1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2007-2009 Bruce Simpson. 5 * Copyright (c) 2005 Robert N. M. Watson. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote 17 * products derived from this software without specific prior written 18 * permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * IPv4 multicast socket, group, and socket option processing module. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/protosw.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/protosw.h> 51 #include <sys/sysctl.h> 52 #include <sys/ktr.h> 53 #include <sys/taskqueue.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/route/nhop.h> 61 #include <net/vnet.h> 62 63 #include <net/ethernet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/in_fib.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip_var.h> 71 #include <netinet/igmp_var.h> 72 73 #ifndef KTR_IGMPV3 74 #define KTR_IGMPV3 KTR_INET 75 #endif 76 77 #ifndef __SOCKUNION_DECLARED 78 union sockunion { 79 struct sockaddr_storage ss; 80 struct sockaddr sa; 81 struct sockaddr_dl sdl; 82 struct sockaddr_in sin; 83 }; 84 typedef union sockunion sockunion_t; 85 #define __SOCKUNION_DECLARED 86 #endif /* __SOCKUNION_DECLARED */ 87 88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 89 "IPv4 multicast PCB-layer source filter"); 90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 93 "IPv4 multicast IGMP-layer source filter"); 94 95 /* 96 * Locking: 97 * 98 * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, 99 * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 100 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 101 * it can be taken by code in net/if.c also. 102 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 103 * 104 * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly 105 * any need for in_multi itself to be virtualized -- it is bound to an ifp 106 * anyway no matter what happens. 107 */ 108 struct mtx in_multi_list_mtx; 109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); 110 111 struct mtx in_multi_free_mtx; 112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); 113 114 struct sx in_multi_sx; 115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); 116 117 int ifma_restart; 118 119 /* 120 * Functions with non-static linkage defined in this file should be 121 * declared in in_var.h: 122 * imo_multi_filter() 123 * in_joingroup() 124 * in_joingroup_locked() 125 * in_leavegroup() 126 * in_leavegroup_locked() 127 * and ip_var.h: 128 * inp_freemoptions() 129 * inp_getmoptions() 130 * inp_setmoptions() 131 */ 132 static void imf_commit(struct in_mfilter *); 133 static int imf_get_source(struct in_mfilter *imf, 134 const struct sockaddr_in *psin, 135 struct in_msource **); 136 static struct in_msource * 137 imf_graft(struct in_mfilter *, const uint8_t, 138 const struct sockaddr_in *); 139 static void imf_leave(struct in_mfilter *); 140 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 141 static void imf_purge(struct in_mfilter *); 142 static void imf_rollback(struct in_mfilter *); 143 static void imf_reap(struct in_mfilter *); 144 static struct in_mfilter * 145 imo_match_group(const struct ip_moptions *, 146 const struct ifnet *, const struct sockaddr *); 147 static struct in_msource * 148 imo_match_source(struct in_mfilter *, const struct sockaddr *); 149 static void ims_merge(struct ip_msource *ims, 150 const struct in_msource *lims, const int rollback); 151 static int in_getmulti(struct ifnet *, const struct in_addr *, 152 struct in_multi **); 153 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 154 const int noalloc, struct ip_msource **pims); 155 #ifdef KTR 156 static int inm_is_ifp_detached(const struct in_multi *); 157 #endif 158 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 159 static void inm_purge(struct in_multi *); 160 static void inm_reap(struct in_multi *); 161 static void inm_release(struct in_multi *); 162 static struct ip_moptions * 163 inp_findmoptions(struct inpcb *); 164 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 165 static int inp_join_group(struct inpcb *, struct sockopt *); 166 static int inp_leave_group(struct inpcb *, struct sockopt *); 167 static struct ifnet * 168 inp_lookup_mcast_ifp(const struct inpcb *, 169 const struct sockaddr_in *, const struct in_addr); 170 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 171 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 172 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 173 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 174 175 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, 176 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 177 "IPv4 multicast"); 178 179 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 180 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 181 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, 182 "Max source filters per group"); 183 184 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 185 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 186 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, 187 "Max source filters per socket"); 188 189 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 190 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 191 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 192 193 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 194 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 195 "Per-interface stack-wide source filters"); 196 197 #ifdef KTR 198 /* 199 * Inline function which wraps assertions for a valid ifp. 200 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 201 * is detached. 202 */ 203 static int __inline 204 inm_is_ifp_detached(const struct in_multi *inm) 205 { 206 struct ifnet *ifp; 207 208 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 209 ifp = inm->inm_ifma->ifma_ifp; 210 if (ifp != NULL) { 211 /* 212 * Sanity check that netinet's notion of ifp is the 213 * same as net's. 214 */ 215 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 216 } 217 218 return (ifp == NULL); 219 } 220 #endif 221 222 /* 223 * Interface detach can happen in a taskqueue thread context, so we must use a 224 * dedicated thread to avoid deadlocks when draining inm_release tasks. 225 */ 226 TASKQUEUE_DEFINE_THREAD(inm_free); 227 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); 228 static void inm_release_task(void *arg __unused, int pending __unused); 229 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL); 230 231 void 232 inm_release_wait(void *arg __unused) 233 { 234 235 /* 236 * Make sure all pending multicast addresses are freed before 237 * the VNET or network device is destroyed: 238 */ 239 taskqueue_drain(taskqueue_inm_free, &inm_free_task); 240 } 241 #ifdef VIMAGE 242 /* XXX-BZ FIXME, see D24914. */ 243 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); 244 #endif 245 246 void 247 inm_release_list_deferred(struct in_multi_head *inmh) 248 { 249 250 if (SLIST_EMPTY(inmh)) 251 return; 252 mtx_lock(&in_multi_free_mtx); 253 SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); 254 mtx_unlock(&in_multi_free_mtx); 255 taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); 256 } 257 258 void 259 inm_disconnect(struct in_multi *inm) 260 { 261 struct ifnet *ifp; 262 struct ifmultiaddr *ifma, *ll_ifma; 263 264 ifp = inm->inm_ifp; 265 IF_ADDR_WLOCK_ASSERT(ifp); 266 ifma = inm->inm_ifma; 267 268 if_ref(ifp); 269 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 270 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 271 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 272 } 273 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 274 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 275 MPASS(ifma != ll_ifma); 276 ifma->ifma_llifma = NULL; 277 MPASS(ll_ifma->ifma_llifma == NULL); 278 MPASS(ll_ifma->ifma_ifp == ifp); 279 if (--ll_ifma->ifma_refcount == 0) { 280 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 281 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 282 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 283 } 284 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 285 if_freemulti(ll_ifma); 286 ifma_restart = true; 287 } 288 } 289 } 290 291 void 292 inm_release_deferred(struct in_multi *inm) 293 { 294 struct in_multi_head tmp; 295 296 IN_MULTI_LIST_LOCK_ASSERT(); 297 MPASS(inm->inm_refcount > 0); 298 if (--inm->inm_refcount == 0) { 299 SLIST_INIT(&tmp); 300 inm_disconnect(inm); 301 inm->inm_ifma->ifma_protospec = NULL; 302 SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); 303 inm_release_list_deferred(&tmp); 304 } 305 } 306 307 static void 308 inm_release_task(void *arg __unused, int pending __unused) 309 { 310 struct in_multi_head inm_free_tmp; 311 struct in_multi *inm, *tinm; 312 313 SLIST_INIT(&inm_free_tmp); 314 mtx_lock(&in_multi_free_mtx); 315 SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); 316 mtx_unlock(&in_multi_free_mtx); 317 IN_MULTI_LOCK(); 318 SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { 319 SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); 320 MPASS(inm); 321 inm_release(inm); 322 } 323 IN_MULTI_UNLOCK(); 324 } 325 326 /* 327 * Initialize an in_mfilter structure to a known state at t0, t1 328 * with an empty source filter list. 329 */ 330 static __inline void 331 imf_init(struct in_mfilter *imf, const int st0, const int st1) 332 { 333 memset(imf, 0, sizeof(struct in_mfilter)); 334 RB_INIT(&imf->imf_sources); 335 imf->imf_st[0] = st0; 336 imf->imf_st[1] = st1; 337 } 338 339 struct in_mfilter * 340 ip_mfilter_alloc(const int mflags, const int st0, const int st1) 341 { 342 struct in_mfilter *imf; 343 344 imf = malloc(sizeof(*imf), M_INMFILTER, mflags); 345 if (imf != NULL) 346 imf_init(imf, st0, st1); 347 348 return (imf); 349 } 350 351 void 352 ip_mfilter_free(struct in_mfilter *imf) 353 { 354 355 imf_purge(imf); 356 free(imf, M_INMFILTER); 357 } 358 359 /* 360 * Function for looking up an in_multi record for an IPv4 multicast address 361 * on a given interface. ifp must be valid. If no record found, return NULL. 362 * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. 363 */ 364 struct in_multi * 365 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 366 { 367 struct ifmultiaddr *ifma; 368 struct in_multi *inm; 369 370 IN_MULTI_LIST_LOCK_ASSERT(); 371 IF_ADDR_LOCK_ASSERT(ifp); 372 373 inm = NULL; 374 CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 375 if (ifma->ifma_addr->sa_family != AF_INET || 376 ifma->ifma_protospec == NULL) 377 continue; 378 inm = (struct in_multi *)ifma->ifma_protospec; 379 if (inm->inm_addr.s_addr == ina.s_addr) 380 break; 381 inm = NULL; 382 } 383 return (inm); 384 } 385 386 /* 387 * Wrapper for inm_lookup_locked(). 388 * The IF_ADDR_LOCK will be taken on ifp and released on return. 