xref: /freebsd/sys/netinet/in_mcast.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/gtaskqueue.h>
55 #include <sys/tree.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
98  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
99  *   it can be taken by code in net/if.c also.
100  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
101  *
102  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
103  * any need for in_multi itself to be virtualized -- it is bound to an ifp
104  * anyway no matter what happens.
105  */
106 struct mtx in_multi_list_mtx;
107 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
108 
109 struct mtx in_multi_free_mtx;
110 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
111 
112 struct sx in_multi_sx;
113 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
114 
115 int ifma_restart;
116 
117 /*
118  * Functions with non-static linkage defined in this file should be
119  * declared in in_var.h:
120  *  imo_multi_filter()
121  *  in_addmulti()
122  *  in_delmulti()
123  *  in_joingroup()
124  *  in_joingroup_locked()
125  *  in_leavegroup()
126  *  in_leavegroup_locked()
127  * and ip_var.h:
128  *  inp_freemoptions()
129  *  inp_getmoptions()
130  *  inp_setmoptions()
131  *
132  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
133  * and in_delmulti().
134  */
135 static void	imf_commit(struct in_mfilter *);
136 static int	imf_get_source(struct in_mfilter *imf,
137 		    const struct sockaddr_in *psin,
138 		    struct in_msource **);
139 static struct in_msource *
140 		imf_graft(struct in_mfilter *, const uint8_t,
141 		    const struct sockaddr_in *);
142 static void	imf_leave(struct in_mfilter *);
143 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
144 static void	imf_purge(struct in_mfilter *);
145 static void	imf_rollback(struct in_mfilter *);
146 static void	imf_reap(struct in_mfilter *);
147 static int	imo_grow(struct ip_moptions *);
148 static size_t	imo_match_group(const struct ip_moptions *,
149 		    const struct ifnet *, const struct sockaddr *);
150 static struct in_msource *
151 		imo_match_source(const struct ip_moptions *, const size_t,
152 		    const struct sockaddr *);
153 static void	ims_merge(struct ip_msource *ims,
154 		    const struct in_msource *lims, const int rollback);
155 static int	in_getmulti(struct ifnet *, const struct in_addr *,
156 		    struct in_multi **);
157 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
158 		    const int noalloc, struct ip_msource **pims);
159 #ifdef KTR
160 static int	inm_is_ifp_detached(const struct in_multi *);
161 #endif
162 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
163 static void	inm_purge(struct in_multi *);
164 static void	inm_reap(struct in_multi *);
165 static void inm_release(struct in_multi *);
166 static struct ip_moptions *
167 		inp_findmoptions(struct inpcb *);
168 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
169 static int	inp_join_group(struct inpcb *, struct sockopt *);
170 static int	inp_leave_group(struct inpcb *, struct sockopt *);
171 static struct ifnet *
172 		inp_lookup_mcast_ifp(const struct inpcb *,
173 		    const struct sockaddr_in *, const struct in_addr);
174 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
175 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
176 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
177 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
178 
179 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
180     "IPv4 multicast");
181 
182 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
183 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
184     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
185     "Max source filters per group");
186 
187 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
188 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
189     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
190     "Max source filters per socket");
191 
192 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
193 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
194     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
195 
196 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
197     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
198     "Per-interface stack-wide source filters");
199 
200 #ifdef KTR
201 /*
202  * Inline function which wraps assertions for a valid ifp.
203  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
204  * is detached.
205  */
206 static int __inline
207 inm_is_ifp_detached(const struct in_multi *inm)
208 {
209 	struct ifnet *ifp;
210 
211 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
212 	ifp = inm->inm_ifma->ifma_ifp;
213 	if (ifp != NULL) {
214 		/*
215 		 * Sanity check that netinet's notion of ifp is the
216 		 * same as net's.
217 		 */
218 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
219 	}
220 
221 	return (ifp == NULL);
222 }
223 #endif
224 
225 static struct grouptask free_gtask;
226 static struct in_multi_head inm_free_list;
227 static void inm_release_task(void *arg __unused);
228 static void inm_init(void)
229 {
230 	SLIST_INIT(&inm_free_list);
231 	taskqgroup_config_gtask_init(NULL, &free_gtask, inm_release_task, "inm release task");
232 }
233 
234 SYSINIT(inm_init, SI_SUB_SMP + 1, SI_ORDER_FIRST,
235 	inm_init, NULL);
236 
237 
238 void
239 inm_release_list_deferred(struct in_multi_head *inmh)
240 {
241 
242 	if (SLIST_EMPTY(inmh))
243 		return;
244 	mtx_lock(&in_multi_free_mtx);
245 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
246 	mtx_unlock(&in_multi_free_mtx);
247 	GROUPTASK_ENQUEUE(&free_gtask);
248 }
249 
250 void
251 inm_disconnect(struct in_multi *inm)
252 {
253 	struct ifnet *ifp;
254 	struct ifmultiaddr *ifma, *ll_ifma;
255 
256 	ifp = inm->inm_ifp;
257 	IF_ADDR_WLOCK_ASSERT(ifp);
258 	ifma = inm->inm_ifma;
259 
260 	if_ref(ifp);
261 	CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
262 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
263 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
264 		MPASS(ifma != ll_ifma);
265 		ifma->ifma_llifma = NULL;
266 		MPASS(ll_ifma->ifma_llifma == NULL);
267 		MPASS(ll_ifma->ifma_ifp == ifp);
268 		if (--ll_ifma->ifma_refcount == 0) {
269 			CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
270 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
271 			if_freemulti(ll_ifma);
272 			ifma_restart = true;
273 		}
274 	}
275 }
276 
277 void
278 inm_release_deferred(struct in_multi *inm)
279 {
280 	struct in_multi_head tmp;
281 
282 	IN_MULTI_LIST_LOCK_ASSERT();
283 	MPASS(inm->inm_refcount > 0);
284 	if (--inm->inm_refcount == 0) {
285 		SLIST_INIT(&tmp);
286 		inm_disconnect(inm);
287 		inm->inm_ifma->ifma_protospec = NULL;
288 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
289 		inm_release_list_deferred(&tmp);
290 	}
291 }
292 
293 static void
294 inm_release_task(void *arg __unused)
295 {
296 	struct in_multi_head inm_free_tmp;
297 	struct in_multi *inm, *tinm;
298 
299 	SLIST_INIT(&inm_free_tmp);
300 	mtx_lock(&in_multi_free_mtx);
301 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
302 	mtx_unlock(&in_multi_free_mtx);
303 	IN_MULTI_LOCK();
304 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
305 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
306 		MPASS(inm);
307 		inm_release(inm);
308 	}
309 	IN_MULTI_UNLOCK();
310 }
311 
312 /*
313  * Initialize an in_mfilter structure to a known state at t0, t1
314  * with an empty source filter list.
315  */
316 static __inline void
317 imf_init(struct in_mfilter *imf, const int st0, const int st1)
318 {
319 	memset(imf, 0, sizeof(struct in_mfilter));
320 	RB_INIT(&imf->imf_sources);
321 	imf->imf_st[0] = st0;
322 	imf->imf_st[1] = st1;
323 }
324 
325 /*
326  * Function for looking up an in_multi record for an IPv4 multicast address
327  * on a given interface. ifp must be valid. If no record found, return NULL.
328  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
329  */
330 struct in_multi *
331 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
332 {
333 	struct ifmultiaddr *ifma;
334 	struct in_multi *inm;
335 
336 	IN_MULTI_LIST_LOCK_ASSERT();
337 	IF_ADDR_LOCK_ASSERT(ifp);
338 
339 	inm = NULL;
340 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
341 		if (ifma->ifma_addr->sa_family != AF_INET ||
342 			ifma->ifma_protospec == NULL)
343 			continue;
344 		inm = (struct in_multi *)ifma->ifma_protospec;
345 		if (inm->inm_addr.s_addr == ina.s_addr)
346 			break;
347 		inm = NULL;
348 	}
349 	return (inm);
350 }
351 
352 /*
353  * Wrapper for inm_lookup_locked().
354  * The IF_ADDR_LOCK will be taken on ifp and released on return.
355  */
356 struct in_multi *
357 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
358 {
359 	struct in_multi *inm;
360 
361 	IN_MULTI_LIST_LOCK_ASSERT();
362 	IF_ADDR_RLOCK(ifp);
363 	inm = inm_lookup_locked(ifp, ina);
364 	IF_ADDR_RUNLOCK(ifp);
365 
366 	return (inm);
367 }
368 
369 /*
370  * Resize the ip_moptions vector to the next power-of-two minus 1.
371  * May be called with locks held; do not sleep.
372  */
373 static int
374 imo_grow(struct ip_moptions *imo)
375 {
376 	struct in_multi		**nmships;
377 	struct in_multi		**omships;
378 	struct in_mfilter	 *nmfilters;
379 	struct in_mfilter	 *omfilters;
380 	size_t			  idx;
381 	size_t			  newmax;
382 	size_t			  oldmax;
383 
384 	nmships = NULL;
385 	nmfilters = NULL;
386 	omships = imo->imo_membership;
387 	omfilters = imo->imo_mfilters;
388 	oldmax = imo->imo_max_memberships;
389 	newmax = ((oldmax + 1) * 2) - 1;
390 
391 	if (newmax <= IP_MAX_MEMBERSHIPS) {
392 		nmships = (struct in_multi **)realloc(omships,
393 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
394 		nmfilters = (struct in_mfilter *)realloc(omfilters,
395 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
396 		if (nmships != NULL && nmfilters != NULL) {
397 			/* Initialize newly allocated source filter heads. */
398 			for (idx = oldmax; idx < newmax; idx++) {
399 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
400 				    MCAST_EXCLUDE);
401 			}
402 			imo->imo_max_memberships = newmax;
403 			imo->imo_membership = nmships;
404 			imo->imo_mfilters = nmfilters;
405 		}
406 	}
407 
408 	if (nmships == NULL || nmfilters == NULL) {
409 		if (nmships != NULL)
410 			free(nmships, M_IPMOPTS);
411 		if (nmfilters != NULL)
412 			free(nmfilters, M_INMFILTER);
413 		return (ETOOMANYREFS);
414 	}
415 
416 	return (0);
417 }
418 
419 /*
420  * Find an IPv4 multicast group entry for this ip_moptions instance
421  * which matches the specified group, and optionally an interface.
422  * Return its index into the array, or -1 if not found.
423  */
424 static size_t
425 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
426     const struct sockaddr *group)
427 {
428 	const struct sockaddr_in *gsin;
429 	struct in_multi	**pinm;
430 	int		  idx;
431 	int		  nmships;
432 
433 	gsin = (const struct sockaddr_in *)group;
434 
435 	/* The imo_membership array may be lazy allocated. */
436 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
437 		return (-1);
438 
439 	nmships = imo->imo_num_memberships;
440 	pinm = &imo->imo_membership[0];
441 	for (idx = 0; idx < nmships; idx++, pinm++) {
442 		if (*pinm == NULL)
443 			continue;
444 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
445 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
446 			break;
447 		}
448 	}
449 	if (idx >= nmships)
450 		idx = -1;
451 
452 	return (idx);
453 }
454 
455 /*
456  * Find an IPv4 multicast source entry for this imo which matches
457  * the given group index for this socket, and source address.
458  *
459  * NOTE: This does not check if the entry is in-mode, merely if
460  * it exists, which may not be the desired behaviour.
