 1348 sockunion_t *gsa, *ssa; 1349 struct ifnet *ifp; 1350 struct in_mfilter *imf; 1351 struct ip_moptions *imo; 1352 struct in_msource *ims; 1353 struct in_multi *inm; 1354 size_t idx; 1355 uint16_t fmode; 1356 int error, doblock; 1357 1358 ifp = NULL; 1359 error = 0; 1360 doblock = 0; 1361 1362 memset(&gsr, 0, sizeof(struct group_source_req)); 1363 gsa = (sockunion_t *)&gsr.gsr_group; 1364 ssa = (sockunion_t *)&gsr.gsr_source; 1365 1366 switch (sopt->sopt_name) { 1367 case IP_BLOCK_SOURCE: 1368 case IP_UNBLOCK_SOURCE: { 1369 struct ip_mreq_source mreqs; 1370 1371 error = sooptcopyin(sopt, &mreqs, 1372 sizeof(struct ip_mreq_source), 1373 sizeof(struct ip_mreq_source)); 1374 if (error) 1375 return (error); 1376 1377 gsa->sin.sin_family = AF_INET; 1378 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1379 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1380 1381 ssa->sin.sin_family = AF_INET; 1382 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1383 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1384 1385 if (!in_nullhost(mreqs.imr_interface)) 1386 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1387 1388 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1389 doblock = 1; 1390 1391 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1392 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1393 break; 1394 } 1395 1396 case MCAST_BLOCK_SOURCE: 1397 case MCAST_UNBLOCK_SOURCE: 1398 error = sooptcopyin(sopt, &gsr, 1399 sizeof(struct group_source_req), 1400 sizeof(struct group_source_req)); 1401 if (error) 1402 return (error); 1403 1404 if (gsa->sin.sin_family != AF_INET || 1405 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1406 return (EINVAL); 1407 1408 if (ssa->sin.sin_family != AF_INET || 1409 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1410 return (EINVAL); 1411 1412 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1413 return (EADDRNOTAVAIL); 1414 1415 ifp = ifnet_byindex(gsr.gsr_interface); 1416 1417 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1418 doblock = 1; 1419 break; 1420 1421 default: 1422 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1423 __func__, sopt->sopt_name); 1424 return (EOPNOTSUPP); 1425 break; 1426 } 1427 1428 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1429 return (EINVAL); 1430 1431 /* 1432 * Check if we are actually a member of this group. 1433 */ 1434 imo = inp_findmoptions(inp); 1435 idx = imo_match_group(imo, ifp, &gsa->sa); 1436 if (idx == -1 || imo->imo_mfilters == NULL) { 1437 error = EADDRNOTAVAIL; 1438 goto out_inp_locked; 1439 } 1440 1441 KASSERT(imo->imo_mfilters != NULL, 1442 ("%s: imo_mfilters not allocated", __func__)); 1443 imf = &imo->imo_mfilters[idx]; 1444 inm = imo->imo_membership[idx]; 1445 1446 /* 1447 * Attempting to use the delta-based API on an 1448 * non exclusive-mode membership is an error. 1449 */ 1450 fmode = imf->imf_st[0]; 1451 if (fmode != MCAST_EXCLUDE) { 1452 error = EINVAL; 1453 goto out_inp_locked; 1454 } 1455 1456 /* 1457 * Deal with error cases up-front: 1458 * Asked to block, but already blocked; or 1459 * Asked to unblock, but nothing to unblock. 1460 * If adding a new block entry, allocate it. 1461 */ 1462 ims = imo_match_source(imo, idx, &ssa->sa); 1463 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1464 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 1465 inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not "); 1466 error = EADDRNOTAVAIL; 1467 goto out_inp_locked; 1468 } 1469 1470 INP_WLOCK_ASSERT(inp); 1471 1472 /* 1473 * Begin state merge transaction at socket layer. 1474 */ 1475 if (doblock) { 1476 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1477 ims = imf_graft(imf, fmode, &ssa->sin); 1478 if (ims == NULL) 1479 error = ENOMEM; 1480 } else { 1481 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1482 error = imf_prune(imf, &ssa->sin); 1483 } 1484 1485 if (error) { 1486 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1487 goto out_imf_rollback; 1488 } 1489 1490 /* 1491 * Begin state merge transaction at IGMP layer. 1492 */ 1493 IN_MULTI_LOCK(); 1494 1495 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1496 error = inm_merge(inm, imf); 1497 if (error) { 1498 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1499 goto out_imf_rollback; 1500 } 1501 1502 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1503 error = igmp_change_state(inm); 1504 if (error) 1505 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1506 1507 IN_MULTI_UNLOCK(); 1508 1509 out_imf_rollback: 1510 if (error) 1511 imf_rollback(imf); 1512 else 1513 imf_commit(imf); 1514 1515 imf_reap(imf); 1516 1517 out_inp_locked: 1518 INP_WUNLOCK(inp); 1519 return (error); 1520 } 1521 1522 /* 1523 * Given an inpcb, return its multicast options structure pointer. Accepts 1524 * an unlocked inpcb pointer, but will return it locked. May sleep. 1525 * 1526 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1527 * SMPng: NOTE: Returns with the INP write lock held. 1528 */ 1529 static struct ip_moptions * 1530 inp_findmoptions(struct inpcb *inp) 1531 { 1532 struct ip_moptions *imo; 1533 struct in_multi **immp; 1534 struct in_mfilter *imfp; 1535 size_t idx; 1536 1537 INP_WLOCK(inp); 1538 if (inp->inp_moptions != NULL) 1539 return (inp->inp_moptions); 1540 1541 INP_WUNLOCK(inp); 1542 1543 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1544 immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, 1545 M_WAITOK | M_ZERO); 1546 imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, 1547 M_INMFILTER, M_WAITOK); 1548 1549 imo->imo_multicast_ifp = NULL; 1550 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1551 imo->imo_multicast_vif = -1; 1552 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1553 imo->imo_multicast_loop = in_mcast_loop; 1554 