389 */ 390 struct in_multi * 391 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 392 { 393 struct epoch_tracker et; 394 struct in_multi *inm; 395 396 IN_MULTI_LIST_LOCK_ASSERT(); 397 NET_EPOCH_ENTER(et); 398 399 inm = inm_lookup_locked(ifp, ina); 400 NET_EPOCH_EXIT(et); 401 402 return (inm); 403 } 404 405 /* 406 * Find an IPv4 multicast group entry for this ip_moptions instance 407 * which matches the specified group, and optionally an interface. 408 * Return its index into the array, or -1 if not found. 409 */ 410 static struct in_mfilter * 411 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 412 const struct sockaddr *group) 413 { 414 const struct sockaddr_in *gsin; 415 struct in_mfilter *imf; 416 struct in_multi *inm; 417 418 gsin = (const struct sockaddr_in *)group; 419 420 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 421 inm = imf->imf_inm; 422 if (inm == NULL) 423 continue; 424 if ((ifp == NULL || (inm->inm_ifp == ifp)) && 425 in_hosteq(inm->inm_addr, gsin->sin_addr)) { 426 break; 427 } 428 } 429 return (imf); 430 } 431 432 /* 433 * Find an IPv4 multicast source entry for this imo which matches 434 * the given group index for this socket, and source address. 435 * 436 * NOTE: This does not check if the entry is in-mode, merely if 437 * it exists, which may not be the desired behaviour. 438 */ 439 static struct in_msource * 440 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) 441 { 442 struct ip_msource find; 443 struct ip_msource *ims; 444 const sockunion_t *psa; 445 446 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 447 448 /* Source trees are keyed in host byte order. */ 449 psa = (const sockunion_t *)src; 450 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 451 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 452 453 return ((struct in_msource *)ims); 454 } 455 456 /* 457 * Perform filtering for multicast datagrams on a socket by group and source. 458 * 459 * Returns 0 if a datagram should be allowed through, or various error codes 460 * if the socket was not a member of the group, or the source was muted, etc. 461 */ 462 int 463 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 464 const struct sockaddr *group, const struct sockaddr *src) 465 { 466 struct in_mfilter *imf; 467 struct in_msource *ims; 468 int mode; 469 470 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 471 472 imf = imo_match_group(imo, ifp, group); 473 if (imf == NULL) 474 return (MCAST_NOTGMEMBER); 475 476 /* 477 * Check if the source was included in an (S,G) join. 478 * Allow reception on exclusive memberships by default, 479 * reject reception on inclusive memberships by default. 480 * Exclude source only if an in-mode exclude filter exists. 481 * Include source only if an in-mode include filter exists. 482 * NOTE: We are comparing group state here at IGMP t1 (now) 483 * with socket-layer t0 (since last downcall). 484 */ 485 mode = imf->imf_st[1]; 486 ims = imo_match_source(imf, src); 487 488 if ((ims == NULL && mode == MCAST_INCLUDE) || 489 (ims != NULL && ims->imsl_st[0] != mode)) 490 return (MCAST_NOTSMEMBER); 491 492 return (MCAST_PASS); 493 } 494 495 /* 496 * Find and return a reference to an in_multi record for (ifp, group), 497 * and bump its reference count. 498 * If one does not exist, try to allocate it, and update link-layer multicast 499 * filters on ifp to listen for group. 500 * Assumes the IN_MULTI lock is held across the call. 501 * Return 0 if successful, otherwise return an appropriate error code. 502 */ 503 static int 504 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 505 struct in_multi **pinm) 506 { 507 struct sockaddr_in gsin; 508 struct ifmultiaddr *ifma; 509 struct in_ifinfo *ii; 510 struct in_multi *inm; 511 int error; 512 513 IN_MULTI_LOCK_ASSERT(); 514 515 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 516 IN_MULTI_LIST_LOCK(); 517 inm = inm_lookup(ifp, *group); 518 if (inm != NULL) { 519 /* 520 * If we already joined this group, just bump the 521 * refcount and return it. 522 */ 523 KASSERT(inm->inm_refcount >= 1, 524 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 525 inm_acquire_locked(inm); 526 *pinm = inm; 527 } 528 IN_MULTI_LIST_UNLOCK(); 529 if (inm != NULL) 530 return (0); 531 532 memset(&gsin, 0, sizeof(gsin)); 533 gsin.sin_family = AF_INET; 534 gsin.sin_len = sizeof(struct sockaddr_in); 535 gsin.sin_addr = *group; 536 537 /* 538 * Check if a link-layer group is already associated 539 * with this network-layer group on the given ifnet. 540 */ 541 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 542 if (error != 0) 543 return (error); 544 545 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 546 IN_MULTI_LIST_LOCK(); 547 IF_ADDR_WLOCK(ifp); 548 549 /* 550 * If something other than netinet is occupying the link-layer 551 * group, print a meaningful error message and back out of 552 * the allocation. 553 * Otherwise, bump the refcount on the existing network-layer 554 * group association and return it. 555 */ 556 if (ifma->ifma_protospec != NULL) { 557 inm = (struct in_multi *)ifma->ifma_protospec; 558 #ifdef INVARIANTS 559 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 560 __func__)); 561 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 562 ("%s: ifma not AF_INET", __func__)); 563 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 564 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 565 !in_hosteq(inm->inm_addr, *group)) { 566 char addrbuf[INET_ADDRSTRLEN]; 567 568 panic("%s: ifma %p is inconsistent with %p (%s)", 569 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); 570 } 571 #endif 572 inm_acquire_locked(inm); 573 *pinm = inm; 574 goto out_locked; 575 } 576 577 IF_ADDR_WLOCK_ASSERT(ifp); 578 579 /* 580 * A new in_multi record is needed; allocate and initialize it. 581 * We DO NOT perform an IGMP join as the in_ layer may need to 582 * push an initial source list down to IGMP to support SSM. 583 * 584 * The initial source filter state is INCLUDE, {} as per the RFC. 585 */ 586 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 587 if (inm == NULL) { 588 IF_ADDR_WUNLOCK(ifp); 589 IN_MULTI_LIST_UNLOCK(); 590 if_delmulti_ifma(ifma); 591 return (ENOMEM); 592 } 593 inm->inm_addr = *group; 594 inm->inm_ifp = ifp; 595 inm->inm_igi = ii->ii_igmp; 596 inm->inm_ifma = ifma; 597 inm->inm_refcount = 1; 598 inm->inm_state = IGMP_NOT_MEMBER; 599 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 600 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 601 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 602 RB_INIT(&inm->inm_srcs); 603 604 ifma->ifma_protospec = inm; 605 606 *pinm = inm; 607 out_locked: 608 IF_ADDR_WUNLOCK(ifp); 609 IN_MULTI_LIST_UNLOCK(); 610 return (0); 611 } 612 613 /* 614 * Drop a reference to an in_multi record. 615 * 616 * If the refcount drops to 0, free the in_multi record and 617 * delete the underlying link-layer membership. 618 */ 619 static void 620 inm_release(struct in_multi *inm) 621 { 622 struct ifmultiaddr *ifma; 623 struct ifnet *ifp; 624 625 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 626 MPASS(inm->inm_refcount == 0); 627 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 628 629 ifma = inm->inm_ifma; 630 ifp = inm->inm_ifp; 631 632 /* XXX this access is not covered by IF_ADDR_LOCK */ 633 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 634 if (ifp != NULL) { 635 CURVNET_SET(ifp->if_vnet); 636 inm_purge(inm); 637 free(inm, M_IPMADDR); 638 if_delmulti_ifma_flags(ifma, 1); 639 CURVNET_RESTORE(); 640 if_rele(ifp); 641 } else { 642 inm_purge(inm); 643 free(inm, M_IPMADDR); 644 if_delmulti_ifma_flags(ifma, 1); 645 } 646 } 647 648 /* 649 * Clear recorded source entries for a group. 650 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 651 * FIXME: Should reap. 652 */ 653 void 654 inm_clear_recorded(struct in_multi *inm) 655 { 656 struct ip_msource *ims; 657 658 IN_MULTI_LIST_LOCK_ASSERT(); 659 660 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 661 if (ims->ims_stp) { 662 ims->ims_stp = 0; 663 --inm->inm_st[1].iss_rec; 664 } 665 } 666 KASSERT(inm->inm_st[1].iss_rec == 0, 667 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 668 } 669 670 /* 671 * Record a source as pending for a Source-Group IGMPv3 query. 672 * This lives here as it modifies the shared tree. 673 * 674 * inm is the group descriptor. 675 * naddr is the address of the source to record in network-byte order. 676 * 677 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 678 * lazy-allocate a source node in response to an SG query. 679 * Otherwise, no allocation is performed. This saves some memory 680 * with the trade-off that the source will not be reported to the 681 * router if joined in the window between the query response and 682 * the group actually being joined on the local host. 683 * 684 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 685 * This turns off the allocation of a recorded source entry if 686 * the group has not been joined. 687 * 688 * Return 0 if the source didn't exist or was already marked as recorded. 689 * Return 1 if the source was marked as recorded by this function. 690 * Return <0 if any error occurred (negated errno code). 691 */ 692 int 693 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 694 { 695 struct ip_msource find; 696 struct ip_msource *ims, *nims; 697 698 IN_MULTI_LIST_LOCK_ASSERT(); 699 700 find.ims_haddr = ntohl(naddr); 701 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 702 if (ims && ims->ims_stp) 703 return (0); 704 if (ims == NULL) { 705 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 706 return (-ENOSPC); 707 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 708 M_NOWAIT | M_ZERO); 709 if (nims == NULL) 710 return (-ENOMEM); 711 nims->ims_haddr = find.ims_haddr; 712 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 713 ++inm->inm_nsrc; 714 ims = nims; 715 } 716 717 /* 718 * Mark the source as recorded and update the recorded 719 * source count. 720 */ 721 ++ims->ims_stp; 722 ++inm->inm_st[1].iss_rec; 723 724 return (1); 725 } 726 727 /* 728 * Return a pointer to an in_msource owned by an in_mfilter, 729 * given its source address. 730 * Lazy-allocate if needed. If this is a new entry its filter state is 731 * undefined at t0. 732 * 733 * imf is the filter set being modified. 734 * haddr is the source address in *host* byte-order. 735 * 736 * SMPng: May be called with locks held; malloc must not block. 737 */ 738 static int 739 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 740 struct in_msource **plims) 741 { 742 struct ip_msource find; 743 struct ip_msource *ims, *nims; 744 struct in_msource *lims; 745 int error; 746 747 error = 0; 748 ims = NULL; 749 lims = NULL; 750 751 /* key is host byte order */ 752 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 753 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 754 lims = (struct in_msource *)ims; 755 if (lims == NULL) { 756 if (imf->imf_nsrc == in_mcast_maxsocksrc) 757 return (ENOSPC); 758 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 759 M_NOWAIT | M_ZERO); 760 if (nims == NULL) 761 return (ENOMEM); 762 lims = (struct in_msource *)nims; 763 lims->ims_haddr = find.ims_haddr; 764 lims->imsl_st[0] = MCAST_UNDEFINED; 765 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 766 ++imf->imf_nsrc; 767 } 768 769 *plims = lims; 770 771 return (error); 772 } 773 774 /* 775 * Graft a source entry into an existing socket-layer filter set, 776 * maintaining any required invariants and checking allocations. 