xref: /freebsd/sys/netinet/in_mcast.c (revision 4c1a82cea504df7a79f5bd8f7d0a41cacccff16e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/gtaskqueue.h>
55 #include <sys/tree.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  *
98  * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
99  *   IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
100  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
101  *   it can be taken by code in net/if.c also.
102  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
103  *
104  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
105  * any need for in_multi itself to be virtualized -- it is bound to an ifp
106  * anyway no matter what happens.
107  */
108 struct mtx in_multi_list_mtx;
109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
110 
111 struct mtx in_multi_free_mtx;
112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
113 
114 struct sx in_multi_sx;
115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
116 
117 int ifma_restart;
118 
119 /*
120  * Functions with non-static linkage defined in this file should be
121  * declared in in_var.h:
122  *  imo_multi_filter()
123  *  in_addmulti()
124  *  in_delmulti()
125  *  in_joingroup()
126  *  in_joingroup_locked()
127  *  in_leavegroup()
128  *  in_leavegroup_locked()
129  * and ip_var.h:
130  *  inp_freemoptions()
131  *  inp_getmoptions()
132  *  inp_setmoptions()
133  *
134  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
135  * and in_delmulti().
136  */
137 static void	imf_commit(struct in_mfilter *);
138 static int	imf_get_source(struct in_mfilter *imf,
139 		    const struct sockaddr_in *psin,
140 		    struct in_msource **);
141 static struct in_msource *
142 		imf_graft(struct in_mfilter *, const uint8_t,
143 		    const struct sockaddr_in *);
144 static void	imf_leave(struct in_mfilter *);
145 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
146 static void	imf_purge(struct in_mfilter *);
147 static void	imf_rollback(struct in_mfilter *);
148 static void	imf_reap(struct in_mfilter *);
149 static struct in_mfilter *
150 		imo_match_group(const struct ip_moptions *,
151 		    const struct ifnet *, const struct sockaddr *);
152 static struct in_msource *
153 		imo_match_source(struct in_mfilter *, const struct sockaddr *);
154 static void	ims_merge(struct ip_msource *ims,
155 		    const struct in_msource *lims, const int rollback);
156 static int	in_getmulti(struct ifnet *, const struct in_addr *,
157 		    struct in_multi **);
158 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
159 		    const int noalloc, struct ip_msource **pims);
160 #ifdef KTR
161 static int	inm_is_ifp_detached(const struct in_multi *);
162 #endif
163 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
164 static void	inm_purge(struct in_multi *);
165 static void	inm_reap(struct in_multi *);
166 static void inm_release(struct in_multi *);
167 static struct ip_moptions *
168 		inp_findmoptions(struct inpcb *);
169 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
170 static int	inp_join_group(struct inpcb *, struct sockopt *);
171 static int	inp_leave_group(struct inpcb *, struct sockopt *);
172 static struct ifnet *
173 		inp_lookup_mcast_ifp(const struct inpcb *,
174 		    const struct sockaddr_in *, const struct in_addr);
175 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
176 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
177 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
178 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
179 
180 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
181     "IPv4 multicast");
182 
183 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
184 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
185     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
186     "Max source filters per group");
187 
188 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
189 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
190     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
191     "Max source filters per socket");
192 
193 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
194 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
195     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
196 
197 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
198     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
199     "Per-interface stack-wide source filters");
200 
201 #ifdef KTR
202 /*
203  * Inline function which wraps assertions for a valid ifp.
204  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
205  * is detached.
206  */
207 static int __inline
208 inm_is_ifp_detached(const struct in_multi *inm)
209 {
210 	struct ifnet *ifp;
211 
212 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
213 	ifp = inm->inm_ifma->ifma_ifp;
214 	if (ifp != NULL) {
215 		/*
216 		 * Sanity check that netinet's notion of ifp is the
217 		 * same as net's.
218 		 */
219 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
220 	}
221 
222 	return (ifp == NULL);
223 }
224 #endif
225 
226 static struct grouptask free_gtask;
227 static struct in_multi_head inm_free_list;
228 static void inm_release_task(void *arg __unused);
229 static void inm_init(void)
230 {
231 	SLIST_INIT(&inm_free_list);
232 	taskqgroup_config_gtask_init(NULL, &free_gtask, inm_release_task, "inm release task");
233 }
234 
235 #ifdef EARLY_AP_STARTUP
236 SYSINIT(inm_init, SI_SUB_SMP + 1, SI_ORDER_FIRST,
237 	inm_init, NULL);
238 #else
239 SYSINIT(inm_init, SI_SUB_ROOT_CONF - 1, SI_ORDER_FIRST,
240 	inm_init, NULL);
241 #endif
242 
243 
244 void
245 inm_release_list_deferred(struct in_multi_head *inmh)
246 {
247 
248 	if (SLIST_EMPTY(inmh))
249 		return;
250 	mtx_lock(&in_multi_free_mtx);
251 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
252 	mtx_unlock(&in_multi_free_mtx);
253 	GROUPTASK_ENQUEUE(&free_gtask);
254 }
255 
256 void
257 inm_disconnect(struct in_multi *inm)
258 {
259 	struct ifnet *ifp;
260 	struct ifmultiaddr *ifma, *ll_ifma;
261 
262 	ifp = inm->inm_ifp;
263 	IF_ADDR_WLOCK_ASSERT(ifp);
264 	ifma = inm->inm_ifma;
265 
266 	if_ref(ifp);
267 	if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
268 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
269 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
270 	}
271 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
272 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
273 		MPASS(ifma != ll_ifma);
274 		ifma->ifma_llifma = NULL;
275 		MPASS(ll_ifma->ifma_llifma == NULL);
276 		MPASS(ll_ifma->ifma_ifp == ifp);
277 		if (--ll_ifma->ifma_refcount == 0) {
278 			if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
279 				CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
280 				ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
281 			}
282 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
283 			if_freemulti(ll_ifma);
284 			ifma_restart = true;
285 		}
286 	}
287 }
288 
289 void
290 inm_release_deferred(struct in_multi *inm)
291 {
292 	struct in_multi_head tmp;
293 
294 	IN_MULTI_LIST_LOCK_ASSERT();
295 	MPASS(inm->inm_refcount > 0);
296 	if (--inm->inm_refcount == 0) {
297 		SLIST_INIT(&tmp);
298 		inm_disconnect(inm);
299 		inm->inm_ifma->ifma_protospec = NULL;
300 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
301 		inm_release_list_deferred(&tmp);
302 	}
303 }
304 
305 static void
306 inm_release_task(void *arg __unused)
307 {
308 	struct in_multi_head inm_free_tmp;
309 	struct in_multi *inm, *tinm;
310 
311 	SLIST_INIT(&inm_free_tmp);
312 	mtx_lock(&in_multi_free_mtx);
313 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
314 	mtx_unlock(&in_multi_free_mtx);
315 	IN_MULTI_LOCK();
316 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
317 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
318 		MPASS(inm);
319 		inm_release(inm);
320 	}
321 	IN_MULTI_UNLOCK();
322 }
323 
324 /*
325  * Initialize an in_mfilter structure to a known state at t0, t1
326  * with an empty source filter list.
327  */
328 static __inline void
329 imf_init(struct in_mfilter *imf, const int st0, const int st1)
330 {
331 	memset(imf, 0, sizeof(struct in_mfilter));
332 	RB_INIT(&imf->imf_sources);
333 	imf->imf_st[0] = st0;
334 	imf->imf_st[1] = st1;
335 }
336 
337 struct in_mfilter *
338 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
339 {
340 	struct in_mfilter *imf;
341 
342 	imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
343 	if (imf != NULL)
344 		imf_init(imf, st0, st1);
345 
346 	return (imf);
347 }
348 
349 void
350 ip_mfilter_free(struct in_mfilter *imf)
351 {
352 
353 	imf_purge(imf);
354 	free(imf, M_INMFILTER);
355 }
356 
357 /*
358  * Function for looking up an in_multi record for an IPv4 multicast address
359  * on a given interface. ifp must be valid. If no record found, return NULL.
360  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
361  */
362 struct in_multi *
363 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
364 {
365 	struct ifmultiaddr *ifma;
366 	struct in_multi *inm;
367 
368 	IN_MULTI_LIST_LOCK_ASSERT();
369 	IF_ADDR_LOCK_ASSERT(ifp);
370 
371 	inm = NULL;
372 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
373 		if (ifma->ifma_addr->sa_family != AF_INET ||
374 			ifma->ifma_protospec == NULL)
375 			continue;
376 		inm = (struct in_multi *)ifma->ifma_protospec;
377 		if (inm->inm_addr.s_addr == ina.s_addr)
378 			break;
379 		inm = NULL;
380 	}
381 	return (inm);
382 }
383 
384 /*
385  * Wrapper for inm_lookup_locked().
386  * The IF_ADDR_LOCK will be taken on ifp and released on return.
387  */
388 struct in_multi *
389 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
390 {
391 	struct epoch_tracker et;
392 	struct in_multi *inm;
393 
394 	IN_MULTI_LIST_LOCK_ASSERT();
395 	NET_EPOCH_ENTER(et);
396 	inm = inm_lookup_locked(ifp, ina);
397 	NET_EPOCH_EXIT(et);
398 
399 	return (inm);
400 }
401 
402 /*
403  * Find an IPv4 multicast group entry for this ip_moptions instance
404  * which matches the specified group, and optionally an interface.
405  * Return its index into the array, or -1 if not found.
406  */
407 static struct in_mfilter *
408 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
409     const struct sockaddr *group)
410 {
411 	const struct sockaddr_in *gsin;
412 	struct in_mfilter *imf;
413 	struct in_multi	*inm;
414 
415 	gsin = (const struct sockaddr_in *)group;
416 
417 	IP_MFILTER_FOREACH(imf, &imo->imo_head) {
418 		inm = imf->imf_inm;
419 		if (inm == NULL)
420 			continue;
421 		if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
422 		    in_hosteq(inm->inm_addr, gsin->sin_addr)) {
423 			break;
424 		}
425 	}
426 	return (imf);
427 }
428 
429 /*
430  * Find an IPv4 multicast source entry for this imo which matches
431  * the given group index for this socket, and source address.
432  *
433  * NOTE: This does not check if the entry is in-mode, merely if
434  * it exists, which may not be the desired behaviour.
435  */
436 static struct in_msource *
437 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
438 {
439 	struct ip_msource	 find;
440 	struct ip_msource	*ims;
441 	const sockunion_t	*psa;
442 
443 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
444 
445 	/* Source trees are keyed in host byte order. */
446 	psa = (const sockunion_t *)src;
447 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
448 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
449 
450 	return ((struct in_msource *)ims);
451 }
452 
453 /*
454  * Perform filtering for multicast datagrams on a socket by group and source.
455  *
456  * Returns 0 if a datagram should be allowed through, or various error codes
457  * if the socket was not a member of the group, or the source was muted, etc.
458  */
459 int
460 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
461     const struct sockaddr *group, const struct sockaddr *src)
462 {
463 	struct in_mfilter *imf;
464 	struct in_msource *ims;
465 	int mode;
466 
467 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
468 
469 	imf = imo_match_group(imo, ifp, group);
470 	if (imf == NULL)
471 		return (MCAST_NOTGMEMBER);
472 
473 	/*
474 	 * Check if the source was included in an (S,G) join.
