xref: /freebsd/sys/netinet/in_mcast.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 2007-2009 Bruce Simpson.
3  * Copyright (c) 2005 Robert N. M. Watson.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote
15  *    products derived from this software without specific prior written
16  *    permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * IPv4 multicast socket, group, and socket option processing module.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/protosw.h>
47 #include <sys/sysctl.h>
48 #include <sys/ktr.h>
49 #include <sys/tree.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/route.h>
54 #include <net/vnet.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_pcb.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/igmp_var.h>
62 
63 #ifndef KTR_IGMPV3
64 #define KTR_IGMPV3 KTR_INET
65 #endif
66 
67 #ifndef __SOCKUNION_DECLARED
68 union sockunion {
69 	struct sockaddr_storage	ss;
70 	struct sockaddr		sa;
71 	struct sockaddr_dl	sdl;
72 	struct sockaddr_in	sin;
73 };
74 typedef union sockunion sockunion_t;
75 #define __SOCKUNION_DECLARED
76 #endif /* __SOCKUNION_DECLARED */
77 
78 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
79     "IPv4 multicast PCB-layer source filter");
80 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
81 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
82 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
83     "IPv4 multicast IGMP-layer source filter");
84 
85 /*
86  * Locking:
87  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
88  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
89  *   it can be taken by code in net/if.c also.
90  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
91  *
92  * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
93  * any need for in_multi itself to be virtualized -- it is bound to an ifp
94  * anyway no matter what happens.
95  */
96 struct mtx in_multi_mtx;
97 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
98 
99 /*
100  * Functions with non-static linkage defined in this file should be
101  * declared in in_var.h:
102  *  imo_multi_filter()
103  *  in_addmulti()
104  *  in_delmulti()
105  *  in_joingroup()
106  *  in_joingroup_locked()
107  *  in_leavegroup()
108  *  in_leavegroup_locked()
109  * and ip_var.h:
110  *  inp_freemoptions()
111  *  inp_getmoptions()
112  *  inp_setmoptions()
113  *
114  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
115  * and in_delmulti().
116  */
117 static void	imf_commit(struct in_mfilter *);
118 static int	imf_get_source(struct in_mfilter *imf,
119 		    const struct sockaddr_in *psin,
120 		    struct in_msource **);
121 static struct in_msource *
122 		imf_graft(struct in_mfilter *, const uint8_t,
123 		    const struct sockaddr_in *);
124 static void	imf_leave(struct in_mfilter *);
125 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
126 static void	imf_purge(struct in_mfilter *);
127 static void	imf_rollback(struct in_mfilter *);
128 static void	imf_reap(struct in_mfilter *);
129 static int	imo_grow(struct ip_moptions *);
130 static size_t	imo_match_group(const struct ip_moptions *,
131 		    const struct ifnet *, const struct sockaddr *);
132 static struct in_msource *
133 		imo_match_source(const struct ip_moptions *, const size_t,
134 		    const struct sockaddr *);
135 static void	ims_merge(struct ip_msource *ims,
136 		    const struct in_msource *lims, const int rollback);
137 static int	in_getmulti(struct ifnet *, const struct in_addr *,
138 		    struct in_multi **);
139 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
140 		    const int noalloc, struct ip_msource **pims);
141 static int	inm_is_ifp_detached(const struct in_multi *);
142 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
143 static void	inm_purge(struct in_multi *);
144 static void	inm_reap(struct in_multi *);
145 static struct ip_moptions *
146 		inp_findmoptions(struct inpcb *);
147 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
148 static int	inp_join_group(struct inpcb *, struct sockopt *);
149 static int	inp_leave_group(struct inpcb *, struct sockopt *);
150 static struct ifnet *
151 		inp_lookup_mcast_ifp(const struct inpcb *,
152 		    const struct sockaddr_in *, const struct in_addr);
153 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
154 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
155 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
156 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
157 
158 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv4 multicast");
159 
160 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
161 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
162     CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
163     "Max source filters per group");
164 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
165 
166 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
167 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
168     CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
169     "Max source filters per socket");
170 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
171 
172 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
173 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
174     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
175 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
176 
177 SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
178     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
179     "Per-interface stack-wide source filters");
180 
181 /*
182  * Inline function which wraps assertions for a valid ifp.
183  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
184  * is detached.
185  */
186 static int __inline
187 inm_is_ifp_detached(const struct in_multi *inm)
188 {
189 	struct ifnet *ifp;
190 
191 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
192 	ifp = inm->inm_ifma->ifma_ifp;
193 	if (ifp != NULL) {
194 		/*
195 		 * Sanity check that netinet's notion of ifp is the
196 		 * same as net's.
197 		 */
198 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
199 	}
200 
201 	return (ifp == NULL);
202 }
203 
204 /*
205  * Initialize an in_mfilter structure to a known state at t0, t1
206  * with an empty source filter list.
207  */
208 static __inline void
209 imf_init(struct in_mfilter *imf, const int st0, const int st1)
210 {
211 	memset(imf, 0, sizeof(struct in_mfilter));
212 	RB_INIT(&imf->imf_sources);
213 	imf->imf_st[0] = st0;
214 	imf->imf_st[1] = st1;
215 }
216 
217 /*
218  * Resize the ip_moptions vector to the next power-of-two minus 1.
219  * May be called with locks held; do not sleep.
220  */
221 static int
222 imo_grow(struct ip_moptions *imo)
223 {
224 	struct in_multi		**nmships;
225 	struct in_multi		**omships;
226 	struct in_mfilter	 *nmfilters;
227 	struct in_mfilter	 *omfilters;
228 	size_t			  idx;
229 	size_t			  newmax;
230 	size_t			  oldmax;
231 
232 	nmships = NULL;
233 	nmfilters = NULL;
234 	omships = imo->imo_membership;
235 	omfilters = imo->imo_mfilters;
236 	oldmax = imo->imo_max_memberships;
237 	newmax = ((oldmax + 1) * 2) - 1;
238 
239 	if (newmax <= IP_MAX_MEMBERSHIPS) {
240 		nmships = (struct in_multi **)realloc(omships,
241 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
242 		nmfilters = (struct in_mfilter *)realloc(omfilters,
243 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
244 		if (nmships != NULL && nmfilters != NULL) {
245 			/* Initialize newly allocated source filter heads. */
246 			for (idx = oldmax; idx < newmax; idx++) {
247 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
248 				    MCAST_EXCLUDE);
249 			}
250 			imo->imo_max_memberships = newmax;
251 			imo->imo_membership = nmships;
252 			imo->imo_mfilters = nmfilters;
253 		}
254 	}
255 
256 	if (nmships == NULL || nmfilters == NULL) {
257 		if (nmships != NULL)
258 			free(nmships, M_IPMOPTS);
259 		if (nmfilters != NULL)
260 			free(nmfilters, M_INMFILTER);
261 		return (ETOOMANYREFS);
262 	}
263 
264 	return (0);
265 }
266 
267 /*
268  * Find an IPv4 multicast group entry for this ip_moptions instance
269  * which matches the specified group, and optionally an interface.
270  * Return its index into the array, or -1 if not found.
271  */
272 static size_t
273 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
274     const struct sockaddr *group)
275 {
276 	const struct sockaddr_in *gsin;
277 	struct in_multi	**pinm;
278 	int		  idx;
279 	int		  nmships;
280 
281 	gsin = (const struct sockaddr_in *)group;
282 
283 	/* The imo_membership array may be lazy allocated. */
284 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
285 		return (-1);
286 
287 	nmships = imo->imo_num_memberships;
288 	pinm = &imo->imo_membership[0];
289 	for (idx = 0; idx < nmships; idx++, pinm++) {
290 		if (*pinm == NULL)
291 			continue;
292 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
293 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
294 			break;
295 		}
296 	}
297 	if (idx >= nmships)
298 		idx = -1;
299 
300 	return (idx);
301 }
302 
303 /*
304  * Find an IPv4 multicast source entry for this imo which matches
305  * the given group index for this socket, and source address.
306  *
307  * NOTE: This does not check if the entry is in-mode, merely if
308  * it exists, which may not be the desired behaviour.
309  */
310 static struct in_msource *
311 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
312     const struct sockaddr *src)
313 {
314 	struct ip_msource	 find;
315 	struct in_mfilter	*imf;
316 	struct ip_msource	*ims;
317 	const sockunion_t	*psa;
318 
319 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
320 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
321 	    ("%s: invalid index %d\n", __func__, (int)gidx));
322 
323 	/* The imo_mfilters array may be lazy allocated. */
324 	if (imo->imo_mfilters == NULL)
325 		return (NULL);
326 	imf = &imo->imo_mfilters[gidx];
327 
328 	/* Source trees are keyed in host byte order. */
329 	psa = (const sockunion_t *)src;
330 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
331 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
332 
333 	return ((struct in_msource *)ims);
334 }
335 
336 /*
337  * Perform filtering for multicast datagrams on a socket by group and source.
338  *
339  * Returns 0 if a datagram should be allowed through, or various error codes
340  * if the socket was not a member of the group, or the source was muted, etc.
341  */
342 int
343 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
344     const struct sockaddr *group, const struct sockaddr *src)
345 {
346 	size_t gidx;
347 	struct in_msource *ims;
348 	int mode;
349 
350 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
351 
352 	gidx = imo_match_group(imo, ifp, group);
353 	if (gidx == -1)
354 		return (MCAST_NOTGMEMBER);
355 
356 	/*
357 	 * Check if the source was included in an (S,G) join.
358 	 * Allow reception on exclusive memberships by default,
359 	 * reject reception on inclusive memberships by default.
360 	 * Exclude source only if an in-mode exclude filter exists.
361 	 * Include source only if an in-mode include filter exists.
362 	 * NOTE: We are comparing group state here at IGMP t1 (now)
363 	 * with socket-layer t0 (since last downcall).
364 	 */
365 	mode = imo->imo_mfilters[gidx].imf_st[1];
366 	ims = imo_match_source(imo, gidx, src);
367 
368 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
369 	    (ims != NULL && ims->imsl_st[0] != mode))
370 		return (MCAST_NOTSMEMBER);
371 
372 	return (MCAST_PASS);
373 }
374 
375 /*
376  * Find and return a reference to an in_multi record for (ifp, group),
377  * and bump its reference count.
378  * If one does not exist, try to allocate it, and update link-layer multicast
379  * filters on ifp to listen for group.
380  * Assumes the IN_MULTI lock is held across the call.
381  * Return 0 if successful, otherwise return an appropriate error code.