461  */
462 static struct in_msource *
463 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
464     const struct sockaddr *src)
465 {
466 	struct ip_msource	 find;
467 	struct in_mfilter	*imf;
468 	struct ip_msource	*ims;
469 	const sockunion_t	*psa;
470 
471 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
472 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
473 	    ("%s: invalid index %d\n", __func__, (int)gidx));
474 
475 	/* The imo_mfilters array may be lazy allocated. */
476 	if (imo->imo_mfilters == NULL)
477 		return (NULL);
478 	imf = &imo->imo_mfilters[gidx];
479 
480 	/* Source trees are keyed in host byte order. */
481 	psa = (const sockunion_t *)src;
482 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
483 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
484 
485 	return ((struct in_msource *)ims);
486 }
487 
488 /*
489  * Perform filtering for multicast datagrams on a socket by group and source.
490  *
491  * Returns 0 if a datagram should be allowed through, or various error codes
492  * if the socket was not a member of the group, or the source was muted, etc.
493  */
494 int
495 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
496     const struct sockaddr *group, const struct sockaddr *src)
497 {
498 	size_t gidx;
499 	struct in_msource *ims;
500 	int mode;
501 
502 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
503 
504 	gidx = imo_match_group(imo, ifp, group);
505 	if (gidx == -1)
506 		return (MCAST_NOTGMEMBER);
507 
508 	/*
509 	 * Check if the source was included in an (S,G) join.
510 	 * Allow reception on exclusive memberships by default,
511 	 * reject reception on inclusive memberships by default.
512 	 * Exclude source only if an in-mode exclude filter exists.
513 	 * Include source only if an in-mode include filter exists.
514 	 * NOTE: We are comparing group state here at IGMP t1 (now)
515 	 * with socket-layer t0 (since last downcall).
516 	 */
517 	mode = imo->imo_mfilters[gidx].imf_st[1];
518 	ims = imo_match_source(imo, gidx, src);
519 
520 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
521 	    (ims != NULL && ims->imsl_st[0] != mode))
522 		return (MCAST_NOTSMEMBER);
523 
524 	return (MCAST_PASS);
525 }
526 
527 /*
528  * Find and return a reference to an in_multi record for (ifp, group),
529  * and bump its reference count.
530  * If one does not exist, try to allocate it, and update link-layer multicast
531  * filters on ifp to listen for group.
532  * Assumes the IN_MULTI lock is held across the call.
533  * Return 0 if successful, otherwise return an appropriate error code.
534  */
535 static int
536 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
537     struct in_multi **pinm)
538 {
539 	struct sockaddr_in	 gsin;
540 	struct ifmultiaddr	*ifma;
541 	struct in_ifinfo	*ii;
542 	struct in_multi		*inm;
543 	int error;
544 
545 	IN_MULTI_LOCK_ASSERT();
546 
547 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
548 	IN_MULTI_LIST_LOCK();
549 	inm = inm_lookup(ifp, *group);
550 	if (inm != NULL) {
551 		/*
552 		 * If we already joined this group, just bump the
553 		 * refcount and return it.
554 		 */
555 		KASSERT(inm->inm_refcount >= 1,
556 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
557 		inm_acquire_locked(inm);
558 		*pinm = inm;
559 	}
560 	IN_MULTI_LIST_UNLOCK();
561 	if (inm != NULL)
562 		return (0);
563 
564 	memset(&gsin, 0, sizeof(gsin));
565 	gsin.sin_family = AF_INET;
566 	gsin.sin_len = sizeof(struct sockaddr_in);
567 	gsin.sin_addr = *group;
568 
569 	/*
570 	 * Check if a link-layer group is already associated
571 	 * with this network-layer group on the given ifnet.
572 	 */
573 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
574 	if (error != 0)
575 		return (error);
576 
577 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
578 	IN_MULTI_LIST_LOCK();
579 	IF_ADDR_WLOCK(ifp);
580 
581 	/*
582 	 * If something other than netinet is occupying the link-layer
583 	 * group, print a meaningful error message and back out of
584 	 * the allocation.
585 	 * Otherwise, bump the refcount on the existing network-layer
586 	 * group association and return it.
587 	 */
588 	if (ifma->ifma_protospec != NULL) {
589 		inm = (struct in_multi *)ifma->ifma_protospec;
590 #ifdef INVARIANTS
591 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
592 		    __func__));
593 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
594 		    ("%s: ifma not AF_INET", __func__));
595 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
596 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
597 		    !in_hosteq(inm->inm_addr, *group)) {
598 			char addrbuf[INET_ADDRSTRLEN];
599 
600 			panic("%s: ifma %p is inconsistent with %p (%s)",
601 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
602 		}
603 #endif
604 		inm_acquire_locked(inm);
605 		*pinm = inm;
606 		goto out_locked;
607 	}
608 
609 	IF_ADDR_WLOCK_ASSERT(ifp);
610 
611 	/*
612 	 * A new in_multi record is needed; allocate and initialize it.
613 	 * We DO NOT perform an IGMP join as the in_ layer may need to
614 	 * push an initial source list down to IGMP to support SSM.
615 	 *
616 	 * The initial source filter state is INCLUDE, {} as per the RFC.
617 	 */
618 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
619 	if (inm == NULL) {
620 		IF_ADDR_WUNLOCK(ifp);
621 		IN_MULTI_LIST_UNLOCK();
622 		if_delmulti_ifma(ifma);
623 		return (ENOMEM);
624 	}
625 	inm->inm_addr = *group;
626 	inm->inm_ifp = ifp;
627 	inm->inm_igi = ii->ii_igmp;
628 	inm->inm_ifma = ifma;
629 	inm->inm_refcount = 1;
630 	inm->inm_state = IGMP_NOT_MEMBER;
631 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
632 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
633 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
634 	RB_INIT(&inm->inm_srcs);
635 
636 	ifma->ifma_protospec = inm;
637 
638 	*pinm = inm;
639  out_locked:
640 	IF_ADDR_WUNLOCK(ifp);
641 	IN_MULTI_LIST_UNLOCK();
642 	return (0);
643 }
644 
645 /*
646  * Drop a reference to an in_multi record.
647  *
648  * If the refcount drops to 0, free the in_multi record and
649  * delete the underlying link-layer membership.
650  */
651 static void
652 inm_release(struct in_multi *inm)
653 {
654 	struct ifmultiaddr *ifma;
655 	struct ifnet *ifp;
656 
657 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
658 	MPASS(inm->inm_refcount == 0);
659 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
660 
661 	ifma = inm->inm_ifma;
662 	ifp = inm->inm_ifp;
663 
664 	/* XXX this access is not covered by IF_ADDR_LOCK */
665 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
666 	if (ifp)
667 		CURVNET_SET(ifp->if_vnet);
668 	inm_purge(inm);
669 	free(inm, M_IPMADDR);
670 
671 	if_delmulti_ifma_flags(ifma, 1);
672 	if (ifp) {
673 		CURVNET_RESTORE();
674 		if_rele(ifp);
675 	}
676 }
677 
678 /*
679  * Clear recorded source entries for a group.
680  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
681  * FIXME: Should reap.
682  */
683 void
684 inm_clear_recorded(struct in_multi *inm)
685 {
686 	struct ip_msource	*ims;
687 
688 	IN_MULTI_LIST_LOCK_ASSERT();
689 
690 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
691 		if (ims->ims_stp) {
692 			ims->ims_stp = 0;
693 			--inm->inm_st[1].iss_rec;
694 		}
695 	}
696 	KASSERT(inm->inm_st[1].iss_rec == 0,
697 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
698 }
699 
700 /*
701  * Record a source as pending for a Source-Group IGMPv3 query.
702  * This lives here as it modifies the shared tree.
703  *
704  * inm is the group descriptor.
705  * naddr is the address of the source to record in network-byte order.
706  *
707  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
708  * lazy-allocate a source node in response to an SG query.
709  * Otherwise, no allocation is performed. This saves some memory
710  * with the trade-off that the source will not be reported to the
711  * router if joined in the window between the query response and
712  * the group actually being joined on the local host.
713  *
714  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
715  * This turns off the allocation of a recorded source entry if
716  * the group has not been joined.
717  *
718  * Return 0 if the source didn't exist or was already marked as recorded.
719  * Return 1 if the source was marked as recorded by this function.
720  * Return <0 if any error occurred (negated errno code).
721  */
722 int
723 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
724 {
725 	struct ip_msource	 find;
726 	struct ip_msource	*ims, *nims;
727 
728 	IN_MULTI_LIST_LOCK_ASSERT();
729 
730 	find.ims_haddr = ntohl(naddr);
731 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
732 	if (ims && ims->ims_stp)
733 		return (0);
734 	if (ims == NULL) {
735 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
736 			return (-ENOSPC);
737 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
738 		    M_NOWAIT | M_ZERO);
739 		if (nims == NULL)
740 			return (-ENOMEM);
741 		nims->ims_haddr = find.ims_haddr;
742 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
743 		++inm->inm_nsrc;
744 		ims = nims;
745 	}
746 
747 	/*
748 	 * Mark the source as recorded and update the recorded
749 	 * source count.
750 	 */
751 	++ims->ims_stp;
752 	++inm->inm_st[1].iss_rec;
753 
754 	return (1);
755 }
756 
757 /*
758  * Return a pointer to an in_msource owned by an in_mfilter,
759  * given its source address.
760  * Lazy-allocate if needed. If this is a new entry its filter state is
761  * undefined at t0.
762  *
763  * imf is the filter set being modified.
764  * haddr is the source address in *host* byte-order.
765  *
766  * SMPng: May be called with locks held; malloc must not block.
767  */
768 static int
769 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
770     struct in_msource **plims)
771 {
772 	struct ip_msource	 find;
773 	struct ip_msource	*ims, *nims;
774 	struct in_msource	*lims;
775 	int			 error;
776 
777 	error = 0;
778 	ims = NULL;
779 	lims = NULL;
780 
781 	/* key is host byte order */
782 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
783 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
784 	lims = (struct in_msource *)ims;
785 	if (lims == NULL) {
786 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
787 			return (ENOSPC);
788 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
789 		    M_NOWAIT | M_ZERO);
790 		if (nims == NULL)
791 			return (ENOMEM);
792 		lims = (struct in_msource *)nims;
793 		lims->ims_haddr = find.ims_haddr;
794 		lims->imsl_st[0] = MCAST_UNDEFINED;
795 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
796 		++imf->imf_nsrc;
797 	}
798 
799 	*plims = lims;
800 
801 	return (error);
802 }
803 
804 /*
805  * Graft a source entry into an existing socket-layer filter set,
806  * maintaining any required invariants and checking allocations.
807  *
808  * The source is marked as being in the new filter mode at t1.
809  *
810  * Return the pointer to the new node, otherwise return NULL.
811  */
812 static struct in_msource *
813 imf_graft(struct in_mfilter *imf, const uint8_t st1,
814     const struct sockaddr_in *psin)
815 {
816 	struct ip_msource	*nims;
817 	struct in_msource	*lims;
818 
819 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
820 	    M_NOWAIT | M_ZERO);
821 	if (nims == NULL)
822 		return (NULL);
823 	lims = (struct in_msource *)nims;
824 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
825 	lims->imsl_st[0] = MCAST_UNDEFINED;
826 	lims->imsl_st[1] = st1;
827 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
828 	++imf->imf_nsrc;
829 
830 	return (lims);
831 }
832 
833 /*
834  * Prune a source entry from an existing socket-layer filter set,
835  * maintaining any required invariants and checking allocations.