imo->imo_num_memberships = 0; 1555 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; 1556 imo->imo_membership = immp; 1557 1558 /* Initialize per-group source filters. */ 1559 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) 1560 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1561 imo->imo_mfilters = imfp; 1562 1563 INP_WLOCK(inp); 1564 if (inp->inp_moptions != NULL) { 1565 free(imfp, M_INMFILTER); 1566 free(immp, M_IPMOPTS); 1567 free(imo, M_IPMOPTS); 1568 return (inp->inp_moptions); 1569 } 1570 inp->inp_moptions = imo; 1571 return (imo); 1572 } 1573 1574 /* 1575 * Discard the IP multicast options (and source filters). To minimize 1576 * the amount of work done while holding locks such as the INP's 1577 * pcbinfo lock (which is used in the receive path), the free 1578 * operation is performed asynchronously in a separate task. 1579 * 1580 * SMPng: NOTE: assumes INP write lock is held. 1581 */ 1582 void 1583 inp_freemoptions(struct ip_moptions *imo) 1584 { 1585 1586 KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__)); 1587 IN_MULTI_LOCK(); 1588 STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link); 1589 IN_MULTI_UNLOCK(); 1590 taskqueue_enqueue(taskqueue_thread, &imo_gc_task); 1591 } 1592 1593 static void 1594 inp_freemoptions_internal(struct ip_moptions *imo) 1595 { 1596 struct in_mfilter *imf; 1597 size_t idx, nmships; 1598 1599 nmships = imo->imo_num_memberships; 1600 for (idx = 0; idx < nmships; ++idx) { 1601 imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL; 1602 if (imf) 1603 imf_leave(imf); 1604 (void)in_leavegroup(imo->imo_membership[idx], imf); 1605 if (imf) 1606 imf_purge(imf); 1607 } 1608 1609 if (imo->imo_mfilters) 1610 free(imo->imo_mfilters, M_INMFILTER); 1611 free(imo->imo_membership, M_IPMOPTS); 1612 free(imo, M_IPMOPTS); 1613 } 1614 1615 static void 1616 inp_gcmoptions(void *context, int pending) 1617 { 1618 struct ip_moptions *imo; 1619 1620 IN_MULTI_LOCK(); 1621 while (!STAILQ_EMPTY(&imo_gc_list)) { 1622 imo = STAILQ_FIRST(&imo_gc_list); 1623 STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link); 1624 IN_MULTI_UNLOCK(); 1625 inp_freemoptions_internal(imo); 1626 IN_MULTI_LOCK(); 1627 } 1628 IN_MULTI_UNLOCK(); 1629 } 1630 1631 /* 1632 * Atomically get source filters on a socket for an IPv4 multicast group. 1633 * Called with INP lock held; returns with lock released. 1634 */ 1635 static int 1636 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1637 { 1638 struct __msfilterreq msfr; 1639 sockunion_t *gsa; 1640 struct ifnet *ifp; 1641 struct ip_moptions *imo; 1642 struct in_mfilter *imf; 1643 struct ip_msource *ims; 1644 struct in_msource *lims; 1645 struct sockaddr_in *psin; 1646 struct sockaddr_storage *ptss; 1647 struct sockaddr_storage *tss; 1648 int error; 1649 size_t idx, nsrcs, ncsrcs; 1650 1651 INP_WLOCK_ASSERT(inp); 1652 1653 imo = inp->inp_moptions; 1654 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1655 1656 INP_WUNLOCK(inp); 1657 1658 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1659 sizeof(struct __msfilterreq)); 1660 if (error) 1661 return (error); 1662 1663 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1664 return (EINVAL); 1665 1666 ifp = ifnet_byindex(msfr.msfr_ifindex); 1667 if (ifp == NULL) 1668 return (EINVAL); 1669 1670 INP_WLOCK(inp); 1671 1672 /* 1673 * Lookup group on the socket. 1674 */ 1675 gsa = (sockunion_t *)&msfr.msfr_group; 1676 idx = imo_match_group(imo, ifp, &gsa->sa); 1677 if (idx == -1 || imo->imo_mfilters == NULL) { 1678 INP_WUNLOCK(inp); 1679 return (EADDRNOTAVAIL); 1680 } 1681 imf = &imo->imo_mfilters[idx]; 1682 1683 /* 1684 * Ignore memberships which are in limbo. 1685 */ 1686 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1687 INP_WUNLOCK(inp); 1688 return (EAGAIN); 1689 } 1690 msfr.msfr_fmode = imf->imf_st[1]; 1691 1692 /* 1693 * If the user specified a buffer, copy out the source filter 1694 * entries to userland gracefully. 1695 * We only copy out the number of entries which userland 1696 * has asked for, but we always tell userland how big the 1697 * buffer really needs to be. 1698 */ 1699 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1700 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1701 tss = NULL; 1702 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1703 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1704 M_TEMP, M_NOWAIT | M_ZERO); 1705 if (tss == NULL) { 1706 INP_WUNLOCK(inp); 1707 return (ENOBUFS); 1708 } 1709 } 1710 1711 /* 1712 * Count number of sources in-mode at t0. 1713 * If buffer space exists and remains, copy out source entries. 1714 */ 1715 nsrcs = msfr.msfr_nsrcs; 1716 ncsrcs = 0; 1717 ptss = tss; 1718 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1719 lims = (struct in_msource *)ims; 1720 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1721 lims->imsl_st[0] != imf->imf_st[0]) 1722 continue; 1723 ++ncsrcs; 1724 if (tss != NULL && nsrcs > 0) { 1725 psin = (struct sockaddr_in *)ptss; 1726 psin->sin_family = AF_INET; 1727 psin->sin_len = sizeof(struct sockaddr_in); 1728 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1729 psin->sin_port = 0; 1730 ++ptss; 1731 --nsrcs; 1732 } 1733 } 1734 1735 INP_WUNLOCK(inp); 1736 1737 if (tss != NULL) { 1738 error = copyout(tss, msfr.msfr_srcs, 1739 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1740 free(tss, M_TEMP); 1741 if (error) 1742 return (error); 1743 } 1744 1745 msfr.msfr_nsrcs = ncsrcs; 1746 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1747 1748 return (error); 1749 } 1750 1751 /* 1752 * Return the IP multicast options in response to user getsockopt(). 