475 	 * Allow reception on exclusive memberships by default,
476 	 * reject reception on inclusive memberships by default.
477 	 * Exclude source only if an in-mode exclude filter exists.
478 	 * Include source only if an in-mode include filter exists.
479 	 * NOTE: We are comparing group state here at IGMP t1 (now)
480 	 * with socket-layer t0 (since last downcall).
481 	 */
482 	mode = imf->imf_st[1];
483 	ims = imo_match_source(imf, src);
484 
485 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
486 	    (ims != NULL && ims->imsl_st[0] != mode))
487 		return (MCAST_NOTSMEMBER);
488 
489 	return (MCAST_PASS);
490 }
491 
492 /*
493  * Find and return a reference to an in_multi record for (ifp, group),
494  * and bump its reference count.
495  * If one does not exist, try to allocate it, and update link-layer multicast
496  * filters on ifp to listen for group.
497  * Assumes the IN_MULTI lock is held across the call.
498  * Return 0 if successful, otherwise return an appropriate error code.
499  */
500 static int
501 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
502     struct in_multi **pinm)
503 {
504 	struct sockaddr_in	 gsin;
505 	struct ifmultiaddr	*ifma;
506 	struct in_ifinfo	*ii;
507 	struct in_multi		*inm;
508 	int error;
509 
510 	IN_MULTI_LOCK_ASSERT();
511 
512 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
513 	IN_MULTI_LIST_LOCK();
514 	inm = inm_lookup(ifp, *group);
515 	if (inm != NULL) {
516 		/*
517 		 * If we already joined this group, just bump the
518 		 * refcount and return it.
519 		 */
520 		KASSERT(inm->inm_refcount >= 1,
521 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
522 		inm_acquire_locked(inm);
523 		*pinm = inm;
524 	}
525 	IN_MULTI_LIST_UNLOCK();
526 	if (inm != NULL)
527 		return (0);
528 
529 	memset(&gsin, 0, sizeof(gsin));
530 	gsin.sin_family = AF_INET;
531 	gsin.sin_len = sizeof(struct sockaddr_in);
532 	gsin.sin_addr = *group;
533 
534 	/*
535 	 * Check if a link-layer group is already associated
536 	 * with this network-layer group on the given ifnet.
537 	 */
538 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
539 	if (error != 0)
540 		return (error);
541 
542 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
543 	IN_MULTI_LIST_LOCK();
544 	IF_ADDR_WLOCK(ifp);
545 
546 	/*
547 	 * If something other than netinet is occupying the link-layer
548 	 * group, print a meaningful error message and back out of
549 	 * the allocation.
550 	 * Otherwise, bump the refcount on the existing network-layer
551 	 * group association and return it.
552 	 */
553 	if (ifma->ifma_protospec != NULL) {
554 		inm = (struct in_multi *)ifma->ifma_protospec;
555 #ifdef INVARIANTS
556 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
557 		    __func__));
558 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
559 		    ("%s: ifma not AF_INET", __func__));
560 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
561 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
562 		    !in_hosteq(inm->inm_addr, *group)) {
563 			char addrbuf[INET_ADDRSTRLEN];
564 
565 			panic("%s: ifma %p is inconsistent with %p (%s)",
566 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
567 		}
568 #endif
569 		inm_acquire_locked(inm);
570 		*pinm = inm;
571 		goto out_locked;
572 	}
573 
574 	IF_ADDR_WLOCK_ASSERT(ifp);
575 
576 	/*
577 	 * A new in_multi record is needed; allocate and initialize it.
578 	 * We DO NOT perform an IGMP join as the in_ layer may need to
579 	 * push an initial source list down to IGMP to support SSM.
580 	 *
581 	 * The initial source filter state is INCLUDE, {} as per the RFC.
582 	 */
583 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
584 	if (inm == NULL) {
585 		IF_ADDR_WUNLOCK(ifp);
586 		IN_MULTI_LIST_UNLOCK();
587 		if_delmulti_ifma(ifma);
588 		return (ENOMEM);
589 	}
590 	inm->inm_addr = *group;
591 	inm->inm_ifp = ifp;
592 	inm->inm_igi = ii->ii_igmp;
593 	inm->inm_ifma = ifma;
594 	inm->inm_refcount = 1;
595 	inm->inm_state = IGMP_NOT_MEMBER;
596 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
597 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
598 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
599 	RB_INIT(&inm->inm_srcs);
600 
601 	ifma->ifma_protospec = inm;
602 
603 	*pinm = inm;
604  out_locked:
605 	IF_ADDR_WUNLOCK(ifp);
606 	IN_MULTI_LIST_UNLOCK();
607 	return (0);
608 }
609 
610 /*
611  * Drop a reference to an in_multi record.
612  *
613  * If the refcount drops to 0, free the in_multi record and
614  * delete the underlying link-layer membership.
615  */
616 static void
617 inm_release(struct in_multi *inm)
618 {
619 	struct ifmultiaddr *ifma;
620 	struct ifnet *ifp;
621 
622 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
623 	MPASS(inm->inm_refcount == 0);
624 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
625 
626 	ifma = inm->inm_ifma;
627 	ifp = inm->inm_ifp;
628 
629 	/* XXX this access is not covered by IF_ADDR_LOCK */
630 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
631 	if (ifp != NULL) {
632 		CURVNET_SET(ifp->if_vnet);
633 		inm_purge(inm);
634 		free(inm, M_IPMADDR);
635 		if_delmulti_ifma_flags(ifma, 1);
636 		CURVNET_RESTORE();
637 		if_rele(ifp);
638 	} else {
639 		inm_purge(inm);
640 		free(inm, M_IPMADDR);
641 		if_delmulti_ifma_flags(ifma, 1);
642 	}
643 }
644 
645 /*
646  * Clear recorded source entries for a group.
647  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
648  * FIXME: Should reap.
649  */
650 void
651 inm_clear_recorded(struct in_multi *inm)
652 {
653 	struct ip_msource	*ims;
654 
655 	IN_MULTI_LIST_LOCK_ASSERT();
656 
657 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
658 		if (ims->ims_stp) {
659 			ims->ims_stp = 0;
660 			--inm->inm_st[1].iss_rec;
661 		}
662 	}
663 	KASSERT(inm->inm_st[1].iss_rec == 0,
664 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
665 }
666 
667 /*
668  * Record a source as pending for a Source-Group IGMPv3 query.
669  * This lives here as it modifies the shared tree.
670  *
671  * inm is the group descriptor.
672  * naddr is the address of the source to record in network-byte order.
673  *
674  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
675  * lazy-allocate a source node in response to an SG query.
676  * Otherwise, no allocation is performed. This saves some memory
677  * with the trade-off that the source will not be reported to the
678  * router if joined in the window between the query response and
679  * the group actually being joined on the local host.
680  *
681  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
682  * This turns off the allocation of a recorded source entry if
683  * the group has not been joined.
684  *
685  * Return 0 if the source didn't exist or was already marked as recorded.
686  * Return 1 if the source was marked as recorded by this function.
687  * Return <0 if any error occurred (negated errno code).
688  */
689 int
690 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
691 {
692 	struct ip_msource	 find;
693 	struct ip_msource	*ims, *nims;
694 
695 	IN_MULTI_LIST_LOCK_ASSERT();
696 
697 	find.ims_haddr = ntohl(naddr);
698 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
699 	if (ims && ims->ims_stp)
700 		return (0);
701 	if (ims == NULL) {
702 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
703 			return (-ENOSPC);
704 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
705 		    M_NOWAIT | M_ZERO);
706 		if (nims == NULL)
707 			return (-ENOMEM);
708 		nims->ims_haddr = find.ims_haddr;
709 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
710 		++inm->inm_nsrc;
711 		ims = nims;
712 	}
713 
714 	/*
715 	 * Mark the source as recorded and update the recorded
716 	 * source count.
717 	 */
718 	++ims->ims_stp;
719 	++inm->inm_st[1].iss_rec;
720 
721 	return (1);
722 }
723 
724 /*
725  * Return a pointer to an in_msource owned by an in_mfilter,
726  * given its source address.
727  * Lazy-allocate if needed. If this is a new entry its filter state is
728  * undefined at t0.
729  *
730  * imf is the filter set being modified.
731  * haddr is the source address in *host* byte-order.
732  *
733  * SMPng: May be called with locks held; malloc must not block.
734  */
735 static int
736 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
737     struct in_msource **plims)
738 {
739 	struct ip_msource	 find;
740 	struct ip_msource	*ims, *nims;
741 	struct in_msource	*lims;
742 	int			 error;
743 
744 	error = 0;
745 	ims = NULL;
746 	lims = NULL;
747 
748 	/* key is host byte order */
749 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
750 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
751 	lims = (struct in_msource *)ims;
752 	if (lims == NULL) {
753 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
754 			return (ENOSPC);
755 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
756 		    M_NOWAIT | M_ZERO);
757 		if (nims == NULL)
758 			return (ENOMEM);
759 		lims = (struct in_msource *)nims;
760 		lims->ims_haddr = find.ims_haddr;
761 		lims->imsl_st[0] = MCAST_UNDEFINED;
762 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
763 		++imf->imf_nsrc;
764 	}
765 
766 	*plims = lims;
767 
768 	return (error);
769 }
770 
771 /*
772  * Graft a source entry into an existing socket-layer filter set,
773  * maintaining any required invariants and checking allocations.
774  *
775  * The source is marked as being in the new filter mode at t1.
776  *
777  * Return the pointer to the new node, otherwise return NULL.
778  */
779 static struct in_msource *
780 imf_graft(struct in_mfilter *imf, const uint8_t st1,
781     const struct sockaddr_in *psin)
782 {
783 	struct ip_msource	*nims;
784 	struct in_msource	*lims;
785 
786 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
787 	    M_NOWAIT | M_ZERO);
788 	if (nims == NULL)
789 		return (NULL);
790 	lims = (struct in_msource *)nims;
791 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
792 	lims->imsl_st[0] = MCAST_UNDEFINED;
793 	lims->imsl_st[1] = st1;
794 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
795 	++imf->imf_nsrc;
796 
797 	return (lims);
798 }
799 
800 /*
801  * Prune a source entry from an existing socket-layer filter set,
802  * maintaining any required invariants and checking allocations.
803  *
804  * The source is marked as being left at t1, it is not freed.
805  *
806  * Return 0 if no error occurred, otherwise return an errno value.
807  */
808 static int
809 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
810 {
811 	struct ip_msource	 find;
812 	struct ip_msource	*ims;
813 	struct in_msource	*lims;
814 
815 	/* key is host byte order */
816 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
817 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
818 	if (ims == NULL)
819 		return (ENOENT);
820 	lims = (struct in_msource *)ims;
821 	lims->imsl_st[1] = MCAST_UNDEFINED;
822 	return (0);
823 }
824 
825 /*
826  * Revert socket-layer filter set deltas at t1 to t0 state.