777 * 778 * The source is marked as being in the new filter mode at t1. 779 * 780 * Return the pointer to the new node, otherwise return NULL. 781 */ 782 static struct in_msource * 783 imf_graft(struct in_mfilter *imf, const uint8_t st1, 784 const struct sockaddr_in *psin) 785 { 786 struct ip_msource *nims; 787 struct in_msource *lims; 788 789 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 790 M_NOWAIT | M_ZERO); 791 if (nims == NULL) 792 return (NULL); 793 lims = (struct in_msource *)nims; 794 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 795 lims->imsl_st[0] = MCAST_UNDEFINED; 796 lims->imsl_st[1] = st1; 797 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 798 ++imf->imf_nsrc; 799 800 return (lims); 801 } 802 803 /* 804 * Prune a source entry from an existing socket-layer filter set, 805 * maintaining any required invariants and checking allocations. 806 * 807 * The source is marked as being left at t1, it is not freed. 808 * 809 * Return 0 if no error occurred, otherwise return an errno value. 810 */ 811 static int 812 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 813 { 814 struct ip_msource find; 815 struct ip_msource *ims; 816 struct in_msource *lims; 817 818 /* key is host byte order */ 819 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 820 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 821 if (ims == NULL) 822 return (ENOENT); 823 lims = (struct in_msource *)ims; 824 lims->imsl_st[1] = MCAST_UNDEFINED; 825 return (0); 826 } 827 828 /* 829 * Revert socket-layer filter set deltas at t1 to t0 state. 830 */ 831 static void 832 imf_rollback(struct in_mfilter *imf) 833 { 834 struct ip_msource *ims, *tims; 835 struct in_msource *lims; 836 837 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 838 lims = (struct in_msource *)ims; 839 if (lims->imsl_st[0] == lims->imsl_st[1]) { 840 /* no change at t1 */ 841 continue; 842 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 843 /* revert change to existing source at t1 */ 844 lims->imsl_st[1] = lims->imsl_st[0]; 845 } else { 846 /* revert source added t1 */ 847 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 848 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 849 free(ims, M_INMFILTER); 850 imf->imf_nsrc--; 851 } 852 } 853 imf->imf_st[1] = imf->imf_st[0]; 854 } 855 856 /* 857 * Mark socket-layer filter set as INCLUDE {} at t1. 858 */ 859 static void 860 imf_leave(struct in_mfilter *imf) 861 { 862 struct ip_msource *ims; 863 struct in_msource *lims; 864 865 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 866 lims = (struct in_msource *)ims; 867 lims->imsl_st[1] = MCAST_UNDEFINED; 868 } 869 imf->imf_st[1] = MCAST_INCLUDE; 870 } 871 872 /* 873 * Mark socket-layer filter set deltas as committed. 874 */ 875 static void 876 imf_commit(struct in_mfilter *imf) 877 { 878 struct ip_msource *ims; 879 struct in_msource *lims; 880 881 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 882 lims = (struct in_msource *)ims; 883 lims->imsl_st[0] = lims->imsl_st[1]; 884 } 885 imf->imf_st[0] = imf->imf_st[1]; 886 } 887 888 /* 889 * Reap unreferenced sources from socket-layer filter set. 890 */ 891 static void 892 imf_reap(struct in_mfilter *imf) 893 { 894 struct ip_msource *ims, *tims; 895 struct in_msource *lims; 896 897 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 898 lims = (struct in_msource *)ims; 899 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 900 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 901 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 902 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 903 free(ims, M_INMFILTER); 904 imf->imf_nsrc--; 905 } 906 } 907 } 908 909 /* 910 * Purge socket-layer filter set. 911 */ 912 static void 913 imf_purge(struct in_mfilter *imf) 914 { 915 struct ip_msource *ims, *tims; 916 917 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 918 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 919 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 920 free(ims, M_INMFILTER); 921 imf->imf_nsrc--; 922 } 923 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 924 KASSERT(RB_EMPTY(&imf->imf_sources), 925 ("%s: imf_sources not empty", __func__)); 926 } 927 928 /* 929 * Look up a source filter entry for a multicast group. 930 * 931 * inm is the group descriptor to work with. 932 * haddr is the host-byte-order IPv4 address to look up. 933 * noalloc may be non-zero to suppress allocation of sources. 934 * *pims will be set to the address of the retrieved or allocated source. 935 * 936 * SMPng: NOTE: may be called with locks held. 937 * Return 0 if successful, otherwise return a non-zero error code. 938 */ 939 static int 940 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 941 const int noalloc, struct ip_msource **pims) 942 { 943 struct ip_msource find; 944 struct ip_msource *ims, *nims; 945 946 find.ims_haddr = haddr; 947 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 948 if (ims == NULL && !noalloc) { 949 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 950 return (ENOSPC); 951 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 952 M_NOWAIT | M_ZERO); 953 if (nims == NULL) 954 return (ENOMEM); 955 nims->ims_haddr = haddr; 956 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 957 ++inm->inm_nsrc; 958 ims = nims; 959 #ifdef KTR 960 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, 961 haddr, ims); 962 #endif 963 } 964 965 *pims = ims; 966 return (0); 967 } 968 969 /* 970 * Merge socket-layer source into IGMP-layer source. 971 * If rollback is non-zero, perform the inverse of the merge. 972 */ 973 static void 974 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 975 const int rollback) 976 { 977 int n = rollback ? -1 : 1; 978 979 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 980 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", 981 __func__, n, ims->ims_haddr); 982 ims->ims_st[1].ex -= n; 983 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 984 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", 985 __func__, n, ims->ims_haddr); 986 ims->ims_st[1].in -= n; 987 } 988 989 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 990 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", 991 __func__, n, ims->ims_haddr); 992 ims->ims_st[1].ex += n; 993 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 994 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", 995 __func__, n, ims->ims_haddr); 996 ims->ims_st[1].in += n; 997 } 998 } 999 1000 /* 1001 * Atomically update the global in_multi state, when a membership's 1002 * filter list is being updated in any way. 1003 * 1004 * imf is the per-inpcb-membership group filter pointer. 1005 * A fake imf may be passed for in-kernel consumers. 1006 * 1007 * XXX This is a candidate for a set-symmetric-difference style loop 1008 * which would eliminate the repeated lookup from root of ims nodes, 1009 * as they share the same key space. 1010 * 1011 * If any error occurred this function will back out of refcounts 1012 * and return a non-zero value. 1013 */ 1014 static int 1015 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1016 { 1017 struct ip_msource *ims, *nims; 1018 struct in_msource *lims; 1019 int schanged, error; 1020 int nsrc0, nsrc1; 1021 1022 schanged = 0; 1023 error = 0; 1024 nsrc1 = nsrc0 = 0; 1025 IN_MULTI_LIST_LOCK_ASSERT(); 1026 1027 /* 1028 * Update the source filters first, as this may fail. 1029 * Maintain count of in-mode filters at t0, t1. These are 1030 * used to work out if we transition into ASM mode or not. 1031 * Maintain a count of source filters whose state was 1032 * actually modified by this operation. 1033 */ 1034 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1035 lims = (struct in_msource *)ims; 1036 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 1037 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 1038 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 1039 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 1040 ++schanged; 1041 if (error) 1042 break; 1043 ims_merge(nims, lims, 0); 1044 } 1045 if (error) { 1046 struct ip_msource *bims; 1047 1048 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 1049 lims = (struct in_msource *)ims; 1050 if (lims->imsl_st[0] == lims->imsl_st[1]) 1051 continue; 1052 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 1053 if (bims == NULL) 1054 continue; 1055 ims_merge(bims, lims, 1); 1056 } 1057 goto out_reap; 1058 } 1059 1060 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1061 __func__, nsrc0, nsrc1); 1062 1063 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1064 if (imf->imf_st[0] == imf->imf_st[1] && 1065 imf->imf_st[1] == MCAST_INCLUDE) { 1066 if (nsrc1 == 0) { 1067 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1068 --inm->inm_st[1].iss_in; 1069 } 1070 } 1071 1072 /* Handle filter mode transition on socket. */ 1073 if (imf->imf_st[0] != imf->imf_st[1]) { 1074 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1075 __func__, imf->imf_st[0], imf->imf_st[1]); 1076 1077 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1078 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1079 --inm->inm_st[1].iss_ex; 1080 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1081 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1082 --inm->inm_st[1].iss_in; 1083 } 1084 1085 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1086 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1087 inm->inm_st[1].iss_ex++; 1088 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1089 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1090 inm->inm_st[1].iss_in++; 1091 } 1092 } 1093 1094 /* 1095 * Track inm filter state in terms of listener counts. 1096 * If there are any exclusive listeners, stack-wide 1097 * membership is exclusive. 1098 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1099 * If no listeners remain, state is undefined at t1, 1100 * and the IGMP lifecycle for this group should finish. 