836  *
837  * The source is marked as being left at t1, it is not freed.
838  *
839  * Return 0 if no error occurred, otherwise return an errno value.
840  */
841 static int
842 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
843 {
844 	struct ip_msource	 find;
845 	struct ip_msource	*ims;
846 	struct in_msource	*lims;
847 
848 	/* key is host byte order */
849 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
850 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
851 	if (ims == NULL)
852 		return (ENOENT);
853 	lims = (struct in_msource *)ims;
854 	lims->imsl_st[1] = MCAST_UNDEFINED;
855 	return (0);
856 }
857 
858 /*
859  * Revert socket-layer filter set deltas at t1 to t0 state.
860  */
861 static void
862 imf_rollback(struct in_mfilter *imf)
863 {
864 	struct ip_msource	*ims, *tims;
865 	struct in_msource	*lims;
866 
867 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
868 		lims = (struct in_msource *)ims;
869 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
870 			/* no change at t1 */
871 			continue;
872 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
873 			/* revert change to existing source at t1 */
874 			lims->imsl_st[1] = lims->imsl_st[0];
875 		} else {
876 			/* revert source added t1 */
877 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
878 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
879 			free(ims, M_INMFILTER);
880 			imf->imf_nsrc--;
881 		}
882 	}
883 	imf->imf_st[1] = imf->imf_st[0];
884 }
885 
886 /*
887  * Mark socket-layer filter set as INCLUDE {} at t1.
888  */
889 static void
890 imf_leave(struct in_mfilter *imf)
891 {
892 	struct ip_msource	*ims;
893 	struct in_msource	*lims;
894 
895 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
896 		lims = (struct in_msource *)ims;
897 		lims->imsl_st[1] = MCAST_UNDEFINED;
898 	}
899 	imf->imf_st[1] = MCAST_INCLUDE;
900 }
901 
902 /*
903  * Mark socket-layer filter set deltas as committed.
904  */
905 static void
906 imf_commit(struct in_mfilter *imf)
907 {
908 	struct ip_msource	*ims;
909 	struct in_msource	*lims;
910 
911 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
912 		lims = (struct in_msource *)ims;
913 		lims->imsl_st[0] = lims->imsl_st[1];
914 	}
915 	imf->imf_st[0] = imf->imf_st[1];
916 }
917 
918 /*
919  * Reap unreferenced sources from socket-layer filter set.
920  */
921 static void
922 imf_reap(struct in_mfilter *imf)
923 {
924 	struct ip_msource	*ims, *tims;
925 	struct in_msource	*lims;
926 
927 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
928 		lims = (struct in_msource *)ims;
929 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
930 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
931 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
932 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
933 			free(ims, M_INMFILTER);
934 			imf->imf_nsrc--;
935 		}
936 	}
937 }
938 
939 /*
940  * Purge socket-layer filter set.
941  */
942 static void
943 imf_purge(struct in_mfilter *imf)
944 {
945 	struct ip_msource	*ims, *tims;
946 
947 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
948 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
949 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
950 		free(ims, M_INMFILTER);
951 		imf->imf_nsrc--;
952 	}
953 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
954 	KASSERT(RB_EMPTY(&imf->imf_sources),
955 	    ("%s: imf_sources not empty", __func__));
956 }
957 
958 /*
959  * Look up a source filter entry for a multicast group.
960  *
961  * inm is the group descriptor to work with.
962  * haddr is the host-byte-order IPv4 address to look up.
963  * noalloc may be non-zero to suppress allocation of sources.
964  * *pims will be set to the address of the retrieved or allocated source.
965  *
966  * SMPng: NOTE: may be called with locks held.
967  * Return 0 if successful, otherwise return a non-zero error code.
968  */
969 static int
970 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
971     const int noalloc, struct ip_msource **pims)
972 {
973 	struct ip_msource	 find;
974 	struct ip_msource	*ims, *nims;
975 
976 	find.ims_haddr = haddr;
977 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
978 	if (ims == NULL && !noalloc) {
979 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
980 			return (ENOSPC);
981 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
982 		    M_NOWAIT | M_ZERO);
983 		if (nims == NULL)
984 			return (ENOMEM);
985 		nims->ims_haddr = haddr;
986 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
987 		++inm->inm_nsrc;
988 		ims = nims;
989 #ifdef KTR
990 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
991 		    haddr, ims);
992 #endif
993 	}
994 
995 	*pims = ims;
996 	return (0);
997 }
998 
999 /*
1000  * Merge socket-layer source into IGMP-layer source.
1001  * If rollback is non-zero, perform the inverse of the merge.
1002  */
1003 static void
1004 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1005     const int rollback)
1006 {
1007 	int n = rollback ? -1 : 1;
1008 
1009 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1010 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
1011 		    __func__, n, ims->ims_haddr);
1012 		ims->ims_st[1].ex -= n;
1013 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1014 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
1015 		    __func__, n, ims->ims_haddr);
1016 		ims->ims_st[1].in -= n;
1017 	}
1018 
1019 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1020 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
1021 		    __func__, n, ims->ims_haddr);
1022 		ims->ims_st[1].ex += n;
1023 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1024 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
1025 		    __func__, n, ims->ims_haddr);
1026 		ims->ims_st[1].in += n;
1027 	}
1028 }
1029 
1030 /*
1031  * Atomically update the global in_multi state, when a membership's
1032  * filter list is being updated in any way.
1033  *
1034  * imf is the per-inpcb-membership group filter pointer.
1035  * A fake imf may be passed for in-kernel consumers.
1036  *
1037  * XXX This is a candidate for a set-symmetric-difference style loop
1038  * which would eliminate the repeated lookup from root of ims nodes,
1039  * as they share the same key space.
1040  *
1041  * If any error occurred this function will back out of refcounts
1042  * and return a non-zero value.
1043  */
1044 static int
1045 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1046 {
1047 	struct ip_msource	*ims, *nims;
1048 	struct in_msource	*lims;
1049 	int			 schanged, error;
1050 	int			 nsrc0, nsrc1;
1051 
1052 	schanged = 0;
1053 	error = 0;
1054 	nsrc1 = nsrc0 = 0;
1055 	IN_MULTI_LIST_LOCK_ASSERT();
1056 
1057 	/*
1058 	 * Update the source filters first, as this may fail.
1059 	 * Maintain count of in-mode filters at t0, t1. These are
1060 	 * used to work out if we transition into ASM mode or not.
1061 	 * Maintain a count of source filters whose state was
1062 	 * actually modified by this operation.
1063 	 */
1064 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1065 		lims = (struct in_msource *)ims;
1066 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1067 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1068 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1069 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1070 		++schanged;
1071 		if (error)
1072 			break;
1073 		ims_merge(nims, lims, 0);
1074 	}
1075 	if (error) {
1076 		struct ip_msource *bims;
1077 
1078 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1079 			lims = (struct in_msource *)ims;
1080 			if (lims->imsl_st[0] == lims->imsl_st[1])
1081 				continue;
1082 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1083 			if (bims == NULL)
1084 				continue;
1085 			ims_merge(bims, lims, 1);
1086 		}
1087 		goto out_reap;
1088 	}
1089 
1090 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1091 	    __func__, nsrc0, nsrc1);
1092 
1093 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1094 	if (imf->imf_st[0] == imf->imf_st[1] &&
1095 	    imf->imf_st[1] == MCAST_INCLUDE) {
1096 		if (nsrc1 == 0) {
1097 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1098 			--inm->inm_st[1].iss_in;
1099 		}
1100 	}
1101 
1102 	/* Handle filter mode transition on socket. */
1103 	if (imf->imf_st[0] != imf->imf_st[1]) {
1104 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1105 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1106 
1107 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1108 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1109 			--inm->inm_st[1].iss_ex;
1110 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1111 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1112 			--inm->inm_st[1].iss_in;
1113 		}
1114 
1115 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1116 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1117 			inm->inm_st[1].iss_ex++;
1118 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1119 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1120 			inm->inm_st[1].iss_in++;
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * Track inm filter state in terms of listener counts.
1126 	 * If there are any exclusive listeners, stack-wide
1127 	 * membership is exclusive.
1128 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1129 	 * If no listeners remain, state is undefined at t1,
1130 	 * and the IGMP lifecycle for this group should finish.
1131 	 */
1132 	if (inm->inm_st[1].iss_ex > 0) {
1133 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1134 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1135 	} else if (inm->inm_st[1].iss_in > 0) {
1136 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1137 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1138 	} else {
1139 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1140 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1141 	}
1142 
1143 	/* Decrement ASM listener count on transition out of ASM mode. */
1144 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1145 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1146 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1147 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1148 			--inm->inm_st[1].iss_asm;
1149 		}
1150 	}
1151 
1152 	/* Increment ASM listener count on transition to ASM mode. */
1153 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1154 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1155 		inm->inm_st[1].iss_asm++;
1156 	}
1157 
1158 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1159 	inm_print(inm);
1160 
1161 out_reap:
1162 	if (schanged > 0) {
1163 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1164 		inm_reap(inm);
1165 	}
1166 	return (error);
1167 }
1168 
1169 /*
1170  * Mark an in_multi's filter set deltas as committed.
1171  * Called by IGMP after a state change has been enqueued.
1172  */
1173 void
1174 inm_commit(struct in_multi *inm)
1175 {
1176 	struct ip_msource	*ims;
1177 
1178 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1179 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1180 	inm_print(inm);
1181 
1182 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1183 		ims->ims_st[0] = ims->ims_st[1];
1184 	}
1185 	inm->inm_st[0] = inm->inm_st[1];
1186 }
1187 
1188 /*
1189  * Reap unreferenced nodes from an in_multi's filter set.
1190  */
1191 static void
1192 inm_reap(struct in_multi *inm)
1193 {
1194 	struct ip_msource	*ims, *tims;
1195 
1196 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1197 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1198 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1199 		    ims->ims_stp != 0)
1200 			continue;
1201 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1202 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1203 		free(ims, M_IPMSOURCE);
1204 		inm->inm_nsrc--;
1205 	}
1206 }
1207 
1208 /*
1209  * Purge all source nodes from an in_multi's filter set.
1210  */
1211 static void
1212 inm_purge(struct in_multi *inm)
1213 {
1214 	struct ip_msource	*ims, *tims;
1215 
1216 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1217 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1218 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1219 		free(ims, M_IPMSOURCE);
1220 		inm->inm_nsrc--;
1221 	}
1222 }
1223 
1224 /*
1225  * Join a multicast group; unlocked entry point.
1226  *
1227  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1228  * is not held. Fortunately, ifp is unlikely to have been detached
1229  * at this point, so we assume it's OK to recurse.
1230  */
1231 int
1232 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1233     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1234 {
1235 	int error;
1236 
1237 	IN_MULTI_LOCK();
1238 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1239 	IN_MULTI_UNLOCK();
1240 
1241 	return (error);
1242 }
1243 
1244 /*
1245  * Join a multicast group; real entry point.
1246  *
1247  * Only preserves atomicity at inm level.
1248  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1249  *
1250  * If the IGMP downcall fails, the group is not joined, and an error
1251  * code is returned.