827  */
828 static void
829 imf_rollback(struct in_mfilter *imf)
830 {
831 	struct ip_msource	*ims, *tims;
832 	struct in_msource	*lims;
833 
834 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
835 		lims = (struct in_msource *)ims;
836 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
837 			/* no change at t1 */
838 			continue;
839 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
840 			/* revert change to existing source at t1 */
841 			lims->imsl_st[1] = lims->imsl_st[0];
842 		} else {
843 			/* revert source added t1 */
844 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
845 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
846 			free(ims, M_INMFILTER);
847 			imf->imf_nsrc--;
848 		}
849 	}
850 	imf->imf_st[1] = imf->imf_st[0];
851 }
852 
853 /*
854  * Mark socket-layer filter set as INCLUDE {} at t1.
855  */
856 static void
857 imf_leave(struct in_mfilter *imf)
858 {
859 	struct ip_msource	*ims;
860 	struct in_msource	*lims;
861 
862 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
863 		lims = (struct in_msource *)ims;
864 		lims->imsl_st[1] = MCAST_UNDEFINED;
865 	}
866 	imf->imf_st[1] = MCAST_INCLUDE;
867 }
868 
869 /*
870  * Mark socket-layer filter set deltas as committed.
871  */
872 static void
873 imf_commit(struct in_mfilter *imf)
874 {
875 	struct ip_msource	*ims;
876 	struct in_msource	*lims;
877 
878 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
879 		lims = (struct in_msource *)ims;
880 		lims->imsl_st[0] = lims->imsl_st[1];
881 	}
882 	imf->imf_st[0] = imf->imf_st[1];
883 }
884 
885 /*
886  * Reap unreferenced sources from socket-layer filter set.
887  */
888 static void
889 imf_reap(struct in_mfilter *imf)
890 {
891 	struct ip_msource	*ims, *tims;
892 	struct in_msource	*lims;
893 
894 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
895 		lims = (struct in_msource *)ims;
896 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
897 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
898 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
899 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
900 			free(ims, M_INMFILTER);
901 			imf->imf_nsrc--;
902 		}
903 	}
904 }
905 
906 /*
907  * Purge socket-layer filter set.
908  */
909 static void
910 imf_purge(struct in_mfilter *imf)
911 {
912 	struct ip_msource	*ims, *tims;
913 
914 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
915 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
916 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
917 		free(ims, M_INMFILTER);
918 		imf->imf_nsrc--;
919 	}
920 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
921 	KASSERT(RB_EMPTY(&imf->imf_sources),
922 	    ("%s: imf_sources not empty", __func__));
923 }
924 
925 /*
926  * Look up a source filter entry for a multicast group.
927  *
928  * inm is the group descriptor to work with.
929  * haddr is the host-byte-order IPv4 address to look up.
930  * noalloc may be non-zero to suppress allocation of sources.
931  * *pims will be set to the address of the retrieved or allocated source.
932  *
933  * SMPng: NOTE: may be called with locks held.
934  * Return 0 if successful, otherwise return a non-zero error code.
935  */
936 static int
937 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
938     const int noalloc, struct ip_msource **pims)
939 {
940 	struct ip_msource	 find;
941 	struct ip_msource	*ims, *nims;
942 
943 	find.ims_haddr = haddr;
944 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
945 	if (ims == NULL && !noalloc) {
946 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
947 			return (ENOSPC);
948 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
949 		    M_NOWAIT | M_ZERO);
950 		if (nims == NULL)
951 			return (ENOMEM);
952 		nims->ims_haddr = haddr;
953 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
954 		++inm->inm_nsrc;
955 		ims = nims;
956 #ifdef KTR
957 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
958 		    haddr, ims);
959 #endif
960 	}
961 
962 	*pims = ims;
963 	return (0);
964 }
965 
966 /*
967  * Merge socket-layer source into IGMP-layer source.
968  * If rollback is non-zero, perform the inverse of the merge.
969  */
970 static void
971 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
972     const int rollback)
973 {
974 	int n = rollback ? -1 : 1;
975 
976 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
977 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
978 		    __func__, n, ims->ims_haddr);
979 		ims->ims_st[1].ex -= n;
980 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
981 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
982 		    __func__, n, ims->ims_haddr);
983 		ims->ims_st[1].in -= n;
984 	}
985 
986 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
987 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
988 		    __func__, n, ims->ims_haddr);
989 		ims->ims_st[1].ex += n;
990 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
991 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
992 		    __func__, n, ims->ims_haddr);
993 		ims->ims_st[1].in += n;
994 	}
995 }
996 
997 /*
998  * Atomically update the global in_multi state, when a membership's
999  * filter list is being updated in any way.
1000  *
1001  * imf is the per-inpcb-membership group filter pointer.
1002  * A fake imf may be passed for in-kernel consumers.
1003  *
1004  * XXX This is a candidate for a set-symmetric-difference style loop
1005  * which would eliminate the repeated lookup from root of ims nodes,
1006  * as they share the same key space.
1007  *
1008  * If any error occurred this function will back out of refcounts
1009  * and return a non-zero value.
1010  */
1011 static int
1012 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1013 {
1014 	struct ip_msource	*ims, *nims;
1015 	struct in_msource	*lims;
1016 	int			 schanged, error;
1017 	int			 nsrc0, nsrc1;
1018 
1019 	schanged = 0;
1020 	error = 0;
1021 	nsrc1 = nsrc0 = 0;
1022 	IN_MULTI_LIST_LOCK_ASSERT();
1023 
1024 	/*
1025 	 * Update the source filters first, as this may fail.
1026 	 * Maintain count of in-mode filters at t0, t1. These are
1027 	 * used to work out if we transition into ASM mode or not.
1028 	 * Maintain a count of source filters whose state was
1029 	 * actually modified by this operation.
1030 	 */
1031 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1032 		lims = (struct in_msource *)ims;
1033 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1034 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1035 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1036 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1037 		++schanged;
1038 		if (error)
1039 			break;
1040 		ims_merge(nims, lims, 0);
1041 	}
1042 	if (error) {
1043 		struct ip_msource *bims;
1044 
1045 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1046 			lims = (struct in_msource *)ims;
1047 			if (lims->imsl_st[0] == lims->imsl_st[1])
1048 				continue;
1049 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1050 			if (bims == NULL)
1051 				continue;
1052 			ims_merge(bims, lims, 1);
1053 		}
1054 		goto out_reap;
1055 	}
1056 
1057 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1058 	    __func__, nsrc0, nsrc1);
1059 
1060 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1061 	if (imf->imf_st[0] == imf->imf_st[1] &&
1062 	    imf->imf_st[1] == MCAST_INCLUDE) {
1063 		if (nsrc1 == 0) {
1064 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1065 			--inm->inm_st[1].iss_in;
1066 		}
1067 	}
1068 
1069 	/* Handle filter mode transition on socket. */
1070 	if (imf->imf_st[0] != imf->imf_st[1]) {
1071 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1072 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1073 
1074 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1075 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1076 			--inm->inm_st[1].iss_ex;
1077 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1078 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1079 			--inm->inm_st[1].iss_in;
1080 		}
1081 
1082 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1083 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1084 			inm->inm_st[1].iss_ex++;
1085 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1086 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1087 			inm->inm_st[1].iss_in++;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Track inm filter state in terms of listener counts.
1093 	 * If there are any exclusive listeners, stack-wide
1094 	 * membership is exclusive.
1095 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1096 	 * If no listeners remain, state is undefined at t1,
1097 	 * and the IGMP lifecycle for this group should finish.
1098 	 */
1099 	if (inm->inm_st[1].iss_ex > 0) {
1100 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1101 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1102 	} else if (inm->inm_st[1].iss_in > 0) {
1103 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1104 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1105 	} else {
1106 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1107 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1108 	}
1109 
1110 	/* Decrement ASM listener count on transition out of ASM mode. */
1111 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1112 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1113 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1114 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1115 			--inm->inm_st[1].iss_asm;
1116 		}
1117 	}
1118 
1119 	/* Increment ASM listener count on transition to ASM mode. */
1120 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1121 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1122 		inm->inm_st[1].iss_asm++;
1123 	}
1124 
1125 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1126 	inm_print(inm);
1127 
1128 out_reap:
1129 	if (schanged > 0) {
1130 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1131 		inm_reap(inm);
1132 	}
1133 	return (error);
1134 }
1135 
1136 /*
1137  * Mark an in_multi's filter set deltas as committed.
1138  * Called by IGMP after a state change has been enqueued.
1139  */
1140 void
1141 inm_commit(struct in_multi *inm)
1142 {
1143 	struct ip_msource	*ims;
1144 
1145 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1146 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1147 	inm_print(inm);
1148 
1149 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1150 		ims->ims_st[0] = ims->ims_st[1];
1151 	}
1152 	inm->inm_st[0] = inm->inm_st[1];
1153 }
1154 
1155 /*
1156  * Reap unreferenced nodes from an in_multi's filter set.
1157  */
1158 static void
1159 inm_reap(struct in_multi *inm)
1160 {
1161 	struct ip_msource	*ims, *tims;
1162 
1163 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1164 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1165 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1166 		    ims->ims_stp != 0)
1167 			continue;
1168 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1169 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1170 		free(ims, M_IPMSOURCE);
1171 		inm->inm_nsrc--;
1172 	}
1173 }
1174 
1175 /*
1176  * Purge all source nodes from an in_multi's filter set.
1177  */
1178 static void
1179 inm_purge(struct in_multi *inm)
1180 {
1181 	struct ip_msource	*ims, *tims;
1182 
1183 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1184 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1185 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1186 		free(ims, M_IPMSOURCE);
1187 		inm->inm_nsrc--;
1188 	}
1189 }
1190 
1191 /*
1192  * Join a multicast group; unlocked entry point.
1193  *
1194  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1195  * is not held. Fortunately, ifp is unlikely to have been detached
1196  * at this point, so we assume it's OK to recurse.
1197  */
1198 int
1199 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1200     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1201 {
1202 	int error;
1203 
1204 	IN_MULTI_LOCK();
1205 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1206 	IN_MULTI_UNLOCK();
1207 
1208 	return (error);
1209 }
1210 
1211 /*
1212  * Join a multicast group; real entry point.
1213  *
1214  * Only preserves atomicity at inm level.
1215  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1216  *
1217  * If the IGMP downcall fails, the group is not joined, and an error
1218  * code is returned.
1219  */
1220 int
1221 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1222     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1223 {
1224 	struct in_mfilter	 timf;
1225 	struct in_multi		*inm;
1226 	int			 error;
1227 
1228 	IN_MULTI_LOCK_ASSERT();
1229 	IN_MULTI_LIST_UNLOCK_ASSERT();
1230 
1231 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1232 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1233 
1234 	error = 0;
1235 	inm = NULL;
1236 
1237 	/*
1238 	 * If no imf was specified (i.e. kernel consumer),
1239 	 * fake one up and assume it is an ASM join.