1101 */ 1102 if (inm->inm_st[1].iss_ex > 0) { 1103 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1104 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1105 } else if (inm->inm_st[1].iss_in > 0) { 1106 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1107 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1108 } else { 1109 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1110 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1111 } 1112 1113 /* Decrement ASM listener count on transition out of ASM mode. */ 1114 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1115 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1116 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1117 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1118 --inm->inm_st[1].iss_asm; 1119 } 1120 } 1121 1122 /* Increment ASM listener count on transition to ASM mode. */ 1123 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1124 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1125 inm->inm_st[1].iss_asm++; 1126 } 1127 1128 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1129 inm_print(inm); 1130 1131 out_reap: 1132 if (schanged > 0) { 1133 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1134 inm_reap(inm); 1135 } 1136 return (error); 1137 } 1138 1139 /* 1140 * Mark an in_multi's filter set deltas as committed. 1141 * Called by IGMP after a state change has been enqueued. 1142 */ 1143 void 1144 inm_commit(struct in_multi *inm) 1145 { 1146 struct ip_msource *ims; 1147 1148 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1149 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1150 inm_print(inm); 1151 1152 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1153 ims->ims_st[0] = ims->ims_st[1]; 1154 } 1155 inm->inm_st[0] = inm->inm_st[1]; 1156 } 1157 1158 /* 1159 * Reap unreferenced nodes from an in_multi's filter set. 1160 */ 1161 static void 1162 inm_reap(struct in_multi *inm) 1163 { 1164 struct ip_msource *ims, *tims; 1165 1166 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1167 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1168 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1169 ims->ims_stp != 0) 1170 continue; 1171 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1172 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1173 free(ims, M_IPMSOURCE); 1174 inm->inm_nsrc--; 1175 } 1176 } 1177 1178 /* 1179 * Purge all source nodes from an in_multi's filter set. 1180 */ 1181 static void 1182 inm_purge(struct in_multi *inm) 1183 { 1184 struct ip_msource *ims, *tims; 1185 1186 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1187 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1188 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1189 free(ims, M_IPMSOURCE); 1190 inm->inm_nsrc--; 1191 } 1192 } 1193 1194 /* 1195 * Join a multicast group; unlocked entry point. 1196 * 1197 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1198 * is not held. Fortunately, ifp is unlikely to have been detached 1199 * at this point, so we assume it's OK to recurse. 1200 */ 1201 int 1202 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1203 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1204 { 1205 int error; 1206 1207 IN_MULTI_LOCK(); 1208 error = in_joingroup_locked(ifp, gina, imf, pinm); 1209 IN_MULTI_UNLOCK(); 1210 1211 return (error); 1212 } 1213 1214 /* 1215 * Join a multicast group; real entry point. 1216 * 1217 * Only preserves atomicity at inm level. 1218 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1219 * 1220 * If the IGMP downcall fails, the group is not joined, and an error 1221 * code is returned. 1222 */ 1223 int 1224 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1225 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1226 { 1227 struct in_mfilter timf; 1228 struct in_multi *inm; 1229 int error; 1230 1231 IN_MULTI_LOCK_ASSERT(); 1232 IN_MULTI_LIST_UNLOCK_ASSERT(); 1233 1234 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, 1235 ntohl(gina->s_addr), ifp, ifp->if_xname); 1236 1237 error = 0; 1238 inm = NULL; 1239 1240 /* 1241 * If no imf was specified (i.e. kernel consumer), 1242 * fake one up and assume it is an ASM join. 1243 */ 1244 if (imf == NULL) { 1245 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1246 imf = &timf; 1247 } 1248 1249 error = in_getmulti(ifp, gina, &inm); 1250 if (error) { 1251 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1252 return (error); 1253 } 1254 IN_MULTI_LIST_LOCK(); 1255 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1256 error = inm_merge(inm, imf); 1257 if (error) { 1258 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1259 goto out_inm_release; 1260 } 1261 1262 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1263 error = igmp_change_state(inm); 1264 if (error) { 1265 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1266 goto out_inm_release; 1267 } 1268 1269 out_inm_release: 1270 if (error) { 1271 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1272 IF_ADDR_WLOCK(ifp); 1273 inm_release_deferred(inm); 1274 IF_ADDR_WUNLOCK(ifp); 1275 } else { 1276 *pinm = inm; 1277 } 1278 IN_MULTI_LIST_UNLOCK(); 1279 1280 return (error); 1281 } 1282 1283 /* 1284 * Leave a multicast group; unlocked entry point. 1285 */ 1286 int 1287 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1288 { 1289 int error; 1290 1291 IN_MULTI_LOCK(); 1292 error = in_leavegroup_locked(inm, imf); 1293 IN_MULTI_UNLOCK(); 1294 1295 return (error); 1296 } 1297 1298 /* 1299 * Leave a multicast group; real entry point. 1300 * All source filters will be expunged. 1301 * 1302 * Only preserves atomicity at inm level. 1303 * 1304 * Holding the write lock for the INP which contains imf 1305 * is highly advisable. We can't assert for it as imf does not 1306 * contain a back-pointer to the owning inp. 1307 * 1308 * Note: This is not the same as inm_release(*) as this function also 1309 * makes a state change downcall into IGMP. 1310 */ 1311 int 1312 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1313 { 1314 struct in_mfilter timf; 1315 int error; 1316 1317 IN_MULTI_LOCK_ASSERT(); 1318 IN_MULTI_LIST_UNLOCK_ASSERT(); 1319 1320 error = 0; 1321 1322 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, 1323 inm, ntohl(inm->inm_addr.s_addr), 1324 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1325 imf); 1326 1327 /* 1328 * If no imf was specified (i.e. kernel consumer), 1329 * fake one up and assume it is an ASM join. 1330 */ 1331 if (imf == NULL) { 1332 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1333 imf = &timf; 1334 } 1335 1336 /* 1337 * Begin state merge transaction at IGMP layer. 1338 * 1339 * As this particular invocation should not cause any memory 1340 * to be allocated, and there is no opportunity to roll back 1341 * the transaction, it MUST NOT fail. 1342 */ 1343 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1344 IN_MULTI_LIST_LOCK(); 1345 error = inm_merge(inm, imf); 1346 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1347 1348 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1349 CURVNET_SET(inm->inm_ifp->if_vnet); 1350 error = igmp_change_state(inm); 1351 IF_ADDR_WLOCK(inm->inm_ifp); 1352 inm_release_deferred(inm); 1353 IF_ADDR_WUNLOCK(inm->inm_ifp); 1354 IN_MULTI_LIST_UNLOCK(); 1355 CURVNET_RESTORE(); 1356 if (error) 1357 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1358 1359 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1360 1361 return (error); 1362 } 1363 1364 /*#ifndef BURN_BRIDGES*/ 1365 1366 /* 1367 * Block or unblock an ASM multicast source on an inpcb. 1368 * This implements the delta-based API described in RFC 3678. 1369 * 1370 * The delta-based API applies only to exclusive-mode memberships. 1371 * An IGMP downcall will be performed. 1372 * 1373 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1374 * 1375 * Return 0 if successful, otherwise return an appropriate error code. 1376 */ 1377 static int 1378 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1379 { 1380 struct group_source_req gsr; 1381 struct rm_priotracker in_ifa_tracker; 1382 sockunion_t *gsa, *ssa; 1383 struct ifnet *ifp; 1384 struct in_mfilter *imf; 1385 struct ip_moptions *imo; 1386 struct in_msource *ims; 1387 struct in_multi *inm; 1388 uint16_t fmode; 1389 int error, doblock; 1390 1391 ifp = NULL; 1392 error = 0; 1393 doblock = 0; 1394 1395 memset(&gsr, 0, sizeof(struct group_source_req)); 1396 gsa = (sockunion_t *)&gsr.gsr_group; 1397 ssa = (sockunion_t *)&gsr.gsr_source; 1398 1399 switch (sopt->sopt_name) { 1400 case IP_BLOCK_SOURCE: 1401 case IP_UNBLOCK_SOURCE: { 1402 struct ip_mreq_source mreqs; 1403 1404 error = sooptcopyin(sopt, &mreqs, 1405 sizeof(struct ip_mreq_source), 1406 sizeof(struct ip_mreq_source)); 1407 if (error) 1408 return (error); 1409 1410 gsa->sin.sin_family = AF_INET; 1411 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1412 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1413 1414 ssa->sin.sin_family = AF_INET; 1415 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1416 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1417 1418 if (!in_nullhost(mreqs.imr_interface)) { 1419 IN_IFADDR_RLOCK(&in_ifa_tracker); 1420 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1421 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1422 } 1423 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1424 doblock = 1; 1425 1426 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1427 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1428 break; 1429 } 1430 1431 case MCAST_BLOCK_SOURCE: 1432 case MCAST_UNBLOCK_SOURCE: 1433 error = sooptcopyin(sopt, &gsr, 1434 sizeof(struct group_source_req), 1435 sizeof(struct group_source_req)); 1436 if (error) 1437 return (error); 1438 1439 if (gsa->sin.sin_family != AF_INET || 1440 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1441 return (EINVAL); 1442 1443 if (ssa->sin.sin_family != AF_INET || 1444 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1445 return (EINVAL); 1446 1447 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1448 return (EADDRNOTAVAIL); 1449 1450 ifp = ifnet_byindex(gsr.gsr_interface); 1451 1452 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1453 doblock = 1; 1454 break; 1455 1456 default: 1457 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1458 __func__, sopt->sopt_name); 1459 return (EOPNOTSUPP); 1460 break; 1461 } 1462 1463 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1464 return (EINVAL); 1465 1466 IN_MULTI_LOCK(); 1467 1468 /* 1469 * Check if we are actually a member of this group. 1470 */ 1471 imo = inp_findmoptions(inp); 1472 imf = imo_match_group(imo, ifp, &gsa->sa); 1473 if (imf == NULL) { 1474 error = EADDRNOTAVAIL; 1475 goto out_inp_locked; 1476 } 1477 inm = imf->imf_inm; 1478 1479 /* 1480 * Attempting to use the delta-based API on an 1481 * non exclusive-mode membership is an error. 1482 */ 1483 fmode = imf->imf_st[0]; 1484 if (fmode != MCAST_EXCLUDE) { 1485 error = EINVAL; 1486 goto out_inp_locked; 1487 } 1488 1489 /* 1490 * Deal with error cases up-front: 1491 * Asked to block, but already blocked; or 1492 * Asked to unblock, but nothing to unblock. 1493 * If adding a new block entry, allocate it. 1494 */ 1495 ims = imo_match_source(imf, &ssa->sa); 1496 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1497 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, 1498 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); 1499 error = EADDRNOTAVAIL; 1500 goto out_inp_locked; 1501 } 1502 1503 INP_WLOCK_ASSERT(inp); 1504 1505 /* 1506 * Begin state merge transaction at socket layer. 