1252  */
1253 int
1254 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1255     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1256 {
1257 	struct in_mfilter	 timf;
1258 	struct in_multi		*inm;
1259 	int			 error;
1260 
1261 	IN_MULTI_LOCK_ASSERT();
1262 	IN_MULTI_LIST_UNLOCK_ASSERT();
1263 
1264 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1265 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1266 
1267 	error = 0;
1268 	inm = NULL;
1269 
1270 	/*
1271 	 * If no imf was specified (i.e. kernel consumer),
1272 	 * fake one up and assume it is an ASM join.
1273 	 */
1274 	if (imf == NULL) {
1275 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1276 		imf = &timf;
1277 	}
1278 
1279 	error = in_getmulti(ifp, gina, &inm);
1280 	if (error) {
1281 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1282 		return (error);
1283 	}
1284 	IN_MULTI_LIST_LOCK();
1285 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1286 	error = inm_merge(inm, imf);
1287 	if (error) {
1288 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1289 		goto out_inm_release;
1290 	}
1291 
1292 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1293 	error = igmp_change_state(inm);
1294 	if (error) {
1295 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1296 		goto out_inm_release;
1297 	}
1298 
1299  out_inm_release:
1300 	if (error) {
1301 
1302 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1303 		inm_release_deferred(inm);
1304 	} else {
1305 		*pinm = inm;
1306 	}
1307 	IN_MULTI_LIST_UNLOCK();
1308 
1309 	return (error);
1310 }
1311 
1312 /*
1313  * Leave a multicast group; unlocked entry point.
1314  */
1315 int
1316 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1317 {
1318 	int error;
1319 
1320 	IN_MULTI_LOCK();
1321 	error = in_leavegroup_locked(inm, imf);
1322 	IN_MULTI_UNLOCK();
1323 
1324 	return (error);
1325 }
1326 
1327 /*
1328  * Leave a multicast group; real entry point.
1329  * All source filters will be expunged.
1330  *
1331  * Only preserves atomicity at inm level.
1332  *
1333  * Holding the write lock for the INP which contains imf
1334  * is highly advisable. We can't assert for it as imf does not
1335  * contain a back-pointer to the owning inp.
1336  *
1337  * Note: This is not the same as inm_release(*) as this function also
1338  * makes a state change downcall into IGMP.
1339  */
1340 int
1341 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1342 {
1343 	struct in_mfilter	 timf;
1344 	int			 error;
1345 
1346 	error = 0;
1347 
1348 	IN_MULTI_LOCK_ASSERT();
1349 	IN_MULTI_LIST_UNLOCK_ASSERT();
1350 
1351 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1352 	    inm, ntohl(inm->inm_addr.s_addr),
1353 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1354 	    imf);
1355 
1356 	/*
1357 	 * If no imf was specified (i.e. kernel consumer),
1358 	 * fake one up and assume it is an ASM join.
1359 	 */
1360 	if (imf == NULL) {
1361 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1362 		imf = &timf;
1363 	}
1364 
1365 	/*
1366 	 * Begin state merge transaction at IGMP layer.
1367 	 *
1368 	 * As this particular invocation should not cause any memory
1369 	 * to be allocated, and there is no opportunity to roll back
1370 	 * the transaction, it MUST NOT fail.
1371 	 */
1372 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1373 	IN_MULTI_LIST_LOCK();
1374 	error = inm_merge(inm, imf);
1375 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1376 
1377 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1378 	CURVNET_SET(inm->inm_ifp->if_vnet);
1379 	error = igmp_change_state(inm);
1380 	IF_ADDR_WLOCK(inm->inm_ifp);
1381 	inm_release_deferred(inm);
1382 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1383 	IN_MULTI_LIST_UNLOCK();
1384 	CURVNET_RESTORE();
1385 	if (error)
1386 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1387 
1388 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1389 
1390 	return (error);
1391 }
1392 
1393 /*#ifndef BURN_BRIDGES*/
1394 /*
1395  * Join an IPv4 multicast group in (*,G) exclusive mode.
1396  * The group must be a 224.0.0.0/24 link-scope group.
1397  * This KPI is for legacy kernel consumers only.
1398  */
1399 struct in_multi *
1400 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1401 {
1402 	struct in_multi *pinm;
1403 	int error;
1404 #ifdef INVARIANTS
1405 	char addrbuf[INET_ADDRSTRLEN];
1406 #endif
1407 
1408 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1409 	    ("%s: %s not in 224.0.0.0/24", __func__,
1410 	    inet_ntoa_r(*ap, addrbuf)));
1411 
1412 	error = in_joingroup(ifp, ap, NULL, &pinm);
1413 	if (error != 0)
1414 		pinm = NULL;
1415 
1416 	return (pinm);
1417 }
1418 
1419 /*
1420  * Block or unblock an ASM multicast source on an inpcb.
1421  * This implements the delta-based API described in RFC 3678.
1422  *
1423  * The delta-based API applies only to exclusive-mode memberships.
1424  * An IGMP downcall will be performed.
1425  *
1426  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1427  *
1428  * Return 0 if successful, otherwise return an appropriate error code.
1429  */
1430 static int
1431 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1432 {
1433 	struct group_source_req		 gsr;
1434 	sockunion_t			*gsa, *ssa;
1435 	struct ifnet			*ifp;
1436 	struct in_mfilter		*imf;
1437 	struct ip_moptions		*imo;
1438 	struct in_msource		*ims;
1439 	struct in_multi			*inm;
1440 	size_t				 idx;
1441 	uint16_t			 fmode;
1442 	int				 error, doblock;
1443 
1444 	ifp = NULL;
1445 	error = 0;
1446 	doblock = 0;
1447 
1448 	memset(&gsr, 0, sizeof(struct group_source_req));
1449 	gsa = (sockunion_t *)&gsr.gsr_group;
1450 	ssa = (sockunion_t *)&gsr.gsr_source;
1451 
1452 	switch (sopt->sopt_name) {
1453 	case IP_BLOCK_SOURCE:
1454 	case IP_UNBLOCK_SOURCE: {
1455 		struct ip_mreq_source	 mreqs;
1456 
1457 		error = sooptcopyin(sopt, &mreqs,
1458 		    sizeof(struct ip_mreq_source),
1459 		    sizeof(struct ip_mreq_source));
1460 		if (error)
1461 			return (error);
1462 
1463 		gsa->sin.sin_family = AF_INET;
1464 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1465 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1466 
1467 		ssa->sin.sin_family = AF_INET;
1468 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1469 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1470 
1471 		if (!in_nullhost(mreqs.imr_interface))
1472 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1473 
1474 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1475 			doblock = 1;
1476 
1477 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1478 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1479 		break;
1480 	    }
1481 
1482 	case MCAST_BLOCK_SOURCE:
1483 	case MCAST_UNBLOCK_SOURCE:
1484 		error = sooptcopyin(sopt, &gsr,
1485 		    sizeof(struct group_source_req),
1486 		    sizeof(struct group_source_req));
1487 		if (error)
1488 			return (error);
1489 
1490 		if (gsa->sin.sin_family != AF_INET ||
1491 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1492 			return (EINVAL);
1493 
1494 		if (ssa->sin.sin_family != AF_INET ||
1495 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1496 			return (EINVAL);
1497 
1498 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1499 			return (EADDRNOTAVAIL);
1500 
1501 		ifp = ifnet_byindex(gsr.gsr_interface);
1502 
1503 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1504 			doblock = 1;
1505 		break;
1506 
1507 	default:
1508 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1509 		    __func__, sopt->sopt_name);
1510 		return (EOPNOTSUPP);
1511 		break;
1512 	}
1513 
1514 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1515 		return (EINVAL);
1516 
1517 	/*
1518 	 * Check if we are actually a member of this group.
1519 	 */
1520 	imo = inp_findmoptions(inp);
1521 	idx = imo_match_group(imo, ifp, &gsa->sa);
1522 	if (idx == -1 || imo->imo_mfilters == NULL) {
1523 		error = EADDRNOTAVAIL;
1524 		goto out_inp_locked;
1525 	}
1526 
1527 	KASSERT(imo->imo_mfilters != NULL,
1528 	    ("%s: imo_mfilters not allocated", __func__));
1529 	imf = &imo->imo_mfilters[idx];
1530 	inm = imo->imo_membership[idx];
1531 
1532 	/*
1533 	 * Attempting to use the delta-based API on an
1534 	 * non exclusive-mode membership is an error.
1535 	 */
1536 	fmode = imf->imf_st[0];
1537 	if (fmode != MCAST_EXCLUDE) {
1538 		error = EINVAL;
1539 		goto out_inp_locked;
1540 	}
1541 
1542 	/*
1543 	 * Deal with error cases up-front:
1544 	 *  Asked to block, but already blocked; or
1545 	 *  Asked to unblock, but nothing to unblock.
1546 	 * If adding a new block entry, allocate it.
1547 	 */
1548 	ims = imo_match_source(imo, idx, &ssa->sa);
1549 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1550 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1551 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1552 		error = EADDRNOTAVAIL;
1553 		goto out_inp_locked;
1554 	}
1555 
1556 	INP_WLOCK_ASSERT(inp);
1557 
1558 	/*
1559 	 * Begin state merge transaction at socket layer.
1560 	 */
1561 	if (doblock) {
1562 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1563 		ims = imf_graft(imf, fmode, &ssa->sin);
1564 		if (ims == NULL)
1565 			error = ENOMEM;
1566 	} else {
1567 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1568 		error = imf_prune(imf, &ssa->sin);
1569 	}
1570 
1571 	if (error) {
1572 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1573 		goto out_imf_rollback;
1574 	}
1575 
1576 	/*
1577 	 * Begin state merge transaction at IGMP layer.
1578 	 */
1579 	IN_MULTI_LOCK();
1580 	IN_MULTI_LIST_LOCK();
1581 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1582 	error = inm_merge(inm, imf);
1583 	if (error) {
1584 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1585 		goto out_in_multi_locked;
1586 	}
1587 
1588 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1589 	error = igmp_change_state(inm);
1590 	if (error)
1591 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1592 
1593 out_in_multi_locked:
1594 
1595 	IN_MULTI_UNLOCK();
1596 	IN_MULTI_UNLOCK();
1597 out_imf_rollback:
1598 	if (error)
1599 		imf_rollback(imf);
1600 	else
1601 		imf_commit(imf);
1602 
1603 	imf_reap(imf);
1604 
1605 out_inp_locked:
1606 	INP_WUNLOCK(inp);
1607 	return (error);
1608 }
1609 
1610 /*
1611  * Given an inpcb, return its multicast options structure pointer.  Accepts
1612  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1613  *
1614  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1615  * SMPng: NOTE: Returns with the INP write lock held.