1753 */ 1754 int 1755 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1756 { 1757 struct ip_mreqn mreqn; 1758 struct ip_moptions *imo; 1759 struct ifnet *ifp; 1760 struct in_ifaddr *ia; 1761 int error, optval; 1762 u_char coptval; 1763 1764 INP_WLOCK(inp); 1765 imo = inp->inp_moptions; 1766 /* 1767 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1768 * or is a divert socket, reject it. 1769 */ 1770 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1771 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1772 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1773 INP_WUNLOCK(inp); 1774 return (EOPNOTSUPP); 1775 } 1776 1777 error = 0; 1778 switch (sopt->sopt_name) { 1779 case IP_MULTICAST_VIF: 1780 if (imo != NULL) 1781 optval = imo->imo_multicast_vif; 1782 else 1783 optval = -1; 1784 INP_WUNLOCK(inp); 1785 error = sooptcopyout(sopt, &optval, sizeof(int)); 1786 break; 1787 1788 case IP_MULTICAST_IF: 1789 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1790 if (imo != NULL) { 1791 ifp = imo->imo_multicast_ifp; 1792 if (!in_nullhost(imo->imo_multicast_addr)) { 1793 mreqn.imr_address = imo->imo_multicast_addr; 1794 } else if (ifp != NULL) { 1795 mreqn.imr_ifindex = ifp->if_index; 1796 IFP_TO_IA(ifp, ia); 1797 if (ia != NULL) { 1798 mreqn.imr_address = 1799 IA_SIN(ia)->sin_addr; 1800 ifa_free(&ia->ia_ifa); 1801 } 1802 } 1803 } 1804 INP_WUNLOCK(inp); 1805 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1806 error = sooptcopyout(sopt, &mreqn, 1807 sizeof(struct ip_mreqn)); 1808 } else { 1809 error = sooptcopyout(sopt, &mreqn.imr_address, 1810 sizeof(struct in_addr)); 1811 } 1812 break; 1813 1814 case IP_MULTICAST_TTL: 1815 if (imo == 0) 1816 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1817 else 1818 optval = coptval = imo->imo_multicast_ttl; 1819 INP_WUNLOCK(inp); 1820 if (sopt->sopt_valsize == sizeof(u_char)) 1821 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1822 else 1823 error = sooptcopyout(sopt, &optval, sizeof(int)); 1824 break; 1825 1826 case IP_MULTICAST_LOOP: 1827 if (imo == 0) 1828 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1829 else 1830 optval = coptval = imo->imo_multicast_loop; 1831 INP_WUNLOCK(inp); 1832 if (sopt->sopt_valsize == sizeof(u_char)) 1833 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1834 else 1835 error = sooptcopyout(sopt, &optval, sizeof(int)); 1836 break; 1837 1838 case IP_MSFILTER: 1839 if (imo == NULL) { 1840 error = EADDRNOTAVAIL; 1841 INP_WUNLOCK(inp); 1842 } else { 1843 error = inp_get_source_filters(inp, sopt); 1844 } 1845 break; 1846 1847 default: 1848 INP_WUNLOCK(inp); 1849 error = ENOPROTOOPT; 1850 break; 1851 } 1852 1853 INP_UNLOCK_ASSERT(inp); 1854 1855 return (error); 1856 } 1857 1858 /* 1859 * Look up the ifnet to use for a multicast group membership, 1860 * given the IPv4 address of an interface, and the IPv4 group address. 1861 * 1862 * This routine exists to support legacy multicast applications 1863 * which do not understand that multicast memberships are scoped to 1864 * specific physical links in the networking stack, or which need 1865 * to join link-scope groups before IPv4 addresses are configured. 1866 * 1867 * If inp is non-NULL, use this socket's current FIB number for any 1868 * required FIB lookup. 1869 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1870 * and use its ifp; usually, this points to the default next-hop. 1871 * 1872 * If the FIB lookup fails, attempt to use the first non-loopback 1873 * interface with multicast capability in the system as a 1874 * last resort. The legacy IPv4 ASM API requires that we do 1875 * this in order to allow groups to be joined when the routing 1876 * table has not yet been populated during boot. 1877 * 1878 * Returns NULL if no ifp could be found. 1879 * 1880 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP. 1881 * FUTURE: Implement IPv4 source-address selection. 1882 */ 1883 static struct ifnet * 1884 inp_lookup_mcast_ifp(const struct inpcb *inp, 1885 const struct sockaddr_in *gsin, const struct in_addr ina) 1886 { 1887 struct ifnet *ifp; 1888 1889 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1890 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1891 ("%s: not multicast", __func__)); 1892 1893 ifp = NULL; 1894 if (!in_nullhost(ina)) { 1895 INADDR_TO_IFP(ina, ifp); 1896 } else { 1897 struct route ro; 1898 1899 ro.ro_rt = NULL; 1900 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); 1901 in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0); 1902 if (ro.ro_rt != NULL) { 1903 ifp = ro.ro_rt->rt_ifp; 1904 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1905 RTFREE(ro.ro_rt); 1906 } else { 1907 struct in_ifaddr *ia; 1908 struct ifnet *mifp; 1909 1910 mifp = NULL; 1911 IN_IFADDR_RLOCK(); 1912 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1913 mifp = ia->ia_ifp; 1914 if (!(mifp->if_flags & IFF_LOOPBACK) && 1915 (mifp->if_flags & IFF_MULTICAST)) { 1916 ifp = mifp; 1917 break; 1918 } 1919 } 1920 IN_IFADDR_RUNLOCK(); 1921 } 1922 } 1923 1924 return (ifp); 1925 } 1926 1927 /* 1928 * Join an IPv4 multicast group, possibly with a source. 1929 */ 1930 static int 1931 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1932 { 1933 struct group_source_req gsr; 1934 sockunion_t *gsa, *ssa; 1935 struct ifnet *ifp; 1936 struct in_mfilter *imf; 1937 struct ip_moptions *imo; 1938 struct in_multi *inm; 1939 struct in_msource *lims; 1940 size_t idx; 1941 int error, is_new; 1942 1943 ifp = NULL; 1944 imf = NULL; 1945 lims = NULL; 1946 error = 0; 1947 is_new = 0; 1948 1949 memset(&gsr, 0, sizeof(struct group_source_req)); 1950 gsa = (sockunion_t *)&gsr.gsr_group; 1951 gsa->ss.ss_family = AF_UNSPEC; 1952 ssa = (sockunion_t *)&gsr.gsr_source; 1953 ssa->ss.ss_family = AF_UNSPEC; 1954 1955 switch (sopt->sopt_name) { 1956 case IP_ADD_MEMBERSHIP: 1957 case IP_ADD_SOURCE_MEMBERSHIP: { 1958 struct ip_mreq_source mreqs; 1959 1960 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { 1961 error = sooptcopyin(sopt, &mreqs, 1962 sizeof(struct ip_mreq), 1963 sizeof(struct ip_mreq)); 1964 /* 1965 * Do argument switcharoo from ip_mreq into 1966 * ip_mreq_source to avoid using two instances. 