382  */
383 static int
384 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
385     struct in_multi **pinm)
386 {
387 	struct sockaddr_in	 gsin;
388 	struct ifmultiaddr	*ifma;
389 	struct in_ifinfo	*ii;
390 	struct in_multi		*inm;
391 	int error;
392 
393 	IN_MULTI_LOCK_ASSERT();
394 
395 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
396 
397 	inm = inm_lookup(ifp, *group);
398 	if (inm != NULL) {
399 		/*
400 		 * If we already joined this group, just bump the
401 		 * refcount and return it.
402 		 */
403 		KASSERT(inm->inm_refcount >= 1,
404 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
405 		++inm->inm_refcount;
406 		*pinm = inm;
407 		return (0);
408 	}
409 
410 	memset(&gsin, 0, sizeof(gsin));
411 	gsin.sin_family = AF_INET;
412 	gsin.sin_len = sizeof(struct sockaddr_in);
413 	gsin.sin_addr = *group;
414 
415 	/*
416 	 * Check if a link-layer group is already associated
417 	 * with this network-layer group on the given ifnet.
418 	 */
419 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
420 	if (error != 0)
421 		return (error);
422 
423 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
424 	IF_ADDR_LOCK(ifp);
425 
426 	/*
427 	 * If something other than netinet is occupying the link-layer
428 	 * group, print a meaningful error message and back out of
429 	 * the allocation.
430 	 * Otherwise, bump the refcount on the existing network-layer
431 	 * group association and return it.
432 	 */
433 	if (ifma->ifma_protospec != NULL) {
434 		inm = (struct in_multi *)ifma->ifma_protospec;
435 #ifdef INVARIANTS
436 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
437 		    __func__));
438 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
439 		    ("%s: ifma not AF_INET", __func__));
440 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
441 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
442 		    !in_hosteq(inm->inm_addr, *group))
443 			panic("%s: ifma %p is inconsistent with %p (%s)",
444 			    __func__, ifma, inm, inet_ntoa(*group));
445 #endif
446 		++inm->inm_refcount;
447 		*pinm = inm;
448 		IF_ADDR_UNLOCK(ifp);
449 		return (0);
450 	}
451 
452 	IF_ADDR_LOCK_ASSERT(ifp);
453 
454 	/*
455 	 * A new in_multi record is needed; allocate and initialize it.
456 	 * We DO NOT perform an IGMP join as the in_ layer may need to
457 	 * push an initial source list down to IGMP to support SSM.
458 	 *
459 	 * The initial source filter state is INCLUDE, {} as per the RFC.
460 	 */
461 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
462 	if (inm == NULL) {
463 		if_delmulti_ifma(ifma);
464 		IF_ADDR_UNLOCK(ifp);
465 		return (ENOMEM);
466 	}
467 	inm->inm_addr = *group;
468 	inm->inm_ifp = ifp;
469 	inm->inm_igi = ii->ii_igmp;
470 	inm->inm_ifma = ifma;
471 	inm->inm_refcount = 1;
472 	inm->inm_state = IGMP_NOT_MEMBER;
473 
474 	/*
475 	 * Pending state-changes per group are subject to a bounds check.
476 	 */
477 	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
478 
479 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
480 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
481 	RB_INIT(&inm->inm_srcs);
482 
483 	ifma->ifma_protospec = inm;
484 
485 	*pinm = inm;
486 
487 	IF_ADDR_UNLOCK(ifp);
488 	return (0);
489 }
490 
491 /*
492  * Drop a reference to an in_multi record.
493  *
494  * If the refcount drops to 0, free the in_multi record and
495  * delete the underlying link-layer membership.
496  */
497 void
498 inm_release_locked(struct in_multi *inm)
499 {
500 	struct ifmultiaddr *ifma;
501 
502 	IN_MULTI_LOCK_ASSERT();
503 
504 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
505 
506 	if (--inm->inm_refcount > 0) {
507 		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
508 		    inm->inm_refcount);
509 		return;
510 	}
511 
512 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
513 
514 	ifma = inm->inm_ifma;
515 
516 	/* XXX this access is not covered by IF_ADDR_LOCK */
517 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
518 	KASSERT(ifma->ifma_protospec == inm,
519 	    ("%s: ifma_protospec != inm", __func__));
520 	ifma->ifma_protospec = NULL;
521 
522 	inm_purge(inm);
523 
524 	free(inm, M_IPMADDR);
525 
526 	if_delmulti_ifma(ifma);
527 }
528 
529 /*
530  * Clear recorded source entries for a group.
531  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
532  * FIXME: Should reap.
533  */
534 void
535 inm_clear_recorded(struct in_multi *inm)
536 {
537 	struct ip_msource	*ims;
538 
539 	IN_MULTI_LOCK_ASSERT();
540 
541 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
542 		if (ims->ims_stp) {
543 			ims->ims_stp = 0;
544 			--inm->inm_st[1].iss_rec;
545 		}
546 	}
547 	KASSERT(inm->inm_st[1].iss_rec == 0,
548 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
549 }
550 
551 /*
552  * Record a source as pending for a Source-Group IGMPv3 query.
553  * This lives here as it modifies the shared tree.
554  *
555  * inm is the group descriptor.
556  * naddr is the address of the source to record in network-byte order.
557  *
558  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
559  * lazy-allocate a source node in response to an SG query.
560  * Otherwise, no allocation is performed. This saves some memory
561  * with the trade-off that the source will not be reported to the
562  * router if joined in the window between the query response and
563  * the group actually being joined on the local host.
564  *
565  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
566  * This turns off the allocation of a recorded source entry if
567  * the group has not been joined.
568  *
569  * Return 0 if the source didn't exist or was already marked as recorded.
570  * Return 1 if the source was marked as recorded by this function.
571  * Return <0 if any error occured (negated errno code).
572  */
573 int
574 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
575 {
576 	struct ip_msource	 find;
577 	struct ip_msource	*ims, *nims;
578 
579 	IN_MULTI_LOCK_ASSERT();
580 
581 	find.ims_haddr = ntohl(naddr);
582 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
583 	if (ims && ims->ims_stp)
584 		return (0);
585 	if (ims == NULL) {
586 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
587 			return (-ENOSPC);
588 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
589 		    M_NOWAIT | M_ZERO);
590 		if (nims == NULL)
591 			return (-ENOMEM);
592 		nims->ims_haddr = find.ims_haddr;
593 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
594 		++inm->inm_nsrc;
595 		ims = nims;
596 	}
597 
598 	/*
599 	 * Mark the source as recorded and update the recorded
600 	 * source count.
601 	 */
602 	++ims->ims_stp;
603 	++inm->inm_st[1].iss_rec;
604 
605 	return (1);
606 }
607 
608 /*
609  * Return a pointer to an in_msource owned by an in_mfilter,
610  * given its source address.
611  * Lazy-allocate if needed. If this is a new entry its filter state is
612  * undefined at t0.
613  *
614  * imf is the filter set being modified.
615  * haddr is the source address in *host* byte-order.
616  *
617  * SMPng: May be called with locks held; malloc must not block.
618  */
619 static int
620 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
621     struct in_msource **plims)
622 {
623 	struct ip_msource	 find;
624 	struct ip_msource	*ims, *nims;
625 	struct in_msource	*lims;
626 	int			 error;
627 
628 	error = 0;
629 	ims = NULL;
630 	lims = NULL;
631 
632 	/* key is host byte order */
633 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
634 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
635 	lims = (struct in_msource *)ims;
636 	if (lims == NULL) {
637 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
638 			return (ENOSPC);
639 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
640 		    M_NOWAIT | M_ZERO);
641 		if (nims == NULL)
642 			return (ENOMEM);
643 		lims = (struct in_msource *)nims;
644 		lims->ims_haddr = find.ims_haddr;
645 		lims->imsl_st[0] = MCAST_UNDEFINED;
646 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
647 		++imf->imf_nsrc;
648 	}
649 
650 	*plims = lims;
651 
652 	return (error);
653 }
654 
655 /*
656  * Graft a source entry into an existing socket-layer filter set,
657  * maintaining any required invariants and checking allocations.
658  *
659  * The source is marked as being in the new filter mode at t1.
660  *
661  * Return the pointer to the new node, otherwise return NULL.
662  */
663 static struct in_msource *
664 imf_graft(struct in_mfilter *imf, const uint8_t st1,
665     const struct sockaddr_in *psin)
666 {
667 	struct ip_msource	*nims;
668 	struct in_msource	*lims;
669 
670 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
671 	    M_NOWAIT | M_ZERO);
672 	if (nims == NULL)
673 		return (NULL);
674 	lims = (struct in_msource *)nims;
675 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
676 	lims->imsl_st[0] = MCAST_UNDEFINED;
677 	lims->imsl_st[1] = st1;
678 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
679 	++imf->imf_nsrc;
680 
681 	return (lims);
682 }
683 
684 /*
685  * Prune a source entry from an existing socket-layer filter set,
686  * maintaining any required invariants and checking allocations.
687  *
688  * The source is marked as being left at t1, it is not freed.
689  *
690  * Return 0 if no error occurred, otherwise return an errno value.
691  */
692 static int
693 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
694 {
695 	struct ip_msource	 find;
696 	struct ip_msource	*ims;
697 	struct in_msource	*lims;
698 
699 	/* key is host byte order */
700 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
701 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
702 	if (ims == NULL)
703 		return (ENOENT);
704 	lims = (struct in_msource *)ims;
705 	lims->imsl_st[1] = MCAST_UNDEFINED;
706 	return (0);
707 }
708 
709 /*
710  * Revert socket-layer filter set deltas at t1 to t0 state.
711  */
712 static void
713 imf_rollback(struct in_mfilter *imf)
714 {
715 	struct ip_msource	*ims, *tims;
716 	struct in_msource	*lims;
717 
718 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
719 		lims = (struct in_msource *)ims;
720 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
721 			/* no change at t1 */
722 			continue;
723 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
724 			/* revert change to existing source at t1 */
725 			lims->imsl_st[1] = lims->imsl_st[0];
726 		} else {
727 			/* revert source added t1 */
728 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
729 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
730 			free(ims, M_INMFILTER);
731 			imf->imf_nsrc--;
732 		}
733 	}
734 	imf->imf_st[1] = imf->imf_st[0];
735 }
736 
737 /*
738  * Mark socket-layer filter set as INCLUDE {} at t1.
739  */
740 static void
741 imf_leave(struct in_mfilter *imf)
742 {
743 	struct ip_msource	*ims;
744 	struct in_msource	*lims;
745 
746 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
747 		lims = (struct in_msource *)ims;
748 		lims->imsl_st[1] = MCAST_UNDEFINED;
749 	}
750 	imf->imf_st[1] = MCAST_INCLUDE;
751 }
752 
753 /*
754  * Mark socket-layer filter set deltas as committed.
