1 /*- 2 * Copyright (c) 2007-2009 Bruce Simpson. 3 * Copyright (c) 2005 Robert N. M. Watson. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * IPv4 multicast socket, group, and socket option processing module. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/protosw.h> 47 #include <sys/sysctl.h> 48 #include <sys/ktr.h> 49 #include <sys/taskqueue.h> 50 #include <sys/tree.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_dl.h> 55 #include <net/route.h> 56 #include <net/vnet.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_pcb.h> 61 #include <netinet/in_var.h> 62 #include <netinet/ip_var.h> 63 #include <netinet/igmp_var.h> 64 65 #ifndef KTR_IGMPV3 66 #define KTR_IGMPV3 KTR_INET 67 #endif 68 69 #ifndef __SOCKUNION_DECLARED 70 union sockunion { 71 struct sockaddr_storage ss; 72 struct sockaddr sa; 73 struct sockaddr_dl sdl; 74 struct sockaddr_in sin; 75 }; 76 typedef union sockunion sockunion_t; 77 #define __SOCKUNION_DECLARED 78 #endif /* __SOCKUNION_DECLARED */ 79 80 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 81 "IPv4 multicast PCB-layer source filter"); 82 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 83 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 84 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 85 "IPv4 multicast IGMP-layer source filter"); 86 87 /* 88 * Locking: 89 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 90 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 91 * it can be taken by code in net/if.c also. 92 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 93 * 94 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly 95 * any need for in_multi itself to be virtualized -- it is bound to an ifp 96 * anyway no matter what happens. 97 */ 98 struct mtx in_multi_mtx; 99 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF); 100 101 /* 102 * Functions with non-static linkage defined in this file should be 103 * declared in in_var.h: 104 * imo_multi_filter() 105 * in_addmulti() 106 * in_delmulti() 107 * in_joingroup() 108 * in_joingroup_locked() 109 * in_leavegroup() 110 * in_leavegroup_locked() 111 * and ip_var.h: 112 * inp_freemoptions() 113 * inp_getmoptions() 114 * inp_setmoptions() 115 * 116 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 117 * and in_delmulti(). 118 */ 119 static void imf_commit(struct in_mfilter *); 120 static int imf_get_source(struct in_mfilter *imf, 121 const struct sockaddr_in *psin, 122 struct in_msource **); 123 static struct in_msource * 124 imf_graft(struct in_mfilter *, const uint8_t, 125 const struct sockaddr_in *); 126 static void imf_leave(struct in_mfilter *); 127 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 128 static void imf_purge(struct in_mfilter *); 129 static void imf_rollback(struct in_mfilter *); 130 static void imf_reap(struct in_mfilter *); 131 static int imo_grow(struct ip_moptions *); 132 static size_t imo_match_group(const struct ip_moptions *, 133 const struct ifnet *, const struct sockaddr *); 134 static struct in_msource * 135 imo_match_source(const struct ip_moptions *, const size_t, 136 const struct sockaddr *); 137 static void ims_merge(struct ip_msource *ims, 138 const struct in_msource *lims, const int rollback); 139 static int in_getmulti(struct ifnet *, const struct in_addr *, 140 struct in_multi **); 141 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 142 const int noalloc, struct ip_msource **pims); 143 #ifdef KTR 144 static int inm_is_ifp_detached(const struct in_multi *); 145 #endif 146 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 147 static void inm_purge(struct in_multi *); 148 static void inm_reap(struct in_multi *); 149 static struct ip_moptions * 150 inp_findmoptions(struct inpcb *); 151 static void inp_freemoptions_internal(struct ip_moptions *); 152 static void inp_gcmoptions(void *, int); 153 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 154 static int inp_join_group(struct inpcb *, struct sockopt *); 155 static int inp_leave_group(struct inpcb *, struct sockopt *); 156 static struct ifnet * 157 inp_lookup_mcast_ifp(const struct inpcb *, 158 const struct sockaddr_in *, const struct in_addr); 159 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 160 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 161 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 162 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 163 164 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, 165 "IPv4 multicast"); 166 167 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 168 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 169 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0, 170 "Max source filters per group"); 171 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc); 172 173 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 174 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 175 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0, 176 "Max source filters per socket"); 177 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc); 178 179 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 180 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN, 181 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 182 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop); 183 184 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 185 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 186 "Per-interface stack-wide source filters"); 187 188 static STAILQ_HEAD(, ip_moptions) imo_gc_list = 189 STAILQ_HEAD_INITIALIZER(imo_gc_list); 190 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL); 191 192 #ifdef KTR 193 /* 194 * Inline function which wraps assertions for a valid ifp. 195 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 196 * is detached. 197 */ 198 static int __inline 199 inm_is_ifp_detached(const struct in_multi *inm) 200 { 201 struct ifnet *ifp; 202 203 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 204 ifp = inm->inm_ifma->ifma_ifp; 205 if (ifp != NULL) { 206 /* 207 * Sanity check that netinet's notion of ifp is the 208 * same as net's. 209 */ 210 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 211 } 212 213 return (ifp == NULL); 214 } 215 #endif 216 217 /* 218 * Initialize an in_mfilter structure to a known state at t0, t1 219 * with an empty source filter list. 220 */ 221 static __inline void 222 imf_init(struct in_mfilter *imf, const int st0, const int st1) 223 { 224 memset(imf, 0, sizeof(struct in_mfilter)); 225 RB_INIT(&imf->imf_sources); 226 imf->imf_st[0] = st0; 227 imf->imf_st[1] = st1; 228 } 229 230 /* 231 * Function for looking up an in_multi record for an IPv4 multicast address 232 * on a given interface. ifp must be valid. If no record found, return NULL. 233 * The IN_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held. 234 */ 235 struct in_multi * 236 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 237 { 238 struct ifmultiaddr *ifma; 239 struct in_multi *inm; 240 241 IN_MULTI_LOCK_ASSERT(); 242 IF_ADDR_LOCK_ASSERT(ifp); 243 244 inm = NULL; 245 TAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 246 if (ifma->ifma_addr->sa_family == AF_INET) { 247 inm = (struct in_multi *)ifma->ifma_protospec; 248 if (inm->inm_addr.s_addr == ina.s_addr) 249 break; 250 inm = NULL; 251 } 252 } 253 return (inm); 254 } 255 256 /* 257 * Wrapper for inm_lookup_locked(). 258 * The IF_ADDR_LOCK will be taken on ifp and released on return. 259 */ 260 struct in_multi * 261 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 262 { 263 struct in_multi *inm; 264 265 IN_MULTI_LOCK_ASSERT(); 266 IF_ADDR_RLOCK(ifp); 267 inm = inm_lookup_locked(ifp, ina); 268 IF_ADDR_RUNLOCK(ifp); 269 270 return (inm); 271 } 272 273 /* 274 * Resize the ip_moptions vector to the next power-of-two minus 1. 275 * May be called with locks held; do not sleep. 276 */ 277 static int 278 imo_grow(struct ip_moptions *imo) 279 { 280 struct in_multi **nmships; 281 struct in_multi **omships; 282 struct in_mfilter *nmfilters; 283 struct in_mfilter *omfilters; 284 size_t idx; 285 size_t newmax; 286 size_t oldmax; 287 288 nmships = NULL; 289 nmfilters = NULL; 290 omships = imo->imo_membership; 291 omfilters = imo->imo_mfilters; 292 oldmax = imo->imo_max_memberships; 293 newmax = ((oldmax + 1) * 2) - 1; 294 295 if (newmax <= IP_MAX_MEMBERSHIPS) { 296 nmships = (struct in_multi **)realloc(omships, 297 sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT); 298 nmfilters = (struct in_mfilter *)realloc(omfilters, 299 sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT); 300 if (nmships != NULL && nmfilters != NULL) { 301 /* Initialize newly allocated source filter heads. */ 302 for (idx = oldmax; idx < newmax; idx++) { 303 imf_init(&nmfilters[idx], MCAST_UNDEFINED, 304 MCAST_EXCLUDE); 305 } 306 imo->imo_max_memberships = newmax; 307 imo->imo_membership = nmships; 308 imo->imo_mfilters = nmfilters; 309 } 310 } 311 312 if (nmships == NULL || nmfilters == NULL) { 313 if (nmships != NULL) 314 free(nmships, M_IPMOPTS); 315 if (nmfilters != NULL) 316 free(nmfilters, M_INMFILTER); 317 return (ETOOMANYREFS); 318 } 319 320 return (0); 321 } 322 323 /* 324 * Find an IPv4 multicast group entry for this ip_moptions instance 325 * which matches the specified group, and optionally an interface. 326 * Return its index into the array, or -1 if not found. 327 */ 328 static size_t 329 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 330 const struct sockaddr *group) 331 { 332 const struct sockaddr_in *gsin; 333 struct in_multi **pinm; 334 int idx; 335 int nmships; 336 337 gsin = (const struct sockaddr_in *)group; 338 339 /* The imo_membership array may be lazy allocated. */ 340 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) 341 return (-1); 342 343 nmships = imo->imo_num_memberships; 344 pinm = &imo->imo_membership[0]; 345 for (idx = 0; idx < nmships; idx++, pinm++) { 346 if (*pinm == NULL) 347 continue; 348 if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) && 349 in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) { 350 break; 351 } 352 } 353 if (idx >= nmships) 354 idx = -1; 355 356 return (idx); 357 } 358 359 /* 360 * Find an IPv4 multicast source entry for this imo which matches 361 * the given group index for this socket, and source address. 362 * 363 * NOTE: This does not check if the entry is in-mode, merely if 364 * it exists, which may not be the desired behaviour. 