1967 */ 1968 mreqs.imr_interface = mreqs.imr_sourceaddr; 1969 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 1970 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1971 error = sooptcopyin(sopt, &mreqs, 1972 sizeof(struct ip_mreq_source), 1973 sizeof(struct ip_mreq_source)); 1974 } 1975 if (error) 1976 return (error); 1977 1978 gsa->sin.sin_family = AF_INET; 1979 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1980 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1981 1982 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1983 ssa->sin.sin_family = AF_INET; 1984 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1985 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1986 } 1987 1988 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1989 return (EINVAL); 1990 1991 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1992 mreqs.imr_interface); 1993 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1994 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1995 break; 1996 } 1997 1998 case MCAST_JOIN_GROUP: 1999 case MCAST_JOIN_SOURCE_GROUP: 2000 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 2001 error = sooptcopyin(sopt, &gsr, 2002 sizeof(struct group_req), 2003 sizeof(struct group_req)); 2004 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2005 error = sooptcopyin(sopt, &gsr, 2006 sizeof(struct group_source_req), 2007 sizeof(struct group_source_req)); 2008 } 2009 if (error) 2010 return (error); 2011 2012 if (gsa->sin.sin_family != AF_INET || 2013 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2014 return (EINVAL); 2015 2016 /* 2017 * Overwrite the port field if present, as the sockaddr 2018 * being copied in may be matched with a binary comparison. 2019 */ 2020 gsa->sin.sin_port = 0; 2021 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2022 if (ssa->sin.sin_family != AF_INET || 2023 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2024 return (EINVAL); 2025 ssa->sin.sin_port = 0; 2026 } 2027 2028 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2029 return (EINVAL); 2030 2031 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2032 return (EADDRNOTAVAIL); 2033 ifp = ifnet_byindex(gsr.gsr_interface); 2034 break; 2035 2036 default: 2037 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2038 __func__, sopt->sopt_name); 2039 return (EOPNOTSUPP); 2040 break; 2041 } 2042 2043 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2044 return (EADDRNOTAVAIL); 2045 2046 imo = inp_findmoptions(inp); 2047 idx = imo_match_group(imo, ifp, &gsa->sa); 2048 if (idx == -1) { 2049 is_new = 1; 2050 } else { 2051 inm = imo->imo_membership[idx]; 2052 imf = &imo->imo_mfilters[idx]; 2053 if (ssa->ss.ss_family != AF_UNSPEC) { 2054 /* 2055 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2056 * is an error. On an existing inclusive membership, 2057 * it just adds the source to the filter list. 2058 */ 2059 if (imf->imf_st[1] != MCAST_INCLUDE) { 2060 error = EINVAL; 2061 goto out_inp_locked; 2062 } 2063 /* 2064 * Throw out duplicates. 2065 * 2066 * XXX FIXME: This makes a naive assumption that 2067 * even if entries exist for *ssa in this imf, 2068 * they will be rejected as dupes, even if they 2069 * are not valid in the current mode (in-mode). 2070 * 2071 * in_msource is transactioned just as for anything 2072 * else in SSM -- but note naive use of inm_graft() 2073 * below for allocating new filter entries. 2074 * 2075 * This is only an issue if someone mixes the 2076 * full-state SSM API with the delta-based API, 2077 * which is discouraged in the relevant RFCs. 2078 */ 2079 lims = imo_match_source(imo, idx, &ssa->sa); 2080 if (lims != NULL /*&& 2081 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2082 error = EADDRNOTAVAIL; 2083 goto out_inp_locked; 2084 } 2085 } else { 2086 /* 2087 * MCAST_JOIN_GROUP on an existing exclusive 2088 * membership is an error; return EADDRINUSE 2089 * to preserve 4.4BSD API idempotence, and 2090 * avoid tedious detour to code below. 2091 * NOTE: This is bending RFC 3678 a bit. 2092 * 2093 * On an existing inclusive membership, this is also 2094 * an error; if you want to change filter mode, 2095 * you must use the userland API setsourcefilter(). 2096 * XXX We don't reject this for imf in UNDEFINED 2097 * state at t1, because allocation of a filter 2098 * is atomic with allocation of a membership. 2099 */ 2100 error = EINVAL; 2101 if (imf->imf_st[1] == MCAST_EXCLUDE) 2102 error = EADDRINUSE; 2103 goto out_inp_locked; 2104 } 2105 } 2106 2107 /* 2108 * Begin state merge transaction at socket layer. 2109 */ 2110 INP_WLOCK_ASSERT(inp); 2111 2112 if (is_new) { 2113 if (imo->imo_num_memberships == imo->imo_max_memberships) { 2114 error = imo_grow(imo); 2115 if (error) 2116 goto out_inp_locked; 2117 } 2118 /* 2119 * Allocate the new slot upfront so we can deal with 2120 * grafting the new source filter in same code path 2121 * as for join-source on existing membership. 2122 */ 2123 idx = imo->imo_num_memberships; 2124 imo->imo_membership[idx] = NULL; 2125 imo->imo_num_memberships++; 2126 KASSERT(imo->imo_mfilters != NULL, 2127 ("%s: imf_mfilters vector was not allocated", __func__)); 2128 imf = &imo->imo_mfilters[idx]; 2129 KASSERT(RB_EMPTY(&imf->imf_sources), 2130 ("%s: imf_sources not empty", __func__)); 2131 } 2132 2133 /* 2134 * Graft new source into filter list for this inpcb's 2135 * membership of the group. The in_multi may not have 2136 * been allocated yet if this is a new membership, however, 2137 * the in_mfilter slot will be allocated and must be initialized. 