1240 	 */
1241 	if (imf == NULL) {
1242 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1243 		imf = &timf;
1244 	}
1245 
1246 	error = in_getmulti(ifp, gina, &inm);
1247 	if (error) {
1248 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1249 		return (error);
1250 	}
1251 	IN_MULTI_LIST_LOCK();
1252 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1253 	error = inm_merge(inm, imf);
1254 	if (error) {
1255 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1256 		goto out_inm_release;
1257 	}
1258 
1259 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1260 	error = igmp_change_state(inm);
1261 	if (error) {
1262 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1263 		goto out_inm_release;
1264 	}
1265 
1266  out_inm_release:
1267 	if (error) {
1268 
1269 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1270 		inm_release_deferred(inm);
1271 	} else {
1272 		*pinm = inm;
1273 	}
1274 	IN_MULTI_LIST_UNLOCK();
1275 
1276 	return (error);
1277 }
1278 
1279 /*
1280  * Leave a multicast group; unlocked entry point.
1281  */
1282 int
1283 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1284 {
1285 	int error;
1286 
1287 	IN_MULTI_LOCK();
1288 	error = in_leavegroup_locked(inm, imf);
1289 	IN_MULTI_UNLOCK();
1290 
1291 	return (error);
1292 }
1293 
1294 /*
1295  * Leave a multicast group; real entry point.
1296  * All source filters will be expunged.
1297  *
1298  * Only preserves atomicity at inm level.
1299  *
1300  * Holding the write lock for the INP which contains imf
1301  * is highly advisable. We can't assert for it as imf does not
1302  * contain a back-pointer to the owning inp.
1303  *
1304  * Note: This is not the same as inm_release(*) as this function also
1305  * makes a state change downcall into IGMP.
1306  */
1307 int
1308 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1309 {
1310 	struct in_mfilter	 timf;
1311 	int			 error;
1312 
1313 	error = 0;
1314 
1315 	IN_MULTI_LOCK_ASSERT();
1316 	IN_MULTI_LIST_UNLOCK_ASSERT();
1317 
1318 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1319 	    inm, ntohl(inm->inm_addr.s_addr),
1320 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1321 	    imf);
1322 
1323 	/*
1324 	 * If no imf was specified (i.e. kernel consumer),
1325 	 * fake one up and assume it is an ASM join.
1326 	 */
1327 	if (imf == NULL) {
1328 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1329 		imf = &timf;
1330 	}
1331 
1332 	/*
1333 	 * Begin state merge transaction at IGMP layer.
1334 	 *
1335 	 * As this particular invocation should not cause any memory
1336 	 * to be allocated, and there is no opportunity to roll back
1337 	 * the transaction, it MUST NOT fail.
1338 	 */
1339 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1340 	IN_MULTI_LIST_LOCK();
1341 	error = inm_merge(inm, imf);
1342 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1343 
1344 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1345 	CURVNET_SET(inm->inm_ifp->if_vnet);
1346 	error = igmp_change_state(inm);
1347 	IF_ADDR_WLOCK(inm->inm_ifp);
1348 	inm_release_deferred(inm);
1349 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1350 	IN_MULTI_LIST_UNLOCK();
1351 	CURVNET_RESTORE();
1352 	if (error)
1353 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1354 
1355 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1356 
1357 	return (error);
1358 }
1359 
1360 /*#ifndef BURN_BRIDGES*/
1361 /*
1362  * Join an IPv4 multicast group in (*,G) exclusive mode.
1363  * The group must be a 224.0.0.0/24 link-scope group.
1364  * This KPI is for legacy kernel consumers only.
1365  */
1366 struct in_multi *
1367 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1368 {
1369 	struct in_multi *pinm;
1370 	int error;
1371 #ifdef INVARIANTS
1372 	char addrbuf[INET_ADDRSTRLEN];
1373 #endif
1374 
1375 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1376 	    ("%s: %s not in 224.0.0.0/24", __func__,
1377 	    inet_ntoa_r(*ap, addrbuf)));
1378 
1379 	error = in_joingroup(ifp, ap, NULL, &pinm);
1380 	if (error != 0)
1381 		pinm = NULL;
1382 
1383 	return (pinm);
1384 }
1385 
1386 /*
1387  * Block or unblock an ASM multicast source on an inpcb.
1388  * This implements the delta-based API described in RFC 3678.
1389  *
1390  * The delta-based API applies only to exclusive-mode memberships.
1391  * An IGMP downcall will be performed.
1392  *
1393  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1394  *
1395  * Return 0 if successful, otherwise return an appropriate error code.
1396  */
1397 static int
1398 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1399 {
1400 	struct group_source_req		 gsr;
1401 	struct rm_priotracker		 in_ifa_tracker;
1402 	sockunion_t			*gsa, *ssa;
1403 	struct ifnet			*ifp;
1404 	struct in_mfilter		*imf;
1405 	struct ip_moptions		*imo;
1406 	struct in_msource		*ims;
1407 	struct in_multi			*inm;
1408 	uint16_t			 fmode;
1409 	int				 error, doblock;
1410 
1411 	ifp = NULL;
1412 	error = 0;
1413 	doblock = 0;
1414 
1415 	memset(&gsr, 0, sizeof(struct group_source_req));
1416 	gsa = (sockunion_t *)&gsr.gsr_group;
1417 	ssa = (sockunion_t *)&gsr.gsr_source;
1418 
1419 	switch (sopt->sopt_name) {
1420 	case IP_BLOCK_SOURCE:
1421 	case IP_UNBLOCK_SOURCE: {
1422 		struct ip_mreq_source	 mreqs;
1423 
1424 		error = sooptcopyin(sopt, &mreqs,
1425 		    sizeof(struct ip_mreq_source),
1426 		    sizeof(struct ip_mreq_source));
1427 		if (error)
1428 			return (error);
1429 
1430 		gsa->sin.sin_family = AF_INET;
1431 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1432 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1433 
1434 		ssa->sin.sin_family = AF_INET;
1435 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1436 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1437 
1438 		if (!in_nullhost(mreqs.imr_interface)) {
1439 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1440 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1441 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1442 		}
1443 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1444 			doblock = 1;
1445 
1446 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1447 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1448 		break;
1449 	    }
1450 
1451 	case MCAST_BLOCK_SOURCE:
1452 	case MCAST_UNBLOCK_SOURCE:
1453 		error = sooptcopyin(sopt, &gsr,
1454 		    sizeof(struct group_source_req),
1455 		    sizeof(struct group_source_req));
1456 		if (error)
1457 			return (error);
1458 
1459 		if (gsa->sin.sin_family != AF_INET ||
1460 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1461 			return (EINVAL);
1462 
1463 		if (ssa->sin.sin_family != AF_INET ||
1464 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1465 			return (EINVAL);
1466 
1467 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1468 			return (EADDRNOTAVAIL);
1469 
1470 		ifp = ifnet_byindex(gsr.gsr_interface);
1471 
1472 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1473 			doblock = 1;
1474 		break;
1475 
1476 	default:
1477 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1478 		    __func__, sopt->sopt_name);
1479 		return (EOPNOTSUPP);
1480 		break;
1481 	}
1482 
1483 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1484 		return (EINVAL);
1485 
1486 	IN_MULTI_LOCK();
1487 
1488 	/*
1489 	 * Check if we are actually a member of this group.
1490 	 */
1491 	imo = inp_findmoptions(inp);
1492 	imf = imo_match_group(imo, ifp, &gsa->sa);
1493 	if (imf == NULL) {
1494 		error = EADDRNOTAVAIL;
1495 		goto out_inp_locked;
1496 	}
1497 	inm = imf->imf_inm;
1498 
1499 	/*
1500 	 * Attempting to use the delta-based API on an
1501 	 * non exclusive-mode membership is an error.
1502 	 */
1503 	fmode = imf->imf_st[0];
1504 	if (fmode != MCAST_EXCLUDE) {
1505 		error = EINVAL;
1506 		goto out_inp_locked;
1507 	}
1508 
1509 	/*
1510 	 * Deal with error cases up-front:
1511 	 *  Asked to block, but already blocked; or
1512 	 *  Asked to unblock, but nothing to unblock.
1513 	 * If adding a new block entry, allocate it.
1514 	 */
1515 	ims = imo_match_source(imf, &ssa->sa);
1516 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1517 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1518 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1519 		error = EADDRNOTAVAIL;
1520 		goto out_inp_locked;
1521 	}
1522 
1523 	INP_WLOCK_ASSERT(inp);
1524 
1525 	/*
1526 	 * Begin state merge transaction at socket layer.
1527 	 */
1528 	if (doblock) {
1529 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1530 		ims = imf_graft(imf, fmode, &ssa->sin);
1531 		if (ims == NULL)
1532 			error = ENOMEM;
1533 	} else {
1534 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1535 		error = imf_prune(imf, &ssa->sin);
1536 	}
1537 
1538 	if (error) {
1539 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1540 		goto out_imf_rollback;
1541 	}
1542 
1543 	/*
1544 	 * Begin state merge transaction at IGMP layer.
1545 	 */
1546 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1547 	IN_MULTI_LIST_LOCK();
1548 	error = inm_merge(inm, imf);
1549 	if (error) {
1550 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1551 		IN_MULTI_LIST_UNLOCK();
1552 		goto out_imf_rollback;
1553 	}
1554 
1555 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1556 	error = igmp_change_state(inm);
1557 	IN_MULTI_LIST_UNLOCK();
1558 	if (error)
1559 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1560 
1561 out_imf_rollback:
1562 	if (error)
1563 		imf_rollback(imf);
1564 	else
1565 		imf_commit(imf);
1566 
1567 	imf_reap(imf);
1568 
1569 out_inp_locked:
1570 	INP_WUNLOCK(inp);
1571 	IN_MULTI_UNLOCK();
1572 	return (error);
1573 }
1574 
1575 /*
1576  * Given an inpcb, return its multicast options structure pointer.  Accepts
1577  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1578  *
1579  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1580  * SMPng: NOTE: Returns with the INP write lock held.
1581  */
1582 static struct ip_moptions *
1583 inp_findmoptions(struct inpcb *inp)
1584 {
1585 	struct ip_moptions	 *imo;
1586 
1587 	INP_WLOCK(inp);
1588 	if (inp->inp_moptions != NULL)
1589 		return (inp->inp_moptions);
1590 
1591 	INP_WUNLOCK(inp);
1592 
1593 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1594 
1595 	imo->imo_multicast_ifp = NULL;
1596 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1597 	imo->imo_multicast_vif = -1;
1598 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1599 	imo->imo_multicast_loop = in_mcast_loop;
1600 	STAILQ_INIT(&imo->imo_head);
1601 
1602 	INP_WLOCK(inp);
1603 	if (inp->inp_moptions != NULL) {
1604 		free(imo, M_IPMOPTS);
1605 		return (inp->inp_moptions);
1606 	}
1607 	inp->inp_moptions = imo;
1608 	return (imo);
1609 }
1610 
1611 static void
1612 inp_gcmoptions(struct ip_moptions *imo)
1613 {
1614 	struct in_mfilter *imf;
1615 	struct in_multi *inm;
1616 	struct ifnet *ifp;
1617 
1618 	while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1619 		ip_mfilter_remove(&imo->imo_head, imf);
1620 
1621 		imf_leave(imf);
1622 		if ((inm = imf->imf_inm) != NULL) {
1623 			if ((ifp = inm->inm_ifp) != NULL) {
1624 				CURVNET_SET(ifp->if_vnet);
1625 				(void)in_leavegroup(inm, imf);
1626 				CURVNET_RESTORE();
1627 			} else {
1628 				(void)in_leavegroup(inm, imf);
1629 			}
1630 		}
1631 		ip_mfilter_free(imf);
1632 	}
1633 	free(imo, M_IPMOPTS);
1634 }
1635 
1636 /*
1637  * Discard the IP multicast options (and source filters).  To minimize
1638  * the amount of work done while holding locks such as the INP's
1639  * pcbinfo lock (which is used in the receive path), the free
1640  * operation is deferred to the epoch callback task.