755  */
756 static void
757 imf_commit(struct in_mfilter *imf)
758 {
759 	struct ip_msource	*ims;
760 	struct in_msource	*lims;
761 
762 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
763 		lims = (struct in_msource *)ims;
764 		lims->imsl_st[0] = lims->imsl_st[1];
765 	}
766 	imf->imf_st[0] = imf->imf_st[1];
767 }
768 
769 /*
770  * Reap unreferenced sources from socket-layer filter set.
771  */
772 static void
773 imf_reap(struct in_mfilter *imf)
774 {
775 	struct ip_msource	*ims, *tims;
776 	struct in_msource	*lims;
777 
778 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
779 		lims = (struct in_msource *)ims;
780 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
781 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
782 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
783 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
784 			free(ims, M_INMFILTER);
785 			imf->imf_nsrc--;
786 		}
787 	}
788 }
789 
790 /*
791  * Purge socket-layer filter set.
792  */
793 static void
794 imf_purge(struct in_mfilter *imf)
795 {
796 	struct ip_msource	*ims, *tims;
797 
798 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
799 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
800 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
801 		free(ims, M_INMFILTER);
802 		imf->imf_nsrc--;
803 	}
804 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
805 	KASSERT(RB_EMPTY(&imf->imf_sources),
806 	    ("%s: imf_sources not empty", __func__));
807 }
808 
809 /*
810  * Look up a source filter entry for a multicast group.
811  *
812  * inm is the group descriptor to work with.
813  * haddr is the host-byte-order IPv4 address to look up.
814  * noalloc may be non-zero to suppress allocation of sources.
815  * *pims will be set to the address of the retrieved or allocated source.
816  *
817  * SMPng: NOTE: may be called with locks held.
818  * Return 0 if successful, otherwise return a non-zero error code.
819  */
820 static int
821 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
822     const int noalloc, struct ip_msource **pims)
823 {
824 	struct ip_msource	 find;
825 	struct ip_msource	*ims, *nims;
826 #ifdef KTR
827 	struct in_addr ia;
828 #endif
829 
830 	find.ims_haddr = haddr;
831 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
832 	if (ims == NULL && !noalloc) {
833 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
834 			return (ENOSPC);
835 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
836 		    M_NOWAIT | M_ZERO);
837 		if (nims == NULL)
838 			return (ENOMEM);
839 		nims->ims_haddr = haddr;
840 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
841 		++inm->inm_nsrc;
842 		ims = nims;
843 #ifdef KTR
844 		ia.s_addr = htonl(haddr);
845 		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
846 		    inet_ntoa(ia), ims);
847 #endif
848 	}
849 
850 	*pims = ims;
851 	return (0);
852 }
853 
854 /*
855  * Merge socket-layer source into IGMP-layer source.
856  * If rollback is non-zero, perform the inverse of the merge.
857  */
858 static void
859 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
860     const int rollback)
861 {
862 	int n = rollback ? -1 : 1;
863 #ifdef KTR
864 	struct in_addr ia;
865 
866 	ia.s_addr = htonl(ims->ims_haddr);
867 #endif
868 
869 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
870 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
871 		    __func__, n, inet_ntoa(ia));
872 		ims->ims_st[1].ex -= n;
873 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
874 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
875 		    __func__, n, inet_ntoa(ia));
876 		ims->ims_st[1].in -= n;
877 	}
878 
879 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
880 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
881 		    __func__, n, inet_ntoa(ia));
882 		ims->ims_st[1].ex += n;
883 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
884 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
885 		    __func__, n, inet_ntoa(ia));
886 		ims->ims_st[1].in += n;
887 	}
888 }
889 
890 /*
891  * Atomically update the global in_multi state, when a membership's
892  * filter list is being updated in any way.
893  *
894  * imf is the per-inpcb-membership group filter pointer.
895  * A fake imf may be passed for in-kernel consumers.
896  *
897  * XXX This is a candidate for a set-symmetric-difference style loop
898  * which would eliminate the repeated lookup from root of ims nodes,
899  * as they share the same key space.
900  *
901  * If any error occurred this function will back out of refcounts
902  * and return a non-zero value.
903  */
904 static int
905 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
906 {
907 	struct ip_msource	*ims, *nims;
908 	struct in_msource	*lims;
909 	int			 schanged, error;
910 	int			 nsrc0, nsrc1;
911 
912 	schanged = 0;
913 	error = 0;
914 	nsrc1 = nsrc0 = 0;
915 
916 	/*
917 	 * Update the source filters first, as this may fail.
918 	 * Maintain count of in-mode filters at t0, t1. These are
919 	 * used to work out if we transition into ASM mode or not.
920 	 * Maintain a count of source filters whose state was
921 	 * actually modified by this operation.
922 	 */
923 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
924 		lims = (struct in_msource *)ims;
925 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
926 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
927 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
928 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
929 		++schanged;
930 		if (error)
931 			break;
932 		ims_merge(nims, lims, 0);
933 	}
934 	if (error) {
935 		struct ip_msource *bims;
936 
937 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
938 			lims = (struct in_msource *)ims;
939 			if (lims->imsl_st[0] == lims->imsl_st[1])
940 				continue;
941 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
942 			if (bims == NULL)
943 				continue;
944 			ims_merge(bims, lims, 1);
945 		}
946 		goto out_reap;
947 	}
948 
949 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
950 	    __func__, nsrc0, nsrc1);
951 
952 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
953 	if (imf->imf_st[0] == imf->imf_st[1] &&
954 	    imf->imf_st[1] == MCAST_INCLUDE) {
955 		if (nsrc1 == 0) {
956 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
957 			--inm->inm_st[1].iss_in;
958 		}
959 	}
960 
961 	/* Handle filter mode transition on socket. */
962 	if (imf->imf_st[0] != imf->imf_st[1]) {
963 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
964 		    __func__, imf->imf_st[0], imf->imf_st[1]);
965 
966 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
967 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
968 			--inm->inm_st[1].iss_ex;
969 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
970 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
971 			--inm->inm_st[1].iss_in;
972 		}
973 
974 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
975 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
976 			inm->inm_st[1].iss_ex++;
977 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
978 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
979 			inm->inm_st[1].iss_in++;
980 		}
981 	}
982 
983 	/*
984 	 * Track inm filter state in terms of listener counts.
985 	 * If there are any exclusive listeners, stack-wide
986 	 * membership is exclusive.
987 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
988 	 * If no listeners remain, state is undefined at t1,
989 	 * and the IGMP lifecycle for this group should finish.
990 	 */
991 	if (inm->inm_st[1].iss_ex > 0) {
992 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
993 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
994 	} else if (inm->inm_st[1].iss_in > 0) {
995 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
996 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
997 	} else {
998 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
999 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1000 	}
1001 
1002 	/* Decrement ASM listener count on transition out of ASM mode. */
1003 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1004 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1005 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1006 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1007 			--inm->inm_st[1].iss_asm;
1008 	}
1009 
1010 	/* Increment ASM listener count on transition to ASM mode. */
1011 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1012 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1013 		inm->inm_st[1].iss_asm++;
1014 	}
1015 
1016 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1017 	inm_print(inm);
1018 
1019 out_reap:
1020 	if (schanged > 0) {
1021 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1022 		inm_reap(inm);
1023 	}
1024 	return (error);
1025 }
1026 
1027 /*
1028  * Mark an in_multi's filter set deltas as committed.
1029  * Called by IGMP after a state change has been enqueued.
1030  */
1031 void
1032 inm_commit(struct in_multi *inm)
1033 {
1034 	struct ip_msource	*ims;
1035 
1036 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1037 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1038 	inm_print(inm);
1039 
1040 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1041 		ims->ims_st[0] = ims->ims_st[1];
1042 	}
1043 	inm->inm_st[0] = inm->inm_st[1];
1044 }
1045 
1046 /*
1047  * Reap unreferenced nodes from an in_multi's filter set.
1048  */
1049 static void
1050 inm_reap(struct in_multi *inm)
1051 {
1052 	struct ip_msource	*ims, *tims;
1053 
1054 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1055 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1056 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1057 		    ims->ims_stp != 0)
1058 			continue;
1059 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1060 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1061 		free(ims, M_IPMSOURCE);
1062 		inm->inm_nsrc--;
1063 	}
1064 }
1065 
1066 /*
1067  * Purge all source nodes from an in_multi's filter set.
1068  */
1069 static void
1070 inm_purge(struct in_multi *inm)
1071 {
1072 	struct ip_msource	*ims, *tims;
1073 
1074 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1075 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1076 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1077 		free(ims, M_IPMSOURCE);
1078 		inm->inm_nsrc--;
1079 	}
1080 }
1081 
1082 /*
1083  * Join a multicast group; unlocked entry point.
1084  *
1085  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1086  * is not held. Fortunately, ifp is unlikely to have been detached
1087  * at this point, so we assume it's OK to recurse.
1088  */
1089 int
1090 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1091     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1092 {
1093 	int error;
1094 
1095 	IN_MULTI_LOCK();
1096 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1097 	IN_MULTI_UNLOCK();
1098 
1099 	return (error);
1100 }
1101 
1102 /*
1103  * Join a multicast group; real entry point.
1104  *
1105  * Only preserves atomicity at inm level.
1106  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1107  *
1108  * If the IGMP downcall fails, the group is not joined, and an error
1109  * code is returned.
1110  */
1111 int
1112 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1113     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1114 {
1115 	struct in_mfilter	 timf;
1116 	struct in_multi		*inm;
1117 	int			 error;
1118 
1119 	IN_MULTI_LOCK_ASSERT();
1120 
1121 	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1122 	    inet_ntoa(*gina), ifp, ifp->if_xname);
1123 
1124 	error = 0;
1125 	inm = NULL;
1126 
1127 	/*
1128 	 * If no imf was specified (i.e. kernel consumer),
1129 	 * fake one up and assume it is an ASM join.
1130 	 */
1131 	if (imf == NULL) {
1132 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1133 		imf = &timf;
1134 	}
1135 
1136 	error = in_getmulti(ifp, gina, &inm);
1137 	if (error) {
1138 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1139 		return (error);
1140 	}
1141 
1142 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1143 	error = inm_merge(inm, imf);
1144 	if (error) {
1145 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1146 		goto out_inm_release;
1147 	}
1148 
1149 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1150 	error = igmp_change_state(inm);
1151 	if (error) {
1152 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1153 		goto out_inm_release;
1154 	}
1155 
1156 out_inm_release:
1157 	if (error) {
1158 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1159 		inm_release_locked(inm);
1160 	} else {
1161 		*pinm = inm;
1162 	}
1163 
1164 	return (error);
1165 }
1166 
1167 /*
1168  * Leave a multicast group; unlocked entry point.