365 */ 366 static struct in_msource * 367 imo_match_source(const struct ip_moptions *imo, const size_t gidx, 368 const struct sockaddr *src) 369 { 370 struct ip_msource find; 371 struct in_mfilter *imf; 372 struct ip_msource *ims; 373 const sockunion_t *psa; 374 375 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 376 KASSERT(gidx != -1 && gidx < imo->imo_num_memberships, 377 ("%s: invalid index %d\n", __func__, (int)gidx)); 378 379 /* The imo_mfilters array may be lazy allocated. */ 380 if (imo->imo_mfilters == NULL) 381 return (NULL); 382 imf = &imo->imo_mfilters[gidx]; 383 384 /* Source trees are keyed in host byte order. */ 385 psa = (const sockunion_t *)src; 386 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 387 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 388 389 return ((struct in_msource *)ims); 390 } 391 392 /* 393 * Perform filtering for multicast datagrams on a socket by group and source. 394 * 395 * Returns 0 if a datagram should be allowed through, or various error codes 396 * if the socket was not a member of the group, or the source was muted, etc. 397 */ 398 int 399 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 400 const struct sockaddr *group, const struct sockaddr *src) 401 { 402 size_t gidx; 403 struct in_msource *ims; 404 int mode; 405 406 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 407 408 gidx = imo_match_group(imo, ifp, group); 409 if (gidx == -1) 410 return (MCAST_NOTGMEMBER); 411 412 /* 413 * Check if the source was included in an (S,G) join. 414 * Allow reception on exclusive memberships by default, 415 * reject reception on inclusive memberships by default. 416 * Exclude source only if an in-mode exclude filter exists. 417 * Include source only if an in-mode include filter exists. 418 * NOTE: We are comparing group state here at IGMP t1 (now) 419 * with socket-layer t0 (since last downcall). 420 */ 421 mode = imo->imo_mfilters[gidx].imf_st[1]; 422 ims = imo_match_source(imo, gidx, src); 423 424 if ((ims == NULL && mode == MCAST_INCLUDE) || 425 (ims != NULL && ims->imsl_st[0] != mode)) 426 return (MCAST_NOTSMEMBER); 427 428 return (MCAST_PASS); 429 } 430 431 /* 432 * Find and return a reference to an in_multi record for (ifp, group), 433 * and bump its reference count. 434 * If one does not exist, try to allocate it, and update link-layer multicast 435 * filters on ifp to listen for group. 436 * Assumes the IN_MULTI lock is held across the call. 437 * Return 0 if successful, otherwise return an appropriate error code. 438 */ 439 static int 440 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 441 struct in_multi **pinm) 442 { 443 struct sockaddr_in gsin; 444 struct ifmultiaddr *ifma; 445 struct in_ifinfo *ii; 446 struct in_multi *inm; 447 int error; 448 449 IN_MULTI_LOCK_ASSERT(); 450 451 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 452 453 inm = inm_lookup(ifp, *group); 454 if (inm != NULL) { 455 /* 456 * If we already joined this group, just bump the 457 * refcount and return it. 458 */ 459 KASSERT(inm->inm_refcount >= 1, 460 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 461 ++inm->inm_refcount; 462 *pinm = inm; 463 return (0); 464 } 465 466 memset(&gsin, 0, sizeof(gsin)); 467 gsin.sin_family = AF_INET; 468 gsin.sin_len = sizeof(struct sockaddr_in); 469 gsin.sin_addr = *group; 470 471 /* 472 * Check if a link-layer group is already associated 473 * with this network-layer group on the given ifnet. 474 */ 475 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 476 if (error != 0) 477 return (error); 478 479 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 480 IF_ADDR_WLOCK(ifp); 481 482 /* 483 * If something other than netinet is occupying the link-layer 484 * group, print a meaningful error message and back out of 485 * the allocation. 486 * Otherwise, bump the refcount on the existing network-layer 487 * group association and return it. 488 */ 489 if (ifma->ifma_protospec != NULL) { 490 inm = (struct in_multi *)ifma->ifma_protospec; 491 #ifdef INVARIANTS 492 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 493 __func__)); 494 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 495 ("%s: ifma not AF_INET", __func__)); 496 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 497 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 498 !in_hosteq(inm->inm_addr, *group)) 499 panic("%s: ifma %p is inconsistent with %p (%s)", 500 __func__, ifma, inm, inet_ntoa(*group)); 501 #endif 502 ++inm->inm_refcount; 503 *pinm = inm; 504 IF_ADDR_WUNLOCK(ifp); 505 return (0); 506 } 507 508 IF_ADDR_WLOCK_ASSERT(ifp); 509 510 /* 511 * A new in_multi record is needed; allocate and initialize it. 512 * We DO NOT perform an IGMP join as the in_ layer may need to 513 * push an initial source list down to IGMP to support SSM. 514 * 515 * The initial source filter state is INCLUDE, {} as per the RFC. 516 */ 517 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 518 if (inm == NULL) { 519 if_delmulti_ifma(ifma); 520 IF_ADDR_WUNLOCK(ifp); 521 return (ENOMEM); 522 } 523 inm->inm_addr = *group; 524 inm->inm_ifp = ifp; 525 inm->inm_igi = ii->ii_igmp; 526 inm->inm_ifma = ifma; 527 inm->inm_refcount = 1; 528 inm->inm_state = IGMP_NOT_MEMBER; 529 530 /* 531 * Pending state-changes per group are subject to a bounds check. 532 */ 533 IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 534 535 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 536 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 537 RB_INIT(&inm->inm_srcs); 538 539 ifma->ifma_protospec = inm; 540 541 *pinm = inm; 542 543 IF_ADDR_WUNLOCK(ifp); 544 return (0); 545 } 546 547 /* 548 * Drop a reference to an in_multi record. 549 * 550 * If the refcount drops to 0, free the in_multi record and 551 * delete the underlying link-layer membership. 552 */ 553 void 554 inm_release_locked(struct in_multi *inm) 555 { 556 struct ifmultiaddr *ifma; 557 558 IN_MULTI_LOCK_ASSERT(); 559 560 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 561 562 if (--inm->inm_refcount > 0) { 563 CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__, 564 inm->inm_refcount); 565 return; 566 } 567 568 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 569 570 ifma = inm->inm_ifma; 571 572 /* XXX this access is not covered by IF_ADDR_LOCK */ 573 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 574 KASSERT(ifma->ifma_protospec == inm, 575 ("%s: ifma_protospec != inm", __func__)); 576 ifma->ifma_protospec = NULL; 577 578 inm_purge(inm); 579 580 free(inm, M_IPMADDR); 581 582 if_delmulti_ifma(ifma); 583 } 584 585 /* 586 * Clear recorded source entries for a group. 587 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 588 * FIXME: Should reap. 589 */ 590 void 591 inm_clear_recorded(struct in_multi *inm) 592 { 593 struct ip_msource *ims; 594 595 IN_MULTI_LOCK_ASSERT(); 596 597 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 598 if (ims->ims_stp) { 599 ims->ims_stp = 0; 600 --inm->inm_st[1].iss_rec; 601 } 602 } 603 KASSERT(inm->inm_st[1].iss_rec == 0, 604 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 605 } 606 607 /* 608 * Record a source as pending for a Source-Group IGMPv3 query. 609 * This lives here as it modifies the shared tree. 610 * 611 * inm is the group descriptor. 612 * naddr is the address of the source to record in network-byte order. 613 * 614 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 615 * lazy-allocate a source node in response to an SG query. 616 * Otherwise, no allocation is performed. This saves some memory 617 * with the trade-off that the source will not be reported to the 618 * router if joined in the window between the query response and 619 * the group actually being joined on the local host. 620 * 621 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 622 * This turns off the allocation of a recorded source entry if 623 * the group has not been joined. 624 * 625 * Return 0 if the source didn't exist or was already marked as recorded. 626 * Return 1 if the source was marked as recorded by this function. 627 * Return <0 if any error occured (negated errno code). 628 */ 629 int 630 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 631 { 632 struct ip_msource find; 633 struct ip_msource *ims, *nims; 634 635 IN_MULTI_LOCK_ASSERT(); 636 637 find.ims_haddr = ntohl(naddr); 638 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 639 if (ims && ims->ims_stp) 640 return (0); 641 if (ims == NULL) { 642 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 643 return (-ENOSPC); 644 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 645 M_NOWAIT | M_ZERO); 646 if (nims == NULL) 647 return (-ENOMEM); 648 nims->ims_haddr = find.ims_haddr; 649 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 650 ++inm->inm_nsrc; 651 ims = nims; 652 } 653 654 /* 655 * Mark the source as recorded and update the recorded 656 * source count. 657 */ 658 ++ims->ims_stp; 659 ++inm->inm_st[1].iss_rec; 660 661 return (1); 662 } 663 664 /* 665 * Return a pointer to an in_msource owned by an in_mfilter, 666 * given its source address. 667 * Lazy-allocate if needed. If this is a new entry its filter state is 668 * undefined at t0. 669 * 670 * imf is the filter set being modified. 671 * haddr is the source address in *host* byte-order. 672 * 673 * SMPng: May be called with locks held; malloc must not block. 674 */ 675 static int 676 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 677 struct in_msource **plims) 678 { 679 struct ip_msource find; 680 struct ip_msource *ims, *nims; 681 struct in_msource *lims; 682 int error; 683 684 error = 0; 685 ims = NULL; 686 lims = NULL; 687 688 /* key is host byte order */ 689 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 690 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 691 lims = (struct in_msource *)ims; 692 if (lims == NULL) { 693 if (imf->imf_nsrc == in_mcast_maxsocksrc) 694 return (ENOSPC); 695 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 696 M_NOWAIT | M_ZERO); 697 if (nims == NULL) 698 return (ENOMEM); 699 lims = (struct in_msource *)nims; 700 lims->ims_haddr = find.ims_haddr; 701 lims->imsl_st[0] = MCAST_UNDEFINED; 702 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 703 ++imf->imf_nsrc; 704 } 705 706 *plims = lims; 707 708 return (error); 709 } 710 711 /* 712 * Graft a source entry into an existing socket-layer filter set, 713 * maintaining any required invariants and checking allocations. 