1616  */
1617 static struct ip_moptions *
1618 inp_findmoptions(struct inpcb *inp)
1619 {
1620 	struct ip_moptions	 *imo;
1621 	struct in_multi		**immp;
1622 	struct in_mfilter	 *imfp;
1623 	size_t			  idx;
1624 
1625 	INP_WLOCK(inp);
1626 	if (inp->inp_moptions != NULL)
1627 		return (inp->inp_moptions);
1628 
1629 	INP_WUNLOCK(inp);
1630 
1631 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1632 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1633 	    M_WAITOK | M_ZERO);
1634 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1635 	    M_INMFILTER, M_WAITOK);
1636 
1637 	imo->imo_multicast_ifp = NULL;
1638 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1639 	imo->imo_multicast_vif = -1;
1640 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1641 	imo->imo_multicast_loop = in_mcast_loop;
1642 	imo->imo_num_memberships = 0;
1643 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1644 	imo->imo_membership = immp;
1645 
1646 	/* Initialize per-group source filters. */
1647 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1648 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1649 	imo->imo_mfilters = imfp;
1650 
1651 	INP_WLOCK(inp);
1652 	if (inp->inp_moptions != NULL) {
1653 		free(imfp, M_INMFILTER);
1654 		free(immp, M_IPMOPTS);
1655 		free(imo, M_IPMOPTS);
1656 		return (inp->inp_moptions);
1657 	}
1658 	inp->inp_moptions = imo;
1659 	return (imo);
1660 }
1661 
1662 static void
1663 inp_gcmoptions(epoch_context_t ctx)
1664 {
1665 	struct ip_moptions *imo;
1666 	struct in_mfilter	*imf;
1667 	size_t			 idx, nmships;
1668 
1669 	imo =  __containerof(ctx, struct ip_moptions, imo_epoch_ctx);
1670 
1671 	nmships = imo->imo_num_memberships;
1672 	for (idx = 0; idx < nmships; ++idx) {
1673 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1674 		if (imf)
1675 			imf_leave(imf);
1676 		(void)in_leavegroup(imo->imo_membership[idx], imf);
1677 		if (imf)
1678 			imf_purge(imf);
1679 	}
1680 
1681 	if (imo->imo_mfilters)
1682 		free(imo->imo_mfilters, M_INMFILTER);
1683 	free(imo->imo_membership, M_IPMOPTS);
1684 	free(imo, M_IPMOPTS);
1685 }
1686 
1687 /*
1688  * Discard the IP multicast options (and source filters).  To minimize
1689  * the amount of work done while holding locks such as the INP's
1690  * pcbinfo lock (which is used in the receive path), the free
1691  * operation is deferred to the epoch callback task.
1692  */
1693 void
1694 inp_freemoptions(struct ip_moptions *imo)
1695 {
1696 	if (imo == NULL)
1697 		return;
1698 	epoch_call(net_epoch_preempt, &imo->imo_epoch_ctx, inp_gcmoptions);
1699 }
1700 
1701 /*
1702  * Atomically get source filters on a socket for an IPv4 multicast group.
1703  * Called with INP lock held; returns with lock released.
1704  */
1705 static int
1706 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1707 {
1708 	struct __msfilterreq	 msfr;
1709 	sockunion_t		*gsa;
1710 	struct ifnet		*ifp;
1711 	struct ip_moptions	*imo;
1712 	struct in_mfilter	*imf;
1713 	struct ip_msource	*ims;
1714 	struct in_msource	*lims;
1715 	struct sockaddr_in	*psin;
1716 	struct sockaddr_storage	*ptss;
1717 	struct sockaddr_storage	*tss;
1718 	int			 error;
1719 	size_t			 idx, nsrcs, ncsrcs;
1720 
1721 	INP_WLOCK_ASSERT(inp);
1722 
1723 	imo = inp->inp_moptions;
1724 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1725 
1726 	INP_WUNLOCK(inp);
1727 
1728 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1729 	    sizeof(struct __msfilterreq));
1730 	if (error)
1731 		return (error);
1732 
1733 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1734 		return (EINVAL);
1735 
1736 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1737 	if (ifp == NULL)
1738 		return (EINVAL);
1739 
1740 	INP_WLOCK(inp);
1741 
1742 	/*
1743 	 * Lookup group on the socket.
1744 	 */
1745 	gsa = (sockunion_t *)&msfr.msfr_group;
1746 	idx = imo_match_group(imo, ifp, &gsa->sa);
1747 	if (idx == -1 || imo->imo_mfilters == NULL) {
1748 		INP_WUNLOCK(inp);
1749 		return (EADDRNOTAVAIL);
1750 	}
1751 	imf = &imo->imo_mfilters[idx];
1752 
1753 	/*
1754 	 * Ignore memberships which are in limbo.
1755 	 */
1756 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1757 		INP_WUNLOCK(inp);
1758 		return (EAGAIN);
1759 	}
1760 	msfr.msfr_fmode = imf->imf_st[1];
1761 
1762 	/*
1763 	 * If the user specified a buffer, copy out the source filter
1764 	 * entries to userland gracefully.
1765 	 * We only copy out the number of entries which userland
1766 	 * has asked for, but we always tell userland how big the
1767 	 * buffer really needs to be.
1768 	 */
1769 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1770 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1771 	tss = NULL;
1772 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1773 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1774 		    M_TEMP, M_NOWAIT | M_ZERO);
1775 		if (tss == NULL) {
1776 			INP_WUNLOCK(inp);
1777 			return (ENOBUFS);
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Count number of sources in-mode at t0.
1783 	 * If buffer space exists and remains, copy out source entries.
1784 	 */
1785 	nsrcs = msfr.msfr_nsrcs;
1786 	ncsrcs = 0;
1787 	ptss = tss;
1788 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1789 		lims = (struct in_msource *)ims;
1790 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1791 		    lims->imsl_st[0] != imf->imf_st[0])
1792 			continue;
1793 		++ncsrcs;
1794 		if (tss != NULL && nsrcs > 0) {
1795 			psin = (struct sockaddr_in *)ptss;
1796 			psin->sin_family = AF_INET;
1797 			psin->sin_len = sizeof(struct sockaddr_in);
1798 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1799 			psin->sin_port = 0;
1800 			++ptss;
1801 			--nsrcs;
1802 		}
1803 	}
1804 
1805 	INP_WUNLOCK(inp);
1806 
1807 	if (tss != NULL) {
1808 		error = copyout(tss, msfr.msfr_srcs,
1809 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1810 		free(tss, M_TEMP);
1811 		if (error)
1812 			return (error);
1813 	}
1814 
1815 	msfr.msfr_nsrcs = ncsrcs;
1816 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1817 
1818 	return (error);
1819 }
1820 
1821 /*
1822  * Return the IP multicast options in response to user getsockopt().
1823  */
1824 int
1825 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1826 {
1827 	struct rm_priotracker	 in_ifa_tracker;
1828 	struct ip_mreqn		 mreqn;
1829 	struct ip_moptions	*imo;
1830 	struct ifnet		*ifp;
1831 	struct in_ifaddr	*ia;
1832 	int			 error, optval;
1833 	u_char			 coptval;
1834 
1835 	INP_WLOCK(inp);
1836 	imo = inp->inp_moptions;
1837 	/*
1838 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1839 	 * or is a divert socket, reject it.
1840 	 */
1841 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1842 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1843 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1844 		INP_WUNLOCK(inp);
1845 		return (EOPNOTSUPP);
1846 	}
1847 
1848 	error = 0;
1849 	switch (sopt->sopt_name) {
1850 	case IP_MULTICAST_VIF:
1851 		if (imo != NULL)
1852 			optval = imo->imo_multicast_vif;
1853 		else
1854 			optval = -1;
1855 		INP_WUNLOCK(inp);
1856 		error = sooptcopyout(sopt, &optval, sizeof(int));
1857 		break;
1858 
1859 	case IP_MULTICAST_IF:
1860 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1861 		if (imo != NULL) {
1862 			ifp = imo->imo_multicast_ifp;
1863 			if (!in_nullhost(imo->imo_multicast_addr)) {
1864 				mreqn.imr_address = imo->imo_multicast_addr;
1865 			} else if (ifp != NULL) {
1866 				mreqn.imr_ifindex = ifp->if_index;
1867 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1868 				if (ia != NULL) {
1869 					mreqn.imr_address =
1870 					    IA_SIN(ia)->sin_addr;
1871 					ifa_free(&ia->ia_ifa);
1872 				}
1873 			}
1874 		}
1875 		INP_WUNLOCK(inp);
1876 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1877 			error = sooptcopyout(sopt, &mreqn,
1878 			    sizeof(struct ip_mreqn));
1879 		} else {
1880 			error = sooptcopyout(sopt, &mreqn.imr_address,
1881 			    sizeof(struct in_addr));
1882 		}
1883 		break;
1884 
1885 	case IP_MULTICAST_TTL:
1886 		if (imo == NULL)
1887 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1888 		else
1889 			optval = coptval = imo->imo_multicast_ttl;
1890 		INP_WUNLOCK(inp);
1891 		if (sopt->sopt_valsize == sizeof(u_char))
1892 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1893 		else
1894 			error = sooptcopyout(sopt, &optval, sizeof(int));
1895 		break;
1896 
1897 	case IP_MULTICAST_LOOP:
1898 		if (imo == NULL)
1899 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1900 		else
1901 			optval = coptval = imo->imo_multicast_loop;
1902 		INP_WUNLOCK(inp);
1903 		if (sopt->sopt_valsize == sizeof(u_char))
1904 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1905 		else
1906 			error = sooptcopyout(sopt, &optval, sizeof(int));
1907 		break;
1908 
1909 	case IP_MSFILTER:
1910 		if (imo == NULL) {
1911 			error = EADDRNOTAVAIL;
1912 			INP_WUNLOCK(inp);
1913 		} else {
1914 			error = inp_get_source_filters(inp, sopt);
1915 		}
1916 		break;
1917 
1918 	default:
1919 		INP_WUNLOCK(inp);
1920 		error = ENOPROTOOPT;
1921 		break;
1922 	}
1923 
1924 	INP_UNLOCK_ASSERT(inp);
1925 
1926 	return (error);
1927 }
1928 
1929 /*
1930  * Look up the ifnet to use for a multicast group membership,
1931  * given the IPv4 address of an interface, and the IPv4 group address.
1932  *
1933  * This routine exists to support legacy multicast applications
1934  * which do not understand that multicast memberships are scoped to
1935  * specific physical links in the networking stack, or which need
1936  * to join link-scope groups before IPv4 addresses are configured.
1937  *
1938  * If inp is non-NULL, use this socket's current FIB number for any
1939  * required FIB lookup.
1940  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1941  * and use its ifp; usually, this points to the default next-hop.
1942  *
1943  * If the FIB lookup fails, attempt to use the first non-loopback
1944  * interface with multicast capability in the system as a
1945  * last resort. The legacy IPv4 ASM API requires that we do
1946  * this in order to allow groups to be joined when the routing
1947  * table has not yet been populated during boot.
1948  *
1949  * Returns NULL if no ifp could be found.
1950  *
1951  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1952  * FUTURE: Implement IPv4 source-address selection.
1953  */
1954 static struct ifnet *
1955 inp_lookup_mcast_ifp(const struct inpcb *inp,
1956     const struct sockaddr_in *gsin, const struct in_addr ina)
1957 {
1958 	struct rm_priotracker in_ifa_tracker;
1959 	struct ifnet *ifp;
1960 	struct nhop4_basic nh4;
1961 	uint32_t fibnum;
1962 
1963 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1964 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1965 	    ("%s: not multicast", __func__));
1966 
1967 	ifp = NULL;
1968 	if (!in_nullhost(ina)) {
1969 		INADDR_TO_IFP(ina, ifp);
1970 	} else {
1971 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1972 		if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0)
1973 			ifp = nh4.nh_ifp;
1974 		else {
1975 			struct in_ifaddr *ia;
1976 			struct ifnet *mifp;
1977 
1978 			mifp = NULL;
1979 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1980 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1981 				mifp = ia->ia_ifp;
1982 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1983 				     (mifp->if_flags & IFF_MULTICAST)) {
1984 					ifp = mifp;
1985 					break;
1986 				}
1987 			}
1988 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1989 		}
1990 	}
1991 
1992 	return (ifp);
1993 }
1994 
1995 /*
1996  * Join an IPv4 multicast group, possibly with a source.