1641  */
1642 void
1643 inp_freemoptions(struct ip_moptions *imo)
1644 {
1645 	if (imo == NULL)
1646 		return;
1647 	inp_gcmoptions(imo);
1648 }
1649 
1650 /*
1651  * Atomically get source filters on a socket for an IPv4 multicast group.
1652  * Called with INP lock held; returns with lock released.
1653  */
1654 static int
1655 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1656 {
1657 	struct __msfilterreq	 msfr;
1658 	sockunion_t		*gsa;
1659 	struct ifnet		*ifp;
1660 	struct ip_moptions	*imo;
1661 	struct in_mfilter	*imf;
1662 	struct ip_msource	*ims;
1663 	struct in_msource	*lims;
1664 	struct sockaddr_in	*psin;
1665 	struct sockaddr_storage	*ptss;
1666 	struct sockaddr_storage	*tss;
1667 	int			 error;
1668 	size_t			 nsrcs, ncsrcs;
1669 
1670 	INP_WLOCK_ASSERT(inp);
1671 
1672 	imo = inp->inp_moptions;
1673 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1674 
1675 	INP_WUNLOCK(inp);
1676 
1677 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1678 	    sizeof(struct __msfilterreq));
1679 	if (error)
1680 		return (error);
1681 
1682 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1683 		return (EINVAL);
1684 
1685 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1686 	if (ifp == NULL)
1687 		return (EINVAL);
1688 
1689 	INP_WLOCK(inp);
1690 
1691 	/*
1692 	 * Lookup group on the socket.
1693 	 */
1694 	gsa = (sockunion_t *)&msfr.msfr_group;
1695 	imf = imo_match_group(imo, ifp, &gsa->sa);
1696 	if (imf == NULL) {
1697 		INP_WUNLOCK(inp);
1698 		return (EADDRNOTAVAIL);
1699 	}
1700 
1701 	/*
1702 	 * Ignore memberships which are in limbo.
1703 	 */
1704 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1705 		INP_WUNLOCK(inp);
1706 		return (EAGAIN);
1707 	}
1708 	msfr.msfr_fmode = imf->imf_st[1];
1709 
1710 	/*
1711 	 * If the user specified a buffer, copy out the source filter
1712 	 * entries to userland gracefully.
1713 	 * We only copy out the number of entries which userland
1714 	 * has asked for, but we always tell userland how big the
1715 	 * buffer really needs to be.
1716 	 */
1717 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1718 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1719 	tss = NULL;
1720 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1721 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1722 		    M_TEMP, M_NOWAIT | M_ZERO);
1723 		if (tss == NULL) {
1724 			INP_WUNLOCK(inp);
1725 			return (ENOBUFS);
1726 		}
1727 	}
1728 
1729 	/*
1730 	 * Count number of sources in-mode at t0.
1731 	 * If buffer space exists and remains, copy out source entries.
1732 	 */
1733 	nsrcs = msfr.msfr_nsrcs;
1734 	ncsrcs = 0;
1735 	ptss = tss;
1736 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1737 		lims = (struct in_msource *)ims;
1738 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1739 		    lims->imsl_st[0] != imf->imf_st[0])
1740 			continue;
1741 		++ncsrcs;
1742 		if (tss != NULL && nsrcs > 0) {
1743 			psin = (struct sockaddr_in *)ptss;
1744 			psin->sin_family = AF_INET;
1745 			psin->sin_len = sizeof(struct sockaddr_in);
1746 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1747 			psin->sin_port = 0;
1748 			++ptss;
1749 			--nsrcs;
1750 		}
1751 	}
1752 
1753 	INP_WUNLOCK(inp);
1754 
1755 	if (tss != NULL) {
1756 		error = copyout(tss, msfr.msfr_srcs,
1757 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1758 		free(tss, M_TEMP);
1759 		if (error)
1760 			return (error);
1761 	}
1762 
1763 	msfr.msfr_nsrcs = ncsrcs;
1764 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1765 
1766 	return (error);
1767 }
1768 
1769 /*
1770  * Return the IP multicast options in response to user getsockopt().
1771  */
1772 int
1773 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1774 {
1775 	struct rm_priotracker	 in_ifa_tracker;
1776 	struct ip_mreqn		 mreqn;
1777 	struct ip_moptions	*imo;
1778 	struct ifnet		*ifp;
1779 	struct in_ifaddr	*ia;
1780 	int			 error, optval;
1781 	u_char			 coptval;
1782 
1783 	INP_WLOCK(inp);
1784 	imo = inp->inp_moptions;
1785 	/*
1786 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1787 	 * or is a divert socket, reject it.
1788 	 */
1789 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1790 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1791 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1792 		INP_WUNLOCK(inp);
1793 		return (EOPNOTSUPP);
1794 	}
1795 
1796 	error = 0;
1797 	switch (sopt->sopt_name) {
1798 	case IP_MULTICAST_VIF:
1799 		if (imo != NULL)
1800 			optval = imo->imo_multicast_vif;
1801 		else
1802 			optval = -1;
1803 		INP_WUNLOCK(inp);
1804 		error = sooptcopyout(sopt, &optval, sizeof(int));
1805 		break;
1806 
1807 	case IP_MULTICAST_IF:
1808 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1809 		if (imo != NULL) {
1810 			ifp = imo->imo_multicast_ifp;
1811 			if (!in_nullhost(imo->imo_multicast_addr)) {
1812 				mreqn.imr_address = imo->imo_multicast_addr;
1813 			} else if (ifp != NULL) {
1814 				struct epoch_tracker et;
1815 
1816 				mreqn.imr_ifindex = ifp->if_index;
1817 				NET_EPOCH_ENTER(et);
1818 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1819 				if (ia != NULL)
1820 					mreqn.imr_address =
1821 					    IA_SIN(ia)->sin_addr;
1822 				NET_EPOCH_EXIT(et);
1823 			}
1824 		}
1825 		INP_WUNLOCK(inp);
1826 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1827 			error = sooptcopyout(sopt, &mreqn,
1828 			    sizeof(struct ip_mreqn));
1829 		} else {
1830 			error = sooptcopyout(sopt, &mreqn.imr_address,
1831 			    sizeof(struct in_addr));
1832 		}
1833 		break;
1834 
1835 	case IP_MULTICAST_TTL:
1836 		if (imo == NULL)
1837 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1838 		else
1839 			optval = coptval = imo->imo_multicast_ttl;
1840 		INP_WUNLOCK(inp);
1841 		if (sopt->sopt_valsize == sizeof(u_char))
1842 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1843 		else
1844 			error = sooptcopyout(sopt, &optval, sizeof(int));
1845 		break;
1846 
1847 	case IP_MULTICAST_LOOP:
1848 		if (imo == NULL)
1849 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1850 		else
1851 			optval = coptval = imo->imo_multicast_loop;
1852 		INP_WUNLOCK(inp);
1853 		if (sopt->sopt_valsize == sizeof(u_char))
1854 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1855 		else
1856 			error = sooptcopyout(sopt, &optval, sizeof(int));
1857 		break;
1858 
1859 	case IP_MSFILTER:
1860 		if (imo == NULL) {
1861 			error = EADDRNOTAVAIL;
1862 			INP_WUNLOCK(inp);
1863 		} else {
1864 			error = inp_get_source_filters(inp, sopt);
1865 		}
1866 		break;
1867 
1868 	default:
1869 		INP_WUNLOCK(inp);
1870 		error = ENOPROTOOPT;
1871 		break;
1872 	}
1873 
1874 	INP_UNLOCK_ASSERT(inp);
1875 
1876 	return (error);
1877 }
1878 
1879 /*
1880  * Look up the ifnet to use for a multicast group membership,
1881  * given the IPv4 address of an interface, and the IPv4 group address.
1882  *
1883  * This routine exists to support legacy multicast applications
1884  * which do not understand that multicast memberships are scoped to
1885  * specific physical links in the networking stack, or which need
1886  * to join link-scope groups before IPv4 addresses are configured.
1887  *
1888  * If inp is non-NULL, use this socket's current FIB number for any
1889  * required FIB lookup.
1890  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1891  * and use its ifp; usually, this points to the default next-hop.
1892  *
1893  * If the FIB lookup fails, attempt to use the first non-loopback
1894  * interface with multicast capability in the system as a
1895  * last resort. The legacy IPv4 ASM API requires that we do
1896  * this in order to allow groups to be joined when the routing
1897  * table has not yet been populated during boot.
1898  *
1899  * Returns NULL if no ifp could be found.
1900  *
1901  * FUTURE: Implement IPv4 source-address selection.
1902  */
1903 static struct ifnet *
1904 inp_lookup_mcast_ifp(const struct inpcb *inp,
1905     const struct sockaddr_in *gsin, const struct in_addr ina)
1906 {
1907 	struct rm_priotracker in_ifa_tracker;
1908 	struct ifnet *ifp;
1909 	struct nhop4_basic nh4;
1910 	uint32_t fibnum;
1911 
1912 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1913 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1914 	    ("%s: not multicast", __func__));
1915 
1916 	ifp = NULL;
1917 	if (!in_nullhost(ina)) {
1918 		IN_IFADDR_RLOCK(&in_ifa_tracker);
1919 		INADDR_TO_IFP(ina, ifp);
1920 		IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1921 	} else {
1922 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1923 		if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0)
1924 			ifp = nh4.nh_ifp;
1925 		else {
1926 			struct in_ifaddr *ia;
1927 			struct ifnet *mifp;
1928 
1929 			mifp = NULL;
1930 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1931 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1932 				mifp = ia->ia_ifp;
1933 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1934 				     (mifp->if_flags & IFF_MULTICAST)) {
1935 					ifp = mifp;
1936 					break;
1937 				}
1938 			}
1939 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1940 		}
1941 	}
1942 
1943 	return (ifp);
1944 }
1945 
1946 /*
1947  * Join an IPv4 multicast group, possibly with a source.