714 * 715 * The source is marked as being in the new filter mode at t1. 716 * 717 * Return the pointer to the new node, otherwise return NULL. 718 */ 719 static struct in_msource * 720 imf_graft(struct in_mfilter *imf, const uint8_t st1, 721 const struct sockaddr_in *psin) 722 { 723 struct ip_msource *nims; 724 struct in_msource *lims; 725 726 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 727 M_NOWAIT | M_ZERO); 728 if (nims == NULL) 729 return (NULL); 730 lims = (struct in_msource *)nims; 731 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 732 lims->imsl_st[0] = MCAST_UNDEFINED; 733 lims->imsl_st[1] = st1; 734 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 735 ++imf->imf_nsrc; 736 737 return (lims); 738 } 739 740 /* 741 * Prune a source entry from an existing socket-layer filter set, 742 * maintaining any required invariants and checking allocations. 743 * 744 * The source is marked as being left at t1, it is not freed. 745 * 746 * Return 0 if no error occurred, otherwise return an errno value. 747 */ 748 static int 749 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 750 { 751 struct ip_msource find; 752 struct ip_msource *ims; 753 struct in_msource *lims; 754 755 /* key is host byte order */ 756 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 757 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 758 if (ims == NULL) 759 return (ENOENT); 760 lims = (struct in_msource *)ims; 761 lims->imsl_st[1] = MCAST_UNDEFINED; 762 return (0); 763 } 764 765 /* 766 * Revert socket-layer filter set deltas at t1 to t0 state. 767 */ 768 static void 769 imf_rollback(struct in_mfilter *imf) 770 { 771 struct ip_msource *ims, *tims; 772 struct in_msource *lims; 773 774 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 775 lims = (struct in_msource *)ims; 776 if (lims->imsl_st[0] == lims->imsl_st[1]) { 777 /* no change at t1 */ 778 continue; 779 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 780 /* revert change to existing source at t1 */ 781 lims->imsl_st[1] = lims->imsl_st[0]; 782 } else { 783 /* revert source added t1 */ 784 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 785 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 786 free(ims, M_INMFILTER); 787 imf->imf_nsrc--; 788 } 789 } 790 imf->imf_st[1] = imf->imf_st[0]; 791 } 792 793 /* 794 * Mark socket-layer filter set as INCLUDE {} at t1. 795 */ 796 static void 797 imf_leave(struct in_mfilter *imf) 798 { 799 struct ip_msource *ims; 800 struct in_msource *lims; 801 802 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 803 lims = (struct in_msource *)ims; 804 lims->imsl_st[1] = MCAST_UNDEFINED; 805 } 806 imf->imf_st[1] = MCAST_INCLUDE; 807 } 808 809 /* 810 * Mark socket-layer filter set deltas as committed. 811 */ 812 static void 813 imf_commit(struct in_mfilter *imf) 814 { 815 struct ip_msource *ims; 816 struct in_msource *lims; 817 818 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 819 lims = (struct in_msource *)ims; 820 lims->imsl_st[0] = lims->imsl_st[1]; 821 } 822 imf->imf_st[0] = imf->imf_st[1]; 823 } 824 825 /* 826 * Reap unreferenced sources from socket-layer filter set. 827 */ 828 static void 829 imf_reap(struct in_mfilter *imf) 830 { 831 struct ip_msource *ims, *tims; 832 struct in_msource *lims; 833 834 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 835 lims = (struct in_msource *)ims; 836 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 837 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 838 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 839 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 840 free(ims, M_INMFILTER); 841 imf->imf_nsrc--; 842 } 843 } 844 } 845 846 /* 847 * Purge socket-layer filter set. 848 */ 849 static void 850 imf_purge(struct in_mfilter *imf) 851 { 852 struct ip_msource *ims, *tims; 853 854 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 855 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 856 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 857 free(ims, M_INMFILTER); 858 imf->imf_nsrc--; 859 } 860 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 861 KASSERT(RB_EMPTY(&imf->imf_sources), 862 ("%s: imf_sources not empty", __func__)); 863 } 864 865 /* 866 * Look up a source filter entry for a multicast group. 867 * 868 * inm is the group descriptor to work with. 869 * haddr is the host-byte-order IPv4 address to look up. 870 * noalloc may be non-zero to suppress allocation of sources. 871 * *pims will be set to the address of the retrieved or allocated source. 872 * 873 * SMPng: NOTE: may be called with locks held. 874 * Return 0 if successful, otherwise return a non-zero error code. 875 */ 876 static int 877 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 878 const int noalloc, struct ip_msource **pims) 879 { 880 struct ip_msource find; 881 struct ip_msource *ims, *nims; 882 #ifdef KTR 883 struct in_addr ia; 884 #endif 885 886 find.ims_haddr = haddr; 887 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 888 if (ims == NULL && !noalloc) { 889 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 890 return (ENOSPC); 891 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 892 M_NOWAIT | M_ZERO); 893 if (nims == NULL) 894 return (ENOMEM); 895 nims->ims_haddr = haddr; 896 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 897 ++inm->inm_nsrc; 898 ims = nims; 899 #ifdef KTR 900 ia.s_addr = htonl(haddr); 901 CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__, 902 inet_ntoa(ia), ims); 903 #endif 904 } 905 906 *pims = ims; 907 return (0); 908 } 909 910 /* 911 * Merge socket-layer source into IGMP-layer source. 912 * If rollback is non-zero, perform the inverse of the merge. 913 */ 914 static void 915 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 916 const int rollback) 917 { 918 int n = rollback ? -1 : 1; 919 #ifdef KTR 920 struct in_addr ia; 921 922 ia.s_addr = htonl(ims->ims_haddr); 923 #endif 924 925 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 926 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s", 927 __func__, n, inet_ntoa(ia)); 928 ims->ims_st[1].ex -= n; 929 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 930 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s", 931 __func__, n, inet_ntoa(ia)); 932 ims->ims_st[1].in -= n; 933 } 934 935 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 936 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s", 937 __func__, n, inet_ntoa(ia)); 938 ims->ims_st[1].ex += n; 939 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 940 CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s", 941 __func__, n, inet_ntoa(ia)); 942 ims->ims_st[1].in += n; 943 } 944 } 945 946 /* 947 * Atomically update the global in_multi state, when a membership's 948 * filter list is being updated in any way. 949 * 950 * imf is the per-inpcb-membership group filter pointer. 951 * A fake imf may be passed for in-kernel consumers. 952 * 953 * XXX This is a candidate for a set-symmetric-difference style loop 954 * which would eliminate the repeated lookup from root of ims nodes, 955 * as they share the same key space. 956 * 957 * If any error occurred this function will back out of refcounts 958 * and return a non-zero value. 959 */ 960 static int 961 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 962 { 963 struct ip_msource *ims, *nims; 964 struct in_msource *lims; 965 int schanged, error; 966 int nsrc0, nsrc1; 967 968 schanged = 0; 969 error = 0; 970 nsrc1 = nsrc0 = 0; 971 972 /* 973 * Update the source filters first, as this may fail. 974 * Maintain count of in-mode filters at t0, t1. These are 975 * used to work out if we transition into ASM mode or not. 976 * Maintain a count of source filters whose state was 977 * actually modified by this operation. 978 */ 979 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 980 lims = (struct in_msource *)ims; 981 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 982 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 983 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 984 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 985 ++schanged; 986 if (error) 987 break; 988 ims_merge(nims, lims, 0); 989 } 990 if (error) { 991 struct ip_msource *bims; 992 993 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 994 lims = (struct in_msource *)ims; 995 if (lims->imsl_st[0] == lims->imsl_st[1]) 996 continue; 997 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 998 if (bims == NULL) 999 continue; 1000 ims_merge(bims, lims, 1); 1001 } 1002 goto out_reap; 1003 } 1004 1005 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1006 __func__, nsrc0, nsrc1); 1007 1008 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1009 if (imf->imf_st[0] == imf->imf_st[1] && 1010 imf->imf_st[1] == MCAST_INCLUDE) { 1011 if (nsrc1 == 0) { 1012 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1013 --inm->inm_st[1].iss_in; 1014 } 1015 } 1016 1017 /* Handle filter mode transition on socket. */ 1018 if (imf->imf_st[0] != imf->imf_st[1]) { 1019 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1020 __func__, imf->imf_st[0], imf->imf_st[1]); 1021 1022 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1023 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1024 --inm->inm_st[1].iss_ex; 1025 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1026 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1027 --inm->inm_st[1].iss_in; 1028 } 1029 1030 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1031 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1032 inm->inm_st[1].iss_ex++; 1033 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1034 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1035 inm->inm_st[1].iss_in++; 1036 } 1037 } 1038 1039 /* 1040 * Track inm filter state in terms of listener counts. 1041 * If there are any exclusive listeners, stack-wide 1042 * membership is exclusive. 1043 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1044 * If no listeners remain, state is undefined at t1, 1045 * and the IGMP lifecycle for this group should finish. 