1507 */ 1508 if (doblock) { 1509 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1510 ims = imf_graft(imf, fmode, &ssa->sin); 1511 if (ims == NULL) 1512 error = ENOMEM; 1513 } else { 1514 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1515 error = imf_prune(imf, &ssa->sin); 1516 } 1517 1518 if (error) { 1519 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1520 goto out_imf_rollback; 1521 } 1522 1523 /* 1524 * Begin state merge transaction at IGMP layer. 1525 */ 1526 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1527 IN_MULTI_LIST_LOCK(); 1528 error = inm_merge(inm, imf); 1529 if (error) { 1530 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1531 IN_MULTI_LIST_UNLOCK(); 1532 goto out_imf_rollback; 1533 } 1534 1535 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1536 error = igmp_change_state(inm); 1537 IN_MULTI_LIST_UNLOCK(); 1538 if (error) 1539 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1540 1541 out_imf_rollback: 1542 if (error) 1543 imf_rollback(imf); 1544 else 1545 imf_commit(imf); 1546 1547 imf_reap(imf); 1548 1549 out_inp_locked: 1550 INP_WUNLOCK(inp); 1551 IN_MULTI_UNLOCK(); 1552 return (error); 1553 } 1554 1555 /* 1556 * Given an inpcb, return its multicast options structure pointer. Accepts 1557 * an unlocked inpcb pointer, but will return it locked. May sleep. 1558 * 1559 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1560 * SMPng: NOTE: Returns with the INP write lock held. 1561 */ 1562 static struct ip_moptions * 1563 inp_findmoptions(struct inpcb *inp) 1564 { 1565 struct ip_moptions *imo; 1566 1567 INP_WLOCK(inp); 1568 if (inp->inp_moptions != NULL) 1569 return (inp->inp_moptions); 1570 1571 INP_WUNLOCK(inp); 1572 1573 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1574 1575 imo->imo_multicast_ifp = NULL; 1576 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1577 imo->imo_multicast_vif = -1; 1578 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1579 imo->imo_multicast_loop = in_mcast_loop; 1580 STAILQ_INIT(&imo->imo_head); 1581 1582 INP_WLOCK(inp); 1583 if (inp->inp_moptions != NULL) { 1584 free(imo, M_IPMOPTS); 1585 return (inp->inp_moptions); 1586 } 1587 inp->inp_moptions = imo; 1588 return (imo); 1589 } 1590 1591 static void 1592 inp_gcmoptions(struct ip_moptions *imo) 1593 { 1594 struct in_mfilter *imf; 1595 struct in_multi *inm; 1596 struct ifnet *ifp; 1597 1598 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { 1599 ip_mfilter_remove(&imo->imo_head, imf); 1600 1601 imf_leave(imf); 1602 if ((inm = imf->imf_inm) != NULL) { 1603 if ((ifp = inm->inm_ifp) != NULL) { 1604 CURVNET_SET(ifp->if_vnet); 1605 (void)in_leavegroup(inm, imf); 1606 CURVNET_RESTORE(); 1607 } else { 1608 (void)in_leavegroup(inm, imf); 1609 } 1610 } 1611 ip_mfilter_free(imf); 1612 } 1613 free(imo, M_IPMOPTS); 1614 } 1615 1616 /* 1617 * Discard the IP multicast options (and source filters). To minimize 1618 * the amount of work done while holding locks such as the INP's 1619 * pcbinfo lock (which is used in the receive path), the free 1620 * operation is deferred to the epoch callback task. 1621 */ 1622 void 1623 inp_freemoptions(struct ip_moptions *imo) 1624 { 1625 if (imo == NULL) 1626 return; 1627 inp_gcmoptions(imo); 1628 } 1629 1630 /* 1631 * Atomically get source filters on a socket for an IPv4 multicast group. 1632 * Called with INP lock held; returns with lock released. 1633 */ 1634 static int 1635 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1636 { 1637 struct __msfilterreq msfr; 1638 sockunion_t *gsa; 1639 struct ifnet *ifp; 1640 struct ip_moptions *imo; 1641 struct in_mfilter *imf; 1642 struct ip_msource *ims; 1643 struct in_msource *lims; 1644 struct sockaddr_in *psin; 1645 struct sockaddr_storage *ptss; 1646 struct sockaddr_storage *tss; 1647 int error; 1648 size_t nsrcs, ncsrcs; 1649 1650 INP_WLOCK_ASSERT(inp); 1651 1652 imo = inp->inp_moptions; 1653 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1654 1655 INP_WUNLOCK(inp); 1656 1657 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1658 sizeof(struct __msfilterreq)); 1659 if (error) 1660 return (error); 1661 1662 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1663 return (EINVAL); 1664 1665 ifp = ifnet_byindex(msfr.msfr_ifindex); 1666 if (ifp == NULL) 1667 return (EINVAL); 1668 1669 INP_WLOCK(inp); 1670 1671 /* 1672 * Lookup group on the socket. 1673 */ 1674 gsa = (sockunion_t *)&msfr.msfr_group; 1675 imf = imo_match_group(imo, ifp, &gsa->sa); 1676 if (imf == NULL) { 1677 INP_WUNLOCK(inp); 1678 return (EADDRNOTAVAIL); 1679 } 1680 1681 /* 1682 * Ignore memberships which are in limbo. 1683 */ 1684 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1685 INP_WUNLOCK(inp); 1686 return (EAGAIN); 1687 } 1688 msfr.msfr_fmode = imf->imf_st[1]; 1689 1690 /* 1691 * If the user specified a buffer, copy out the source filter 1692 * entries to userland gracefully. 1693 * We only copy out the number of entries which userland 1694 * has asked for, but we always tell userland how big the 1695 * buffer really needs to be. 1696 */ 1697 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1698 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1699 tss = NULL; 1700 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1701 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1702 M_TEMP, M_NOWAIT | M_ZERO); 1703 if (tss == NULL) { 1704 INP_WUNLOCK(inp); 1705 return (ENOBUFS); 1706 } 1707 } 1708 1709 /* 1710 * Count number of sources in-mode at t0. 1711 * If buffer space exists and remains, copy out source entries. 1712 */ 1713 nsrcs = msfr.msfr_nsrcs; 1714 ncsrcs = 0; 1715 ptss = tss; 1716 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1717 lims = (struct in_msource *)ims; 1718 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1719 lims->imsl_st[0] != imf->imf_st[0]) 1720 continue; 1721 ++ncsrcs; 1722 if (tss != NULL && nsrcs > 0) { 1723 psin = (struct sockaddr_in *)ptss; 1724 psin->sin_family = AF_INET; 1725 psin->sin_len = sizeof(struct sockaddr_in); 1726 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1727 psin->sin_port = 0; 1728 ++ptss; 1729 --nsrcs; 1730 } 1731 } 1732 1733 INP_WUNLOCK(inp); 1734 1735 if (tss != NULL) { 1736 error = copyout(tss, msfr.msfr_srcs, 1737 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1738 free(tss, M_TEMP); 1739 if (error) 1740 return (error); 1741 } 1742 1743 msfr.msfr_nsrcs = ncsrcs; 1744 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1745 1746 return (error); 1747 } 1748 1749 /* 1750 * Return the IP multicast options in response to user getsockopt(). 1751 */ 1752 int 1753 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1754 { 1755 struct rm_priotracker in_ifa_tracker; 1756 struct ip_mreqn mreqn; 1757 struct ip_moptions *imo; 1758 struct ifnet *ifp; 1759 struct in_ifaddr *ia; 1760 int error, optval; 1761 u_char coptval; 1762 1763 INP_WLOCK(inp); 1764 imo = inp->inp_moptions; 1765 /* 1766 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1767 * or is a divert socket, reject it. 1768 */ 1769 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1770 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1771 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1772 INP_WUNLOCK(inp); 1773 return (EOPNOTSUPP); 1774 } 1775 1776 error = 0; 1777 switch (sopt->sopt_name) { 1778 case IP_MULTICAST_VIF: 1779 if (imo != NULL) 1780 optval = imo->imo_multicast_vif; 1781 else 1782 optval = -1; 1783 INP_WUNLOCK(inp); 1784 error = sooptcopyout(sopt, &optval, sizeof(int)); 1785 break; 1786 1787 case IP_MULTICAST_IF: 1788 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1789 if (imo != NULL) { 1790 ifp = imo->imo_multicast_ifp; 1791 if (!in_nullhost(imo->imo_multicast_addr)) { 1792 mreqn.imr_address = imo->imo_multicast_addr; 1793 } else if (ifp != NULL) { 1794 struct epoch_tracker et; 1795 1796 mreqn.imr_ifindex = ifp->if_index; 1797 NET_EPOCH_ENTER(et); 1798 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 1799 if (ia != NULL) 1800 mreqn.imr_address = 1801 IA_SIN(ia)->sin_addr; 1802 NET_EPOCH_EXIT(et); 1803 } 1804 } 1805 INP_WUNLOCK(inp); 1806 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1807 error = sooptcopyout(sopt, &mreqn, 1808 sizeof(struct ip_mreqn)); 1809 } else { 1810 error = sooptcopyout(sopt, &mreqn.imr_address, 1811 sizeof(struct in_addr)); 1812 } 1813 break; 1814 1815 case IP_MULTICAST_TTL: 1816 if (imo == NULL) 1817 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1818 else 1819 optval = coptval = imo->imo_multicast_ttl; 1820 INP_WUNLOCK(inp); 1821 if (sopt->sopt_valsize == sizeof(u_char)) 1822 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1823 else 1824 error = sooptcopyout(sopt, &optval, sizeof(int)); 1825 break; 1826 1827 case IP_MULTICAST_LOOP: 1828 if (imo == NULL) 1829 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1830 else 1831 optval = coptval = imo->imo_multicast_loop; 1832 INP_WUNLOCK(inp); 1833 if (sopt->sopt_valsize == sizeof(u_char)) 1834 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1835 else 1836 error = sooptcopyout(sopt, &optval, sizeof(int)); 1837 break; 1838 1839 case IP_MSFILTER: 1840 if (imo == NULL) { 1841 error = EADDRNOTAVAIL; 1842 INP_WUNLOCK(inp); 1843 } else { 1844 error = inp_get_source_filters(inp, sopt); 1845 } 1846 break; 1847 1848 default: 1849 INP_WUNLOCK(inp); 1850 error = ENOPROTOOPT; 1851 break; 1852 } 1853 1854 INP_UNLOCK_ASSERT(inp); 1855 1856 return (error); 1857 } 1858 1859 /* 1860 * Look up the ifnet to use for a multicast group membership, 1861 * given the IPv4 address of an interface, and the IPv4 group address. 1862 * 1863 * This routine exists to support legacy multicast applications 1864 * which do not understand that multicast memberships are scoped to 1865 * specific physical links in the networking stack, or which need 1866 * to join link-scope groups before IPv4 addresses are configured. 1867 * 1868 * If inp is non-NULL, use this socket's current FIB number for any 1869 * required FIB lookup. 1870 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1871 * and use its ifp; usually, this points to the default next-hop. 1872 * 1873 * If the FIB lookup fails, attempt to use the first non-loopback 1874 * interface with multicast capability in the system as a 1875 * last resort. The legacy IPv4 ASM API requires that we do 1876 * this in order to allow groups to be joined when the routing 1877 * table has not yet been populated during boot. 1878 * 1879 * Returns NULL if no ifp could be found, otherwise return referenced ifp. 1880 * 1881 * FUTURE: Implement IPv4 source-address selection. 