1169  */
1170 int
1171 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1172 {
1173 	struct ifnet *ifp;
1174 	int error;
1175 
1176 	ifp = inm->inm_ifp;
1177 
1178 	IN_MULTI_LOCK();
1179 	error = in_leavegroup_locked(inm, imf);
1180 	IN_MULTI_UNLOCK();
1181 
1182 	return (error);
1183 }
1184 
1185 /*
1186  * Leave a multicast group; real entry point.
1187  * All source filters will be expunged.
1188  *
1189  * Only preserves atomicity at inm level.
1190  *
1191  * Holding the write lock for the INP which contains imf
1192  * is highly advisable. We can't assert for it as imf does not
1193  * contain a back-pointer to the owning inp.
1194  *
1195  * Note: This is not the same as inm_release(*) as this function also
1196  * makes a state change downcall into IGMP.
1197  */
1198 int
1199 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1200 {
1201 	struct in_mfilter	 timf;
1202 	int			 error;
1203 
1204 	error = 0;
1205 
1206 	IN_MULTI_LOCK_ASSERT();
1207 
1208 	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1209 	    inm, inet_ntoa(inm->inm_addr),
1210 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1211 	    imf);
1212 
1213 	/*
1214 	 * If no imf was specified (i.e. kernel consumer),
1215 	 * fake one up and assume it is an ASM join.
1216 	 */
1217 	if (imf == NULL) {
1218 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1219 		imf = &timf;
1220 	}
1221 
1222 	/*
1223 	 * Begin state merge transaction at IGMP layer.
1224 	 *
1225 	 * As this particular invocation should not cause any memory
1226 	 * to be allocated, and there is no opportunity to roll back
1227 	 * the transaction, it MUST NOT fail.
1228 	 */
1229 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1230 	error = inm_merge(inm, imf);
1231 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1232 
1233 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1234 	error = igmp_change_state(inm);
1235 	if (error)
1236 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1237 
1238 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1239 	inm_release_locked(inm);
1240 
1241 	return (error);
1242 }
1243 
1244 /*#ifndef BURN_BRIDGES*/
1245 /*
1246  * Join an IPv4 multicast group in (*,G) exclusive mode.
1247  * The group must be a 224.0.0.0/24 link-scope group.
1248  * This KPI is for legacy kernel consumers only.
1249  */
1250 struct in_multi *
1251 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1252 {
1253 	struct in_multi *pinm;
1254 	int error;
1255 
1256 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1257 	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1258 
1259 	error = in_joingroup(ifp, ap, NULL, &pinm);
1260 	if (error != 0)
1261 		pinm = NULL;
1262 
1263 	return (pinm);
1264 }
1265 
1266 /*
1267  * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1268  * This KPI is for legacy kernel consumers only.
1269  */
1270 void
1271 in_delmulti(struct in_multi *inm)
1272 {
1273 
1274 	(void)in_leavegroup(inm, NULL);
1275 }
1276 /*#endif*/
1277 
1278 /*
1279  * Block or unblock an ASM multicast source on an inpcb.
1280  * This implements the delta-based API described in RFC 3678.
1281  *
1282  * The delta-based API applies only to exclusive-mode memberships.
1283  * An IGMP downcall will be performed.
1284  *
1285  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1286  *
1287  * Return 0 if successful, otherwise return an appropriate error code.
1288  */
1289 static int
1290 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1291 {
1292 	struct group_source_req		 gsr;
1293 	sockunion_t			*gsa, *ssa;
1294 	struct ifnet			*ifp;
1295 	struct in_mfilter		*imf;
1296 	struct ip_moptions		*imo;
1297 	struct in_msource		*ims;
1298 	struct in_multi			*inm;
1299 	size_t				 idx;
1300 	uint16_t			 fmode;
1301 	int				 error, doblock;
1302 
1303 	ifp = NULL;
1304 	error = 0;
1305 	doblock = 0;
1306 
1307 	memset(&gsr, 0, sizeof(struct group_source_req));
1308 	gsa = (sockunion_t *)&gsr.gsr_group;
1309 	ssa = (sockunion_t *)&gsr.gsr_source;
1310 
1311 	switch (sopt->sopt_name) {
1312 	case IP_BLOCK_SOURCE:
1313 	case IP_UNBLOCK_SOURCE: {
1314 		struct ip_mreq_source	 mreqs;
1315 
1316 		error = sooptcopyin(sopt, &mreqs,
1317 		    sizeof(struct ip_mreq_source),
1318 		    sizeof(struct ip_mreq_source));
1319 		if (error)
1320 			return (error);
1321 
1322 		gsa->sin.sin_family = AF_INET;
1323 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1324 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1325 
1326 		ssa->sin.sin_family = AF_INET;
1327 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1328 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1329 
1330 		if (!in_nullhost(mreqs.imr_interface))
1331 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1332 
1333 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1334 			doblock = 1;
1335 
1336 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1337 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1338 		break;
1339 	    }
1340 
1341 	case MCAST_BLOCK_SOURCE:
1342 	case MCAST_UNBLOCK_SOURCE:
1343 		error = sooptcopyin(sopt, &gsr,
1344 		    sizeof(struct group_source_req),
1345 		    sizeof(struct group_source_req));
1346 		if (error)
1347 			return (error);
1348 
1349 		if (gsa->sin.sin_family != AF_INET ||
1350 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1351 			return (EINVAL);
1352 
1353 		if (ssa->sin.sin_family != AF_INET ||
1354 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1355 			return (EINVAL);
1356 
1357 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1358 			return (EADDRNOTAVAIL);
1359 
1360 		ifp = ifnet_byindex(gsr.gsr_interface);
1361 
1362 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1363 			doblock = 1;
1364 		break;
1365 
1366 	default:
1367 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1368 		    __func__, sopt->sopt_name);
1369 		return (EOPNOTSUPP);
1370 		break;
1371 	}
1372 
1373 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1374 		return (EINVAL);
1375 
1376 	/*
1377 	 * Check if we are actually a member of this group.
1378 	 */
1379 	imo = inp_findmoptions(inp);
1380 	idx = imo_match_group(imo, ifp, &gsa->sa);
1381 	if (idx == -1 || imo->imo_mfilters == NULL) {
1382 		error = EADDRNOTAVAIL;
1383 		goto out_inp_locked;
1384 	}
1385 
1386 	KASSERT(imo->imo_mfilters != NULL,
1387 	    ("%s: imo_mfilters not allocated", __func__));
1388 	imf = &imo->imo_mfilters[idx];
1389 	inm = imo->imo_membership[idx];
1390 
1391 	/*
1392 	 * Attempting to use the delta-based API on an
1393 	 * non exclusive-mode membership is an error.
1394 	 */
1395 	fmode = imf->imf_st[0];
1396 	if (fmode != MCAST_EXCLUDE) {
1397 		error = EINVAL;
1398 		goto out_inp_locked;
1399 	}
1400 
1401 	/*
1402 	 * Deal with error cases up-front:
1403 	 *  Asked to block, but already blocked; or
1404 	 *  Asked to unblock, but nothing to unblock.
1405 	 * If adding a new block entry, allocate it.
1406 	 */
1407 	ims = imo_match_source(imo, idx, &ssa->sa);
1408 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1409 		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1410 		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1411 		error = EADDRNOTAVAIL;
1412 		goto out_inp_locked;
1413 	}
1414 
1415 	INP_WLOCK_ASSERT(inp);
1416 
1417 	/*
1418 	 * Begin state merge transaction at socket layer.
1419 	 */
1420 	if (doblock) {
1421 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1422 		ims = imf_graft(imf, fmode, &ssa->sin);
1423 		if (ims == NULL)
1424 			error = ENOMEM;
1425 	} else {
1426 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1427 		error = imf_prune(imf, &ssa->sin);
1428 	}
1429 
1430 	if (error) {
1431 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1432 		goto out_imf_rollback;
1433 	}
1434 
1435 	/*
1436 	 * Begin state merge transaction at IGMP layer.
1437 	 */
1438 	IN_MULTI_LOCK();
1439 
1440 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1441 	error = inm_merge(inm, imf);
1442 	if (error) {
1443 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1444 		goto out_imf_rollback;
1445 	}
1446 
1447 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1448 	error = igmp_change_state(inm);
1449 	if (error)
1450 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1451 
1452 	IN_MULTI_UNLOCK();
1453 
1454 out_imf_rollback:
1455 	if (error)
1456 		imf_rollback(imf);
1457 	else
1458 		imf_commit(imf);
1459 
1460 	imf_reap(imf);
1461 
1462 out_inp_locked:
1463 	INP_WUNLOCK(inp);
1464 	return (error);
1465 }
1466 
1467 /*
1468  * Given an inpcb, return its multicast options structure pointer.  Accepts
1469  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1470  *
1471  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1472  * SMPng: NOTE: Returns with the INP write lock held.
1473  */
1474 static struct ip_moptions *
1475 inp_findmoptions(struct inpcb *inp)
1476 {
1477 	struct ip_moptions	 *imo;
1478 	struct in_multi		**immp;
1479 	struct in_mfilter	 *imfp;
1480 	size_t			  idx;
1481 
1482 	INP_WLOCK(inp);
1483 	if (inp->inp_moptions != NULL)
1484 		return (inp->inp_moptions);
1485 
1486 	INP_WUNLOCK(inp);
1487 
1488 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1489 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1490 	    M_WAITOK | M_ZERO);
1491 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1492 	    M_INMFILTER, M_WAITOK);
1493 
1494 	imo->imo_multicast_ifp = NULL;
1495 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1496 	imo->imo_multicast_vif = -1;
1497 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1498 	imo->imo_multicast_loop = in_mcast_loop;
1499 	imo->imo_num_memberships = 0;
1500 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1501 	imo->imo_membership = immp;
1502 
1503 	/* Initialize per-group source filters. */
1504 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1505 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1506 	imo->imo_mfilters = imfp;
1507 
1508 	INP_WLOCK(inp);
1509 	if (inp->inp_moptions != NULL) {
1510 		free(imfp, M_INMFILTER);
1511 		free(immp, M_IPMOPTS);
1512 		free(imo, M_IPMOPTS);
1513 		return (inp->inp_moptions);
1514 	}
1515 	inp->inp_moptions = imo;
1516 	return (imo);
1517 }
1518 
1519 /*
1520  * Discard the IP multicast options (and source filters).
1521  *
1522  * SMPng: NOTE: assumes INP write lock is held.
1523  */
1524 void
1525 inp_freemoptions(struct ip_moptions *imo)
1526 {
1527 	struct in_mfilter	*imf;
1528 	size_t			 idx, nmships;
1529 
1530 	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1531 
1532 	nmships = imo->imo_num_memberships;
1533 	for (idx = 0; idx < nmships; ++idx) {
1534 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1535 		if (imf)
1536 			imf_leave(imf);
1537 		(void)in_leavegroup(imo->imo_membership[idx], imf);
1538 		if (imf)
1539 			imf_purge(imf);
1540 	}
1541 
1542 	if (imo->imo_mfilters)
1543 		free(imo->imo_mfilters, M_INMFILTER);
1544 	free(imo->imo_membership, M_IPMOPTS);
1545 	free(imo, M_IPMOPTS);
1546 }
1547 
1548 /*
1549  * Atomically get source filters on a socket for an IPv4 multicast group.