1046 */ 1047 if (inm->inm_st[1].iss_ex > 0) { 1048 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1049 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1050 } else if (inm->inm_st[1].iss_in > 0) { 1051 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1052 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1053 } else { 1054 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1055 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1056 } 1057 1058 /* Decrement ASM listener count on transition out of ASM mode. */ 1059 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1060 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1061 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1062 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1063 --inm->inm_st[1].iss_asm; 1064 } 1065 1066 /* Increment ASM listener count on transition to ASM mode. */ 1067 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1068 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1069 inm->inm_st[1].iss_asm++; 1070 } 1071 1072 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1073 inm_print(inm); 1074 1075 out_reap: 1076 if (schanged > 0) { 1077 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1078 inm_reap(inm); 1079 } 1080 return (error); 1081 } 1082 1083 /* 1084 * Mark an in_multi's filter set deltas as committed. 1085 * Called by IGMP after a state change has been enqueued. 1086 */ 1087 void 1088 inm_commit(struct in_multi *inm) 1089 { 1090 struct ip_msource *ims; 1091 1092 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1093 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1094 inm_print(inm); 1095 1096 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1097 ims->ims_st[0] = ims->ims_st[1]; 1098 } 1099 inm->inm_st[0] = inm->inm_st[1]; 1100 } 1101 1102 /* 1103 * Reap unreferenced nodes from an in_multi's filter set. 1104 */ 1105 static void 1106 inm_reap(struct in_multi *inm) 1107 { 1108 struct ip_msource *ims, *tims; 1109 1110 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1111 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1112 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1113 ims->ims_stp != 0) 1114 continue; 1115 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1116 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1117 free(ims, M_IPMSOURCE); 1118 inm->inm_nsrc--; 1119 } 1120 } 1121 1122 /* 1123 * Purge all source nodes from an in_multi's filter set. 1124 */ 1125 static void 1126 inm_purge(struct in_multi *inm) 1127 { 1128 struct ip_msource *ims, *tims; 1129 1130 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1131 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1132 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1133 free(ims, M_IPMSOURCE); 1134 inm->inm_nsrc--; 1135 } 1136 } 1137 1138 /* 1139 * Join a multicast group; unlocked entry point. 1140 * 1141 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1142 * is not held. Fortunately, ifp is unlikely to have been detached 1143 * at this point, so we assume it's OK to recurse. 1144 */ 1145 int 1146 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1147 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1148 { 1149 int error; 1150 1151 IN_MULTI_LOCK(); 1152 error = in_joingroup_locked(ifp, gina, imf, pinm); 1153 IN_MULTI_UNLOCK(); 1154 1155 return (error); 1156 } 1157 1158 /* 1159 * Join a multicast group; real entry point. 1160 * 1161 * Only preserves atomicity at inm level. 1162 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1163 * 1164 * If the IGMP downcall fails, the group is not joined, and an error 1165 * code is returned. 1166 */ 1167 int 1168 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1169 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1170 { 1171 struct in_mfilter timf; 1172 struct in_multi *inm; 1173 int error; 1174 1175 IN_MULTI_LOCK_ASSERT(); 1176 1177 CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__, 1178 inet_ntoa(*gina), ifp, ifp->if_xname); 1179 1180 error = 0; 1181 inm = NULL; 1182 1183 /* 1184 * If no imf was specified (i.e. kernel consumer), 1185 * fake one up and assume it is an ASM join. 1186 */ 1187 if (imf == NULL) { 1188 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1189 imf = &timf; 1190 } 1191 1192 error = in_getmulti(ifp, gina, &inm); 1193 if (error) { 1194 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1195 return (error); 1196 } 1197 1198 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1199 error = inm_merge(inm, imf); 1200 if (error) { 1201 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1202 goto out_inm_release; 1203 } 1204 1205 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1206 error = igmp_change_state(inm); 1207 if (error) { 1208 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1209 goto out_inm_release; 1210 } 1211 1212 out_inm_release: 1213 if (error) { 1214 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1215 inm_release_locked(inm); 1216 } else { 1217 *pinm = inm; 1218 } 1219 1220 return (error); 1221 } 1222 1223 /* 1224 * Leave a multicast group; unlocked entry point. 1225 */ 1226 int 1227 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1228 { 1229 int error; 1230 1231 IN_MULTI_LOCK(); 1232 error = in_leavegroup_locked(inm, imf); 1233 IN_MULTI_UNLOCK(); 1234 1235 return (error); 1236 } 1237 1238 /* 1239 * Leave a multicast group; real entry point. 1240 * All source filters will be expunged. 1241 * 1242 * Only preserves atomicity at inm level. 1243 * 1244 * Holding the write lock for the INP which contains imf 1245 * is highly advisable. We can't assert for it as imf does not 1246 * contain a back-pointer to the owning inp. 1247 * 1248 * Note: This is not the same as inm_release(*) as this function also 1249 * makes a state change downcall into IGMP. 1250 */ 1251 int 1252 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1253 { 1254 struct in_mfilter timf; 1255 int error; 1256 1257 error = 0; 1258 1259 IN_MULTI_LOCK_ASSERT(); 1260 1261 CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__, 1262 inm, inet_ntoa(inm->inm_addr), 1263 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1264 imf); 1265 1266 /* 1267 * If no imf was specified (i.e. kernel consumer), 1268 * fake one up and assume it is an ASM join. 1269 */ 1270 if (imf == NULL) { 1271 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1272 imf = &timf; 1273 } 1274 1275 /* 1276 * Begin state merge transaction at IGMP layer. 1277 * 1278 * As this particular invocation should not cause any memory 1279 * to be allocated, and there is no opportunity to roll back 1280 * the transaction, it MUST NOT fail. 1281 */ 1282 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1283 error = inm_merge(inm, imf); 1284 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1285 1286 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1287 CURVNET_SET(inm->inm_ifp->if_vnet); 1288 error = igmp_change_state(inm); 1289 CURVNET_RESTORE(); 1290 if (error) 1291 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1292 1293 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1294 inm_release_locked(inm); 1295 1296 return (error); 1297 } 1298 1299 /*#ifndef BURN_BRIDGES*/ 1300 /* 1301 * Join an IPv4 multicast group in (*,G) exclusive mode. 1302 * The group must be a 224.0.0.0/24 link-scope group. 1303 * This KPI is for legacy kernel consumers only. 1304 */ 1305 struct in_multi * 1306 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1307 { 1308 struct in_multi *pinm; 1309 int error; 1310 1311 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1312 ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap))); 1313 1314 error = in_joingroup(ifp, ap, NULL, &pinm); 1315 if (error != 0) 1316 pinm = NULL; 1317 1318 return (pinm); 1319 } 1320 1321 /* 1322 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. 1323 * This KPI is for legacy kernel consumers only. 1324 */ 1325 void 1326 in_delmulti(struct in_multi *inm) 1327 { 1328 1329 (void)in_leavegroup(inm, NULL); 1330 } 1331 /*#endif*/ 1332 1333 /* 1334 * Block or unblock an ASM multicast source on an inpcb. 1335 * This implements the delta-based API described in RFC 3678. 1336 * 1337 * The delta-based API applies only to exclusive-mode memberships. 1338 * An IGMP downcall will be performed. 1339 * 1340 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1341 * 1342 * Return 0 if successful, otherwise return an appropriate error code. 1343 */ 1344 static int 1345 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1346 { 1347 struct group_source_req gsr; 1348 sockunion_t *gsa, *ssa; 1349 struct ifnet *ifp; 1350 struct in_mfilter *imf; 1351 struct ip_moptions *imo; 1352 struct in_msource *ims; 1353 struct in_multi *inm; 1354 size_t idx; 1355 uint16_t fmode; 1356 int error, doblock; 1357 1358 ifp = NULL; 1359 error = 0; 1360 doblock = 0; 1361 1362 memset(&gsr, 0, sizeof(struct group_source_req)); 1363 gsa = (sockunion_t *)&gsr.gsr_group; 1364 ssa = (sockunion_t *)&gsr.gsr_source; 1365 1366 switch (sopt->sopt_name) { 1367 case IP_BLOCK_SOURCE: 1368 case IP_UNBLOCK_SOURCE: { 1369 struct ip_mreq_source mreqs; 1370 1371 error = sooptcopyin(sopt, &mreqs, 1372 sizeof(struct ip_mreq_source), 1373 sizeof(struct ip_mreq_source)); 1374 if (error) 1375 return (error); 1376 1377 gsa->sin.sin_family = AF_INET; 1378 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1379 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1380 1381 ssa->sin.sin_family = AF_INET; 1382 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1383 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1384 1385 if (!in_nullhost(mreqs.imr_interface)) 1386 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1387 1388 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1389 doblock = 1; 1390 1391 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1392 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1393 break; 1394 } 1395 1396 case MCAST_BLOCK_SOURCE: 1397 case MCAST_UNBLOCK_SOURCE: 1398 error = sooptcopyin(sopt, &gsr, 1399 sizeof(struct group_source_req), 1400 sizeof(struct group_source_req)); 1401 if (error) 1402 return (error); 1403 1404 if (gsa->sin.sin_family != AF_INET || 1405 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1406 return (EINVAL); 1407 1408 if (ssa->sin.sin_family != AF_INET || 1409 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1410 return (EINVAL); 1411 1412 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1413 return (EADDRNOTAVAIL); 1414 1415 ifp = ifnet_byindex(gsr.gsr_interface); 1416 1417 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1418 doblock = 1; 1419 break; 1420 1421 default: 1422 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1423 __func__, sopt->sopt_name); 1424 return (EOPNOTSUPP); 1425 break; 1426 } 1427 1428 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1429 return (EINVAL); 1430 1431 /* 1432 * Check if we are actually a member of this group. 