2138 * 2139 * Note: Grafting of exclusive mode filters doesn't happen 2140 * in this path. 2141 * XXX: Should check for non-NULL lims (node exists but may 2142 * not be in-mode) for interop with full-state API. 2143 */ 2144 if (ssa->ss.ss_family != AF_UNSPEC) { 2145 /* Membership starts in IN mode */ 2146 if (is_new) { 2147 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2148 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2149 } else { 2150 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2151 } 2152 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2153 if (lims == NULL) { 2154 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2155 __func__); 2156 error = ENOMEM; 2157 goto out_imo_free; 2158 } 2159 } else { 2160 /* No address specified; Membership starts in EX mode */ 2161 if (is_new) { 2162 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2163 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2164 } 2165 } 2166 2167 /* 2168 * Begin state merge transaction at IGMP layer. 2169 */ 2170 IN_MULTI_LOCK(); 2171 2172 if (is_new) { 2173 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2174 &inm); 2175 if (error) 2176 goto out_imo_free; 2177 imo->imo_membership[idx] = inm; 2178 } else { 2179 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2180 error = inm_merge(inm, imf); 2181 if (error) { 2182 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2183 __func__); 2184 goto out_imf_rollback; 2185 } 2186 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2187 error = igmp_change_state(inm); 2188 if (error) { 2189 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2190 __func__); 2191 goto out_imf_rollback; 2192 } 2193 } 2194 2195 IN_MULTI_UNLOCK(); 2196 2197 out_imf_rollback: 2198 INP_WLOCK_ASSERT(inp); 2199 if (error) { 2200 imf_rollback(imf); 2201 if (is_new) 2202 imf_purge(imf); 2203 else 2204 imf_reap(imf); 2205 } else { 2206 imf_commit(imf); 2207 } 2208 2209 out_imo_free: 2210 if (error && is_new) { 2211 imo->imo_membership[idx] = NULL; 2212 --imo->imo_num_memberships; 2213 } 2214 2215 out_inp_locked: 2216 INP_WUNLOCK(inp); 2217 return (error); 2218 } 2219 2220 /* 2221 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2222 */ 2223 static int 2224 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2225 { 2226 struct group_source_req gsr; 2227 struct ip_mreq_source mreqs; 2228 sockunion_t *gsa, *ssa; 2229 struct ifnet *ifp; 2230 struct in_mfilter *imf; 2231 struct ip_moptions *imo; 2232 struct in_msource *ims; 2233 struct in_multi *inm; 2234 size_t idx; 2235 int error, is_final; 2236 2237 ifp = NULL; 2238 error = 0; 2239 is_final = 1; 2240 2241 memset(&gsr, 0, sizeof(struct group_source_req)); 2242 gsa = (sockunion_t *)&gsr.gsr_group; 2243 gsa->ss.ss_family = AF_UNSPEC; 2244 ssa = (sockunion_t *)&gsr.gsr_source; 2245 ssa->ss.ss_family = AF_UNSPEC; 2246 2247 switch (sopt->sopt_name) { 2248 case IP_DROP_MEMBERSHIP: 2249 case IP_DROP_SOURCE_MEMBERSHIP: 2250 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2251 error = sooptcopyin(sopt, &mreqs, 2252 sizeof(struct ip_mreq), 2253 sizeof(struct ip_mreq)); 2254 /* 2255 * Swap interface and sourceaddr arguments, 2256 * as ip_mreq and ip_mreq_source are laid 2257 * out differently. 2258 */ 2259 mreqs.imr_interface = mreqs.imr_sourceaddr; 2260 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2261 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2262 error = sooptcopyin(sopt, &mreqs, 2263 sizeof(struct ip_mreq_source), 2264 sizeof(struct ip_mreq_source)); 2265 } 2266 if (error) 2267 return (error); 2268 2269 gsa->sin.sin_family = AF_INET; 2270 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2271 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2272 2273 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2274 ssa->sin.sin_family = AF_INET; 2275 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2276 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2277 } 2278 2279 /* 2280 * Attempt to look up hinted ifp from interface address. 2281 * Fallthrough with null ifp iff lookup fails, to 2282 * preserve 4.4BSD mcast API idempotence. 2283 * XXX NOTE WELL: The RFC 3678 API is preferred because 2284 * using an IPv4 address as a key is racy. 2285 */ 2286 if (!in_nullhost(mreqs.imr_interface)) 2287 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2288 2289 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 2290 __func__, inet_ntoa(mreqs.imr_interface), ifp); 2291 2292 break; 2293 2294 case MCAST_LEAVE_GROUP: 2295 case MCAST_LEAVE_SOURCE_GROUP: 2296 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2297 error = sooptcopyin(sopt, &gsr, 2298 sizeof(struct group_req), 2299 sizeof(struct group_req)); 2300 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2301 error = sooptcopyin(sopt, &gsr, 2302 sizeof(struct group_source_req), 2303 sizeof(struct group_source_req)); 2304 } 2305 if (error) 2306 return (error); 2307 2308 if (gsa->sin.sin_family != AF_INET || 2309 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2310 return (EINVAL); 2311 2312 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2313 if (ssa->sin.sin_family != AF_INET || 2314 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2315 return (EINVAL); 2316 } 2317 2318 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2319 return (EADDRNOTAVAIL); 2320 2321 ifp = ifnet_byindex(gsr.gsr_interface); 2322 2323 if (ifp == NULL) 2324 return (EADDRNOTAVAIL); 2325 break; 2326 2327 default: 2328 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2329 __func__, sopt->sopt_name); 2330 return (EOPNOTSUPP); 2331 break; 2332 } 2333 2334 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2335 return (EINVAL); 2336 2337 /* 2338 * Find the membership in the membership array. 