1882 */ 1883 static struct ifnet * 1884 inp_lookup_mcast_ifp(const struct inpcb *inp, 1885 const struct sockaddr_in *gsin, const struct in_addr ina) 1886 { 1887 struct rm_priotracker in_ifa_tracker; 1888 struct ifnet *ifp; 1889 struct nhop_object *nh; 1890 uint32_t fibnum; 1891 1892 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1893 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1894 ("%s: not multicast", __func__)); 1895 1896 ifp = NULL; 1897 if (!in_nullhost(ina)) { 1898 IN_IFADDR_RLOCK(&in_ifa_tracker); 1899 INADDR_TO_IFP(ina, ifp); 1900 if (ifp != NULL) 1901 if_ref(ifp); 1902 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1903 } else { 1904 fibnum = inp ? inp->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1905 nh = fib4_lookup(fibnum, gsin->sin_addr, 0, NHR_NONE, 0); 1906 if (nh != NULL) { 1907 ifp = nh->nh_ifp; 1908 if_ref(ifp); 1909 } else { 1910 struct in_ifaddr *ia; 1911 struct ifnet *mifp; 1912 1913 mifp = NULL; 1914 IN_IFADDR_RLOCK(&in_ifa_tracker); 1915 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1916 mifp = ia->ia_ifp; 1917 if (!(mifp->if_flags & IFF_LOOPBACK) && 1918 (mifp->if_flags & IFF_MULTICAST)) { 1919 ifp = mifp; 1920 if_ref(ifp); 1921 break; 1922 } 1923 } 1924 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1925 } 1926 } 1927 1928 return (ifp); 1929 } 1930 1931 /* 1932 * Join an IPv4 multicast group, possibly with a source. 1933 */ 1934 static int 1935 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1936 { 1937 struct group_source_req gsr; 1938 sockunion_t *gsa, *ssa; 1939 struct ifnet *ifp; 1940 struct in_mfilter *imf; 1941 struct ip_moptions *imo; 1942 struct in_multi *inm; 1943 struct in_msource *lims; 1944 struct epoch_tracker et; 1945 int error, is_new; 1946 1947 ifp = NULL; 1948 lims = NULL; 1949 error = 0; 1950 1951 memset(&gsr, 0, sizeof(struct group_source_req)); 1952 gsa = (sockunion_t *)&gsr.gsr_group; 1953 gsa->ss.ss_family = AF_UNSPEC; 1954 ssa = (sockunion_t *)&gsr.gsr_source; 1955 ssa->ss.ss_family = AF_UNSPEC; 1956 1957 switch (sopt->sopt_name) { 1958 case IP_ADD_MEMBERSHIP: { 1959 struct ip_mreqn mreqn; 1960 1961 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) 1962 error = sooptcopyin(sopt, &mreqn, 1963 sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); 1964 else 1965 error = sooptcopyin(sopt, &mreqn, 1966 sizeof(struct ip_mreq), sizeof(struct ip_mreq)); 1967 if (error) 1968 return (error); 1969 1970 gsa->sin.sin_family = AF_INET; 1971 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1972 gsa->sin.sin_addr = mreqn.imr_multiaddr; 1973 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1974 return (EINVAL); 1975 1976 NET_EPOCH_ENTER(et); 1977 if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && 1978 mreqn.imr_ifindex != 0) 1979 ifp = ifnet_byindex_ref(mreqn.imr_ifindex); 1980 else 1981 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1982 mreqn.imr_address); 1983 NET_EPOCH_EXIT(et); 1984 break; 1985 } 1986 case IP_ADD_SOURCE_MEMBERSHIP: { 1987 struct ip_mreq_source mreqs; 1988 1989 error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), 1990 sizeof(struct ip_mreq_source)); 1991 if (error) 1992 return (error); 1993 1994 gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; 1995 gsa->sin.sin_len = ssa->sin.sin_len = 1996 sizeof(struct sockaddr_in); 1997 1998 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1999 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2000 return (EINVAL); 2001 2002 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2003 2004 NET_EPOCH_ENTER(et); 2005 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 2006 mreqs.imr_interface); 2007 NET_EPOCH_EXIT(et); 2008 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2009 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2010 break; 2011 } 2012 2013 case MCAST_JOIN_GROUP: 2014 case MCAST_JOIN_SOURCE_GROUP: 2015 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 2016 error = sooptcopyin(sopt, &gsr, 2017 sizeof(struct group_req), 2018 sizeof(struct group_req)); 2019 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2020 error = sooptcopyin(sopt, &gsr, 2021 sizeof(struct group_source_req), 2022 sizeof(struct group_source_req)); 2023 } 2024 if (error) 2025 return (error); 2026 2027 if (gsa->sin.sin_family != AF_INET || 2028 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2029 return (EINVAL); 2030 2031 /* 2032 * Overwrite the port field if present, as the sockaddr 2033 * being copied in may be matched with a binary comparison. 2034 */ 2035 gsa->sin.sin_port = 0; 2036 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2037 if (ssa->sin.sin_family != AF_INET || 2038 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2039 return (EINVAL); 2040 ssa->sin.sin_port = 0; 2041 } 2042 2043 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2044 return (EINVAL); 2045 2046 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2047 return (EADDRNOTAVAIL); 2048 NET_EPOCH_ENTER(et); 2049 ifp = ifnet_byindex_ref(gsr.gsr_interface); 2050 NET_EPOCH_EXIT(et); 2051 break; 2052 2053 default: 2054 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2055 __func__, sopt->sopt_name); 2056 return (EOPNOTSUPP); 2057 break; 2058 } 2059 2060 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2061 if (ifp != NULL) 2062 if_rele(ifp); 2063 return (EADDRNOTAVAIL); 2064 } 2065 2066 IN_MULTI_LOCK(); 2067 2068 /* 2069 * Find the membership in the membership list. 2070 */ 2071 imo = inp_findmoptions(inp); 2072 imf = imo_match_group(imo, ifp, &gsa->sa); 2073 if (imf == NULL) { 2074 is_new = 1; 2075 inm = NULL; 2076 2077 if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { 2078 error = ENOMEM; 2079 goto out_inp_locked; 2080 } 2081 } else { 2082 is_new = 0; 2083 inm = imf->imf_inm; 2084 2085 if (ssa->ss.ss_family != AF_UNSPEC) { 2086 /* 2087 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2088 * is an error. On an existing inclusive membership, 2089 * it just adds the source to the filter list. 2090 */ 2091 if (imf->imf_st[1] != MCAST_INCLUDE) { 2092 error = EINVAL; 2093 goto out_inp_locked; 2094 } 2095 /* 2096 * Throw out duplicates. 2097 * 2098 * XXX FIXME: This makes a naive assumption that 2099 * even if entries exist for *ssa in this imf, 2100 * they will be rejected as dupes, even if they 2101 * are not valid in the current mode (in-mode). 2102 * 2103 * in_msource is transactioned just as for anything 2104 * else in SSM -- but note naive use of inm_graft() 2105 * below for allocating new filter entries. 2106 * 2107 * This is only an issue if someone mixes the 2108 * full-state SSM API with the delta-based API, 2109 * which is discouraged in the relevant RFCs. 2110 */ 2111 lims = imo_match_source(imf, &ssa->sa); 2112 if (lims != NULL /*&& 2113 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2114 error = EADDRNOTAVAIL; 2115 goto out_inp_locked; 2116 } 2117 } else { 2118 /* 2119 * MCAST_JOIN_GROUP on an existing exclusive 2120 * membership is an error; return EADDRINUSE 2121 * to preserve 4.4BSD API idempotence, and 2122 * avoid tedious detour to code below. 2123 * NOTE: This is bending RFC 3678 a bit. 2124 * 2125 * On an existing inclusive membership, this is also 2126 * an error; if you want to change filter mode, 2127 * you must use the userland API setsourcefilter(). 2128 * XXX We don't reject this for imf in UNDEFINED 2129 * state at t1, because allocation of a filter 2130 * is atomic with allocation of a membership. 2131 */ 2132 error = EINVAL; 2133 if (imf->imf_st[1] == MCAST_EXCLUDE) 2134 error = EADDRINUSE; 2135 goto out_inp_locked; 2136 } 2137 } 2138 2139 /* 2140 * Begin state merge transaction at socket layer. 2141 */ 2142 INP_WLOCK_ASSERT(inp); 2143 2144 /* 2145 * Graft new source into filter list for this inpcb's 2146 * membership of the group. The in_multi may not have 2147 * been allocated yet if this is a new membership, however, 2148 * the in_mfilter slot will be allocated and must be initialized. 2149 * 2150 * Note: Grafting of exclusive mode filters doesn't happen 2151 * in this path. 2152 * XXX: Should check for non-NULL lims (node exists but may 2153 * not be in-mode) for interop with full-state API. 2154 */ 2155 if (ssa->ss.ss_family != AF_UNSPEC) { 2156 /* Membership starts in IN mode */ 2157 if (is_new) { 2158 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2159 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2160 if (imf == NULL) { 2161 error = ENOMEM; 2162 goto out_inp_locked; 2163 } 2164 } else { 2165 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2166 } 2167 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2168 if (lims == NULL) { 2169 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2170 __func__); 2171 error = ENOMEM; 2172 goto out_inp_locked; 2173 } 2174 } else { 2175 /* No address specified; Membership starts in EX mode */ 2176 if (is_new) { 2177 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2178 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2179 if (imf == NULL) { 2180 error = ENOMEM; 2181 goto out_inp_locked; 2182 } 2183 } 2184 } 2185 2186 /* 2187 * Begin state merge transaction at IGMP layer. 2188 */ 2189 if (is_new) { 2190 in_pcbref(inp); 2191 INP_WUNLOCK(inp); 2192 2193 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2194 &imf->imf_inm); 2195 2196 INP_WLOCK(inp); 2197 if (in_pcbrele_wlocked(inp)) { 2198 error = ENXIO; 2199 goto out_inp_unlocked; 2200 } 2201 if (error) { 2202 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2203 __func__); 2204 goto out_inp_locked; 2205 } 2206 /* 2207 * NOTE: Refcount from in_joingroup_locked() 2208 * is protecting membership. 2209 */ 2210 ip_mfilter_insert(&imo->imo_head, imf); 2211 } else { 2212 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2213 IN_MULTI_LIST_LOCK(); 2214 error = inm_merge(inm, imf); 2215 if (error) { 2216 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2217 __func__); 2218 IN_MULTI_LIST_UNLOCK(); 2219 imf_rollback(imf); 2220 imf_reap(imf); 2221 goto out_inp_locked; 2222 } 2223 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2224 error = igmp_change_state(inm); 2225 IN_MULTI_LIST_UNLOCK(); 2226 if (error) { 2227 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2228 __func__); 2229 imf_rollback(imf); 2230 imf_reap(imf); 2231 goto out_inp_locked; 2232 } 2233 } 2234 2235 imf_commit(imf); 2236 imf = NULL; 2237 2238 out_inp_locked: 2239 INP_WUNLOCK(inp); 2240 out_inp_unlocked: 2241 IN_MULTI_UNLOCK(); 2242 2243 if (is_new && imf) { 2244 if (imf->imf_inm != NULL) { 2245 IN_MULTI_LIST_LOCK(); 2246 IF_ADDR_WLOCK(ifp); 2247 inm_release_deferred(imf->imf_inm); 2248 IF_ADDR_WUNLOCK(ifp); 2249 IN_MULTI_LIST_UNLOCK(); 2250 } 2251 ip_mfilter_free(imf); 2252 } 2253 if_rele(ifp); 2254 return (error); 2255 } 2256 2257 /* 2258 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2259 */ 2260 static int 2261 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2262 { 2263 struct group_source_req gsr; 2264 struct ip_mreq_source mreqs; 2265 struct rm_priotracker in_ifa_tracker; 2266 sockunion_t *gsa, *ssa; 2267 struct ifnet *ifp; 2268 struct in_mfilter *imf; 2269 struct ip_moptions *imo; 2270 struct in_msource *ims; 2271 struct in_multi *inm; 2272 int error; 2273 bool is_final; 2274 2275 ifp = NULL; 2276 error = 0; 2277 is_final = true; 2278 2279 memset(&gsr, 0, sizeof(struct group_source_req)); 2280 gsa = (sockunion_t *)&gsr.gsr_group; 2281 gsa->ss.ss_family = AF_UNSPEC; 2282 ssa = (sockunion_t *)&gsr.gsr_source; 2283 ssa->ss.ss_family = AF_UNSPEC; 2284 2285 switch (sopt->sopt_name) { 2286 case IP_DROP_MEMBERSHIP: 2287 case IP_DROP_SOURCE_MEMBERSHIP: 2288 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2289 error = sooptcopyin(sopt, &mreqs, 2290 sizeof(struct ip_mreq), 2291 sizeof(struct ip_mreq)); 2292 /* 2293 * Swap interface and sourceaddr arguments, 2294 * as ip_mreq and ip_mreq_source are laid 2295 * out differently. 