1433 */ 1434 imo = inp_findmoptions(inp); 1435 idx = imo_match_group(imo, ifp, &gsa->sa); 1436 if (idx == -1 || imo->imo_mfilters == NULL) { 1437 error = EADDRNOTAVAIL; 1438 goto out_inp_locked; 1439 } 1440 1441 KASSERT(imo->imo_mfilters != NULL, 1442 ("%s: imo_mfilters not allocated", __func__)); 1443 imf = &imo->imo_mfilters[idx]; 1444 inm = imo->imo_membership[idx]; 1445 1446 /* 1447 * Attempting to use the delta-based API on an 1448 * non exclusive-mode membership is an error. 1449 */ 1450 fmode = imf->imf_st[0]; 1451 if (fmode != MCAST_EXCLUDE) { 1452 error = EINVAL; 1453 goto out_inp_locked; 1454 } 1455 1456 /* 1457 * Deal with error cases up-front: 1458 * Asked to block, but already blocked; or 1459 * Asked to unblock, but nothing to unblock. 1460 * If adding a new block entry, allocate it. 1461 */ 1462 ims = imo_match_source(imo, idx, &ssa->sa); 1463 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1464 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 1465 inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not "); 1466 error = EADDRNOTAVAIL; 1467 goto out_inp_locked; 1468 } 1469 1470 INP_WLOCK_ASSERT(inp); 1471 1472 /* 1473 * Begin state merge transaction at socket layer. 1474 */ 1475 if (doblock) { 1476 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1477 ims = imf_graft(imf, fmode, &ssa->sin); 1478 if (ims == NULL) 1479 error = ENOMEM; 1480 } else { 1481 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1482 error = imf_prune(imf, &ssa->sin); 1483 } 1484 1485 if (error) { 1486 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1487 goto out_imf_rollback; 1488 } 1489 1490 /* 1491 * Begin state merge transaction at IGMP layer. 1492 */ 1493 IN_MULTI_LOCK(); 1494 1495 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1496 error = inm_merge(inm, imf); 1497 if (error) { 1498 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1499 goto out_in_multi_locked; 1500 } 1501 1502 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1503 error = igmp_change_state(inm); 1504 if (error) 1505 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1506 1507 out_in_multi_locked: 1508 1509 IN_MULTI_UNLOCK(); 1510 1511 out_imf_rollback: 1512 if (error) 1513 imf_rollback(imf); 1514 else 1515 imf_commit(imf); 1516 1517 imf_reap(imf); 1518 1519 out_inp_locked: 1520 INP_WUNLOCK(inp); 1521 return (error); 1522 } 1523 1524 /* 1525 * Given an inpcb, return its multicast options structure pointer. Accepts 1526 * an unlocked inpcb pointer, but will return it locked. May sleep. 1527 * 1528 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1529 * SMPng: NOTE: Returns with the INP write lock held. 1530 */ 1531 static struct ip_moptions * 1532 inp_findmoptions(struct inpcb *inp) 1533 { 1534 struct ip_moptions *imo; 1535 struct in_multi **immp; 1536 struct in_mfilter *imfp; 1537 size_t idx; 1538 1539 INP_WLOCK(inp); 1540 if (inp->inp_moptions != NULL) 1541 return (inp->inp_moptions); 1542 1543 INP_WUNLOCK(inp); 1544 1545 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1546 immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, 1547 M_WAITOK | M_ZERO); 1548 imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, 1549 M_INMFILTER, M_WAITOK); 1550 1551 imo->imo_multicast_ifp = NULL; 1552 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1553 imo->imo_multicast_vif = -1; 1554 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1555 imo->imo_multicast_loop = in_mcast_loop; 1556 imo->imo_num_memberships = 0; 1557 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; 1558 imo->imo_membership = immp; 1559 1560 /* Initialize per-group source filters. */ 1561 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) 1562 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1563 imo->imo_mfilters = imfp; 1564 1565 INP_WLOCK(inp); 1566 if (inp->inp_moptions != NULL) { 1567 free(imfp, M_INMFILTER); 1568 free(immp, M_IPMOPTS); 1569 free(imo, M_IPMOPTS); 1570 return (inp->inp_moptions); 1571 } 1572 inp->inp_moptions = imo; 1573 return (imo); 1574 } 1575 1576 /* 1577 * Discard the IP multicast options (and source filters). To minimize 1578 * the amount of work done while holding locks such as the INP's 1579 * pcbinfo lock (which is used in the receive path), the free 1580 * operation is performed asynchronously in a separate task. 1581 * 1582 * SMPng: NOTE: assumes INP write lock is held. 1583 */ 1584 void 1585 inp_freemoptions(struct ip_moptions *imo) 1586 { 1587 1588 KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__)); 1589 IN_MULTI_LOCK(); 1590 STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link); 1591 IN_MULTI_UNLOCK(); 1592 taskqueue_enqueue(taskqueue_thread, &imo_gc_task); 1593 } 1594 1595 static void 1596 inp_freemoptions_internal(struct ip_moptions *imo) 1597 { 1598 struct in_mfilter *imf; 1599 size_t idx, nmships; 1600 1601 nmships = imo->imo_num_memberships; 1602 for (idx = 0; idx < nmships; ++idx) { 1603 imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL; 1604 if (imf) 1605 imf_leave(imf); 1606 (void)in_leavegroup(imo->imo_membership[idx], imf); 1607 if (imf) 1608 imf_purge(imf); 1609 } 1610 1611 if (imo->imo_mfilters) 1612 free(imo->imo_mfilters, M_INMFILTER); 1613 free(imo->imo_membership, M_IPMOPTS); 1614 free(imo, M_IPMOPTS); 1615 } 1616 1617 static void 1618 inp_gcmoptions(void *context, int pending) 1619 { 1620 struct ip_moptions *imo; 1621 1622 IN_MULTI_LOCK(); 1623 while (!STAILQ_EMPTY(&imo_gc_list)) { 1624 imo = STAILQ_FIRST(&imo_gc_list); 1625 STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link); 1626 IN_MULTI_UNLOCK(); 1627 inp_freemoptions_internal(imo); 1628 IN_MULTI_LOCK(); 1629 } 1630 IN_MULTI_UNLOCK(); 1631 } 1632 1633 /* 1634 * Atomically get source filters on a socket for an IPv4 multicast group. 1635 * Called with INP lock held; returns with lock released. 1636 */ 1637 static int 1638 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1639 { 1640 struct __msfilterreq msfr; 1641 sockunion_t *gsa; 1642 struct ifnet *ifp; 1643 struct ip_moptions *imo; 1644 struct in_mfilter *imf; 1645 struct ip_msource *ims; 1646 struct in_msource *lims; 1647 struct sockaddr_in *psin; 1648 struct sockaddr_storage *ptss; 1649 struct sockaddr_storage *tss; 1650 int error; 1651 size_t idx, nsrcs, ncsrcs; 1652 1653 INP_WLOCK_ASSERT(inp); 1654 1655 imo = inp->inp_moptions; 1656 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1657 1658 INP_WUNLOCK(inp); 1659 1660 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1661 sizeof(struct __msfilterreq)); 1662 if (error) 1663 return (error); 1664 1665 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1666 return (EINVAL); 1667 1668 ifp = ifnet_byindex(msfr.msfr_ifindex); 1669 if (ifp == NULL) 1670 return (EINVAL); 1671 1672 INP_WLOCK(inp); 1673 1674 /* 1675 * Lookup group on the socket. 1676 */ 1677 gsa = (sockunion_t *)&msfr.msfr_group; 1678 idx = imo_match_group(imo, ifp, &gsa->sa); 1679 if (idx == -1 || imo->imo_mfilters == NULL) { 1680 INP_WUNLOCK(inp); 1681 return (EADDRNOTAVAIL); 1682 } 1683 imf = &imo->imo_mfilters[idx]; 1684 1685 /* 1686 * Ignore memberships which are in limbo. 1687 */ 1688 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1689 INP_WUNLOCK(inp); 1690 return (EAGAIN); 1691 } 1692 msfr.msfr_fmode = imf->imf_st[1]; 1693 1694 /* 1695 * If the user specified a buffer, copy out the source filter 1696 * entries to userland gracefully. 1697 * We only copy out the number of entries which userland 1698 * has asked for, but we always tell userland how big the 1699 * buffer really needs to be. 1700 */ 1701 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1702 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1703 tss = NULL; 1704 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1705 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1706 M_TEMP, M_NOWAIT | M_ZERO); 1707 if (tss == NULL) { 1708 INP_WUNLOCK(inp); 1709 return (ENOBUFS); 1710 } 1711 } 1712 1713 /* 1714 * Count number of sources in-mode at t0. 1715 * If buffer space exists and remains, copy out source entries. 1716 */ 1717 nsrcs = msfr.msfr_nsrcs; 1718 ncsrcs = 0; 1719 ptss = tss; 1720 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1721 lims = (struct in_msource *)ims; 1722 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1723 lims->imsl_st[0] != imf->imf_st[0]) 1724 continue; 1725 ++ncsrcs; 1726 if (tss != NULL && nsrcs > 0) { 1727 psin = (struct sockaddr_in *)ptss; 1728 psin->sin_family = AF_INET; 1729 psin->sin_len = sizeof(struct sockaddr_in); 1730 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1731 psin->sin_port = 0; 1732 ++ptss; 1733 --nsrcs; 1734 } 1735 } 1736 1737 INP_WUNLOCK(inp); 1738 1739 if (tss != NULL) { 1740 error = copyout(tss, msfr.msfr_srcs, 1741 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1742 free(tss, M_TEMP); 1743 if (error) 1744 return (error); 1745 } 1746 1747 msfr.msfr_nsrcs = ncsrcs; 1748 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1749 1750 return (error); 1751 } 1752 1753 /* 1754 * Return the IP multicast options in response to user getsockopt(). 