1997  */
1998 static int
1999 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2000 {
2001 	struct group_source_req		 gsr;
2002 	sockunion_t			*gsa, *ssa;
2003 	struct ifnet			*ifp;
2004 	struct in_mfilter		*imf;
2005 	struct ip_moptions		*imo;
2006 	struct in_multi			*inm;
2007 	struct in_msource		*lims;
2008 	size_t				 idx;
2009 	int				 error, is_new;
2010 
2011 	ifp = NULL;
2012 	imf = NULL;
2013 	lims = NULL;
2014 	error = 0;
2015 	is_new = 0;
2016 
2017 	memset(&gsr, 0, sizeof(struct group_source_req));
2018 	gsa = (sockunion_t *)&gsr.gsr_group;
2019 	gsa->ss.ss_family = AF_UNSPEC;
2020 	ssa = (sockunion_t *)&gsr.gsr_source;
2021 	ssa->ss.ss_family = AF_UNSPEC;
2022 
2023 	switch (sopt->sopt_name) {
2024 	case IP_ADD_MEMBERSHIP:
2025 	case IP_ADD_SOURCE_MEMBERSHIP: {
2026 		struct ip_mreq_source	 mreqs;
2027 
2028 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2029 			error = sooptcopyin(sopt, &mreqs,
2030 			    sizeof(struct ip_mreq),
2031 			    sizeof(struct ip_mreq));
2032 			/*
2033 			 * Do argument switcharoo from ip_mreq into
2034 			 * ip_mreq_source to avoid using two instances.
2035 			 */
2036 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2037 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2038 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2039 			error = sooptcopyin(sopt, &mreqs,
2040 			    sizeof(struct ip_mreq_source),
2041 			    sizeof(struct ip_mreq_source));
2042 		}
2043 		if (error)
2044 			return (error);
2045 
2046 		gsa->sin.sin_family = AF_INET;
2047 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2048 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2049 
2050 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2051 			ssa->sin.sin_family = AF_INET;
2052 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2053 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2054 		}
2055 
2056 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2057 			return (EINVAL);
2058 
2059 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2060 		    mreqs.imr_interface);
2061 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2062 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2063 		break;
2064 	}
2065 
2066 	case MCAST_JOIN_GROUP:
2067 	case MCAST_JOIN_SOURCE_GROUP:
2068 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2069 			error = sooptcopyin(sopt, &gsr,
2070 			    sizeof(struct group_req),
2071 			    sizeof(struct group_req));
2072 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2073 			error = sooptcopyin(sopt, &gsr,
2074 			    sizeof(struct group_source_req),
2075 			    sizeof(struct group_source_req));
2076 		}
2077 		if (error)
2078 			return (error);
2079 
2080 		if (gsa->sin.sin_family != AF_INET ||
2081 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2082 			return (EINVAL);
2083 
2084 		/*
2085 		 * Overwrite the port field if present, as the sockaddr
2086 		 * being copied in may be matched with a binary comparison.
2087 		 */
2088 		gsa->sin.sin_port = 0;
2089 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2090 			if (ssa->sin.sin_family != AF_INET ||
2091 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2092 				return (EINVAL);
2093 			ssa->sin.sin_port = 0;
2094 		}
2095 
2096 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2097 			return (EINVAL);
2098 
2099 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2100 			return (EADDRNOTAVAIL);
2101 		ifp = ifnet_byindex(gsr.gsr_interface);
2102 		break;
2103 
2104 	default:
2105 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2106 		    __func__, sopt->sopt_name);
2107 		return (EOPNOTSUPP);
2108 		break;
2109 	}
2110 
2111 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2112 		return (EADDRNOTAVAIL);
2113 
2114 	imo = inp_findmoptions(inp);
2115 	idx = imo_match_group(imo, ifp, &gsa->sa);
2116 	if (idx == -1) {
2117 		is_new = 1;
2118 	} else {
2119 		inm = imo->imo_membership[idx];
2120 		imf = &imo->imo_mfilters[idx];
2121 		if (ssa->ss.ss_family != AF_UNSPEC) {
2122 			/*
2123 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2124 			 * is an error. On an existing inclusive membership,
2125 			 * it just adds the source to the filter list.
2126 			 */
2127 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2128 				error = EINVAL;
2129 				goto out_inp_locked;
2130 			}
2131 			/*
2132 			 * Throw out duplicates.
2133 			 *
2134 			 * XXX FIXME: This makes a naive assumption that
2135 			 * even if entries exist for *ssa in this imf,
2136 			 * they will be rejected as dupes, even if they
2137 			 * are not valid in the current mode (in-mode).
2138 			 *
2139 			 * in_msource is transactioned just as for anything
2140 			 * else in SSM -- but note naive use of inm_graft()
2141 			 * below for allocating new filter entries.
2142 			 *
2143 			 * This is only an issue if someone mixes the
2144 			 * full-state SSM API with the delta-based API,
2145 			 * which is discouraged in the relevant RFCs.
2146 			 */
2147 			lims = imo_match_source(imo, idx, &ssa->sa);
2148 			if (lims != NULL /*&&
2149 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2150 				error = EADDRNOTAVAIL;
2151 				goto out_inp_locked;
2152 			}
2153 		} else {
2154 			/*
2155 			 * MCAST_JOIN_GROUP on an existing exclusive
2156 			 * membership is an error; return EADDRINUSE
2157 			 * to preserve 4.4BSD API idempotence, and
2158 			 * avoid tedious detour to code below.
2159 			 * NOTE: This is bending RFC 3678 a bit.
2160 			 *
2161 			 * On an existing inclusive membership, this is also
2162 			 * an error; if you want to change filter mode,
2163 			 * you must use the userland API setsourcefilter().
2164 			 * XXX We don't reject this for imf in UNDEFINED
2165 			 * state at t1, because allocation of a filter
2166 			 * is atomic with allocation of a membership.
2167 			 */
2168 			error = EINVAL;
2169 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2170 				error = EADDRINUSE;
2171 			goto out_inp_locked;
2172 		}
2173 	}
2174 
2175 	/*
2176 	 * Begin state merge transaction at socket layer.
2177 	 */
2178 	INP_WLOCK_ASSERT(inp);
2179 
2180 	if (is_new) {
2181 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2182 			error = imo_grow(imo);
2183 			if (error)
2184 				goto out_inp_locked;
2185 		}
2186 		/*
2187 		 * Allocate the new slot upfront so we can deal with
2188 		 * grafting the new source filter in same code path
2189 		 * as for join-source on existing membership.
2190 		 */
2191 		idx = imo->imo_num_memberships;
2192 		imo->imo_membership[idx] = NULL;
2193 		imo->imo_num_memberships++;
2194 		KASSERT(imo->imo_mfilters != NULL,
2195 		    ("%s: imf_mfilters vector was not allocated", __func__));
2196 		imf = &imo->imo_mfilters[idx];
2197 		KASSERT(RB_EMPTY(&imf->imf_sources),
2198 		    ("%s: imf_sources not empty", __func__));
2199 	}
2200 
2201 	/*
2202 	 * Graft new source into filter list for this inpcb's
2203 	 * membership of the group. The in_multi may not have
2204 	 * been allocated yet if this is a new membership, however,
2205 	 * the in_mfilter slot will be allocated and must be initialized.
2206 	 *
2207 	 * Note: Grafting of exclusive mode filters doesn't happen
2208 	 * in this path.
2209 	 * XXX: Should check for non-NULL lims (node exists but may
2210 	 * not be in-mode) for interop with full-state API.
2211 	 */
2212 	if (ssa->ss.ss_family != AF_UNSPEC) {
2213 		/* Membership starts in IN mode */
2214 		if (is_new) {
2215 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2216 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2217 		} else {
2218 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2219 		}
2220 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2221 		if (lims == NULL) {
2222 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2223 			    __func__);
2224 			error = ENOMEM;
2225 			goto out_imo_free;
2226 		}
2227 	} else {
2228 		/* No address specified; Membership starts in EX mode */
2229 		if (is_new) {
2230 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2231 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2232 		}
2233 	}
2234 
2235 	/*
2236 	 * Begin state merge transaction at IGMP layer.
2237 	 */
2238 	in_pcbref(inp);
2239 	INP_WUNLOCK(inp);
2240 	IN_MULTI_LOCK();
2241 
2242 	if (is_new) {
2243 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2244 		    &inm);
2245 		if (error) {
2246                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2247                             __func__);
2248                         IN_MULTI_LIST_UNLOCK();
2249 			goto out_imo_free;
2250                 }
2251 		imo->imo_membership[idx] = inm;
2252 	} else {
2253 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2254 		IN_MULTI_LIST_LOCK();
2255 		error = inm_merge(inm, imf);
2256 		if (error) {
2257 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2258 				 __func__);
2259 			IN_MULTI_LIST_UNLOCK();
2260 			goto out_in_multi_locked;
2261 		}
2262 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2263 		error = igmp_change_state(inm);
2264 		IN_MULTI_LIST_UNLOCK();
2265 		if (error) {
2266 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2267 			    __func__);
2268 			goto out_in_multi_locked;
2269 		}
2270 	}
2271 
2272 out_in_multi_locked:
2273 
2274 	IN_MULTI_UNLOCK();
2275 	INP_WLOCK(inp);
2276 	if (in_pcbrele_wlocked(inp))
2277 		return (ENXIO);
2278 	if (error) {
2279 		imf_rollback(imf);
2280 		if (is_new)
2281 			imf_purge(imf);
2282 		else
2283 			imf_reap(imf);
2284 	} else {
2285 		imf_commit(imf);
2286 	}
2287 
2288 out_imo_free:
2289 	if (error && is_new) {
2290 		imo->imo_membership[idx] = NULL;
2291 		--imo->imo_num_memberships;
2292 	}
2293 
2294 out_inp_locked:
2295 	INP_WUNLOCK(inp);
2296 	return (error);
2297 }
2298 
2299 /*
2300  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2301  */
2302 static int
2303 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2304 {
2305 	struct group_source_req		 gsr;
2306 	struct ip_mreq_source		 mreqs;
2307 	sockunion_t			*gsa, *ssa;
2308 	struct ifnet			*ifp;
2309 	struct in_mfilter		*imf;
2310 	struct ip_moptions		*imo;
2311 	struct in_msource		*ims;
2312 	struct in_multi			*inm;
2313 	size_t				 idx;
2314 	int				 error, is_final;
2315 
2316 	ifp = NULL;
2317 	error = 0;
2318 	is_final = 1;
2319 
2320 	memset(&gsr, 0, sizeof(struct group_source_req));
2321 	gsa = (sockunion_t *)&gsr.gsr_group;
2322 	gsa->ss.ss_family = AF_UNSPEC;
2323 	ssa = (sockunion_t *)&gsr.gsr_source;
2324 	ssa->ss.ss_family = AF_UNSPEC;
2325 
2326 	switch (sopt->sopt_name) {
2327 	case IP_DROP_MEMBERSHIP:
2328 	case IP_DROP_SOURCE_MEMBERSHIP:
2329 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2330 			error = sooptcopyin(sopt, &mreqs,
2331 			    sizeof(struct ip_mreq),
2332 			    sizeof(struct ip_mreq));
2333 			/*
2334 			 * Swap interface and sourceaddr arguments,
2335 			 * as ip_mreq and ip_mreq_source are laid
2336 			 * out differently.