1550  * Called with INP lock held; returns with lock released.
1551  */
1552 static int
1553 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1554 {
1555 	struct __msfilterreq	 msfr;
1556 	sockunion_t		*gsa;
1557 	struct ifnet		*ifp;
1558 	struct ip_moptions	*imo;
1559 	struct in_mfilter	*imf;
1560 	struct ip_msource	*ims;
1561 	struct in_msource	*lims;
1562 	struct sockaddr_in	*psin;
1563 	struct sockaddr_storage	*ptss;
1564 	struct sockaddr_storage	*tss;
1565 	int			 error;
1566 	size_t			 idx, nsrcs, ncsrcs;
1567 
1568 	INP_WLOCK_ASSERT(inp);
1569 
1570 	imo = inp->inp_moptions;
1571 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1572 
1573 	INP_WUNLOCK(inp);
1574 
1575 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1576 	    sizeof(struct __msfilterreq));
1577 	if (error)
1578 		return (error);
1579 
1580 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1581 		return (EINVAL);
1582 
1583 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1584 	if (ifp == NULL)
1585 		return (EINVAL);
1586 
1587 	INP_WLOCK(inp);
1588 
1589 	/*
1590 	 * Lookup group on the socket.
1591 	 */
1592 	gsa = (sockunion_t *)&msfr.msfr_group;
1593 	idx = imo_match_group(imo, ifp, &gsa->sa);
1594 	if (idx == -1 || imo->imo_mfilters == NULL) {
1595 		INP_WUNLOCK(inp);
1596 		return (EADDRNOTAVAIL);
1597 	}
1598 	imf = &imo->imo_mfilters[idx];
1599 
1600 	/*
1601 	 * Ignore memberships which are in limbo.
1602 	 */
1603 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1604 		INP_WUNLOCK(inp);
1605 		return (EAGAIN);
1606 	}
1607 	msfr.msfr_fmode = imf->imf_st[1];
1608 
1609 	/*
1610 	 * If the user specified a buffer, copy out the source filter
1611 	 * entries to userland gracefully.
1612 	 * We only copy out the number of entries which userland
1613 	 * has asked for, but we always tell userland how big the
1614 	 * buffer really needs to be.
1615 	 */
1616 	tss = NULL;
1617 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1618 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1619 		    M_TEMP, M_NOWAIT | M_ZERO);
1620 		if (tss == NULL) {
1621 			INP_WUNLOCK(inp);
1622 			return (ENOBUFS);
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * Count number of sources in-mode at t0.
1628 	 * If buffer space exists and remains, copy out source entries.
1629 	 */
1630 	nsrcs = msfr.msfr_nsrcs;
1631 	ncsrcs = 0;
1632 	ptss = tss;
1633 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1634 		lims = (struct in_msource *)ims;
1635 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1636 		    lims->imsl_st[0] != imf->imf_st[0])
1637 			continue;
1638 		++ncsrcs;
1639 		if (tss != NULL && nsrcs > 0) {
1640 			psin = (struct sockaddr_in *)ptss;
1641 			psin->sin_family = AF_INET;
1642 			psin->sin_len = sizeof(struct sockaddr_in);
1643 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1644 			psin->sin_port = 0;
1645 			++ptss;
1646 			--nsrcs;
1647 		}
1648 	}
1649 
1650 	INP_WUNLOCK(inp);
1651 
1652 	if (tss != NULL) {
1653 		error = copyout(tss, msfr.msfr_srcs,
1654 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1655 		free(tss, M_TEMP);
1656 		if (error)
1657 			return (error);
1658 	}
1659 
1660 	msfr.msfr_nsrcs = ncsrcs;
1661 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1662 
1663 	return (error);
1664 }
1665 
1666 /*
1667  * Return the IP multicast options in response to user getsockopt().
1668  */
1669 int
1670 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1671 {
1672 	struct ip_mreqn		 mreqn;
1673 	struct ip_moptions	*imo;
1674 	struct ifnet		*ifp;
1675 	struct in_ifaddr	*ia;
1676 	int			 error, optval;
1677 	u_char			 coptval;
1678 
1679 	INP_WLOCK(inp);
1680 	imo = inp->inp_moptions;
1681 	/*
1682 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1683 	 * or is a divert socket, reject it.
1684 	 */
1685 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1686 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1687 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1688 		INP_WUNLOCK(inp);
1689 		return (EOPNOTSUPP);
1690 	}
1691 
1692 	error = 0;
1693 	switch (sopt->sopt_name) {
1694 	case IP_MULTICAST_VIF:
1695 		if (imo != NULL)
1696 			optval = imo->imo_multicast_vif;
1697 		else
1698 			optval = -1;
1699 		INP_WUNLOCK(inp);
1700 		error = sooptcopyout(sopt, &optval, sizeof(int));
1701 		break;
1702 
1703 	case IP_MULTICAST_IF:
1704 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1705 		if (imo != NULL) {
1706 			ifp = imo->imo_multicast_ifp;
1707 			if (!in_nullhost(imo->imo_multicast_addr)) {
1708 				mreqn.imr_address = imo->imo_multicast_addr;
1709 			} else if (ifp != NULL) {
1710 				mreqn.imr_ifindex = ifp->if_index;
1711 				IFP_TO_IA(ifp, ia);
1712 				if (ia != NULL) {
1713 					mreqn.imr_address =
1714 					    IA_SIN(ia)->sin_addr;
1715 					ifa_free(&ia->ia_ifa);
1716 				}
1717 			}
1718 		}
1719 		INP_WUNLOCK(inp);
1720 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1721 			error = sooptcopyout(sopt, &mreqn,
1722 			    sizeof(struct ip_mreqn));
1723 		} else {
1724 			error = sooptcopyout(sopt, &mreqn.imr_address,
1725 			    sizeof(struct in_addr));
1726 		}
1727 		break;
1728 
1729 	case IP_MULTICAST_TTL:
1730 		if (imo == 0)
1731 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1732 		else
1733 			optval = coptval = imo->imo_multicast_ttl;
1734 		INP_WUNLOCK(inp);
1735 		if (sopt->sopt_valsize == sizeof(u_char))
1736 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1737 		else
1738 			error = sooptcopyout(sopt, &optval, sizeof(int));
1739 		break;
1740 
1741 	case IP_MULTICAST_LOOP:
1742 		if (imo == 0)
1743 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1744 		else
1745 			optval = coptval = imo->imo_multicast_loop;
1746 		INP_WUNLOCK(inp);
1747 		if (sopt->sopt_valsize == sizeof(u_char))
1748 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1749 		else
1750 			error = sooptcopyout(sopt, &optval, sizeof(int));
1751 		break;
1752 
1753 	case IP_MSFILTER:
1754 		if (imo == NULL) {
1755 			error = EADDRNOTAVAIL;
1756 			INP_WUNLOCK(inp);
1757 		} else {
1758 			error = inp_get_source_filters(inp, sopt);
1759 		}
1760 		break;
1761 
1762 	default:
1763 		INP_WUNLOCK(inp);
1764 		error = ENOPROTOOPT;
1765 		break;
1766 	}
1767 
1768 	INP_UNLOCK_ASSERT(inp);
1769 
1770 	return (error);
1771 }
1772 
1773 /*
1774  * Look up the ifnet to use for a multicast group membership,
1775  * given the IPv4 address of an interface, and the IPv4 group address.
1776  *
1777  * This routine exists to support legacy multicast applications
1778  * which do not understand that multicast memberships are scoped to
1779  * specific physical links in the networking stack, or which need
1780  * to join link-scope groups before IPv4 addresses are configured.
1781  *
1782  * If inp is non-NULL, use this socket's current FIB number for any
1783  * required FIB lookup.
1784  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1785  * and use its ifp; usually, this points to the default next-hop.
1786  *
1787  * If the FIB lookup fails, attempt to use the first non-loopback
1788  * interface with multicast capability in the system as a
1789  * last resort. The legacy IPv4 ASM API requires that we do
1790  * this in order to allow groups to be joined when the routing
1791  * table has not yet been populated during boot.
1792  *
1793  * Returns NULL if no ifp could be found.
1794  *
1795  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1796  * FUTURE: Implement IPv4 source-address selection.
1797  */
1798 static struct ifnet *
1799 inp_lookup_mcast_ifp(const struct inpcb *inp,
1800     const struct sockaddr_in *gsin, const struct in_addr ina)
1801 {
1802 	struct ifnet *ifp;
1803 
1804 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1805 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1806 	    ("%s: not multicast", __func__));
1807 
1808 	ifp = NULL;
1809 	if (!in_nullhost(ina)) {
1810 		INADDR_TO_IFP(ina, ifp);
1811 	} else {
1812 		struct route ro;
1813 
1814 		ro.ro_rt = NULL;
1815 		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1816 		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1817 		if (ro.ro_rt != NULL) {
1818 			ifp = ro.ro_rt->rt_ifp;
1819 			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1820 			RTFREE(ro.ro_rt);
1821 		} else {
1822 			struct in_ifaddr *ia;
1823 			struct ifnet *mifp;
1824 
1825 			mifp = NULL;
1826 			IN_IFADDR_RLOCK();
1827 			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1828 				mifp = ia->ia_ifp;
1829 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1830 				     (mifp->if_flags & IFF_MULTICAST)) {
1831 					ifp = mifp;
1832 					break;
1833 				}
1834 			}
1835 			IN_IFADDR_RUNLOCK();
1836 		}
1837 	}
1838 
1839 	return (ifp);
1840 }
1841 
1842 /*
1843  * Join an IPv4 multicast group, possibly with a source.