2296 */ 2297 mreqs.imr_interface = mreqs.imr_sourceaddr; 2298 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2299 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2300 error = sooptcopyin(sopt, &mreqs, 2301 sizeof(struct ip_mreq_source), 2302 sizeof(struct ip_mreq_source)); 2303 } 2304 if (error) 2305 return (error); 2306 2307 gsa->sin.sin_family = AF_INET; 2308 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2309 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2310 2311 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2312 ssa->sin.sin_family = AF_INET; 2313 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2314 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2315 } 2316 2317 /* 2318 * Attempt to look up hinted ifp from interface address. 2319 * Fallthrough with null ifp iff lookup fails, to 2320 * preserve 4.4BSD mcast API idempotence. 2321 * XXX NOTE WELL: The RFC 3678 API is preferred because 2322 * using an IPv4 address as a key is racy. 2323 */ 2324 if (!in_nullhost(mreqs.imr_interface)) { 2325 IN_IFADDR_RLOCK(&in_ifa_tracker); 2326 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2327 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 2328 } 2329 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2330 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2331 2332 break; 2333 2334 case MCAST_LEAVE_GROUP: 2335 case MCAST_LEAVE_SOURCE_GROUP: 2336 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2337 error = sooptcopyin(sopt, &gsr, 2338 sizeof(struct group_req), 2339 sizeof(struct group_req)); 2340 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2341 error = sooptcopyin(sopt, &gsr, 2342 sizeof(struct group_source_req), 2343 sizeof(struct group_source_req)); 2344 } 2345 if (error) 2346 return (error); 2347 2348 if (gsa->sin.sin_family != AF_INET || 2349 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2350 return (EINVAL); 2351 2352 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2353 if (ssa->sin.sin_family != AF_INET || 2354 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2355 return (EINVAL); 2356 } 2357 2358 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2359 return (EADDRNOTAVAIL); 2360 2361 ifp = ifnet_byindex(gsr.gsr_interface); 2362 2363 if (ifp == NULL) 2364 return (EADDRNOTAVAIL); 2365 break; 2366 2367 default: 2368 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2369 __func__, sopt->sopt_name); 2370 return (EOPNOTSUPP); 2371 break; 2372 } 2373 2374 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2375 return (EINVAL); 2376 2377 IN_MULTI_LOCK(); 2378 2379 /* 2380 * Find the membership in the membership list. 2381 */ 2382 imo = inp_findmoptions(inp); 2383 imf = imo_match_group(imo, ifp, &gsa->sa); 2384 if (imf == NULL) { 2385 error = EADDRNOTAVAIL; 2386 goto out_inp_locked; 2387 } 2388 inm = imf->imf_inm; 2389 2390 if (ssa->ss.ss_family != AF_UNSPEC) 2391 is_final = false; 2392 2393 /* 2394 * Begin state merge transaction at socket layer. 2395 */ 2396 INP_WLOCK_ASSERT(inp); 2397 2398 /* 2399 * If we were instructed only to leave a given source, do so. 2400 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2401 */ 2402 if (is_final) { 2403 ip_mfilter_remove(&imo->imo_head, imf); 2404 imf_leave(imf); 2405 2406 /* 2407 * Give up the multicast address record to which 2408 * the membership points. 2409 */ 2410 (void) in_leavegroup_locked(imf->imf_inm, imf); 2411 } else { 2412 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2413 error = EADDRNOTAVAIL; 2414 goto out_inp_locked; 2415 } 2416 ims = imo_match_source(imf, &ssa->sa); 2417 if (ims == NULL) { 2418 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", 2419 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); 2420 error = EADDRNOTAVAIL; 2421 goto out_inp_locked; 2422 } 2423 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2424 error = imf_prune(imf, &ssa->sin); 2425 if (error) { 2426 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2427 __func__); 2428 goto out_inp_locked; 2429 } 2430 } 2431 2432 /* 2433 * Begin state merge transaction at IGMP layer. 2434 */ 2435 if (!is_final) { 2436 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2437 IN_MULTI_LIST_LOCK(); 2438 error = inm_merge(inm, imf); 2439 if (error) { 2440 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2441 __func__); 2442 IN_MULTI_LIST_UNLOCK(); 2443 imf_rollback(imf); 2444 imf_reap(imf); 2445 goto out_inp_locked; 2446 } 2447 2448 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2449 error = igmp_change_state(inm); 2450 IN_MULTI_LIST_UNLOCK(); 2451 if (error) { 2452 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2453 __func__); 2454 imf_rollback(imf); 2455 imf_reap(imf); 2456 goto out_inp_locked; 2457 } 2458 } 2459 imf_commit(imf); 2460 imf_reap(imf); 2461 2462 out_inp_locked: 2463 INP_WUNLOCK(inp); 2464 2465 if (is_final && imf) 2466 ip_mfilter_free(imf); 2467 2468 IN_MULTI_UNLOCK(); 2469 return (error); 2470 } 2471 2472 /* 2473 * Select the interface for transmitting IPv4 multicast datagrams. 2474 * 2475 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2476 * may be passed to this socket option. An address of INADDR_ANY or an 2477 * interface index of 0 is used to remove a previous selection. 2478 * When no interface is selected, one is chosen for every send. 2479 */ 2480 static int 2481 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2482 { 2483 struct rm_priotracker in_ifa_tracker; 2484 struct in_addr addr; 2485 struct ip_mreqn mreqn; 2486 struct ifnet *ifp; 2487 struct ip_moptions *imo; 2488 int error; 2489 2490 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2491 /* 2492 * An interface index was specified using the 2493 * Linux-derived ip_mreqn structure. 2494 */ 2495 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2496 sizeof(struct ip_mreqn)); 2497 if (error) 2498 return (error); 2499 2500 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2501 return (EINVAL); 2502 2503 if (mreqn.imr_ifindex == 0) { 2504 ifp = NULL; 2505 } else { 2506 ifp = ifnet_byindex(mreqn.imr_ifindex); 2507 if (ifp == NULL) 2508 return (EADDRNOTAVAIL); 2509 } 2510 } else { 2511 /* 2512 * An interface was specified by IPv4 address. 2513 * This is the traditional BSD usage. 2514 */ 2515 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2516 sizeof(struct in_addr)); 2517 if (error) 2518 return (error); 2519 if (in_nullhost(addr)) { 2520 ifp = NULL; 2521 } else { 2522 IN_IFADDR_RLOCK(&in_ifa_tracker); 2523 INADDR_TO_IFP(addr, ifp); 2524 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 2525 if (ifp == NULL) 2526 return (EADDRNOTAVAIL); 2527 } 2528 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, 2529 ntohl(addr.s_addr)); 2530 } 2531 2532 /* Reject interfaces which do not support multicast. */ 2533 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2534 return (EOPNOTSUPP); 2535 2536 imo = inp_findmoptions(inp); 2537 imo->imo_multicast_ifp = ifp; 2538 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2539 INP_WUNLOCK(inp); 2540 2541 return (0); 2542 } 2543 2544 /* 2545 * Atomically set source filters on a socket for an IPv4 multicast group. 2546 * 2547 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2548 */ 2549 static int 2550 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2551 { 2552 struct __msfilterreq msfr; 2553 sockunion_t *gsa; 2554 struct ifnet *ifp; 2555 struct in_mfilter *imf; 2556 struct ip_moptions *imo; 2557 struct in_multi *inm; 2558 int error; 2559 2560 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2561 sizeof(struct __msfilterreq)); 2562 if (error) 2563 return (error); 2564 2565 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2566 return (ENOBUFS); 2567 2568 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2569 msfr.msfr_fmode != MCAST_INCLUDE)) 2570 return (EINVAL); 2571 2572 if (msfr.msfr_group.ss_family != AF_INET || 2573 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2574 return (EINVAL); 2575 2576 gsa = (sockunion_t *)&msfr.msfr_group; 2577 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2578 return (EINVAL); 2579 2580 gsa->sin.sin_port = 0; /* ignore port */ 2581 2582 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2583 return (EADDRNOTAVAIL); 2584 2585 ifp = ifnet_byindex(msfr.msfr_ifindex); 2586 if (ifp == NULL) 2587 return (EADDRNOTAVAIL); 2588 2589 IN_MULTI_LOCK(); 2590 2591 /* 2592 * Take the INP write lock. 2593 * Check if this socket is a member of this group. 2594 */ 2595 imo = inp_findmoptions(inp); 2596 imf = imo_match_group(imo, ifp, &gsa->sa); 2597 if (imf == NULL) { 2598 error = EADDRNOTAVAIL; 2599 goto out_inp_locked; 2600 } 2601 inm = imf->imf_inm; 2602 2603 /* 2604 * Begin state merge transaction at socket layer. 2605 */ 2606 INP_WLOCK_ASSERT(inp); 2607 2608 imf->imf_st[1] = msfr.msfr_fmode; 2609 2610 /* 2611 * Apply any new source filters, if present. 2612 * Make a copy of the user-space source vector so 2613 * that we may copy them with a single copyin. This 2614 * allows us to deal with page faults up-front. 2615 */ 2616 if (msfr.msfr_nsrcs > 0) { 2617 struct in_msource *lims; 2618 struct sockaddr_in *psin; 2619 struct sockaddr_storage *kss, *pkss; 2620 int i; 2621 2622 INP_WUNLOCK(inp); 2623 2624 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2625 __func__, (unsigned long)msfr.msfr_nsrcs); 2626 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2627 M_TEMP, M_WAITOK); 2628 error = copyin(msfr.msfr_srcs, kss, 2629 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2630 if (error) { 2631 free(kss, M_TEMP); 2632 return (error); 2633 } 2634 2635 INP_WLOCK(inp); 2636 2637 /* 2638 * Mark all source filters as UNDEFINED at t1. 2639 * Restore new group filter mode, as imf_leave() 2640 * will set it to INCLUDE. 2641 */ 2642 imf_leave(imf); 2643 imf->imf_st[1] = msfr.msfr_fmode; 2644 2645 /* 2646 * Update socket layer filters at t1, lazy-allocating 2647 * new entries. This saves a bunch of memory at the 2648 * cost of one RB_FIND() per source entry; duplicate 2649 * entries in the msfr_nsrcs vector are ignored. 2650 * If we encounter an error, rollback transaction. 