1755 */ 1756 int 1757 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1758 { 1759 struct ip_mreqn mreqn; 1760 struct ip_moptions *imo; 1761 struct ifnet *ifp; 1762 struct in_ifaddr *ia; 1763 int error, optval; 1764 u_char coptval; 1765 1766 INP_WLOCK(inp); 1767 imo = inp->inp_moptions; 1768 /* 1769 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1770 * or is a divert socket, reject it. 1771 */ 1772 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1773 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1774 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1775 INP_WUNLOCK(inp); 1776 return (EOPNOTSUPP); 1777 } 1778 1779 error = 0; 1780 switch (sopt->sopt_name) { 1781 case IP_MULTICAST_VIF: 1782 if (imo != NULL) 1783 optval = imo->imo_multicast_vif; 1784 else 1785 optval = -1; 1786 INP_WUNLOCK(inp); 1787 error = sooptcopyout(sopt, &optval, sizeof(int)); 1788 break; 1789 1790 case IP_MULTICAST_IF: 1791 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1792 if (imo != NULL) { 1793 ifp = imo->imo_multicast_ifp; 1794 if (!in_nullhost(imo->imo_multicast_addr)) { 1795 mreqn.imr_address = imo->imo_multicast_addr; 1796 } else if (ifp != NULL) { 1797 mreqn.imr_ifindex = ifp->if_index; 1798 IFP_TO_IA(ifp, ia); 1799 if (ia != NULL) { 1800 mreqn.imr_address = 1801 IA_SIN(ia)->sin_addr; 1802 ifa_free(&ia->ia_ifa); 1803 } 1804 } 1805 } 1806 INP_WUNLOCK(inp); 1807 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1808 error = sooptcopyout(sopt, &mreqn, 1809 sizeof(struct ip_mreqn)); 1810 } else { 1811 error = sooptcopyout(sopt, &mreqn.imr_address, 1812 sizeof(struct in_addr)); 1813 } 1814 break; 1815 1816 case IP_MULTICAST_TTL: 1817 if (imo == 0) 1818 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1819 else 1820 optval = coptval = imo->imo_multicast_ttl; 1821 INP_WUNLOCK(inp); 1822 if (sopt->sopt_valsize == sizeof(u_char)) 1823 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1824 else 1825 error = sooptcopyout(sopt, &optval, sizeof(int)); 1826 break; 1827 1828 case IP_MULTICAST_LOOP: 1829 if (imo == 0) 1830 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1831 else 1832 optval = coptval = imo->imo_multicast_loop; 1833 INP_WUNLOCK(inp); 1834 if (sopt->sopt_valsize == sizeof(u_char)) 1835 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1836 else 1837 error = sooptcopyout(sopt, &optval, sizeof(int)); 1838 break; 1839 1840 case IP_MSFILTER: 1841 if (imo == NULL) { 1842 error = EADDRNOTAVAIL; 1843 INP_WUNLOCK(inp); 1844 } else { 1845 error = inp_get_source_filters(inp, sopt); 1846 } 1847 break; 1848 1849 default: 1850 INP_WUNLOCK(inp); 1851 error = ENOPROTOOPT; 1852 break; 1853 } 1854 1855 INP_UNLOCK_ASSERT(inp); 1856 1857 return (error); 1858 } 1859 1860 /* 1861 * Look up the ifnet to use for a multicast group membership, 1862 * given the IPv4 address of an interface, and the IPv4 group address. 1863 * 1864 * This routine exists to support legacy multicast applications 1865 * which do not understand that multicast memberships are scoped to 1866 * specific physical links in the networking stack, or which need 1867 * to join link-scope groups before IPv4 addresses are configured. 1868 * 1869 * If inp is non-NULL, use this socket's current FIB number for any 1870 * required FIB lookup. 1871 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1872 * and use its ifp; usually, this points to the default next-hop. 1873 * 1874 * If the FIB lookup fails, attempt to use the first non-loopback 1875 * interface with multicast capability in the system as a 1876 * last resort. The legacy IPv4 ASM API requires that we do 1877 * this in order to allow groups to be joined when the routing 1878 * table has not yet been populated during boot. 1879 * 1880 * Returns NULL if no ifp could be found. 1881 * 1882 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP. 1883 * FUTURE: Implement IPv4 source-address selection. 1884 */ 1885 static struct ifnet * 1886 inp_lookup_mcast_ifp(const struct inpcb *inp, 1887 const struct sockaddr_in *gsin, const struct in_addr ina) 1888 { 1889 struct ifnet *ifp; 1890 1891 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1892 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1893 ("%s: not multicast", __func__)); 1894 1895 ifp = NULL; 1896 if (!in_nullhost(ina)) { 1897 INADDR_TO_IFP(ina, ifp); 1898 } else { 1899 struct route ro; 1900 1901 ro.ro_rt = NULL; 1902 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); 1903 in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0); 1904 if (ro.ro_rt != NULL) { 1905 ifp = ro.ro_rt->rt_ifp; 1906 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1907 RTFREE(ro.ro_rt); 1908 } else { 1909 struct in_ifaddr *ia; 1910 struct ifnet *mifp; 1911 1912 mifp = NULL; 1913 IN_IFADDR_RLOCK(); 1914 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1915 mifp = ia->ia_ifp; 1916 if (!(mifp->if_flags & IFF_LOOPBACK) && 1917 (mifp->if_flags & IFF_MULTICAST)) { 1918 ifp = mifp; 1919 break; 1920 } 1921 } 1922 IN_IFADDR_RUNLOCK(); 1923 } 1924 } 1925 1926 return (ifp); 1927 } 1928 1929 /* 1930 * Join an IPv4 multicast group, possibly with a source. 1931 */ 1932 static int 1933 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1934 { 1935 struct group_source_req gsr; 1936 sockunion_t *gsa, *ssa; 1937 struct ifnet *ifp; 1938 struct in_mfilter *imf; 1939 struct ip_moptions *imo; 1940 struct in_multi *inm; 1941 struct in_msource *lims; 1942 size_t idx; 1943 int error, is_new; 1944 1945 ifp = NULL; 1946 imf = NULL; 1947 lims = NULL; 1948 error = 0; 1949 is_new = 0; 1950 1951 memset(&gsr, 0, sizeof(struct group_source_req)); 1952 gsa = (sockunion_t *)&gsr.gsr_group; 1953 gsa->ss.ss_family = AF_UNSPEC; 1954 ssa = (sockunion_t *)&gsr.gsr_source; 1955 ssa->ss.ss_family = AF_UNSPEC; 1956 1957 switch (sopt->sopt_name) { 1958 case IP_ADD_MEMBERSHIP: 1959 case IP_ADD_SOURCE_MEMBERSHIP: { 1960 struct ip_mreq_source mreqs; 1961 1962 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { 1963 error = sooptcopyin(sopt, &mreqs, 1964 sizeof(struct ip_mreq), 1965 sizeof(struct ip_mreq)); 1966 /* 1967 * Do argument switcharoo from ip_mreq into 1968 * ip_mreq_source to avoid using two instances. 1969 */ 1970 mreqs.imr_interface = mreqs.imr_sourceaddr; 1971 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 1972 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1973 error = sooptcopyin(sopt, &mreqs, 1974 sizeof(struct ip_mreq_source), 1975 sizeof(struct ip_mreq_source)); 1976 } 1977 if (error) 1978 return (error); 1979 1980 gsa->sin.sin_family = AF_INET; 1981 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1982 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1983 1984 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1985 ssa->sin.sin_family = AF_INET; 1986 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1987 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1988 } 1989 1990 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1991 return (EINVAL); 1992 1993 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1994 mreqs.imr_interface); 1995 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1996 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1997 break; 1998 } 1999 2000 case MCAST_JOIN_GROUP: 2001 case MCAST_JOIN_SOURCE_GROUP: 2002 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 2003 error = sooptcopyin(sopt, &gsr, 2004 sizeof(struct group_req), 2005 sizeof(struct group_req)); 2006 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2007 error = sooptcopyin(sopt, &gsr, 2008 sizeof(struct group_source_req), 2009 sizeof(struct group_source_req)); 2010 } 2011 if (error) 2012 return (error); 2013 2014 if (gsa->sin.sin_family != AF_INET || 2015 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2016 return (EINVAL); 2017 2018 /* 2019 * Overwrite the port field if present, as the sockaddr 2020 * being copied in may be matched with a binary comparison. 2021 */ 2022 gsa->sin.sin_port = 0; 2023 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2024 if (ssa->sin.sin_family != AF_INET || 2025 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2026 return (EINVAL); 2027 ssa->sin.sin_port = 0; 2028 } 2029 2030 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2031 return (EINVAL); 2032 2033 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2034 return (EADDRNOTAVAIL); 2035 ifp = ifnet_byindex(gsr.gsr_interface); 2036 break; 2037 2038 default: 2039 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2040 __func__, sopt->sopt_name); 2041 return (EOPNOTSUPP); 2042 break; 2043 } 2044 2045 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2046 return (EADDRNOTAVAIL); 2047 2048 imo = inp_findmoptions(inp); 2049 idx = imo_match_group(imo, ifp, &gsa->sa); 2050 if (idx == -1) { 2051 is_new = 1; 2052 } else { 2053 inm = imo->imo_membership[idx]; 2054 imf = &imo->imo_mfilters[idx]; 2055 if (ssa->ss.ss_family != AF_UNSPEC) { 2056 /* 2057 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2058 * is an error. On an existing inclusive membership, 2059 * it just adds the source to the filter list. 2060 */ 2061 if (imf->imf_st[1] != MCAST_INCLUDE) { 2062 error = EINVAL; 2063 goto out_inp_locked; 2064 } 2065 /* 2066 * Throw out duplicates. 2067 * 2068 * XXX FIXME: This makes a naive assumption that 2069 * even if entries exist for *ssa in this imf, 2070 * they will be rejected as dupes, even if they 2071 * are not valid in the current mode (in-mode). 2072 * 2073 * in_msource is transactioned just as for anything 2074 * else in SSM -- but note naive use of inm_graft() 2075 * below for allocating new filter entries. 2076 * 2077 * This is only an issue if someone mixes the 2078 * full-state SSM API with the delta-based API, 2079 * which is discouraged in the relevant RFCs. 2080 */ 2081 lims = imo_match_source(imo, idx, &ssa->sa); 2082 if (lims != NULL /*&& 2083 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2084 error = EADDRNOTAVAIL; 2085 goto out_inp_locked; 2086 } 2087 } else { 2088 /* 2089 * MCAST_JOIN_GROUP on an existing exclusive 2090 * membership is an error; return EADDRINUSE 2091 * to preserve 4.4BSD API idempotence, and 2092 * avoid tedious detour to code below. 2093 * NOTE: This is bending RFC 3678 a bit. 2094 * 2095 * On an existing inclusive membership, this is also 2096 * an error; if you want to change filter mode, 2097 * you must use the userland API setsourcefilter(). 2098 * XXX We don't reject this for imf in UNDEFINED 2099 * state at t1, because allocation of a filter 2100 * is atomic with allocation of a membership. 2101 */ 2102 error = EINVAL; 2103 if (imf->imf_st[1] == MCAST_EXCLUDE) 2104 error = EADDRINUSE; 2105 goto out_inp_locked; 2106 } 2107 } 2108 2109 /* 2110 * Begin state merge transaction at socket layer. 2111 */ 2112 INP_WLOCK_ASSERT(inp); 2113 2114 if (is_new) { 2115 if (imo->imo_num_memberships == imo->imo_max_memberships) { 2116 error = imo_grow(imo); 2117 if (error) 2118 goto out_inp_locked; 2119 } 2120 /* 2121 * Allocate the new slot upfront so we can deal with 2122 * grafting the new source filter in same code path 2123 * as for join-source on existing membership. 