1844  */
1845 static int
1846 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1847 {
1848 	struct group_source_req		 gsr;
1849 	sockunion_t			*gsa, *ssa;
1850 	struct ifnet			*ifp;
1851 	struct in_mfilter		*imf;
1852 	struct ip_moptions		*imo;
1853 	struct in_multi			*inm;
1854 	struct in_msource		*lims;
1855 	size_t				 idx;
1856 	int				 error, is_new;
1857 
1858 	ifp = NULL;
1859 	imf = NULL;
1860 	lims = NULL;
1861 	error = 0;
1862 	is_new = 0;
1863 
1864 	memset(&gsr, 0, sizeof(struct group_source_req));
1865 	gsa = (sockunion_t *)&gsr.gsr_group;
1866 	gsa->ss.ss_family = AF_UNSPEC;
1867 	ssa = (sockunion_t *)&gsr.gsr_source;
1868 	ssa->ss.ss_family = AF_UNSPEC;
1869 
1870 	switch (sopt->sopt_name) {
1871 	case IP_ADD_MEMBERSHIP:
1872 	case IP_ADD_SOURCE_MEMBERSHIP: {
1873 		struct ip_mreq_source	 mreqs;
1874 
1875 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1876 			error = sooptcopyin(sopt, &mreqs,
1877 			    sizeof(struct ip_mreq),
1878 			    sizeof(struct ip_mreq));
1879 			/*
1880 			 * Do argument switcharoo from ip_mreq into
1881 			 * ip_mreq_source to avoid using two instances.
1882 			 */
1883 			mreqs.imr_interface = mreqs.imr_sourceaddr;
1884 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1885 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1886 			error = sooptcopyin(sopt, &mreqs,
1887 			    sizeof(struct ip_mreq_source),
1888 			    sizeof(struct ip_mreq_source));
1889 		}
1890 		if (error)
1891 			return (error);
1892 
1893 		gsa->sin.sin_family = AF_INET;
1894 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1895 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1896 
1897 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1898 			ssa->sin.sin_family = AF_INET;
1899 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1900 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1901 		}
1902 
1903 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1904 			return (EINVAL);
1905 
1906 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1907 		    mreqs.imr_interface);
1908 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1909 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1910 		break;
1911 	}
1912 
1913 	case MCAST_JOIN_GROUP:
1914 	case MCAST_JOIN_SOURCE_GROUP:
1915 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1916 			error = sooptcopyin(sopt, &gsr,
1917 			    sizeof(struct group_req),
1918 			    sizeof(struct group_req));
1919 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1920 			error = sooptcopyin(sopt, &gsr,
1921 			    sizeof(struct group_source_req),
1922 			    sizeof(struct group_source_req));
1923 		}
1924 		if (error)
1925 			return (error);
1926 
1927 		if (gsa->sin.sin_family != AF_INET ||
1928 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1929 			return (EINVAL);
1930 
1931 		/*
1932 		 * Overwrite the port field if present, as the sockaddr
1933 		 * being copied in may be matched with a binary comparison.
1934 		 */
1935 		gsa->sin.sin_port = 0;
1936 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1937 			if (ssa->sin.sin_family != AF_INET ||
1938 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1939 				return (EINVAL);
1940 			ssa->sin.sin_port = 0;
1941 		}
1942 
1943 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1944 			return (EINVAL);
1945 
1946 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1947 			return (EADDRNOTAVAIL);
1948 		ifp = ifnet_byindex(gsr.gsr_interface);
1949 		break;
1950 
1951 	default:
1952 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1953 		    __func__, sopt->sopt_name);
1954 		return (EOPNOTSUPP);
1955 		break;
1956 	}
1957 
1958 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1959 		return (EADDRNOTAVAIL);
1960 
1961 	imo = inp_findmoptions(inp);
1962 	idx = imo_match_group(imo, ifp, &gsa->sa);
1963 	if (idx == -1) {
1964 		is_new = 1;
1965 	} else {
1966 		inm = imo->imo_membership[idx];
1967 		imf = &imo->imo_mfilters[idx];
1968 		if (ssa->ss.ss_family != AF_UNSPEC) {
1969 			/*
1970 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
1971 			 * is an error. On an existing inclusive membership,
1972 			 * it just adds the source to the filter list.
1973 			 */
1974 			if (imf->imf_st[1] != MCAST_INCLUDE) {
1975 				error = EINVAL;
1976 				goto out_inp_locked;
1977 			}
1978 			/*
1979 			 * Throw out duplicates.
1980 			 *
1981 			 * XXX FIXME: This makes a naive assumption that
1982 			 * even if entries exist for *ssa in this imf,
1983 			 * they will be rejected as dupes, even if they
1984 			 * are not valid in the current mode (in-mode).
1985 			 *
1986 			 * in_msource is transactioned just as for anything
1987 			 * else in SSM -- but note naive use of inm_graft()
1988 			 * below for allocating new filter entries.
1989 			 *
1990 			 * This is only an issue if someone mixes the
1991 			 * full-state SSM API with the delta-based API,
1992 			 * which is discouraged in the relevant RFCs.
1993 			 */
1994 			lims = imo_match_source(imo, idx, &ssa->sa);
1995 			if (lims != NULL /*&&
1996 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
1997 				error = EADDRNOTAVAIL;
1998 				goto out_inp_locked;
1999 			}
2000 		} else {
2001 			/*
2002 			 * MCAST_JOIN_GROUP alone, on any existing membership,
2003 			 * is rejected, to stop the same inpcb tying up
2004 			 * multiple refs to the in_multi.
2005 			 * On an existing inclusive membership, this is also
2006 			 * an error; if you want to change filter mode,
2007 			 * you must use the userland API setsourcefilter().
2008 			 * XXX We don't reject this for imf in UNDEFINED
2009 			 * state at t1, because allocation of a filter
2010 			 * is atomic with allocation of a membership.
2011 			 */
2012 			error = EINVAL;
2013 			goto out_inp_locked;
2014 		}
2015 	}
2016 
2017 	/*
2018 	 * Begin state merge transaction at socket layer.
2019 	 */
2020 	INP_WLOCK_ASSERT(inp);
2021 
2022 	if (is_new) {
2023 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2024 			error = imo_grow(imo);
2025 			if (error)
2026 				goto out_inp_locked;
2027 		}
2028 		/*
2029 		 * Allocate the new slot upfront so we can deal with
2030 		 * grafting the new source filter in same code path
2031 		 * as for join-source on existing membership.
2032 		 */
2033 		idx = imo->imo_num_memberships;
2034 		imo->imo_membership[idx] = NULL;
2035 		imo->imo_num_memberships++;
2036 		KASSERT(imo->imo_mfilters != NULL,
2037 		    ("%s: imf_mfilters vector was not allocated", __func__));
2038 		imf = &imo->imo_mfilters[idx];
2039 		KASSERT(RB_EMPTY(&imf->imf_sources),
2040 		    ("%s: imf_sources not empty", __func__));
2041 	}
2042 
2043 	/*
2044 	 * Graft new source into filter list for this inpcb's
2045 	 * membership of the group. The in_multi may not have
2046 	 * been allocated yet if this is a new membership, however,
2047 	 * the in_mfilter slot will be allocated and must be initialized.
2048 	 *
2049 	 * Note: Grafting of exclusive mode filters doesn't happen
2050 	 * in this path.
2051 	 * XXX: Should check for non-NULL lims (node exists but may
2052 	 * not be in-mode) for interop with full-state API.
2053 	 */
2054 	if (ssa->ss.ss_family != AF_UNSPEC) {
2055 		/* Membership starts in IN mode */
2056 		if (is_new) {
2057 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2058 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2059 		} else {
2060 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2061 		}
2062 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2063 		if (lims == NULL) {
2064 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2065 			    __func__);
2066 			error = ENOMEM;
2067 			goto out_imo_free;
2068 		}
2069 	} else {
2070 		/* No address specified; Membership starts in EX mode */
2071 		if (is_new) {
2072 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2073 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * Begin state merge transaction at IGMP layer.
2079 	 */
2080 	IN_MULTI_LOCK();
2081 
2082 	if (is_new) {
2083 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2084 		    &inm);
2085 		if (error)
2086 			goto out_imo_free;
2087 		imo->imo_membership[idx] = inm;
2088 	} else {
2089 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2090 		error = inm_merge(inm, imf);
2091 		if (error) {
2092 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2093 			    __func__);
2094 			goto out_imf_rollback;
2095 		}
2096 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2097 		error = igmp_change_state(inm);
2098 		if (error) {
2099 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2100 			    __func__);
2101 			goto out_imf_rollback;
2102 		}
2103 	}
2104 
2105 	IN_MULTI_UNLOCK();
2106 
2107 out_imf_rollback:
2108 	INP_WLOCK_ASSERT(inp);
2109 	if (error) {
2110 		imf_rollback(imf);
2111 		if (is_new)
2112 			imf_purge(imf);
2113 		else
2114 			imf_reap(imf);
2115 	} else {
2116 		imf_commit(imf);
2117 	}
2118 
2119 out_imo_free:
2120 	if (error && is_new) {
2121 		imo->imo_membership[idx] = NULL;
2122 		--imo->imo_num_memberships;
2123 	}
2124 
2125 out_inp_locked:
2126 	INP_WUNLOCK(inp);
2127 	return (error);
2128 }
2129 
2130 /*
2131  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2132  */
2133 static int
2134 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2135 {
2136 	struct group_source_req		 gsr;
2137 	struct ip_mreq_source		 mreqs;
2138 	sockunion_t			*gsa, *ssa;
2139 	struct ifnet			*ifp;
2140 	struct in_mfilter		*imf;
2141 	struct ip_moptions		*imo;
2142 	struct in_msource		*ims;
2143 	struct in_multi			*inm;
2144 	size_t				 idx;
2145 	int				 error, is_final;
2146 
2147 	ifp = NULL;
2148 	error = 0;
2149 	is_final = 1;
2150 
2151 	memset(&gsr, 0, sizeof(struct group_source_req));
2152 	gsa = (sockunion_t *)&gsr.gsr_group;
2153 	gsa->ss.ss_family = AF_UNSPEC;
2154 	ssa = (sockunion_t *)&gsr.gsr_source;
2155 	ssa->ss.ss_family = AF_UNSPEC;
2156 
2157 	switch (sopt->sopt_name) {
2158 	case IP_DROP_MEMBERSHIP:
2159 	case IP_DROP_SOURCE_MEMBERSHIP:
2160 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2161 			error = sooptcopyin(sopt, &mreqs,
2162 			    sizeof(struct ip_mreq),
2163 			    sizeof(struct ip_mreq));
2164 			/*
2165 			 * Swap interface and sourceaddr arguments,
2166 			 * as ip_mreq and ip_mreq_source are laid
2167 			 * out differently.