2339 */ 2340 imo = inp_findmoptions(inp); 2341 idx = imo_match_group(imo, ifp, &gsa->sa); 2342 if (idx == -1) { 2343 error = EADDRNOTAVAIL; 2344 goto out_inp_locked; 2345 } 2346 inm = imo->imo_membership[idx]; 2347 imf = &imo->imo_mfilters[idx]; 2348 2349 if (ssa->ss.ss_family != AF_UNSPEC) 2350 is_final = 0; 2351 2352 /* 2353 * Begin state merge transaction at socket layer. 2354 */ 2355 INP_WLOCK_ASSERT(inp); 2356 2357 /* 2358 * If we were instructed only to leave a given source, do so. 2359 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2360 */ 2361 if (is_final) { 2362 imf_leave(imf); 2363 } else { 2364 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2365 error = EADDRNOTAVAIL; 2366 goto out_inp_locked; 2367 } 2368 ims = imo_match_source(imo, idx, &ssa->sa); 2369 if (ims == NULL) { 2370 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 2371 inet_ntoa(ssa->sin.sin_addr), "not "); 2372 error = EADDRNOTAVAIL; 2373 goto out_inp_locked; 2374 } 2375 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2376 error = imf_prune(imf, &ssa->sin); 2377 if (error) { 2378 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2379 __func__); 2380 goto out_inp_locked; 2381 } 2382 } 2383 2384 /* 2385 * Begin state merge transaction at IGMP layer. 2386 */ 2387 IN_MULTI_LOCK(); 2388 2389 if (is_final) { 2390 /* 2391 * Give up the multicast address record to which 2392 * the membership points. 2393 */ 2394 (void)in_leavegroup_locked(inm, imf); 2395 } else { 2396 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2397 error = inm_merge(inm, imf); 2398 if (error) { 2399 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2400 __func__); 2401 goto out_imf_rollback; 2402 } 2403 2404 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2405 error = igmp_change_state(inm); 2406 if (error) { 2407 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2408 __func__); 2409 } 2410 } 2411 2412 IN_MULTI_UNLOCK(); 2413 2414 out_imf_rollback: 2415 if (error) 2416 imf_rollback(imf); 2417 else 2418 imf_commit(imf); 2419 2420 imf_reap(imf); 2421 2422 if (is_final) { 2423 /* Remove the gap in the membership and filter array. */ 2424 for (++idx; idx < imo->imo_num_memberships; ++idx) { 2425 imo->imo_membership[idx-1] = imo->imo_membership[idx]; 2426 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx]; 2427 } 2428 imo->imo_num_memberships--; 2429 } 2430 2431 out_inp_locked: 2432 INP_WUNLOCK(inp); 2433 return (error); 2434 } 2435 2436 /* 2437 * Select the interface for transmitting IPv4 multicast datagrams. 2438 * 2439 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2440 * may be passed to this socket option. An address of INADDR_ANY or an 2441 * interface index of 0 is used to remove a previous selection. 2442 * When no interface is selected, one is chosen for every send. 2443 */ 2444 static int 2445 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2446 { 2447 struct in_addr addr; 2448 struct ip_mreqn mreqn; 2449 struct ifnet *ifp; 2450 struct ip_moptions *imo; 2451 int error; 2452 2453 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2454 /* 2455 * An interface index was specified using the 2456 * Linux-derived ip_mreqn structure. 2457 */ 2458 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2459 sizeof(struct ip_mreqn)); 2460 if (error) 2461 return (error); 2462 2463 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2464 return (EINVAL); 2465 2466 if (mreqn.imr_ifindex == 0) { 2467 ifp = NULL; 2468 } else { 2469 ifp = ifnet_byindex(mreqn.imr_ifindex); 2470 if (ifp == NULL) 2471 return (EADDRNOTAVAIL); 2472 } 2473 } else { 2474 /* 2475 * An interface was specified by IPv4 address. 2476 * This is the traditional BSD usage. 2477 */ 2478 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2479 sizeof(struct in_addr)); 2480 if (error) 2481 return (error); 2482 if (in_nullhost(addr)) { 2483 ifp = NULL; 2484 } else { 2485 INADDR_TO_IFP(addr, ifp); 2486 if (ifp == NULL) 2487 return (EADDRNOTAVAIL); 2488 } 2489 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp, 2490 inet_ntoa(addr)); 2491 } 2492 2493 /* Reject interfaces which do not support multicast. */ 2494 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2495 return (EOPNOTSUPP); 2496 2497 imo = inp_findmoptions(inp); 2498 imo->imo_multicast_ifp = ifp; 2499 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2500 INP_WUNLOCK(inp); 2501 2502 return (0); 2503 } 2504 2505 /* 2506 * Atomically set source filters on a socket for an IPv4 multicast group. 2507 * 2508 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2509 */ 2510 static int 2511 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2512 { 2513 struct __msfilterreq msfr; 2514 sockunion_t *gsa; 2515 struct ifnet *ifp; 2516 struct in_mfilter *imf; 2517 struct ip_moptions *imo; 2518 struct in_multi *inm; 2519 size_t idx; 2520 int error; 2521 2522 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2523 sizeof(struct __msfilterreq)); 2524 if (error) 2525 return (error); 2526 2527 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2528 return (ENOBUFS); 2529 2530 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2531 msfr.msfr_fmode != MCAST_INCLUDE)) 2532 return (EINVAL); 2533 2534 if (msfr.msfr_group.ss_family != AF_INET || 2535 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2536 return (EINVAL); 2537 2538 gsa = (sockunion_t *)&msfr.msfr_group; 2539 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2540 return (EINVAL); 2541 2542 gsa->sin.sin_port = 0; /* ignore port */ 2543 2544 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2545 return (EADDRNOTAVAIL); 2546 2547 ifp = ifnet_byindex(msfr.msfr_ifindex); 2548 if (ifp == NULL) 2549 return (EADDRNOTAVAIL); 2550 2551 /* 2552 * Take the INP write lock. 2553 * Check if this socket is a member of this group. 2554 */ 2555 imo = inp_findmoptions(inp); 2556 idx = imo_match_group(imo, ifp, &gsa->sa); 2557 if (idx == -1 || imo->imo_mfilters == NULL) { 2558 error = EADDRNOTAVAIL; 2559 goto out_inp_locked; 2560 } 2561 inm = imo->imo_membership[idx]; 2562 imf = &imo->imo_mfilters[idx]; 2563 2564 /* 2565 * Begin state merge transaction at socket layer. 