2124 */ 2125 idx = imo->imo_num_memberships; 2126 imo->imo_membership[idx] = NULL; 2127 imo->imo_num_memberships++; 2128 KASSERT(imo->imo_mfilters != NULL, 2129 ("%s: imf_mfilters vector was not allocated", __func__)); 2130 imf = &imo->imo_mfilters[idx]; 2131 KASSERT(RB_EMPTY(&imf->imf_sources), 2132 ("%s: imf_sources not empty", __func__)); 2133 } 2134 2135 /* 2136 * Graft new source into filter list for this inpcb's 2137 * membership of the group. The in_multi may not have 2138 * been allocated yet if this is a new membership, however, 2139 * the in_mfilter slot will be allocated and must be initialized. 2140 * 2141 * Note: Grafting of exclusive mode filters doesn't happen 2142 * in this path. 2143 * XXX: Should check for non-NULL lims (node exists but may 2144 * not be in-mode) for interop with full-state API. 2145 */ 2146 if (ssa->ss.ss_family != AF_UNSPEC) { 2147 /* Membership starts in IN mode */ 2148 if (is_new) { 2149 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2150 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2151 } else { 2152 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2153 } 2154 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2155 if (lims == NULL) { 2156 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2157 __func__); 2158 error = ENOMEM; 2159 goto out_imo_free; 2160 } 2161 } else { 2162 /* No address specified; Membership starts in EX mode */ 2163 if (is_new) { 2164 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2165 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2166 } 2167 } 2168 2169 /* 2170 * Begin state merge transaction at IGMP layer. 2171 */ 2172 IN_MULTI_LOCK(); 2173 2174 if (is_new) { 2175 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2176 &inm); 2177 if (error) { 2178 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2179 __func__); 2180 IN_MULTI_UNLOCK(); 2181 goto out_imo_free; 2182 } 2183 imo->imo_membership[idx] = inm; 2184 } else { 2185 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2186 error = inm_merge(inm, imf); 2187 if (error) { 2188 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2189 __func__); 2190 goto out_in_multi_locked; 2191 } 2192 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2193 error = igmp_change_state(inm); 2194 if (error) { 2195 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2196 __func__); 2197 goto out_in_multi_locked; 2198 } 2199 } 2200 2201 out_in_multi_locked: 2202 2203 IN_MULTI_UNLOCK(); 2204 2205 INP_WLOCK_ASSERT(inp); 2206 if (error) { 2207 imf_rollback(imf); 2208 if (is_new) 2209 imf_purge(imf); 2210 else 2211 imf_reap(imf); 2212 } else { 2213 imf_commit(imf); 2214 } 2215 2216 out_imo_free: 2217 if (error && is_new) { 2218 imo->imo_membership[idx] = NULL; 2219 --imo->imo_num_memberships; 2220 } 2221 2222 out_inp_locked: 2223 INP_WUNLOCK(inp); 2224 return (error); 2225 } 2226 2227 /* 2228 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2229 */ 2230 static int 2231 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2232 { 2233 struct group_source_req gsr; 2234 struct ip_mreq_source mreqs; 2235 sockunion_t *gsa, *ssa; 2236 struct ifnet *ifp; 2237 struct in_mfilter *imf; 2238 struct ip_moptions *imo; 2239 struct in_msource *ims; 2240 struct in_multi *inm; 2241 size_t idx; 2242 int error, is_final; 2243 2244 ifp = NULL; 2245 error = 0; 2246 is_final = 1; 2247 2248 memset(&gsr, 0, sizeof(struct group_source_req)); 2249 gsa = (sockunion_t *)&gsr.gsr_group; 2250 gsa->ss.ss_family = AF_UNSPEC; 2251 ssa = (sockunion_t *)&gsr.gsr_source; 2252 ssa->ss.ss_family = AF_UNSPEC; 2253 2254 switch (sopt->sopt_name) { 2255 case IP_DROP_MEMBERSHIP: 2256 case IP_DROP_SOURCE_MEMBERSHIP: 2257 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2258 error = sooptcopyin(sopt, &mreqs, 2259 sizeof(struct ip_mreq), 2260 sizeof(struct ip_mreq)); 2261 /* 2262 * Swap interface and sourceaddr arguments, 2263 * as ip_mreq and ip_mreq_source are laid 2264 * out differently. 2265 */ 2266 mreqs.imr_interface = mreqs.imr_sourceaddr; 2267 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2268 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2269 error = sooptcopyin(sopt, &mreqs, 2270 sizeof(struct ip_mreq_source), 2271 sizeof(struct ip_mreq_source)); 2272 } 2273 if (error) 2274 return (error); 2275 2276 gsa->sin.sin_family = AF_INET; 2277 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2278 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2279 2280 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2281 ssa->sin.sin_family = AF_INET; 2282 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2283 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2284 } 2285 2286 /* 2287 * Attempt to look up hinted ifp from interface address. 2288 * Fallthrough with null ifp iff lookup fails, to 2289 * preserve 4.4BSD mcast API idempotence. 2290 * XXX NOTE WELL: The RFC 3678 API is preferred because 2291 * using an IPv4 address as a key is racy. 2292 */ 2293 if (!in_nullhost(mreqs.imr_interface)) 2294 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2295 2296 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 2297 __func__, inet_ntoa(mreqs.imr_interface), ifp); 2298 2299 break; 2300 2301 case MCAST_LEAVE_GROUP: 2302 case MCAST_LEAVE_SOURCE_GROUP: 2303 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2304 error = sooptcopyin(sopt, &gsr, 2305 sizeof(struct group_req), 2306 sizeof(struct group_req)); 2307 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2308 error = sooptcopyin(sopt, &gsr, 2309 sizeof(struct group_source_req), 2310 sizeof(struct group_source_req)); 2311 } 2312 if (error) 2313 return (error); 2314 2315 if (gsa->sin.sin_family != AF_INET || 2316 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2317 return (EINVAL); 2318 2319 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2320 if (ssa->sin.sin_family != AF_INET || 2321 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2322 return (EINVAL); 2323 } 2324 2325 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2326 return (EADDRNOTAVAIL); 2327 2328 ifp = ifnet_byindex(gsr.gsr_interface); 2329 2330 if (ifp == NULL) 2331 return (EADDRNOTAVAIL); 2332 break; 2333 2334 default: 2335 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2336 __func__, sopt->sopt_name); 2337 return (EOPNOTSUPP); 2338 break; 2339 } 2340 2341 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2342 return (EINVAL); 2343 2344 /* 2345 * Find the membership in the membership array. 2346 */ 2347 imo = inp_findmoptions(inp); 2348 idx = imo_match_group(imo, ifp, &gsa->sa); 2349 if (idx == -1) { 2350 error = EADDRNOTAVAIL; 2351 goto out_inp_locked; 2352 } 2353 inm = imo->imo_membership[idx]; 2354 imf = &imo->imo_mfilters[idx]; 2355 2356 if (ssa->ss.ss_family != AF_UNSPEC) 2357 is_final = 0; 2358 2359 /* 2360 * Begin state merge transaction at socket layer. 2361 */ 2362 INP_WLOCK_ASSERT(inp); 2363 2364 /* 2365 * If we were instructed only to leave a given source, do so. 2366 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2367 */ 2368 if (is_final) { 2369 imf_leave(imf); 2370 } else { 2371 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2372 error = EADDRNOTAVAIL; 2373 goto out_inp_locked; 2374 } 2375 ims = imo_match_source(imo, idx, &ssa->sa); 2376 if (ims == NULL) { 2377 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 2378 inet_ntoa(ssa->sin.sin_addr), "not "); 2379 error = EADDRNOTAVAIL; 2380 goto out_inp_locked; 2381 } 2382 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2383 error = imf_prune(imf, &ssa->sin); 2384 if (error) { 2385 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2386 __func__); 2387 goto out_inp_locked; 2388 } 2389 } 2390 2391 /* 2392 * Begin state merge transaction at IGMP layer. 2393 */ 2394 IN_MULTI_LOCK(); 2395 2396 if (is_final) { 2397 /* 2398 * Give up the multicast address record to which 2399 * the membership points. 2400 */ 2401 (void)in_leavegroup_locked(inm, imf); 2402 } else { 2403 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2404 error = inm_merge(inm, imf); 2405 if (error) { 2406 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2407 __func__); 2408 goto out_in_multi_locked; 2409 } 2410 2411 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2412 error = igmp_change_state(inm); 2413 if (error) { 2414 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2415 __func__); 2416 } 2417 } 2418 2419 out_in_multi_locked: 2420 2421 IN_MULTI_UNLOCK(); 2422 2423 if (error) 2424 imf_rollback(imf); 2425 else 2426 imf_commit(imf); 2427 2428 imf_reap(imf); 2429 2430 if (is_final) { 2431 /* Remove the gap in the membership and filter array. */ 2432 for (++idx; idx < imo->imo_num_memberships; ++idx) { 2433 imo->imo_membership[idx-1] = imo->imo_membership[idx]; 2434 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx]; 2435 } 2436 imo->imo_num_memberships--; 2437 } 2438 2439 out_inp_locked: 2440 INP_WUNLOCK(inp); 2441 return (error); 2442 } 2443 2444 /* 2445 * Select the interface for transmitting IPv4 multicast datagrams. 2446 * 2447 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2448 * may be passed to this socket option. An address of INADDR_ANY or an 2449 * interface index of 0 is used to remove a previous selection. 2450 * When no interface is selected, one is chosen for every send. 2451 */ 2452 static int 2453 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2454 { 2455 struct in_addr addr; 2456 struct ip_mreqn mreqn; 2457 struct ifnet *ifp; 2458 struct ip_moptions *imo; 2459 int error; 2460 2461 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2462 /* 2463 * An interface index was specified using the 2464 * Linux-derived ip_mreqn structure. 2465 */ 2466 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2467 sizeof(struct ip_mreqn)); 2468 if (error) 2469 return (error); 2470 2471 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2472 return (EINVAL); 2473 2474 if (mreqn.imr_ifindex == 0) { 2475 ifp = NULL; 2476 } else { 2477 ifp = ifnet_byindex(mreqn.imr_ifindex); 2478 if (ifp == NULL) 2479 return (EADDRNOTAVAIL); 2480 } 2481 } else { 2482 /* 2483 * An interface was specified by IPv4 address. 2484 * This is the traditional BSD usage. 