2168 			 */
2169 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2170 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2171 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2172 			error = sooptcopyin(sopt, &mreqs,
2173 			    sizeof(struct ip_mreq_source),
2174 			    sizeof(struct ip_mreq_source));
2175 		}
2176 		if (error)
2177 			return (error);
2178 
2179 		gsa->sin.sin_family = AF_INET;
2180 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2181 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2182 
2183 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2184 			ssa->sin.sin_family = AF_INET;
2185 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2186 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2187 		}
2188 
2189 		if (!in_nullhost(gsa->sin.sin_addr))
2190 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2191 
2192 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2193 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2194 
2195 		break;
2196 
2197 	case MCAST_LEAVE_GROUP:
2198 	case MCAST_LEAVE_SOURCE_GROUP:
2199 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2200 			error = sooptcopyin(sopt, &gsr,
2201 			    sizeof(struct group_req),
2202 			    sizeof(struct group_req));
2203 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2204 			error = sooptcopyin(sopt, &gsr,
2205 			    sizeof(struct group_source_req),
2206 			    sizeof(struct group_source_req));
2207 		}
2208 		if (error)
2209 			return (error);
2210 
2211 		if (gsa->sin.sin_family != AF_INET ||
2212 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2213 			return (EINVAL);
2214 
2215 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2216 			if (ssa->sin.sin_family != AF_INET ||
2217 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2218 				return (EINVAL);
2219 		}
2220 
2221 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2222 			return (EADDRNOTAVAIL);
2223 
2224 		ifp = ifnet_byindex(gsr.gsr_interface);
2225 		break;
2226 
2227 	default:
2228 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2229 		    __func__, sopt->sopt_name);
2230 		return (EOPNOTSUPP);
2231 		break;
2232 	}
2233 
2234 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2235 		return (EINVAL);
2236 
2237 	if (ifp == NULL)
2238 		return (EADDRNOTAVAIL);
2239 
2240 	/*
2241 	 * Find the membership in the membership array.
2242 	 */
2243 	imo = inp_findmoptions(inp);
2244 	idx = imo_match_group(imo, ifp, &gsa->sa);
2245 	if (idx == -1) {
2246 		error = EADDRNOTAVAIL;
2247 		goto out_inp_locked;
2248 	}
2249 	inm = imo->imo_membership[idx];
2250 	imf = &imo->imo_mfilters[idx];
2251 
2252 	if (ssa->ss.ss_family != AF_UNSPEC)
2253 		is_final = 0;
2254 
2255 	/*
2256 	 * Begin state merge transaction at socket layer.
2257 	 */
2258 	INP_WLOCK_ASSERT(inp);
2259 
2260 	/*
2261 	 * If we were instructed only to leave a given source, do so.
2262 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2263 	 */
2264 	if (is_final) {
2265 		imf_leave(imf);
2266 	} else {
2267 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2268 			error = EADDRNOTAVAIL;
2269 			goto out_inp_locked;
2270 		}
2271 		ims = imo_match_source(imo, idx, &ssa->sa);
2272 		if (ims == NULL) {
2273 			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2274 			    inet_ntoa(ssa->sin.sin_addr), "not ");
2275 			error = EADDRNOTAVAIL;
2276 			goto out_inp_locked;
2277 		}
2278 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2279 		error = imf_prune(imf, &ssa->sin);
2280 		if (error) {
2281 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2282 			    __func__);
2283 			goto out_inp_locked;
2284 		}
2285 	}
2286 
2287 	/*
2288 	 * Begin state merge transaction at IGMP layer.
2289 	 */
2290 	IN_MULTI_LOCK();
2291 
2292 	if (is_final) {
2293 		/*
2294 		 * Give up the multicast address record to which
2295 		 * the membership points.
2296 		 */
2297 		(void)in_leavegroup_locked(inm, imf);
2298 	} else {
2299 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2300 		error = inm_merge(inm, imf);
2301 		if (error) {
2302 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2303 			    __func__);
2304 			goto out_imf_rollback;
2305 		}
2306 
2307 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2308 		error = igmp_change_state(inm);
2309 		if (error) {
2310 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2311 			    __func__);
2312 		}
2313 	}
2314 
2315 	IN_MULTI_UNLOCK();
2316 
2317 out_imf_rollback:
2318 	if (error)
2319 		imf_rollback(imf);
2320 	else
2321 		imf_commit(imf);
2322 
2323 	imf_reap(imf);
2324 
2325 	if (is_final) {
2326 		/* Remove the gap in the membership and filter array. */
2327 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2328 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2329 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2330 		}
2331 		imo->imo_num_memberships--;
2332 	}
2333 
2334 out_inp_locked:
2335 	INP_WUNLOCK(inp);
2336 	return (error);
2337 }
2338 
2339 /*
2340  * Select the interface for transmitting IPv4 multicast datagrams.
2341  *
2342  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2343  * may be passed to this socket option. An address of INADDR_ANY or an
2344  * interface index of 0 is used to remove a previous selection.
2345  * When no interface is selected, one is chosen for every send.
2346  */
2347 static int
2348 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2349 {
2350 	struct in_addr		 addr;
2351 	struct ip_mreqn		 mreqn;
2352 	struct ifnet		*ifp;
2353 	struct ip_moptions	*imo;
2354 	int			 error;
2355 
2356 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2357 		/*
2358 		 * An interface index was specified using the
2359 		 * Linux-derived ip_mreqn structure.
2360 		 */
2361 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2362 		    sizeof(struct ip_mreqn));
2363 		if (error)
2364 			return (error);
2365 
2366 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2367 			return (EINVAL);
2368 
2369 		if (mreqn.imr_ifindex == 0) {
2370 			ifp = NULL;
2371 		} else {
2372 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2373 			if (ifp == NULL)
2374 				return (EADDRNOTAVAIL);
2375 		}
2376 	} else {
2377 		/*
2378 		 * An interface was specified by IPv4 address.
2379 		 * This is the traditional BSD usage.
2380 		 */
2381 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2382 		    sizeof(struct in_addr));
2383 		if (error)
2384 			return (error);
2385 		if (in_nullhost(addr)) {
2386 			ifp = NULL;
2387 		} else {
2388 			INADDR_TO_IFP(addr, ifp);
2389 			if (ifp == NULL)
2390 				return (EADDRNOTAVAIL);
2391 		}
2392 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2393 		    inet_ntoa(addr));
2394 	}
2395 
2396 	/* Reject interfaces which do not support multicast. */
2397 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2398 		return (EOPNOTSUPP);
2399 
2400 	imo = inp_findmoptions(inp);
2401 	imo->imo_multicast_ifp = ifp;
2402 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2403 	INP_WUNLOCK(inp);
2404 
2405 	return (0);
2406 }
2407 
2408 /*
2409  * Atomically set source filters on a socket for an IPv4 multicast group.
2410  *
2411  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2412  */
2413 static int
2414 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2415 {
2416 	struct __msfilterreq	 msfr;
2417 	sockunion_t		*gsa;
2418 	struct ifnet		*ifp;
2419 	struct in_mfilter	*imf;
2420 	struct ip_moptions	*imo;
2421 	struct in_multi		*inm;
2422 	size_t			 idx;
2423 	int			 error;
2424 
2425 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2426 	    sizeof(struct __msfilterreq));
2427 	if (error)
2428 		return (error);
2429 
2430 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2431 		return (ENOBUFS);
2432 
2433 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2434 	     msfr.msfr_fmode != MCAST_INCLUDE))
2435 		return (EINVAL);
2436 
2437 	if (msfr.msfr_group.ss_family != AF_INET ||
2438 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2439 		return (EINVAL);
2440 
2441 	gsa = (sockunion_t *)&msfr.msfr_group;
2442 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2443 		return (EINVAL);
2444 
2445 	gsa->sin.sin_port = 0;	/* ignore port */
2446 
2447 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2448 		return (EADDRNOTAVAIL);
2449 
2450 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2451 	if (ifp == NULL)
2452 		return (EADDRNOTAVAIL);
2453 
2454 	/*
2455 	 * Take the INP write lock.
2456 	 * Check if this socket is a member of this group.
2457 	 */
2458 	imo = inp_findmoptions(inp);
2459 	idx = imo_match_group(imo, ifp, &gsa->sa);
2460 	if (idx == -1 || imo->imo_mfilters == NULL) {
2461 		error = EADDRNOTAVAIL;
2462 		goto out_inp_locked;
2463 	}
2464 	inm = imo->imo_membership[idx];
2465 	imf = &imo->imo_mfilters[idx];
2466 
2467 	/*
2468 	 * Begin state merge transaction at socket layer.
2469 	 */
2470 	INP_WLOCK_ASSERT(inp);
2471 
2472 	imf->imf_st[1] = msfr.msfr_fmode;
2473 
2474 	/*
2475 	 * Apply any new source filters, if present.
2476 	 * Make a copy of the user-space source vector so
2477 	 * that we may copy them with a single copyin. This
2478 	 * allows us to deal with page faults up-front.
2479 	 */
2480 	if (msfr.msfr_nsrcs > 0) {
2481 		struct in_msource	*lims;
2482 		struct sockaddr_in	*psin;
2483 		struct sockaddr_storage	*kss, *pkss;
2484 		int			 i;
2485 
2486 		INP_WUNLOCK(inp);
2487 
2488 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2489 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2490 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2491 		    M_TEMP, M_WAITOK);
2492 		error = copyin(msfr.msfr_srcs, kss,
2493 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2494 		if (error) {
2495 			free(kss, M_TEMP);
2496 			return (error);
2497 		}
2498 
2499 		INP_WLOCK(inp);
2500 
2501 		/*
2502 		 * Mark all source filters as UNDEFINED at t1.
2503 		 * Restore new group filter mode, as imf_leave()
2504 		 * will set it to INCLUDE.
2505 		 */
2506 		imf_leave(imf);
2507 		imf->imf_st[1] = msfr.msfr_fmode;
2508 
2509 		/*
2510 		 * Update socket layer filters at t1, lazy-allocating
2511 		 * new entries. This saves a bunch of memory at the
2512 		 * cost of one RB_FIND() per source entry; duplicate
2513 		 * entries in the msfr_nsrcs vector are ignored.
2514 		 * If we encounter an error, rollback transaction.
2515 		 *
2516 		 * XXX This too could be replaced with a set-symmetric
2517 		 * difference like loop to avoid walking from root
2518 		 * every time, as the key space is common.
2519 		 */
2520 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2521 			psin = (struct sockaddr_in *)pkss;
2522 			if (psin->sin_family != AF_INET) {
2523 				error = EAFNOSUPPORT;
2524 				break;
2525 			}
2526 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2527 				error = EINVAL;
2528 				break;
2529 			}
2530 			error = imf_get_source(imf, psin, &lims);
2531 			if (error)
2532 				break;
2533 			lims->imsl_st[1] = imf->imf_st[1];
2534 		}
2535 		free(kss, M_TEMP);
2536 	}
2537 
2538 	if (error)
2539 		goto out_imf_rollback;
2540 
2541 	INP_WLOCK_ASSERT(inp);
2542 	IN_MULTI_LOCK();
2543 
2544 	/*
2545 	 * Begin state merge transaction at IGMP layer.