1948  */
1949 static int
1950 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1951 {
1952 	struct group_source_req		 gsr;
1953 	sockunion_t			*gsa, *ssa;
1954 	struct ifnet			*ifp;
1955 	struct in_mfilter		*imf;
1956 	struct ip_moptions		*imo;
1957 	struct in_multi			*inm;
1958 	struct in_msource		*lims;
1959 	int				 error, is_new;
1960 
1961 	ifp = NULL;
1962 	lims = NULL;
1963 	error = 0;
1964 
1965 	memset(&gsr, 0, sizeof(struct group_source_req));
1966 	gsa = (sockunion_t *)&gsr.gsr_group;
1967 	gsa->ss.ss_family = AF_UNSPEC;
1968 	ssa = (sockunion_t *)&gsr.gsr_source;
1969 	ssa->ss.ss_family = AF_UNSPEC;
1970 
1971 	switch (sopt->sopt_name) {
1972 	case IP_ADD_MEMBERSHIP: {
1973 		struct ip_mreqn mreqn;
1974 
1975 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1976 			error = sooptcopyin(sopt, &mreqn,
1977 			    sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1978 		else
1979 			error = sooptcopyin(sopt, &mreqn,
1980 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1981 		if (error)
1982 			return (error);
1983 
1984 		gsa->sin.sin_family = AF_INET;
1985 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1986 		gsa->sin.sin_addr = mreqn.imr_multiaddr;
1987 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1988 			return (EINVAL);
1989 
1990 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
1991 		    mreqn.imr_ifindex != 0)
1992 			ifp = ifnet_byindex(mreqn.imr_ifindex);
1993 		else
1994 			ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1995 			    mreqn.imr_address);
1996 		break;
1997 	}
1998 	case IP_ADD_SOURCE_MEMBERSHIP: {
1999 		struct ip_mreq_source	 mreqs;
2000 
2001 		error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
2002 			    sizeof(struct ip_mreq_source));
2003 		if (error)
2004 			return (error);
2005 
2006 		gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
2007 		gsa->sin.sin_len = ssa->sin.sin_len =
2008 		    sizeof(struct sockaddr_in);
2009 
2010 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2011 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2012 			return (EINVAL);
2013 
2014 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2015 
2016 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2017 		    mreqs.imr_interface);
2018 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2019 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2020 		break;
2021 	}
2022 
2023 	case MCAST_JOIN_GROUP:
2024 	case MCAST_JOIN_SOURCE_GROUP:
2025 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2026 			error = sooptcopyin(sopt, &gsr,
2027 			    sizeof(struct group_req),
2028 			    sizeof(struct group_req));
2029 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2030 			error = sooptcopyin(sopt, &gsr,
2031 			    sizeof(struct group_source_req),
2032 			    sizeof(struct group_source_req));
2033 		}
2034 		if (error)
2035 			return (error);
2036 
2037 		if (gsa->sin.sin_family != AF_INET ||
2038 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2039 			return (EINVAL);
2040 
2041 		/*
2042 		 * Overwrite the port field if present, as the sockaddr
2043 		 * being copied in may be matched with a binary comparison.
2044 		 */
2045 		gsa->sin.sin_port = 0;
2046 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2047 			if (ssa->sin.sin_family != AF_INET ||
2048 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2049 				return (EINVAL);
2050 			ssa->sin.sin_port = 0;
2051 		}
2052 
2053 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2054 			return (EINVAL);
2055 
2056 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2057 			return (EADDRNOTAVAIL);
2058 		ifp = ifnet_byindex(gsr.gsr_interface);
2059 		break;
2060 
2061 	default:
2062 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2063 		    __func__, sopt->sopt_name);
2064 		return (EOPNOTSUPP);
2065 		break;
2066 	}
2067 
2068 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2069 		return (EADDRNOTAVAIL);
2070 
2071 	IN_MULTI_LOCK();
2072 
2073 	/*
2074 	 * Find the membership in the membership list.
2075 	 */
2076 	imo = inp_findmoptions(inp);
2077 	imf = imo_match_group(imo, ifp, &gsa->sa);
2078 	if (imf == NULL) {
2079 		is_new = 1;
2080 		inm = NULL;
2081 
2082 		if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2083 			error = ENOMEM;
2084 			goto out_inp_locked;
2085 		}
2086 	} else {
2087 		is_new = 0;
2088 		inm = imf->imf_inm;
2089 
2090 		if (ssa->ss.ss_family != AF_UNSPEC) {
2091 			/*
2092 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2093 			 * is an error. On an existing inclusive membership,
2094 			 * it just adds the source to the filter list.
2095 			 */
2096 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2097 				error = EINVAL;
2098 				goto out_inp_locked;
2099 			}
2100 			/*
2101 			 * Throw out duplicates.
2102 			 *
2103 			 * XXX FIXME: This makes a naive assumption that
2104 			 * even if entries exist for *ssa in this imf,
2105 			 * they will be rejected as dupes, even if they
2106 			 * are not valid in the current mode (in-mode).
2107 			 *
2108 			 * in_msource is transactioned just as for anything
2109 			 * else in SSM -- but note naive use of inm_graft()
2110 			 * below for allocating new filter entries.
2111 			 *
2112 			 * This is only an issue if someone mixes the
2113 			 * full-state SSM API with the delta-based API,
2114 			 * which is discouraged in the relevant RFCs.
2115 			 */
2116 			lims = imo_match_source(imf, &ssa->sa);
2117 			if (lims != NULL /*&&
2118 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2119 				error = EADDRNOTAVAIL;
2120 				goto out_inp_locked;
2121 			}
2122 		} else {
2123 			/*
2124 			 * MCAST_JOIN_GROUP on an existing exclusive
2125 			 * membership is an error; return EADDRINUSE
2126 			 * to preserve 4.4BSD API idempotence, and
2127 			 * avoid tedious detour to code below.
2128 			 * NOTE: This is bending RFC 3678 a bit.
2129 			 *
2130 			 * On an existing inclusive membership, this is also
2131 			 * an error; if you want to change filter mode,
2132 			 * you must use the userland API setsourcefilter().
2133 			 * XXX We don't reject this for imf in UNDEFINED
2134 			 * state at t1, because allocation of a filter
2135 			 * is atomic with allocation of a membership.
2136 			 */
2137 			error = EINVAL;
2138 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2139 				error = EADDRINUSE;
2140 			goto out_inp_locked;
2141 		}
2142 	}
2143 
2144 	/*
2145 	 * Begin state merge transaction at socket layer.
2146 	 */
2147 	INP_WLOCK_ASSERT(inp);
2148 
2149 	/*
2150 	 * Graft new source into filter list for this inpcb's
2151 	 * membership of the group. The in_multi may not have
2152 	 * been allocated yet if this is a new membership, however,
2153 	 * the in_mfilter slot will be allocated and must be initialized.
2154 	 *
2155 	 * Note: Grafting of exclusive mode filters doesn't happen
2156 	 * in this path.
2157 	 * XXX: Should check for non-NULL lims (node exists but may
2158 	 * not be in-mode) for interop with full-state API.
2159 	 */
2160 	if (ssa->ss.ss_family != AF_UNSPEC) {
2161 		/* Membership starts in IN mode */
2162 		if (is_new) {
2163 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2164 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2165 			if (imf == NULL) {
2166 				error = ENOMEM;
2167 				goto out_inp_locked;
2168 			}
2169 		} else {
2170 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2171 		}
2172 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2173 		if (lims == NULL) {
2174 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2175 			    __func__);
2176 			error = ENOMEM;
2177 			goto out_inp_locked;
2178 		}
2179 	} else {
2180 		/* No address specified; Membership starts in EX mode */
2181 		if (is_new) {
2182 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2183 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2184 			if (imf == NULL) {
2185 				error = ENOMEM;
2186 				goto out_inp_locked;
2187 			}
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * Begin state merge transaction at IGMP layer.
2193 	 */
2194 	if (is_new) {
2195 		in_pcbref(inp);
2196 		INP_WUNLOCK(inp);
2197 
2198 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2199 		    &imf->imf_inm);
2200 
2201 		INP_WLOCK(inp);
2202 		if (in_pcbrele_wlocked(inp)) {
2203 			error = ENXIO;
2204 			goto out_inp_unlocked;
2205 		}
2206 		if (error) {
2207                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2208                             __func__);
2209 			goto out_inp_locked;
2210 		}
2211 		inm_acquire(imf->imf_inm);
2212 	} else {
2213 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2214 		IN_MULTI_LIST_LOCK();
2215 		error = inm_merge(inm, imf);
2216 		if (error) {
2217 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2218 				 __func__);
2219 			IN_MULTI_LIST_UNLOCK();
2220 			imf_rollback(imf);
2221 			imf_reap(imf);
2222 			goto out_inp_locked;
2223 		}
2224 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2225 		error = igmp_change_state(inm);
2226 		IN_MULTI_LIST_UNLOCK();
2227 		if (error) {
2228 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2229 			    __func__);
2230 			imf_rollback(imf);
2231 			imf_reap(imf);
2232 			goto out_inp_locked;
2233 		}
2234 	}
2235 	if (is_new)
2236 		ip_mfilter_insert(&imo->imo_head, imf);
2237 
2238 	imf_commit(imf);
2239 	imf = NULL;
2240 
2241 out_inp_locked:
2242 	INP_WUNLOCK(inp);
2243 out_inp_unlocked:
2244 	IN_MULTI_UNLOCK();
2245 
2246 	if (is_new && imf) {
2247 		if (imf->imf_inm != NULL) {
2248 			IN_MULTI_LIST_LOCK();
2249 			inm_release_deferred(imf->imf_inm);
2250 			IN_MULTI_LIST_UNLOCK();
2251 		}
2252 		ip_mfilter_free(imf);
2253 	}
2254 	return (error);
2255 }
2256 
2257 /*
2258  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2259  */
2260 static int
2261 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2262 {
2263 	struct group_source_req		 gsr;
2264 	struct ip_mreq_source		 mreqs;
2265 	struct rm_priotracker		 in_ifa_tracker;
2266 	sockunion_t			*gsa, *ssa;
2267 	struct ifnet			*ifp;
2268 	struct in_mfilter		*imf;
2269 	struct ip_moptions		*imo;
2270 	struct in_msource		*ims;
2271 	struct in_multi			*inm;
2272 	int				 error;
2273 	bool				 is_final;
2274 
2275 	ifp = NULL;
2276 	error = 0;
2277 	is_final = true;
2278 
2279 	memset(&gsr, 0, sizeof(struct group_source_req));
2280 	gsa = (sockunion_t *)&gsr.gsr_group;
2281 	gsa->ss.ss_family = AF_UNSPEC;
2282 	ssa = (sockunion_t *)&gsr.gsr_source;
2283 	ssa->ss.ss_family = AF_UNSPEC;
2284 
2285 	switch (sopt->sopt_name) {
2286 	case IP_DROP_MEMBERSHIP:
2287 	case IP_DROP_SOURCE_MEMBERSHIP:
2288 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2289 			error = sooptcopyin(sopt, &mreqs,
2290 			    sizeof(struct ip_mreq),
2291 			    sizeof(struct ip_mreq));
2292 			/*
2293 			 * Swap interface and sourceaddr arguments,
2294 			 * as ip_mreq and ip_mreq_source are laid
2295 			 * out differently.
2296 			 */
2297 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2298 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2299 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2300 			error = sooptcopyin(sopt, &mreqs,
2301 			    sizeof(struct ip_mreq_source),
2302 			    sizeof(struct ip_mreq_source));
2303 		}
2304 		if (error)
2305 			return (error);
2306 
2307 		gsa->sin.sin_family = AF_INET;
2308 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2309 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2310 
2311 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2312 			ssa->sin.sin_family = AF_INET;
2313 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2314 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2315 		}
2316 
2317 		/*
2318 		 * Attempt to look up hinted ifp from interface address.
2319 		 * Fallthrough with null ifp iff lookup fails, to
2320 		 * preserve 4.4BSD mcast API idempotence.
2321 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2322 		 * using an IPv4 address as a key is racy.