2566 */ 2567 INP_WLOCK_ASSERT(inp); 2568 2569 imf->imf_st[1] = msfr.msfr_fmode; 2570 2571 /* 2572 * Apply any new source filters, if present. 2573 * Make a copy of the user-space source vector so 2574 * that we may copy them with a single copyin. This 2575 * allows us to deal with page faults up-front. 2576 */ 2577 if (msfr.msfr_nsrcs > 0) { 2578 struct in_msource *lims; 2579 struct sockaddr_in *psin; 2580 struct sockaddr_storage *kss, *pkss; 2581 int i; 2582 2583 INP_WUNLOCK(inp); 2584 2585 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2586 __func__, (unsigned long)msfr.msfr_nsrcs); 2587 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2588 M_TEMP, M_WAITOK); 2589 error = copyin(msfr.msfr_srcs, kss, 2590 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2591 if (error) { 2592 free(kss, M_TEMP); 2593 return (error); 2594 } 2595 2596 INP_WLOCK(inp); 2597 2598 /* 2599 * Mark all source filters as UNDEFINED at t1. 2600 * Restore new group filter mode, as imf_leave() 2601 * will set it to INCLUDE. 2602 */ 2603 imf_leave(imf); 2604 imf->imf_st[1] = msfr.msfr_fmode; 2605 2606 /* 2607 * Update socket layer filters at t1, lazy-allocating 2608 * new entries. This saves a bunch of memory at the 2609 * cost of one RB_FIND() per source entry; duplicate 2610 * entries in the msfr_nsrcs vector are ignored. 2611 * If we encounter an error, rollback transaction. 2612 * 2613 * XXX This too could be replaced with a set-symmetric 2614 * difference like loop to avoid walking from root 2615 * every time, as the key space is common. 2616 */ 2617 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2618 psin = (struct sockaddr_in *)pkss; 2619 if (psin->sin_family != AF_INET) { 2620 error = EAFNOSUPPORT; 2621 break; 2622 } 2623 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2624 error = EINVAL; 2625 break; 2626 } 2627 error = imf_get_source(imf, psin, &lims); 2628 if (error) 2629 break; 2630 lims->imsl_st[1] = imf->imf_st[1]; 2631 } 2632 free(kss, M_TEMP); 2633 } 2634 2635 if (error) 2636 goto out_imf_rollback; 2637 2638 INP_WLOCK_ASSERT(inp); 2639 IN_MULTI_LOCK(); 2640 2641 /* 2642 * Begin state merge transaction at IGMP layer. 2643 */ 2644 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2645 error = inm_merge(inm, imf); 2646 if (error) { 2647 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2648 goto out_imf_rollback; 2649 } 2650 2651 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2652 error = igmp_change_state(inm); 2653 if (error) 2654 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2655 2656 IN_MULTI_UNLOCK(); 2657 2658 out_imf_rollback: 2659 if (error) 2660 imf_rollback(imf); 2661 else 2662 imf_commit(imf); 2663 2664 imf_reap(imf); 2665 2666 out_inp_locked: 2667 INP_WUNLOCK(inp); 2668 return (error); 2669 } 2670 2671 /* 2672 * Set the IP multicast options in response to user setsockopt(). 2673 * 2674 * Many of the socket options handled in this function duplicate the 2675 * functionality of socket options in the regular unicast API. However, 2676 * it is not possible to merge the duplicate code, because the idempotence 2677 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2678 * the effects of these options must be treated as separate and distinct. 2679 * 2680 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2681 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2682 * is refactored to no longer use vifs. 2683 */ 2684 int 2685 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2686 { 2687 struct ip_moptions *imo; 2688 int error; 2689 2690 error = 0; 2691 2692 /* 2693 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2694 * or is a divert socket, reject it. 2695 */ 2696 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2697 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2698 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2699 return (EOPNOTSUPP); 2700 2701 switch (sopt->sopt_name) { 2702 case IP_MULTICAST_VIF: { 2703 int vifi; 2704 /* 2705 * Select a multicast VIF for transmission. 2706 * Only useful if multicast forwarding is active. 2707 */ 2708 if (legal_vif_num == NULL) { 2709 error = EOPNOTSUPP; 2710 break; 2711 } 2712 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2713 if (error) 2714 break; 2715 if (!legal_vif_num(vifi) && (vifi != -1)) { 2716 error = EINVAL; 2717 break; 2718 } 2719 imo = inp_findmoptions(inp); 2720 imo->imo_multicast_vif = vifi; 2721 INP_WUNLOCK(inp); 2722 break; 2723 } 2724 2725 case IP_MULTICAST_IF: 2726 error = inp_set_multicast_if(inp, sopt); 2727 break; 2728 2729 case IP_MULTICAST_TTL: { 2730 u_char ttl; 2731 2732 /* 2733 * Set the IP time-to-live for outgoing multicast packets. 2734 * The original multicast API required a char argument, 2735 * which is inconsistent with the rest of the socket API. 2736 * We allow either a char or an int. 2737 */ 2738 if (sopt->sopt_valsize == sizeof(u_char)) { 2739 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2740 sizeof(u_char)); 2741 if (error) 2742 break; 2743 } else { 2744 u_int ittl; 2745 2746 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2747 sizeof(u_int)); 2748 if (error) 2749 break; 2750 if (ittl > 255) { 2751 error = EINVAL; 2752 break; 2753 } 2754 ttl = (u_char)ittl; 2755 } 2756 imo = inp_findmoptions(inp); 2757 imo->imo_multicast_ttl = ttl; 2758 INP_WUNLOCK(inp); 2759 break; 2760 } 2761 2762 case IP_MULTICAST_LOOP: { 2763 u_char loop; 2764 2765 /* 2766 * Set the loopback flag for outgoing multicast packets. 