2337 			 */
2338 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2339 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2340 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2341 			error = sooptcopyin(sopt, &mreqs,
2342 			    sizeof(struct ip_mreq_source),
2343 			    sizeof(struct ip_mreq_source));
2344 		}
2345 		if (error)
2346 			return (error);
2347 
2348 		gsa->sin.sin_family = AF_INET;
2349 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2350 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2351 
2352 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2353 			ssa->sin.sin_family = AF_INET;
2354 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2355 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2356 		}
2357 
2358 		/*
2359 		 * Attempt to look up hinted ifp from interface address.
2360 		 * Fallthrough with null ifp iff lookup fails, to
2361 		 * preserve 4.4BSD mcast API idempotence.
2362 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2363 		 * using an IPv4 address as a key is racy.
2364 		 */
2365 		if (!in_nullhost(mreqs.imr_interface))
2366 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2367 
2368 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2369 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2370 
2371 		break;
2372 
2373 	case MCAST_LEAVE_GROUP:
2374 	case MCAST_LEAVE_SOURCE_GROUP:
2375 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2376 			error = sooptcopyin(sopt, &gsr,
2377 			    sizeof(struct group_req),
2378 			    sizeof(struct group_req));
2379 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2380 			error = sooptcopyin(sopt, &gsr,
2381 			    sizeof(struct group_source_req),
2382 			    sizeof(struct group_source_req));
2383 		}
2384 		if (error)
2385 			return (error);
2386 
2387 		if (gsa->sin.sin_family != AF_INET ||
2388 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2389 			return (EINVAL);
2390 
2391 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2392 			if (ssa->sin.sin_family != AF_INET ||
2393 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2394 				return (EINVAL);
2395 		}
2396 
2397 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2398 			return (EADDRNOTAVAIL);
2399 
2400 		ifp = ifnet_byindex(gsr.gsr_interface);
2401 
2402 		if (ifp == NULL)
2403 			return (EADDRNOTAVAIL);
2404 		break;
2405 
2406 	default:
2407 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2408 		    __func__, sopt->sopt_name);
2409 		return (EOPNOTSUPP);
2410 		break;
2411 	}
2412 
2413 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2414 		return (EINVAL);
2415 
2416 	/*
2417 	 * Find the membership in the membership array.
2418 	 */
2419 	imo = inp_findmoptions(inp);
2420 	idx = imo_match_group(imo, ifp, &gsa->sa);
2421 	if (idx == -1) {
2422 		error = EADDRNOTAVAIL;
2423 		goto out_inp_locked;
2424 	}
2425 	inm = imo->imo_membership[idx];
2426 	imf = &imo->imo_mfilters[idx];
2427 
2428 	if (ssa->ss.ss_family != AF_UNSPEC)
2429 		is_final = 0;
2430 
2431 	/*
2432 	 * Begin state merge transaction at socket layer.
2433 	 */
2434 	INP_WLOCK_ASSERT(inp);
2435 
2436 	/*
2437 	 * If we were instructed only to leave a given source, do so.
2438 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2439 	 */
2440 	if (is_final) {
2441 		imf_leave(imf);
2442 	} else {
2443 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2444 			error = EADDRNOTAVAIL;
2445 			goto out_inp_locked;
2446 		}
2447 		ims = imo_match_source(imo, idx, &ssa->sa);
2448 		if (ims == NULL) {
2449 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2450 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2451 			error = EADDRNOTAVAIL;
2452 			goto out_inp_locked;
2453 		}
2454 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2455 		error = imf_prune(imf, &ssa->sin);
2456 		if (error) {
2457 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2458 			    __func__);
2459 			goto out_inp_locked;
2460 		}
2461 	}
2462 
2463 	/*
2464 	 * Begin state merge transaction at IGMP layer.
2465 	 */
2466 	in_pcbref(inp);
2467 	INP_WUNLOCK(inp);
2468 	IN_MULTI_LOCK();
2469 
2470 	if (is_final) {
2471 		/*
2472 		 * Give up the multicast address record to which
2473 		 * the membership points.
2474 		 */
2475 		(void)in_leavegroup_locked(inm, imf);
2476 	} else {
2477 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2478 		IN_MULTI_LIST_LOCK();
2479 		error = inm_merge(inm, imf);
2480 		if (error) {
2481 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2482 			    __func__);
2483 			goto out_in_multi_locked;
2484 		}
2485 
2486 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2487 		error = igmp_change_state(inm);
2488 		IN_MULTI_LIST_UNLOCK();
2489 		if (error) {
2490 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2491 			    __func__);
2492 		}
2493 	}
2494 
2495 out_in_multi_locked:
2496 
2497 	IN_MULTI_UNLOCK();
2498 	INP_WLOCK(inp);
2499 	if (in_pcbrele_wlocked(inp))
2500 		return (ENXIO);
2501 
2502 	if (error)
2503 		imf_rollback(imf);
2504 	else
2505 		imf_commit(imf);
2506 
2507 	imf_reap(imf);
2508 
2509 	if (is_final) {
2510 		/* Remove the gap in the membership and filter array. */
2511 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2512 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2513 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2514 		}
2515 		imo->imo_num_memberships--;
2516 	}
2517 
2518 out_inp_locked:
2519 	INP_WUNLOCK(inp);
2520 	return (error);
2521 }
2522 
2523 /*
2524  * Select the interface for transmitting IPv4 multicast datagrams.
2525  *
2526  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2527  * may be passed to this socket option. An address of INADDR_ANY or an
2528  * interface index of 0 is used to remove a previous selection.
2529  * When no interface is selected, one is chosen for every send.
2530  */
2531 static int
2532 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2533 {
2534 	struct in_addr		 addr;
2535 	struct ip_mreqn		 mreqn;
2536 	struct ifnet		*ifp;
2537 	struct ip_moptions	*imo;
2538 	int			 error;
2539 
2540 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2541 		/*
2542 		 * An interface index was specified using the
2543 		 * Linux-derived ip_mreqn structure.
2544 		 */
2545 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2546 		    sizeof(struct ip_mreqn));
2547 		if (error)
2548 			return (error);
2549 
2550 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2551 			return (EINVAL);
2552 
2553 		if (mreqn.imr_ifindex == 0) {
2554 			ifp = NULL;
2555 		} else {
2556 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2557 			if (ifp == NULL)
2558 				return (EADDRNOTAVAIL);
2559 		}
2560 	} else {
2561 		/*
2562 		 * An interface was specified by IPv4 address.
2563 		 * This is the traditional BSD usage.
2564 		 */
2565 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2566 		    sizeof(struct in_addr));
2567 		if (error)
2568 			return (error);
2569 		if (in_nullhost(addr)) {
2570 			ifp = NULL;
2571 		} else {
2572 			INADDR_TO_IFP(addr, ifp);
2573 			if (ifp == NULL)
2574 				return (EADDRNOTAVAIL);
2575 		}
2576 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2577 		    ntohl(addr.s_addr));
2578 	}
2579 
2580 	/* Reject interfaces which do not support multicast. */
2581 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2582 		return (EOPNOTSUPP);
2583 
2584 	imo = inp_findmoptions(inp);
2585 	imo->imo_multicast_ifp = ifp;
2586 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2587 	INP_WUNLOCK(inp);
2588 
2589 	return (0);
2590 }
2591 
2592 /*
2593  * Atomically set source filters on a socket for an IPv4 multicast group.
2594  *
2595  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2596  */
2597 static int
2598 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2599 {
2600 	struct __msfilterreq	 msfr;
2601 	sockunion_t		*gsa;
2602 	struct ifnet		*ifp;
2603 	struct in_mfilter	*imf;
2604 	struct ip_moptions	*imo;
2605 	struct in_multi		*inm;
2606 	size_t			 idx;
2607 	int			 error;
2608 
2609 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2610 	    sizeof(struct __msfilterreq));
2611 	if (error)
2612 		return (error);
2613 
2614 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2615 		return (ENOBUFS);
2616 
2617 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2618 	     msfr.msfr_fmode != MCAST_INCLUDE))
2619 		return (EINVAL);
2620 
2621 	if (msfr.msfr_group.ss_family != AF_INET ||
2622 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2623 		return (EINVAL);
2624 
2625 	gsa = (sockunion_t *)&msfr.msfr_group;
2626 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2627 		return (EINVAL);
2628 
2629 	gsa->sin.sin_port = 0;	/* ignore port */
2630 
2631 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2632 		return (EADDRNOTAVAIL);
2633 
2634 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2635 	if (ifp == NULL)
2636 		return (EADDRNOTAVAIL);
2637 
2638 	/*
2639 	 * Take the INP write lock.
2640 	 * Check if this socket is a member of this group.
2641 	 */
2642 	imo = inp_findmoptions(inp);
2643 	idx = imo_match_group(imo, ifp, &gsa->sa);
2644 	if (idx == -1 || imo->imo_mfilters == NULL) {
2645 		error = EADDRNOTAVAIL;
2646 		goto out_inp_locked;
2647 	}
2648 	inm = imo->imo_membership[idx];
2649 	imf = &imo->imo_mfilters[idx];
2650 
2651 	/*
2652 	 * Begin state merge transaction at socket layer.
2653 	 */
2654 	INP_WLOCK_ASSERT(inp);
2655 
2656 	imf->imf_st[1] = msfr.msfr_fmode;
2657 
2658 	/*
2659 	 * Apply any new source filters, if present.
2660 	 * Make a copy of the user-space source vector so
2661 	 * that we may copy them with a single copyin. This
2662 	 * allows us to deal with page faults up-front.
2663 	 */
2664 	if (msfr.msfr_nsrcs > 0) {
2665 		struct in_msource	*lims;
2666 		struct sockaddr_in	*psin;
2667 		struct sockaddr_storage	*kss, *pkss;
2668 		int			 i;
2669 
2670 		INP_WUNLOCK(inp);
2671 
2672 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2673 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2674 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2675 		    M_TEMP, M_WAITOK);
2676 		error = copyin(msfr.msfr_srcs, kss,
2677 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2678 		if (error) {
2679 			free(kss, M_TEMP);
2680 			return (error);
2681 		}
2682 
2683 		INP_WLOCK(inp);
2684 
2685 		/*
2686 		 * Mark all source filters as UNDEFINED at t1.
2687 		 * Restore new group filter mode, as imf_leave()
2688 		 * will set it to INCLUDE.
2689 		 */
2690 		imf_leave(imf);
2691 		imf->imf_st[1] = msfr.msfr_fmode;
2692 
2693 		/*
2694 		 * Update socket layer filters at t1, lazy-allocating
2695 		 * new entries. This saves a bunch of memory at the
2696 		 * cost of one RB_FIND() per source entry; duplicate
2697 		 * entries in the msfr_nsrcs vector are ignored.
2698 		 * If we encounter an error, rollback transaction.
2699 		 *
2700 		 * XXX This too could be replaced with a set-symmetric
2701 		 * difference like loop to avoid walking from root
2702 		 * every time, as the key space is common.