2546 	 */
2547 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2548 	error = inm_merge(inm, imf);
2549 	if (error) {
2550 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2551 		goto out_imf_rollback;
2552 	}
2553 
2554 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2555 	error = igmp_change_state(inm);
2556 	if (error)
2557 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2558 
2559 	IN_MULTI_UNLOCK();
2560 
2561 out_imf_rollback:
2562 	if (error)
2563 		imf_rollback(imf);
2564 	else
2565 		imf_commit(imf);
2566 
2567 	imf_reap(imf);
2568 
2569 out_inp_locked:
2570 	INP_WUNLOCK(inp);
2571 	return (error);
2572 }
2573 
2574 /*
2575  * Set the IP multicast options in response to user setsockopt().
2576  *
2577  * Many of the socket options handled in this function duplicate the
2578  * functionality of socket options in the regular unicast API. However,
2579  * it is not possible to merge the duplicate code, because the idempotence
2580  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2581  * the effects of these options must be treated as separate and distinct.
2582  *
2583  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2584  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2585  * is refactored to no longer use vifs.
2586  */
2587 int
2588 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2589 {
2590 	struct ip_moptions	*imo;
2591 	int			 error;
2592 
2593 	error = 0;
2594 
2595 	/*
2596 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2597 	 * or is a divert socket, reject it.
2598 	 */
2599 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2600 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2601 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2602 		return (EOPNOTSUPP);
2603 
2604 	switch (sopt->sopt_name) {
2605 	case IP_MULTICAST_VIF: {
2606 		int vifi;
2607 		/*
2608 		 * Select a multicast VIF for transmission.
2609 		 * Only useful if multicast forwarding is active.
2610 		 */
2611 		if (legal_vif_num == NULL) {
2612 			error = EOPNOTSUPP;
2613 			break;
2614 		}
2615 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2616 		if (error)
2617 			break;
2618 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2619 			error = EINVAL;
2620 			break;
2621 		}
2622 		imo = inp_findmoptions(inp);
2623 		imo->imo_multicast_vif = vifi;
2624 		INP_WUNLOCK(inp);
2625 		break;
2626 	}
2627 
2628 	case IP_MULTICAST_IF:
2629 		error = inp_set_multicast_if(inp, sopt);
2630 		break;
2631 
2632 	case IP_MULTICAST_TTL: {
2633 		u_char ttl;
2634 
2635 		/*
2636 		 * Set the IP time-to-live for outgoing multicast packets.
2637 		 * The original multicast API required a char argument,
2638 		 * which is inconsistent with the rest of the socket API.
2639 		 * We allow either a char or an int.
2640 		 */
2641 		if (sopt->sopt_valsize == sizeof(u_char)) {
2642 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2643 			    sizeof(u_char));
2644 			if (error)
2645 				break;
2646 		} else {
2647 			u_int ittl;
2648 
2649 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2650 			    sizeof(u_int));
2651 			if (error)
2652 				break;
2653 			if (ittl > 255) {
2654 				error = EINVAL;
2655 				break;
2656 			}
2657 			ttl = (u_char)ittl;
2658 		}
2659 		imo = inp_findmoptions(inp);
2660 		imo->imo_multicast_ttl = ttl;
2661 		INP_WUNLOCK(inp);
2662 		break;
2663 	}
2664 
2665 	case IP_MULTICAST_LOOP: {
2666 		u_char loop;
2667 
2668 		/*
2669 		 * Set the loopback flag for outgoing multicast packets.
2670 		 * Must be zero or one.  The original multicast API required a
2671 		 * char argument, which is inconsistent with the rest
2672 		 * of the socket API.  We allow either a char or an int.
2673 		 */
2674 		if (sopt->sopt_valsize == sizeof(u_char)) {
2675 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2676 			    sizeof(u_char));
2677 			if (error)
2678 				break;
2679 		} else {
2680 			u_int iloop;
2681 
2682 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2683 					    sizeof(u_int));
2684 			if (error)
2685 				break;
2686 			loop = (u_char)iloop;
2687 		}
2688 		imo = inp_findmoptions(inp);
2689 		imo->imo_multicast_loop = !!loop;
2690 		INP_WUNLOCK(inp);
2691 		break;
2692 	}
2693 
2694 	case IP_ADD_MEMBERSHIP:
2695 	case IP_ADD_SOURCE_MEMBERSHIP:
2696 	case MCAST_JOIN_GROUP:
2697 	case MCAST_JOIN_SOURCE_GROUP:
2698 		error = inp_join_group(inp, sopt);
2699 		break;
2700 
2701 	case IP_DROP_MEMBERSHIP:
2702 	case IP_DROP_SOURCE_MEMBERSHIP:
2703 	case MCAST_LEAVE_GROUP:
2704 	case MCAST_LEAVE_SOURCE_GROUP:
2705 		error = inp_leave_group(inp, sopt);
2706 		break;
2707 
2708 	case IP_BLOCK_SOURCE:
2709 	case IP_UNBLOCK_SOURCE:
2710 	case MCAST_BLOCK_SOURCE:
2711 	case MCAST_UNBLOCK_SOURCE:
2712 		error = inp_block_unblock_source(inp, sopt);
2713 		break;
2714 
2715 	case IP_MSFILTER:
2716 		error = inp_set_source_filters(inp, sopt);
2717 		break;
2718 
2719 	default:
2720 		error = EOPNOTSUPP;
2721 		break;
2722 	}
2723 
2724 	INP_UNLOCK_ASSERT(inp);
2725 
2726 	return (error);
2727 }
2728 
2729 /*
2730  * Expose IGMP's multicast filter mode and source list(s) to userland,
2731  * keyed by (ifindex, group).
2732  * The filter mode is written out as a uint32_t, followed by
2733  * 0..n of struct in_addr.
2734  * For use by ifmcstat(8).
2735  * SMPng: NOTE: unlocked read of ifindex space.
2736  */
2737 static int
2738 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2739 {
2740 	struct in_addr			 src, group;
2741 	struct ifnet			*ifp;
2742 	struct ifmultiaddr		*ifma;
2743 	struct in_multi			*inm;
2744 	struct ip_msource		*ims;
2745 	int				*name;
2746 	int				 retval;
2747 	u_int				 namelen;
2748 	uint32_t			 fmode, ifindex;
2749 
2750 	name = (int *)arg1;
2751 	namelen = arg2;
2752 
2753 	if (req->newptr != NULL)
2754 		return (EPERM);
2755 
2756 	if (namelen != 2)
2757 		return (EINVAL);
2758 
2759 	ifindex = name[0];
2760 	if (ifindex <= 0 || ifindex > V_if_index) {
2761 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2762 		    __func__, ifindex);
2763 		return (ENOENT);
2764 	}
2765 
2766 	group.s_addr = name[1];
2767 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2768 		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2769 		    __func__, inet_ntoa(group));
2770 		return (EINVAL);
2771 	}
2772 
2773 	ifp = ifnet_byindex(ifindex);
2774 	if (ifp == NULL) {
2775 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2776 		    __func__, ifindex);
2777 		return (ENOENT);
2778 	}
2779 
2780 	retval = sysctl_wire_old_buffer(req,
2781 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2782 	if (retval)
2783 		return (retval);
2784 
2785 	IN_MULTI_LOCK();
2786 
2787 	IF_ADDR_LOCK(ifp);
2788 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2789 		if (ifma->ifma_addr->sa_family != AF_INET ||
2790 		    ifma->ifma_protospec == NULL)
2791 			continue;
2792 		inm = (struct in_multi *)ifma->ifma_protospec;
2793 		if (!in_hosteq(inm->inm_addr, group))
2794 			continue;
2795 		fmode = inm->inm_st[1].iss_fmode;
2796 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2797 		if (retval != 0)
2798 			break;
2799 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2800 #ifdef KTR
2801 			struct in_addr ina;
2802 			ina.s_addr = htonl(ims->ims_haddr);
2803 			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2804 			    inet_ntoa(ina));
2805 #endif
2806 			/*
2807 			 * Only copy-out sources which are in-mode.
2808 			 */
2809 			if (fmode != ims_get_mode(inm, ims, 1)) {
2810 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2811 				    __func__);
2812 				continue;
2813 			}
2814 			src.s_addr = htonl(ims->ims_haddr);
2815 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2816 			if (retval != 0)
2817 				break;
2818 		}
2819 	}
2820 	IF_ADDR_UNLOCK(ifp);
2821 
2822 	IN_MULTI_UNLOCK();
2823 
2824 	return (retval);
2825 }
2826 
2827 #ifdef KTR
2828 
2829 static const char *inm_modestrs[] = { "un", "in", "ex" };
2830 
2831 static const char *
2832 inm_mode_str(const int mode)
2833 {
2834 
2835 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2836 		return (inm_modestrs[mode]);
2837 	return ("??");
2838 }
2839 
2840 static const char *inm_statestrs[] = {
2841 	"not-member",
2842 	"silent",
2843 	"idle",
2844 	"lazy",
2845 	"sleeping",
2846 	"awakening",
2847 	"query-pending",
2848 	"sg-query-pending",
2849 	"leaving"
2850 };
2851 
2852 static const char *
2853 inm_state_str(const int state)
2854 {
2855 
2856 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2857 		return (inm_statestrs[state]);
2858 	return ("??");
2859 }
2860 
2861 /*
2862  * Dump an in_multi structure to the console.
2863  */
2864 void
2865 inm_print(const struct in_multi *inm)
2866 {
2867 	int t;
2868 
2869 	if ((ktr_mask & KTR_IGMPV3) == 0)
2870 		return;
2871 
2872 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2873 	printf("addr %s ifp %p(%s) ifma %p\n",
2874 	    inet_ntoa(inm->inm_addr),
2875 	    inm->inm_ifp,
2876 	    inm->inm_ifp->if_xname,
2877 	    inm->inm_ifma);
2878 	printf("timer %u state %s refcount %u scq.len %u\n",
2879 	    inm->inm_timer,
2880 	    inm_state_str(inm->inm_state),
2881 	    inm->inm_refcount,
2882 	    inm->inm_scq.ifq_len);
2883 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2884 	    inm->inm_igi,
2885 	    inm->inm_nsrc,
2886 	    inm->inm_sctimer,
2887 	    inm->inm_scrv);
2888 	for (t = 0; t < 2; t++) {
2889 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2890 		    inm_mode_str(inm->inm_st[t].iss_fmode),
2891 		    inm->inm_st[t].iss_asm,
2892 		    inm->inm_st[t].iss_ex,
2893 		    inm->inm_st[t].iss_in,
2894 		    inm->inm_st[t].iss_rec);
2895 	}
2896 	printf("%s: --- end inm %p ---\n", __func__, inm);
2897 }
2898 
2899 #else /* !KTR */
2900 
2901 void
2902 inm_print(const struct in_multi *inm)
2903 {
2904 
2905 }
2906 
2907 #endif /* KTR */
2908 
2909 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2910