2767 * Must be zero or one. The original multicast API required a 2768 * char argument, which is inconsistent with the rest 2769 * of the socket API. We allow either a char or an int. 2770 */ 2771 if (sopt->sopt_valsize == sizeof(u_char)) { 2772 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2773 sizeof(u_char)); 2774 if (error) 2775 break; 2776 } else { 2777 u_int iloop; 2778 2779 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2780 sizeof(u_int)); 2781 if (error) 2782 break; 2783 loop = (u_char)iloop; 2784 } 2785 imo = inp_findmoptions(inp); 2786 imo->imo_multicast_loop = !!loop; 2787 INP_WUNLOCK(inp); 2788 break; 2789 } 2790 2791 case IP_ADD_MEMBERSHIP: 2792 case IP_ADD_SOURCE_MEMBERSHIP: 2793 case MCAST_JOIN_GROUP: 2794 case MCAST_JOIN_SOURCE_GROUP: 2795 error = inp_join_group(inp, sopt); 2796 break; 2797 2798 case IP_DROP_MEMBERSHIP: 2799 case IP_DROP_SOURCE_MEMBERSHIP: 2800 case MCAST_LEAVE_GROUP: 2801 case MCAST_LEAVE_SOURCE_GROUP: 2802 error = inp_leave_group(inp, sopt); 2803 break; 2804 2805 case IP_BLOCK_SOURCE: 2806 case IP_UNBLOCK_SOURCE: 2807 case MCAST_BLOCK_SOURCE: 2808 case MCAST_UNBLOCK_SOURCE: 2809 error = inp_block_unblock_source(inp, sopt); 2810 break; 2811 2812 case IP_MSFILTER: 2813 error = inp_set_source_filters(inp, sopt); 2814 break; 2815 2816 default: 2817 error = EOPNOTSUPP; 2818 break; 2819 } 2820 2821 INP_UNLOCK_ASSERT(inp); 2822 2823 return (error); 2824 } 2825 2826 /* 2827 * Expose IGMP's multicast filter mode and source list(s) to userland, 2828 * keyed by (ifindex, group). 2829 * The filter mode is written out as a uint32_t, followed by 2830 * 0..n of struct in_addr. 2831 * For use by ifmcstat(8). 2832 * SMPng: NOTE: unlocked read of ifindex space. 2833 */ 2834 static int 2835 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2836 { 2837 struct in_addr src, group; 2838 struct ifnet *ifp; 2839 struct ifmultiaddr *ifma; 2840 struct in_multi *inm; 2841 struct ip_msource *ims; 2842 int *name; 2843 int retval; 2844 u_int namelen; 2845 uint32_t fmode, ifindex; 2846 2847 name = (int *)arg1; 2848 namelen = arg2; 2849 2850 if (req->newptr != NULL) 2851 return (EPERM); 2852 2853 if (namelen != 2) 2854 return (EINVAL); 2855 2856 ifindex = name[0]; 2857 if (ifindex <= 0 || ifindex > V_if_index) { 2858 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2859 __func__, ifindex); 2860 return (ENOENT); 2861 } 2862 2863 group.s_addr = name[1]; 2864 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2865 CTR2(KTR_IGMPV3, "%s: group %s is not multicast", 2866 __func__, inet_ntoa(group)); 2867 return (EINVAL); 2868 } 2869 2870 ifp = ifnet_byindex(ifindex); 2871 if (ifp == NULL) { 2872 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2873 __func__, ifindex); 2874 return (ENOENT); 2875 } 2876 2877 retval = sysctl_wire_old_buffer(req, 2878 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2879 if (retval) 2880 return (retval); 2881 2882 IN_MULTI_LOCK(); 2883 2884 IF_ADDR_RLOCK(ifp); 2885 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2886 if (ifma->ifma_addr->sa_family != AF_INET || 2887 ifma->ifma_protospec == NULL) 2888 continue; 2889 inm = (struct in_multi *)ifma->ifma_protospec; 2890 if (!in_hosteq(inm->inm_addr, group)) 2891 continue; 2892 fmode = inm->inm_st[1].iss_fmode; 2893 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2894 if (retval != 0) 2895 break; 2896 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2897 #ifdef KTR 2898 struct in_addr ina; 2899 ina.s_addr = htonl(ims->ims_haddr); 2900 CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, 2901 inet_ntoa(ina)); 2902 #endif 2903 /* 2904 * Only copy-out sources which are in-mode. 2905 */ 2906 if (fmode != ims_get_mode(inm, ims, 1)) { 2907 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2908 __func__); 2909 continue; 2910 } 2911 src.s_addr = htonl(ims->ims_haddr); 2912 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2913 if (retval != 0) 2914 break; 2915 } 2916 } 2917 IF_ADDR_RUNLOCK(ifp); 2918 2919 IN_MULTI_UNLOCK(); 2920 2921 return (retval); 2922 } 2923 2924 #ifdef KTR 2925 2926 static const char *inm_modestrs[] = { "un", "in", "ex" }; 2927 2928 static const char * 2929 inm_mode_str(const int mode) 2930 { 2931 2932 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2933 return (inm_modestrs[mode]); 2934 return ("??"); 2935 } 2936 2937 static const char *inm_statestrs[] = { 2938 "not-member", 2939 "silent", 2940 "idle", 2941 "lazy", 2942 "sleeping", 2943 "awakening", 2944 "query-pending", 2945 "sg-query-pending", 2946 "leaving" 2947 }; 2948 2949 static const char * 2950 inm_state_str(const int state) 2951 { 2952 2953 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2954 return (inm_statestrs[state]); 2955 return ("??"); 2956 } 2957 2958 /* 2959 * Dump an in_multi structure to the console. 2960 */ 2961 void 2962 inm_print(const struct in_multi *inm) 2963 { 2964 int t; 2965 2966 if ((ktr_mask & KTR_IGMPV3) == 0) 2967 return; 2968 2969 printf("%s: --- begin inm %p ---\n", __func__, inm); 2970 printf("addr %s ifp %p(%s) ifma %p\n", 2971 inet_ntoa(inm->inm_addr), 2972 inm->inm_ifp, 2973 inm->inm_ifp->if_xname, 2974 inm->inm_ifma); 2975 printf("timer %u state %s refcount %u scq.len %u\n", 2976 inm->inm_timer, 2977 inm_state_str(inm->inm_state), 2978 inm->inm_refcount, 2979 inm->inm_scq.ifq_len); 2980 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 2981 inm->inm_igi, 2982 inm->inm_nsrc, 2983 inm->inm_sctimer, 2984 inm->inm_scrv); 2985 for (t = 0; t < 2; t++) { 2986 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2987 inm_mode_str(inm->inm_st[t].iss_fmode), 2988 inm->inm_st[t].iss_asm, 2989 inm->inm_st[t].iss_ex, 2990 inm->inm_st[t].iss_in, 2991 inm->inm_st[t].iss_rec); 2992 } 2993 printf("%s: --- end inm %p ---\n", __func__, inm); 2994 } 2995 2996 #else /* !KTR */ 2997 2998 void 2999 inm_print(const struct in_multi *inm) 3000 { 3001 3002 } 3003 3004 #endif /* KTR */ 3005 3006 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3007