2703 		 */
2704 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2705 			psin = (struct sockaddr_in *)pkss;
2706 			if (psin->sin_family != AF_INET) {
2707 				error = EAFNOSUPPORT;
2708 				break;
2709 			}
2710 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2711 				error = EINVAL;
2712 				break;
2713 			}
2714 			error = imf_get_source(imf, psin, &lims);
2715 			if (error)
2716 				break;
2717 			lims->imsl_st[1] = imf->imf_st[1];
2718 		}
2719 		free(kss, M_TEMP);
2720 	}
2721 
2722 	if (error)
2723 		goto out_imf_rollback;
2724 
2725 	INP_WLOCK_ASSERT(inp);
2726 	IN_MULTI_LOCK();
2727 	IN_MULTI_LIST_LOCK();
2728 
2729 	/*
2730 	 * Begin state merge transaction at IGMP layer.
2731 	 */
2732 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2733 	error = inm_merge(inm, imf);
2734 	if (error) {
2735 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2736 		IN_MULTI_LIST_UNLOCK();
2737 		goto out_in_multi_locked;
2738 	}
2739 
2740 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2741 	error = igmp_change_state(inm);
2742 	IN_MULTI_LIST_UNLOCK();
2743 	if (error)
2744 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2745 
2746 out_in_multi_locked:
2747 
2748 	IN_MULTI_UNLOCK();
2749 
2750 out_imf_rollback:
2751 	if (error)
2752 		imf_rollback(imf);
2753 	else
2754 		imf_commit(imf);
2755 
2756 	imf_reap(imf);
2757 
2758 out_inp_locked:
2759 	INP_WUNLOCK(inp);
2760 	return (error);
2761 }
2762 
2763 /*
2764  * Set the IP multicast options in response to user setsockopt().
2765  *
2766  * Many of the socket options handled in this function duplicate the
2767  * functionality of socket options in the regular unicast API. However,
2768  * it is not possible to merge the duplicate code, because the idempotence
2769  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2770  * the effects of these options must be treated as separate and distinct.
2771  *
2772  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2773  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2774  * is refactored to no longer use vifs.
2775  */
2776 int
2777 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2778 {
2779 	struct ip_moptions	*imo;
2780 	int			 error;
2781 
2782 	error = 0;
2783 
2784 	/*
2785 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2786 	 * or is a divert socket, reject it.
2787 	 */
2788 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2789 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2790 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2791 		return (EOPNOTSUPP);
2792 
2793 	switch (sopt->sopt_name) {
2794 	case IP_MULTICAST_VIF: {
2795 		int vifi;
2796 		/*
2797 		 * Select a multicast VIF for transmission.
2798 		 * Only useful if multicast forwarding is active.
2799 		 */
2800 		if (legal_vif_num == NULL) {
2801 			error = EOPNOTSUPP;
2802 			break;
2803 		}
2804 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2805 		if (error)
2806 			break;
2807 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2808 			error = EINVAL;
2809 			break;
2810 		}
2811 		imo = inp_findmoptions(inp);
2812 		imo->imo_multicast_vif = vifi;
2813 		INP_WUNLOCK(inp);
2814 		break;
2815 	}
2816 
2817 	case IP_MULTICAST_IF:
2818 		error = inp_set_multicast_if(inp, sopt);
2819 		break;
2820 
2821 	case IP_MULTICAST_TTL: {
2822 		u_char ttl;
2823 
2824 		/*
2825 		 * Set the IP time-to-live for outgoing multicast packets.
2826 		 * The original multicast API required a char argument,
2827 		 * which is inconsistent with the rest of the socket API.
2828 		 * We allow either a char or an int.
2829 		 */
2830 		if (sopt->sopt_valsize == sizeof(u_char)) {
2831 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2832 			    sizeof(u_char));
2833 			if (error)
2834 				break;
2835 		} else {
2836 			u_int ittl;
2837 
2838 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2839 			    sizeof(u_int));
2840 			if (error)
2841 				break;
2842 			if (ittl > 255) {
2843 				error = EINVAL;
2844 				break;
2845 			}
2846 			ttl = (u_char)ittl;
2847 		}
2848 		imo = inp_findmoptions(inp);
2849 		imo->imo_multicast_ttl = ttl;
2850 		INP_WUNLOCK(inp);
2851 		break;
2852 	}
2853 
2854 	case IP_MULTICAST_LOOP: {
2855 		u_char loop;
2856 
2857 		/*
2858 		 * Set the loopback flag for outgoing multicast packets.
2859 		 * Must be zero or one.  The original multicast API required a
2860 		 * char argument, which is inconsistent with the rest
2861 		 * of the socket API.  We allow either a char or an int.
2862 		 */
2863 		if (sopt->sopt_valsize == sizeof(u_char)) {
2864 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2865 			    sizeof(u_char));
2866 			if (error)
2867 				break;
2868 		} else {
2869 			u_int iloop;
2870 
2871 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2872 					    sizeof(u_int));
2873 			if (error)
2874 				break;
2875 			loop = (u_char)iloop;
2876 		}
2877 		imo = inp_findmoptions(inp);
2878 		imo->imo_multicast_loop = !!loop;
2879 		INP_WUNLOCK(inp);
2880 		break;
2881 	}
2882 
2883 	case IP_ADD_MEMBERSHIP:
2884 	case IP_ADD_SOURCE_MEMBERSHIP:
2885 	case MCAST_JOIN_GROUP:
2886 	case MCAST_JOIN_SOURCE_GROUP:
2887 		error = inp_join_group(inp, sopt);
2888 		break;
2889 
2890 	case IP_DROP_MEMBERSHIP:
2891 	case IP_DROP_SOURCE_MEMBERSHIP:
2892 	case MCAST_LEAVE_GROUP:
2893 	case MCAST_LEAVE_SOURCE_GROUP:
2894 		error = inp_leave_group(inp, sopt);
2895 		break;
2896 
2897 	case IP_BLOCK_SOURCE:
2898 	case IP_UNBLOCK_SOURCE:
2899 	case MCAST_BLOCK_SOURCE:
2900 	case MCAST_UNBLOCK_SOURCE:
2901 		error = inp_block_unblock_source(inp, sopt);
2902 		break;
2903 
2904 	case IP_MSFILTER:
2905 		error = inp_set_source_filters(inp, sopt);
2906 		break;
2907 
2908 	default:
2909 		error = EOPNOTSUPP;
2910 		break;
2911 	}
2912 
2913 	INP_UNLOCK_ASSERT(inp);
2914 
2915 	return (error);
2916 }
2917 
2918 /*
2919  * Expose IGMP's multicast filter mode and source list(s) to userland,
2920  * keyed by (ifindex, group).
2921  * The filter mode is written out as a uint32_t, followed by
2922  * 0..n of struct in_addr.
2923  * For use by ifmcstat(8).
2924  * SMPng: NOTE: unlocked read of ifindex space.
2925  */
2926 static int
2927 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2928 {
2929 	struct in_addr			 src, group;
2930 	struct ifnet			*ifp;
2931 	struct ifmultiaddr		*ifma;
2932 	struct in_multi			*inm;
2933 	struct ip_msource		*ims;
2934 	int				*name;
2935 	int				 retval;
2936 	u_int				 namelen;
2937 	uint32_t			 fmode, ifindex;
2938 
2939 	name = (int *)arg1;
2940 	namelen = arg2;
2941 
2942 	if (req->newptr != NULL)
2943 		return (EPERM);
2944 
2945 	if (namelen != 2)
2946 		return (EINVAL);
2947 
2948 	ifindex = name[0];
2949 	if (ifindex <= 0 || ifindex > V_if_index) {
2950 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2951 		    __func__, ifindex);
2952 		return (ENOENT);
2953 	}
2954 
2955 	group.s_addr = name[1];
2956 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2957 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2958 		    __func__, ntohl(group.s_addr));
2959 		return (EINVAL);
2960 	}
2961 
2962 	ifp = ifnet_byindex(ifindex);
2963 	if (ifp == NULL) {
2964 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2965 		    __func__, ifindex);
2966 		return (ENOENT);
2967 	}
2968 
2969 	retval = sysctl_wire_old_buffer(req,
2970 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2971 	if (retval)
2972 		return (retval);
2973 
2974 	IN_MULTI_LIST_LOCK();
2975 
2976 	IF_ADDR_RLOCK(ifp);
2977 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2978 		if (ifma->ifma_addr->sa_family != AF_INET ||
2979 		    ifma->ifma_protospec == NULL)
2980 			continue;
2981 		inm = (struct in_multi *)ifma->ifma_protospec;
2982 		if (!in_hosteq(inm->inm_addr, group))
2983 			continue;
2984 		fmode = inm->inm_st[1].iss_fmode;
2985 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2986 		if (retval != 0)
2987 			break;
2988 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2989 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2990 			    ims->ims_haddr);
2991 			/*
2992 			 * Only copy-out sources which are in-mode.
2993 			 */
2994 			if (fmode != ims_get_mode(inm, ims, 1)) {
2995 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2996 				    __func__);
2997 				continue;
2998 			}
2999 			src.s_addr = htonl(ims->ims_haddr);
3000 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3001 			if (retval != 0)
3002 				break;
3003 		}
3004 	}
3005 	IF_ADDR_RUNLOCK(ifp);
3006 
3007 	IN_MULTI_LIST_UNLOCK();
3008 
3009 	return (retval);
3010 }
3011 
3012 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
3013 
3014 static const char *inm_modestrs[] = { "un", "in", "ex" };
3015 
3016 static const char *
3017 inm_mode_str(const int mode)
3018 {
3019 
3020 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3021 		return (inm_modestrs[mode]);
3022 	return ("??");
3023 }
3024 
3025 static const char *inm_statestrs[] = {
3026 	"not-member",
3027 	"silent",
3028 	"idle",
3029 	"lazy",
3030 	"sleeping",
3031 	"awakening",
3032 	"query-pending",
3033 	"sg-query-pending",
3034 	"leaving"
3035 };
3036 
3037 static const char *
3038 inm_state_str(const int state)
3039 {
3040 
3041 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3042 		return (inm_statestrs[state]);
3043 	return ("??");
3044 }
3045 
3046 /*
3047  * Dump an in_multi structure to the console.
3048  */
3049 void
3050 inm_print(const struct in_multi *inm)
3051 {
3052 	int t;
3053 	char addrbuf[INET_ADDRSTRLEN];
3054 
3055 	if ((ktr_mask & KTR_IGMPV3) == 0)
3056 		return;
3057 
3058 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3059 	printf("addr %s ifp %p(%s) ifma %p\n",
3060 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3061 	    inm->inm_ifp,
3062 	    inm->inm_ifp->if_xname,
3063 	    inm->inm_ifma);
3064 	printf("timer %u state %s refcount %u scq.len %u\n",
3065 	    inm->inm_timer,
3066 	    inm_state_str(inm->inm_state),
3067 	    inm->inm_refcount,
3068 	    inm->inm_scq.mq_len);
3069 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3070 	    inm->inm_igi,
3071 	    inm->inm_nsrc,
3072 	    inm->inm_sctimer,
3073 	    inm->inm_scrv);
3074 	for (t = 0; t < 2; t++) {
3075 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3076 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3077 		    inm->inm_st[t].iss_asm,
3078 		    inm->inm_st[t].iss_ex,
3079 		    inm->inm_st[t].iss_in,
3080 		    inm->inm_st[t].iss_rec);
3081 	}
3082 	printf("%s: --- end inm %p ---\n", __func__, inm);
3083 }
3084 
3085 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3086 
3087 void
3088 inm_print(const struct in_multi *inm)
3089 {
3090 
3091 }
3092 
3093 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3094 
3095 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3096