2651 * 2652 * XXX This too could be replaced with a set-symmetric 2653 * difference like loop to avoid walking from root 2654 * every time, as the key space is common. 2655 */ 2656 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2657 psin = (struct sockaddr_in *)pkss; 2658 if (psin->sin_family != AF_INET) { 2659 error = EAFNOSUPPORT; 2660 break; 2661 } 2662 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2663 error = EINVAL; 2664 break; 2665 } 2666 error = imf_get_source(imf, psin, &lims); 2667 if (error) 2668 break; 2669 lims->imsl_st[1] = imf->imf_st[1]; 2670 } 2671 free(kss, M_TEMP); 2672 } 2673 2674 if (error) 2675 goto out_imf_rollback; 2676 2677 INP_WLOCK_ASSERT(inp); 2678 2679 /* 2680 * Begin state merge transaction at IGMP layer. 2681 */ 2682 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2683 IN_MULTI_LIST_LOCK(); 2684 error = inm_merge(inm, imf); 2685 if (error) { 2686 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2687 IN_MULTI_LIST_UNLOCK(); 2688 goto out_imf_rollback; 2689 } 2690 2691 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2692 error = igmp_change_state(inm); 2693 IN_MULTI_LIST_UNLOCK(); 2694 if (error) 2695 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2696 2697 out_imf_rollback: 2698 if (error) 2699 imf_rollback(imf); 2700 else 2701 imf_commit(imf); 2702 2703 imf_reap(imf); 2704 2705 out_inp_locked: 2706 INP_WUNLOCK(inp); 2707 IN_MULTI_UNLOCK(); 2708 return (error); 2709 } 2710 2711 /* 2712 * Set the IP multicast options in response to user setsockopt(). 2713 * 2714 * Many of the socket options handled in this function duplicate the 2715 * functionality of socket options in the regular unicast API. However, 2716 * it is not possible to merge the duplicate code, because the idempotence 2717 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2718 * the effects of these options must be treated as separate and distinct. 2719 * 2720 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2721 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2722 * is refactored to no longer use vifs. 2723 */ 2724 int 2725 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2726 { 2727 struct ip_moptions *imo; 2728 int error; 2729 2730 error = 0; 2731 2732 /* 2733 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2734 * or is a divert socket, reject it. 2735 */ 2736 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2737 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2738 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2739 return (EOPNOTSUPP); 2740 2741 switch (sopt->sopt_name) { 2742 case IP_MULTICAST_VIF: { 2743 int vifi; 2744 /* 2745 * Select a multicast VIF for transmission. 2746 * Only useful if multicast forwarding is active. 2747 */ 2748 if (legal_vif_num == NULL) { 2749 error = EOPNOTSUPP; 2750 break; 2751 } 2752 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2753 if (error) 2754 break; 2755 if (!legal_vif_num(vifi) && (vifi != -1)) { 2756 error = EINVAL; 2757 break; 2758 } 2759 imo = inp_findmoptions(inp); 2760 imo->imo_multicast_vif = vifi; 2761 INP_WUNLOCK(inp); 2762 break; 2763 } 2764 2765 case IP_MULTICAST_IF: 2766 error = inp_set_multicast_if(inp, sopt); 2767 break; 2768 2769 case IP_MULTICAST_TTL: { 2770 u_char ttl; 2771 2772 /* 2773 * Set the IP time-to-live for outgoing multicast packets. 2774 * The original multicast API required a char argument, 2775 * which is inconsistent with the rest of the socket API. 2776 * We allow either a char or an int. 2777 */ 2778 if (sopt->sopt_valsize == sizeof(u_char)) { 2779 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2780 sizeof(u_char)); 2781 if (error) 2782 break; 2783 } else { 2784 u_int ittl; 2785 2786 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2787 sizeof(u_int)); 2788 if (error) 2789 break; 2790 if (ittl > 255) { 2791 error = EINVAL; 2792 break; 2793 } 2794 ttl = (u_char)ittl; 2795 } 2796 imo = inp_findmoptions(inp); 2797 imo->imo_multicast_ttl = ttl; 2798 INP_WUNLOCK(inp); 2799 break; 2800 } 2801 2802 case IP_MULTICAST_LOOP: { 2803 u_char loop; 2804 2805 /* 2806 * Set the loopback flag for outgoing multicast packets. 2807 * Must be zero or one. The original multicast API required a 2808 * char argument, which is inconsistent with the rest 2809 * of the socket API. We allow either a char or an int. 2810 */ 2811 if (sopt->sopt_valsize == sizeof(u_char)) { 2812 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2813 sizeof(u_char)); 2814 if (error) 2815 break; 2816 } else { 2817 u_int iloop; 2818 2819 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2820 sizeof(u_int)); 2821 if (error) 2822 break; 2823 loop = (u_char)iloop; 2824 } 2825 imo = inp_findmoptions(inp); 2826 imo->imo_multicast_loop = !!loop; 2827 INP_WUNLOCK(inp); 2828 break; 2829 } 2830 2831 case IP_ADD_MEMBERSHIP: 2832 case IP_ADD_SOURCE_MEMBERSHIP: 2833 case MCAST_JOIN_GROUP: 2834 case MCAST_JOIN_SOURCE_GROUP: 2835 error = inp_join_group(inp, sopt); 2836 break; 2837 2838 case IP_DROP_MEMBERSHIP: 2839 case IP_DROP_SOURCE_MEMBERSHIP: 2840 case MCAST_LEAVE_GROUP: 2841 case MCAST_LEAVE_SOURCE_GROUP: 2842 error = inp_leave_group(inp, sopt); 2843 break; 2844 2845 case IP_BLOCK_SOURCE: 2846 case IP_UNBLOCK_SOURCE: 2847 case MCAST_BLOCK_SOURCE: 2848 case MCAST_UNBLOCK_SOURCE: 2849 error = inp_block_unblock_source(inp, sopt); 2850 break; 2851 2852 case IP_MSFILTER: 2853 error = inp_set_source_filters(inp, sopt); 2854 break; 2855 2856 default: 2857 error = EOPNOTSUPP; 2858 break; 2859 } 2860 2861 INP_UNLOCK_ASSERT(inp); 2862 2863 return (error); 2864 } 2865 2866 /* 2867 * Expose IGMP's multicast filter mode and source list(s) to userland, 2868 * keyed by (ifindex, group). 2869 * The filter mode is written out as a uint32_t, followed by 2870 * 0..n of struct in_addr. 2871 * For use by ifmcstat(8). 2872 * SMPng: NOTE: unlocked read of ifindex space. 2873 */ 2874 static int 2875 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2876 { 2877 struct in_addr src, group; 2878 struct epoch_tracker et; 2879 struct ifnet *ifp; 2880 struct ifmultiaddr *ifma; 2881 struct in_multi *inm; 2882 struct ip_msource *ims; 2883 int *name; 2884 int retval; 2885 u_int namelen; 2886 uint32_t fmode, ifindex; 2887 2888 name = (int *)arg1; 2889 namelen = arg2; 2890 2891 if (req->newptr != NULL) 2892 return (EPERM); 2893 2894 if (namelen != 2) 2895 return (EINVAL); 2896 2897 ifindex = name[0]; 2898 if (ifindex <= 0 || ifindex > V_if_index) { 2899 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2900 __func__, ifindex); 2901 return (ENOENT); 2902 } 2903 2904 group.s_addr = name[1]; 2905 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2906 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", 2907 __func__, ntohl(group.s_addr)); 2908 return (EINVAL); 2909 } 2910 2911 NET_EPOCH_ENTER(et); 2912 ifp = ifnet_byindex(ifindex); 2913 if (ifp == NULL) { 2914 NET_EPOCH_EXIT(et); 2915 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2916 __func__, ifindex); 2917 return (ENOENT); 2918 } 2919 2920 retval = sysctl_wire_old_buffer(req, 2921 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2922 if (retval) { 2923 NET_EPOCH_EXIT(et); 2924 return (retval); 2925 } 2926 2927 IN_MULTI_LIST_LOCK(); 2928 2929 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2930 if (ifma->ifma_addr->sa_family != AF_INET || 2931 ifma->ifma_protospec == NULL) 2932 continue; 2933 inm = (struct in_multi *)ifma->ifma_protospec; 2934 if (!in_hosteq(inm->inm_addr, group)) 2935 continue; 2936 fmode = inm->inm_st[1].iss_fmode; 2937 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2938 if (retval != 0) 2939 break; 2940 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2941 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, 2942 ims->ims_haddr); 2943 /* 2944 * Only copy-out sources which are in-mode. 2945 */ 2946 if (fmode != ims_get_mode(inm, ims, 1)) { 2947 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2948 __func__); 2949 continue; 2950 } 2951 src.s_addr = htonl(ims->ims_haddr); 2952 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2953 if (retval != 0) 2954 break; 2955 } 2956 } 2957 2958 IN_MULTI_LIST_UNLOCK(); 2959 NET_EPOCH_EXIT(et); 2960 2961 return (retval); 2962 } 2963 2964 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) 2965 2966 static const char *inm_modestrs[] = { 2967 [MCAST_UNDEFINED] = "un", 2968 [MCAST_INCLUDE] = "in", 2969 [MCAST_EXCLUDE] = "ex", 2970 }; 2971 _Static_assert(MCAST_UNDEFINED == 0 && 2972 MCAST_EXCLUDE + 1 == nitems(inm_modestrs), 2973 "inm_modestrs: no longer matches #defines"); 2974 2975 static const char * 2976 inm_mode_str(const int mode) 2977 { 2978 2979 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2980 return (inm_modestrs[mode]); 2981 return ("??"); 2982 } 2983 2984 static const char *inm_statestrs[] = { 2985 [IGMP_NOT_MEMBER] = "not-member", 2986 [IGMP_SILENT_MEMBER] = "silent", 2987 [IGMP_REPORTING_MEMBER] = "reporting", 2988 [IGMP_IDLE_MEMBER] = "idle", 2989 [IGMP_LAZY_MEMBER] = "lazy", 2990 [IGMP_SLEEPING_MEMBER] = "sleeping", 2991 [IGMP_AWAKENING_MEMBER] = "awakening", 2992 [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", 2993 [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", 2994 [IGMP_LEAVING_MEMBER] = "leaving", 2995 }; 2996 _Static_assert(IGMP_NOT_MEMBER == 0 && 2997 IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), 2998 "inm_statetrs: no longer matches #defines"); 2999 3000 static const char * 3001 inm_state_str(const int state) 3002 { 3003 3004 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 3005 return (inm_statestrs[state]); 3006 return ("??"); 3007 } 3008 3009 /* 3010 * Dump an in_multi structure to the console. 3011 */ 3012 void 3013 inm_print(const struct in_multi *inm) 3014 { 3015 int t; 3016 char addrbuf[INET_ADDRSTRLEN]; 3017 3018 if ((ktr_mask & KTR_IGMPV3) == 0) 3019 return; 3020 3021 printf("%s: --- begin inm %p ---\n", __func__, inm); 3022 printf("addr %s ifp %p(%s) ifma %p\n", 3023 inet_ntoa_r(inm->inm_addr, addrbuf), 3024 inm->inm_ifp, 3025 inm->inm_ifp->if_xname, 3026 inm->inm_ifma); 3027 printf("timer %u state %s refcount %u scq.len %u\n", 3028 inm->inm_timer, 3029 inm_state_str(inm->inm_state), 3030 inm->inm_refcount, 3031 inm->inm_scq.mq_len); 3032 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 3033 inm->inm_igi, 3034 inm->inm_nsrc, 3035 inm->inm_sctimer, 3036 inm->inm_scrv); 3037 for (t = 0; t < 2; t++) { 3038 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 3039 inm_mode_str(inm->inm_st[t].iss_fmode), 3040 inm->inm_st[t].iss_asm, 3041 inm->inm_st[t].iss_ex, 3042 inm->inm_st[t].iss_in, 3043 inm->inm_st[t].iss_rec); 3044 } 3045 printf("%s: --- end inm %p ---\n", __func__, inm); 3046 } 3047 3048 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ 3049 3050 void 3051 inm_print(const struct in_multi *inm) 3052 { 3053 3054 } 3055 3056 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ 3057 3058 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3059