2323 		 */
2324 		if (!in_nullhost(mreqs.imr_interface)) {
2325 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2326 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2327 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2328 		}
2329 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2330 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2331 
2332 		break;
2333 
2334 	case MCAST_LEAVE_GROUP:
2335 	case MCAST_LEAVE_SOURCE_GROUP:
2336 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2337 			error = sooptcopyin(sopt, &gsr,
2338 			    sizeof(struct group_req),
2339 			    sizeof(struct group_req));
2340 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2341 			error = sooptcopyin(sopt, &gsr,
2342 			    sizeof(struct group_source_req),
2343 			    sizeof(struct group_source_req));
2344 		}
2345 		if (error)
2346 			return (error);
2347 
2348 		if (gsa->sin.sin_family != AF_INET ||
2349 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2350 			return (EINVAL);
2351 
2352 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2353 			if (ssa->sin.sin_family != AF_INET ||
2354 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2355 				return (EINVAL);
2356 		}
2357 
2358 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2359 			return (EADDRNOTAVAIL);
2360 
2361 		ifp = ifnet_byindex(gsr.gsr_interface);
2362 
2363 		if (ifp == NULL)
2364 			return (EADDRNOTAVAIL);
2365 		break;
2366 
2367 	default:
2368 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2369 		    __func__, sopt->sopt_name);
2370 		return (EOPNOTSUPP);
2371 		break;
2372 	}
2373 
2374 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2375 		return (EINVAL);
2376 
2377 	IN_MULTI_LOCK();
2378 
2379 	/*
2380 	 * Find the membership in the membership list.
2381 	 */
2382 	imo = inp_findmoptions(inp);
2383 	imf = imo_match_group(imo, ifp, &gsa->sa);
2384 	if (imf == NULL) {
2385 		error = EADDRNOTAVAIL;
2386 		goto out_inp_locked;
2387 	}
2388 	inm = imf->imf_inm;
2389 
2390 	if (ssa->ss.ss_family != AF_UNSPEC)
2391 		is_final = false;
2392 
2393 	/*
2394 	 * Begin state merge transaction at socket layer.
2395 	 */
2396 	INP_WLOCK_ASSERT(inp);
2397 
2398 	/*
2399 	 * If we were instructed only to leave a given source, do so.
2400 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2401 	 */
2402 	if (is_final) {
2403 		ip_mfilter_remove(&imo->imo_head, imf);
2404 		imf_leave(imf);
2405 	} else {
2406 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2407 			error = EADDRNOTAVAIL;
2408 			goto out_inp_locked;
2409 		}
2410 		ims = imo_match_source(imf, &ssa->sa);
2411 		if (ims == NULL) {
2412 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2413 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2414 			error = EADDRNOTAVAIL;
2415 			goto out_inp_locked;
2416 		}
2417 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2418 		error = imf_prune(imf, &ssa->sin);
2419 		if (error) {
2420 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2421 			    __func__);
2422 			goto out_inp_locked;
2423 		}
2424 	}
2425 
2426 	/*
2427 	 * Begin state merge transaction at IGMP layer.
2428 	 */
2429 	if (!is_final) {
2430 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2431 		IN_MULTI_LIST_LOCK();
2432 		error = inm_merge(inm, imf);
2433 		if (error) {
2434 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2435 			    __func__);
2436 			IN_MULTI_LIST_UNLOCK();
2437 			imf_rollback(imf);
2438 			imf_reap(imf);
2439 			goto out_inp_locked;
2440 		}
2441 
2442 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2443 		error = igmp_change_state(inm);
2444 		IN_MULTI_LIST_UNLOCK();
2445 		if (error) {
2446 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2447 			    __func__);
2448 			imf_rollback(imf);
2449 			imf_reap(imf);
2450 			goto out_inp_locked;
2451 		}
2452 	}
2453 	imf_commit(imf);
2454 	imf_reap(imf);
2455 
2456 out_inp_locked:
2457 	INP_WUNLOCK(inp);
2458 
2459 	if (is_final && imf) {
2460 		/*
2461 		 * Give up the multicast address record to which
2462 		 * the membership points.
2463 		 */
2464 		(void) in_leavegroup_locked(imf->imf_inm, imf);
2465 		ip_mfilter_free(imf);
2466 	}
2467 
2468 	IN_MULTI_UNLOCK();
2469 	return (error);
2470 }
2471 
2472 /*
2473  * Select the interface for transmitting IPv4 multicast datagrams.
2474  *
2475  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2476  * may be passed to this socket option. An address of INADDR_ANY or an
2477  * interface index of 0 is used to remove a previous selection.
2478  * When no interface is selected, one is chosen for every send.
2479  */
2480 static int
2481 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2482 {
2483 	struct rm_priotracker	 in_ifa_tracker;
2484 	struct in_addr		 addr;
2485 	struct ip_mreqn		 mreqn;
2486 	struct ifnet		*ifp;
2487 	struct ip_moptions	*imo;
2488 	int			 error;
2489 
2490 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2491 		/*
2492 		 * An interface index was specified using the
2493 		 * Linux-derived ip_mreqn structure.
2494 		 */
2495 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2496 		    sizeof(struct ip_mreqn));
2497 		if (error)
2498 			return (error);
2499 
2500 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2501 			return (EINVAL);
2502 
2503 		if (mreqn.imr_ifindex == 0) {
2504 			ifp = NULL;
2505 		} else {
2506 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2507 			if (ifp == NULL)
2508 				return (EADDRNOTAVAIL);
2509 		}
2510 	} else {
2511 		/*
2512 		 * An interface was specified by IPv4 address.
2513 		 * This is the traditional BSD usage.
2514 		 */
2515 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2516 		    sizeof(struct in_addr));
2517 		if (error)
2518 			return (error);
2519 		if (in_nullhost(addr)) {
2520 			ifp = NULL;
2521 		} else {
2522 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2523 			INADDR_TO_IFP(addr, ifp);
2524 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2525 			if (ifp == NULL)
2526 				return (EADDRNOTAVAIL);
2527 		}
2528 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2529 		    ntohl(addr.s_addr));
2530 	}
2531 
2532 	/* Reject interfaces which do not support multicast. */
2533 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2534 		return (EOPNOTSUPP);
2535 
2536 	imo = inp_findmoptions(inp);
2537 	imo->imo_multicast_ifp = ifp;
2538 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2539 	INP_WUNLOCK(inp);
2540 
2541 	return (0);
2542 }
2543 
2544 /*
2545  * Atomically set source filters on a socket for an IPv4 multicast group.
2546  *
2547  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2548  */
2549 static int
2550 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2551 {
2552 	struct __msfilterreq	 msfr;
2553 	sockunion_t		*gsa;
2554 	struct ifnet		*ifp;
2555 	struct in_mfilter	*imf;
2556 	struct ip_moptions	*imo;
2557 	struct in_multi		*inm;
2558 	int			 error;
2559 
2560 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2561 	    sizeof(struct __msfilterreq));
2562 	if (error)
2563 		return (error);
2564 
2565 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2566 		return (ENOBUFS);
2567 
2568 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2569 	     msfr.msfr_fmode != MCAST_INCLUDE))
2570 		return (EINVAL);
2571 
2572 	if (msfr.msfr_group.ss_family != AF_INET ||
2573 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2574 		return (EINVAL);
2575 
2576 	gsa = (sockunion_t *)&msfr.msfr_group;
2577 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2578 		return (EINVAL);
2579 
2580 	gsa->sin.sin_port = 0;	/* ignore port */
2581 
2582 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2583 		return (EADDRNOTAVAIL);
2584 
2585 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2586 	if (ifp == NULL)
2587 		return (EADDRNOTAVAIL);
2588 
2589 	IN_MULTI_LOCK();
2590 
2591 	/*
2592 	 * Take the INP write lock.
2593 	 * Check if this socket is a member of this group.
2594 	 */
2595 	imo = inp_findmoptions(inp);
2596 	imf = imo_match_group(imo, ifp, &gsa->sa);
2597 	if (imf == NULL) {
2598 		error = EADDRNOTAVAIL;
2599 		goto out_inp_locked;
2600 	}
2601 	inm = imf->imf_inm;
2602 
2603 	/*
2604 	 * Begin state merge transaction at socket layer.
2605 	 */
2606 	INP_WLOCK_ASSERT(inp);
2607 
2608 	imf->imf_st[1] = msfr.msfr_fmode;
2609 
2610 	/*
2611 	 * Apply any new source filters, if present.
2612 	 * Make a copy of the user-space source vector so
2613 	 * that we may copy them with a single copyin. This
2614 	 * allows us to deal with page faults up-front.
2615 	 */
2616 	if (msfr.msfr_nsrcs > 0) {
2617 		struct in_msource	*lims;
2618 		struct sockaddr_in	*psin;
2619 		struct sockaddr_storage	*kss, *pkss;
2620 		int			 i;
2621 
2622 		INP_WUNLOCK(inp);
2623 
2624 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2625 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2626 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2627 		    M_TEMP, M_WAITOK);
2628 		error = copyin(msfr.msfr_srcs, kss,
2629 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2630 		if (error) {
2631 			free(kss, M_TEMP);
2632 			return (error);
2633 		}
2634 
2635 		INP_WLOCK(inp);
2636 
2637 		/*
2638 		 * Mark all source filters as UNDEFINED at t1.
2639 		 * Restore new group filter mode, as imf_leave()
2640 		 * will set it to INCLUDE.
2641 		 */
2642 		imf_leave(imf);
2643 		imf->imf_st[1] = msfr.msfr_fmode;
2644 
2645 		/*
2646 		 * Update socket layer filters at t1, lazy-allocating
2647 		 * new entries. This saves a bunch of memory at the
2648 		 * cost of one RB_FIND() per source entry; duplicate
2649 		 * entries in the msfr_nsrcs vector are ignored.
2650 		 * If we encounter an error, rollback transaction.
2651 		 *
2652 		 * XXX This too could be replaced with a set-symmetric
2653 		 * difference like loop to avoid walking from root
2654 		 * every time, as the key space is common.
2655 		 */
2656 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2657 			psin = (struct sockaddr_in *)pkss;
2658 			if (psin->sin_family != AF_INET) {
2659 				error = EAFNOSUPPORT;
2660 				break;
2661 			}
2662 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2663 				error = EINVAL;
2664 				break;
2665 			}
2666 			error = imf_get_source(imf, psin, &lims);
2667 			if (error)
2668 				break;
2669 			lims->imsl_st[1] = imf->imf_st[1];
2670 		}
2671 		free(kss, M_TEMP);
2672 	}
2673 
2674 	if (error)
2675 		goto out_imf_rollback;
2676 
2677 	INP_WLOCK_ASSERT(inp);
2678 
2679 	/*
2680 	 * Begin state merge transaction at IGMP layer.
2681 	 */
2682 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2683 	IN_MULTI_LIST_LOCK();
2684 	error = inm_merge(inm, imf);
2685 	if (error) {
2686 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2687 		IN_MULTI_LIST_UNLOCK();
2688 		goto out_imf_rollback;
2689 	}
2690 
2691 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2692 	error = igmp_change_state(inm);
2693 	IN_MULTI_LIST_UNLOCK();
2694 	if (error)
2695 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2696 
2697 out_imf_rollback:
2698 	if (error)
2699 		imf_rollback(imf);
2700 	else
2701 		imf_commit(imf);
2702 
2703 	imf_reap(imf);
2704 
2705 out_inp_locked:
2706 	INP_WUNLOCK(inp);
2707 	IN_MULTI_UNLOCK();
2708 	return (error);
2709 }
2710 
2711 /*
2712  * Set the IP multicast options in response to user setsockopt().
2713  *
2714  * Many of the socket options handled in this function duplicate the
2715  * functionality of socket options in the regular unicast API. However,
2716  * it is not possible to merge the duplicate code, because the idempotence
2717  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2718  * the effects of these options must be treated as separate and distinct.
2719  *
2720  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2721  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2722  * is refactored to no longer use vifs.
2723  */
2724 int
2725 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2726 {
2727 	struct ip_moptions	*imo;
2728 	int			 error;
2729 
2730 	error = 0;
2731 
2732 	/*
2733 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2734 	 * or is a divert socket, reject it.
2735 	 */
2736 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2737 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2738 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2739 		return (EOPNOTSUPP);
2740 
2741 	switch (sopt->sopt_name) {
2742 	case IP_MULTICAST_VIF: {
2743 		int vifi;
2744 		/*
2745 		 * Select a multicast VIF for transmission.
2746 		 * Only useful if multicast forwarding is active.
2747 		 */
2748 		if (legal_vif_num == NULL) {
2749 			error = EOPNOTSUPP;
2750 			break;
2751 		}
2752 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2753 		if (error)
2754 			break;
2755 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2756 			error = EINVAL;
2757 			break;
2758 		}
2759 		imo = inp_findmoptions(inp);
2760 		imo->imo_multicast_vif = vifi;
2761 		INP_WUNLOCK(inp);
2762 		break;
2763 	}
2764 
2765 	case IP_MULTICAST_IF:
2766 		error = inp_set_multicast_if(inp, sopt);
2767 		break;
2768 
2769 	case IP_MULTICAST_TTL: {
2770 		u_char ttl;
2771 
2772 		/*
2773 		 * Set the IP time-to-live for outgoing multicast packets.
2774 		 * The original multicast API required a char argument,
2775 		 * which is inconsistent with the rest of the socket API.
2776 		 * We allow either a char or an int.
2777 		 */
2778 		if (sopt->sopt_valsize == sizeof(u_char)) {
2779 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2780 			    sizeof(u_char));
2781 			if (error)
2782 				break;
2783 		} else {
2784 			u_int ittl;
2785 
2786 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2787 			    sizeof(u_int));
2788 			if (error)
2789 				break;
2790 			if (ittl > 255) {
2791 				error = EINVAL;
2792 				break;
2793 			}
2794 			ttl = (u_char)ittl;
2795 		}
2796 		imo = inp_findmoptions(inp);
2797 		imo->imo_multicast_ttl = ttl;
2798 		INP_WUNLOCK(inp);
2799 		break;
2800 	}
2801 
2802 	case IP_MULTICAST_LOOP: {
2803 		u_char loop;
2804 
2805 		/*
2806 		 * Set the loopback flag for outgoing multicast packets.
2807 		 * Must be zero or one.  The original multicast API required a
2808 		 * char argument, which is inconsistent with the rest
2809 		 * of the socket API.  We allow either a char or an int.
2810 		 */
2811 		if (sopt->sopt_valsize == sizeof(u_char)) {
2812 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2813 			    sizeof(u_char));
2814 			if (error)
2815 				break;
2816 		} else {
2817 			u_int iloop;
2818 
2819 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2820 					    sizeof(u_int));
2821 			if (error)
2822 				break;
2823 			loop = (u_char)iloop;
2824 		}
2825 		imo = inp_findmoptions(inp);
2826 		imo->imo_multicast_loop = !!loop;
2827 		INP_WUNLOCK(inp);
2828 		break;
2829 	}
2830 
2831 	case IP_ADD_MEMBERSHIP:
2832 	case IP_ADD_SOURCE_MEMBERSHIP:
2833 	case MCAST_JOIN_GROUP:
2834 	case MCAST_JOIN_SOURCE_GROUP:
2835 		error = inp_join_group(inp, sopt);
2836 		break;
2837 
2838 	case IP_DROP_MEMBERSHIP:
2839 	case IP_DROP_SOURCE_MEMBERSHIP:
2840 	case MCAST_LEAVE_GROUP:
2841 	case MCAST_LEAVE_SOURCE_GROUP:
2842 		error = inp_leave_group(inp, sopt);
2843 		break;
2844 
2845 	case IP_BLOCK_SOURCE:
2846 	case IP_UNBLOCK_SOURCE:
2847 	case MCAST_BLOCK_SOURCE:
2848 	case MCAST_UNBLOCK_SOURCE:
2849 		error = inp_block_unblock_source(inp, sopt);
2850 		break;
2851 
2852 	case IP_MSFILTER:
2853 		error = inp_set_source_filters(inp, sopt);
2854 		break;
2855 
2856 	default:
2857 		error = EOPNOTSUPP;
2858 		break;
2859 	}
2860 
2861 	INP_UNLOCK_ASSERT(inp);
2862 
2863 	return (error);
2864 }
2865 
2866 /*
2867  * Expose IGMP's multicast filter mode and source list(s) to userland,
2868  * keyed by (ifindex, group).
2869  * The filter mode is written out as a uint32_t, followed by
2870  * 0..n of struct in_addr.
2871  * For use by ifmcstat(8).
2872  * SMPng: NOTE: unlocked read of ifindex space.
2873  */
2874 static int
2875 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2876 {
2877 	struct in_addr			 src, group;
2878 	struct epoch_tracker		 et;
2879 	struct ifnet			*ifp;
2880 	struct ifmultiaddr		*ifma;
2881 	struct in_multi			*inm;
2882 	struct ip_msource		*ims;
2883 	int				*name;
2884 	int				 retval;
2885 	u_int				 namelen;
2886 	uint32_t			 fmode, ifindex;
2887 
2888 	name = (int *)arg1;
2889 	namelen = arg2;
2890 
2891 	if (req->newptr != NULL)
2892 		return (EPERM);
2893 
2894 	if (namelen != 2)
2895 		return (EINVAL);
2896 
2897 	ifindex = name[0];
2898 	if (ifindex <= 0 || ifindex > V_if_index) {
2899 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2900 		    __func__, ifindex);
2901 		return (ENOENT);
2902 	}
2903 
2904 	group.s_addr = name[1];
2905 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2906 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2907 		    __func__, ntohl(group.s_addr));
2908 		return (EINVAL);
2909 	}
2910 
2911 	ifp = ifnet_byindex(ifindex);
2912 	if (ifp == NULL) {
2913 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2914 		    __func__, ifindex);
2915 		return (ENOENT);
2916 	}
2917 
2918 	retval = sysctl_wire_old_buffer(req,
2919 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2920 	if (retval)
2921 		return (retval);
2922 
2923 	IN_MULTI_LIST_LOCK();
2924 
2925 	NET_EPOCH_ENTER(et);
2926 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2927 		if (ifma->ifma_addr->sa_family != AF_INET ||
2928 		    ifma->ifma_protospec == NULL)
2929 			continue;
2930 		inm = (struct in_multi *)ifma->ifma_protospec;
2931 		if (!in_hosteq(inm->inm_addr, group))
2932 			continue;
2933 		fmode = inm->inm_st[1].iss_fmode;
2934 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2935 		if (retval != 0)
2936 			break;
2937 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2938 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2939 			    ims->ims_haddr);
2940 			/*
2941 			 * Only copy-out sources which are in-mode.
2942 			 */
2943 			if (fmode != ims_get_mode(inm, ims, 1)) {
2944 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2945 				    __func__);
2946 				continue;
2947 			}
2948 			src.s_addr = htonl(ims->ims_haddr);
2949 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2950 			if (retval != 0)
2951 				break;
2952 		}
2953 	}
2954 	NET_EPOCH_EXIT(et);
2955 
2956 	IN_MULTI_LIST_UNLOCK();
2957 
2958 	return (retval);
2959 }
2960 
2961 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2962 
2963 static const char *inm_modestrs[] = {
2964 	[MCAST_UNDEFINED] = "un",
2965 	[MCAST_INCLUDE] = "in",
2966 	[MCAST_EXCLUDE] = "ex",
2967 };
2968 _Static_assert(MCAST_UNDEFINED == 0 &&
2969 	       MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
2970 	       "inm_modestrs: no longer matches #defines");
2971 
2972 static const char *
2973 inm_mode_str(const int mode)
2974 {
2975 
2976 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2977 		return (inm_modestrs[mode]);
2978 	return ("??");
2979 }
2980 
2981 static const char *inm_statestrs[] = {
2982 	[IGMP_NOT_MEMBER] = "not-member",
2983 	[IGMP_SILENT_MEMBER] = "silent",
2984 	[IGMP_REPORTING_MEMBER] = "reporting",
2985 	[IGMP_IDLE_MEMBER] = "idle",
2986 	[IGMP_LAZY_MEMBER] = "lazy",
2987 	[IGMP_SLEEPING_MEMBER] = "sleeping",
2988 	[IGMP_AWAKENING_MEMBER] = "awakening",
2989 	[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
2990 	[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
2991 	[IGMP_LEAVING_MEMBER] = "leaving",
2992 };
2993 _Static_assert(IGMP_NOT_MEMBER == 0 &&
2994 	       IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
2995 	       "inm_statetrs: no longer matches #defines");
2996 
2997 static const char *
2998 inm_state_str(const int state)
2999 {
3000 
3001 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3002 		return (inm_statestrs[state]);
3003 	return ("??");
3004 }
3005 
3006 /*
3007  * Dump an in_multi structure to the console.
3008  */
3009 void
3010 inm_print(const struct in_multi *inm)
3011 {
3012 	int t;
3013 	char addrbuf[INET_ADDRSTRLEN];
3014 
3015 	if ((ktr_mask & KTR_IGMPV3) == 0)
3016 		return;
3017 
3018 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3019 	printf("addr %s ifp %p(%s) ifma %p\n",
3020 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3021 	    inm->inm_ifp,
3022 	    inm->inm_ifp->if_xname,
3023 	    inm->inm_ifma);
3024 	printf("timer %u state %s refcount %u scq.len %u\n",
3025 	    inm->inm_timer,
3026 	    inm_state_str(inm->inm_state),
3027 	    inm->inm_refcount,
3028 	    inm->inm_scq.mq_len);
3029 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3030 	    inm->inm_igi,
3031 	    inm->inm_nsrc,
3032 	    inm->inm_sctimer,
3033 	    inm->inm_scrv);
3034 	for (t = 0; t < 2; t++) {
3035 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3036 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3037 		    inm->inm_st[t].iss_asm,
3038 		    inm->inm_st[t].iss_ex,
3039 		    inm->inm_st[t].iss_in,
3040 		    inm->inm_st[t].iss_rec);
3041 	}
3042 	printf("%s: --- end inm %p ---\n", __func__, inm);
3043 }
3044 
3045 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3046 
3047 void
3048 inm_print(const struct in_multi *inm)
3049 {
3050 
3051 }
3052 
3053 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3054 
3055 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3056