2485 */ 2486 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2487 sizeof(struct in_addr)); 2488 if (error) 2489 return (error); 2490 if (in_nullhost(addr)) { 2491 ifp = NULL; 2492 } else { 2493 INADDR_TO_IFP(addr, ifp); 2494 if (ifp == NULL) 2495 return (EADDRNOTAVAIL); 2496 } 2497 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp, 2498 inet_ntoa(addr)); 2499 } 2500 2501 /* Reject interfaces which do not support multicast. */ 2502 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2503 return (EOPNOTSUPP); 2504 2505 imo = inp_findmoptions(inp); 2506 imo->imo_multicast_ifp = ifp; 2507 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2508 INP_WUNLOCK(inp); 2509 2510 return (0); 2511 } 2512 2513 /* 2514 * Atomically set source filters on a socket for an IPv4 multicast group. 2515 * 2516 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2517 */ 2518 static int 2519 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2520 { 2521 struct __msfilterreq msfr; 2522 sockunion_t *gsa; 2523 struct ifnet *ifp; 2524 struct in_mfilter *imf; 2525 struct ip_moptions *imo; 2526 struct in_multi *inm; 2527 size_t idx; 2528 int error; 2529 2530 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2531 sizeof(struct __msfilterreq)); 2532 if (error) 2533 return (error); 2534 2535 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2536 return (ENOBUFS); 2537 2538 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2539 msfr.msfr_fmode != MCAST_INCLUDE)) 2540 return (EINVAL); 2541 2542 if (msfr.msfr_group.ss_family != AF_INET || 2543 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2544 return (EINVAL); 2545 2546 gsa = (sockunion_t *)&msfr.msfr_group; 2547 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2548 return (EINVAL); 2549 2550 gsa->sin.sin_port = 0; /* ignore port */ 2551 2552 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2553 return (EADDRNOTAVAIL); 2554 2555 ifp = ifnet_byindex(msfr.msfr_ifindex); 2556 if (ifp == NULL) 2557 return (EADDRNOTAVAIL); 2558 2559 /* 2560 * Take the INP write lock. 2561 * Check if this socket is a member of this group. 2562 */ 2563 imo = inp_findmoptions(inp); 2564 idx = imo_match_group(imo, ifp, &gsa->sa); 2565 if (idx == -1 || imo->imo_mfilters == NULL) { 2566 error = EADDRNOTAVAIL; 2567 goto out_inp_locked; 2568 } 2569 inm = imo->imo_membership[idx]; 2570 imf = &imo->imo_mfilters[idx]; 2571 2572 /* 2573 * Begin state merge transaction at socket layer. 2574 */ 2575 INP_WLOCK_ASSERT(inp); 2576 2577 imf->imf_st[1] = msfr.msfr_fmode; 2578 2579 /* 2580 * Apply any new source filters, if present. 2581 * Make a copy of the user-space source vector so 2582 * that we may copy them with a single copyin. This 2583 * allows us to deal with page faults up-front. 2584 */ 2585 if (msfr.msfr_nsrcs > 0) { 2586 struct in_msource *lims; 2587 struct sockaddr_in *psin; 2588 struct sockaddr_storage *kss, *pkss; 2589 int i; 2590 2591 INP_WUNLOCK(inp); 2592 2593 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2594 __func__, (unsigned long)msfr.msfr_nsrcs); 2595 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2596 M_TEMP, M_WAITOK); 2597 error = copyin(msfr.msfr_srcs, kss, 2598 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2599 if (error) { 2600 free(kss, M_TEMP); 2601 return (error); 2602 } 2603 2604 INP_WLOCK(inp); 2605 2606 /* 2607 * Mark all source filters as UNDEFINED at t1. 2608 * Restore new group filter mode, as imf_leave() 2609 * will set it to INCLUDE. 2610 */ 2611 imf_leave(imf); 2612 imf->imf_st[1] = msfr.msfr_fmode; 2613 2614 /* 2615 * Update socket layer filters at t1, lazy-allocating 2616 * new entries. This saves a bunch of memory at the 2617 * cost of one RB_FIND() per source entry; duplicate 2618 * entries in the msfr_nsrcs vector are ignored. 2619 * If we encounter an error, rollback transaction. 2620 * 2621 * XXX This too could be replaced with a set-symmetric 2622 * difference like loop to avoid walking from root 2623 * every time, as the key space is common. 2624 */ 2625 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2626 psin = (struct sockaddr_in *)pkss; 2627 if (psin->sin_family != AF_INET) { 2628 error = EAFNOSUPPORT; 2629 break; 2630 } 2631 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2632 error = EINVAL; 2633 break; 2634 } 2635 error = imf_get_source(imf, psin, &lims); 2636 if (error) 2637 break; 2638 lims->imsl_st[1] = imf->imf_st[1]; 2639 } 2640 free(kss, M_TEMP); 2641 } 2642 2643 if (error) 2644 goto out_imf_rollback; 2645 2646 INP_WLOCK_ASSERT(inp); 2647 IN_MULTI_LOCK(); 2648 2649 /* 2650 * Begin state merge transaction at IGMP layer. 2651 */ 2652 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2653 error = inm_merge(inm, imf); 2654 if (error) { 2655 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2656 goto out_in_multi_locked; 2657 } 2658 2659 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2660 error = igmp_change_state(inm); 2661 if (error) 2662 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2663 2664 out_in_multi_locked: 2665 2666 IN_MULTI_UNLOCK(); 2667 2668 out_imf_rollback: 2669 if (error) 2670 imf_rollback(imf); 2671 else 2672 imf_commit(imf); 2673 2674 imf_reap(imf); 2675 2676 out_inp_locked: 2677 INP_WUNLOCK(inp); 2678 return (error); 2679 } 2680 2681 /* 2682 * Set the IP multicast options in response to user setsockopt(). 2683 * 2684 * Many of the socket options handled in this function duplicate the 2685 * functionality of socket options in the regular unicast API. However, 2686 * it is not possible to merge the duplicate code, because the idempotence 2687 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2688 * the effects of these options must be treated as separate and distinct. 2689 * 2690 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2691 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2692 * is refactored to no longer use vifs. 2693 */ 2694 int 2695 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2696 { 2697 struct ip_moptions *imo; 2698 int error; 2699 2700 error = 0; 2701 2702 /* 2703 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2704 * or is a divert socket, reject it. 2705 */ 2706 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2707 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2708 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2709 return (EOPNOTSUPP); 2710 2711 switch (sopt->sopt_name) { 2712 case IP_MULTICAST_VIF: { 2713 int vifi; 2714 /* 2715 * Select a multicast VIF for transmission. 2716 * Only useful if multicast forwarding is active. 2717 */ 2718 if (legal_vif_num == NULL) { 2719 error = EOPNOTSUPP; 2720 break; 2721 } 2722 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2723 if (error) 2724 break; 2725 if (!legal_vif_num(vifi) && (vifi != -1)) { 2726 error = EINVAL; 2727 break; 2728 } 2729 imo = inp_findmoptions(inp); 2730 imo->imo_multicast_vif = vifi; 2731 INP_WUNLOCK(inp); 2732 break; 2733 } 2734 2735 case IP_MULTICAST_IF: 2736 error = inp_set_multicast_if(inp, sopt); 2737 break; 2738 2739 case IP_MULTICAST_TTL: { 2740 u_char ttl; 2741 2742 /* 2743 * Set the IP time-to-live for outgoing multicast packets. 2744 * The original multicast API required a char argument, 2745 * which is inconsistent with the rest of the socket API. 2746 * We allow either a char or an int. 2747 */ 2748 if (sopt->sopt_valsize == sizeof(u_char)) { 2749 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2750 sizeof(u_char)); 2751 if (error) 2752 break; 2753 } else { 2754 u_int ittl; 2755 2756 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2757 sizeof(u_int)); 2758 if (error) 2759 break; 2760 if (ittl > 255) { 2761 error = EINVAL; 2762 break; 2763 } 2764 ttl = (u_char)ittl; 2765 } 2766 imo = inp_findmoptions(inp); 2767 imo->imo_multicast_ttl = ttl; 2768 INP_WUNLOCK(inp); 2769 break; 2770 } 2771 2772 case IP_MULTICAST_LOOP: { 2773 u_char loop; 2774 2775 /* 2776 * Set the loopback flag for outgoing multicast packets. 2777 * Must be zero or one. The original multicast API required a 2778 * char argument, which is inconsistent with the rest 2779 * of the socket API. We allow either a char or an int. 2780 */ 2781 if (sopt->sopt_valsize == sizeof(u_char)) { 2782 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2783 sizeof(u_char)); 2784 if (error) 2785 break; 2786 } else { 2787 u_int iloop; 2788 2789 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2790 sizeof(u_int)); 2791 if (error) 2792 break; 2793 loop = (u_char)iloop; 2794 } 2795 imo = inp_findmoptions(inp); 2796 imo->imo_multicast_loop = !!loop; 2797 INP_WUNLOCK(inp); 2798 break; 2799 } 2800 2801 case IP_ADD_MEMBERSHIP: 2802 case IP_ADD_SOURCE_MEMBERSHIP: 2803 case MCAST_JOIN_GROUP: 2804 case MCAST_JOIN_SOURCE_GROUP: 2805 error = inp_join_group(inp, sopt); 2806 break; 2807 2808 case IP_DROP_MEMBERSHIP: 2809 case IP_DROP_SOURCE_MEMBERSHIP: 2810 case MCAST_LEAVE_GROUP: 2811 case MCAST_LEAVE_SOURCE_GROUP: 2812 error = inp_leave_group(inp, sopt); 2813 break; 2814 2815 case IP_BLOCK_SOURCE: 2816 case IP_UNBLOCK_SOURCE: 2817 case MCAST_BLOCK_SOURCE: 2818 case MCAST_UNBLOCK_SOURCE: 2819 error = inp_block_unblock_source(inp, sopt); 2820 break; 2821 2822 case IP_MSFILTER: 2823 error = inp_set_source_filters(inp, sopt); 2824 break; 2825 2826 default: 2827 error = EOPNOTSUPP; 2828 break; 2829 } 2830 2831 INP_UNLOCK_ASSERT(inp); 2832 2833 return (error); 2834 } 2835 2836 /* 2837 * Expose IGMP's multicast filter mode and source list(s) to userland, 2838 * keyed by (ifindex, group). 2839 * The filter mode is written out as a uint32_t, followed by 2840 * 0..n of struct in_addr. 2841 * For use by ifmcstat(8). 2842 * SMPng: NOTE: unlocked read of ifindex space. 2843 */ 2844 static int 2845 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2846 { 2847 struct in_addr src, group; 2848 struct ifnet *ifp; 2849 struct ifmultiaddr *ifma; 2850 struct in_multi *inm; 2851 struct ip_msource *ims; 2852 int *name; 2853 int retval; 2854 u_int namelen; 2855 uint32_t fmode, ifindex; 2856 2857 name = (int *)arg1; 2858 namelen = arg2; 2859 2860 if (req->newptr != NULL) 2861 return (EPERM); 2862 2863 if (namelen != 2) 2864 return (EINVAL); 2865 2866 ifindex = name[0]; 2867 if (ifindex <= 0 || ifindex > V_if_index) { 2868 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2869 __func__, ifindex); 2870 return (ENOENT); 2871 } 2872 2873 group.s_addr = name[1]; 2874 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2875 CTR2(KTR_IGMPV3, "%s: group %s is not multicast", 2876 __func__, inet_ntoa(group)); 2877 return (EINVAL); 2878 } 2879 2880 ifp = ifnet_byindex(ifindex); 2881 if (ifp == NULL) { 2882 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2883 __func__, ifindex); 2884 return (ENOENT); 2885 } 2886 2887 retval = sysctl_wire_old_buffer(req, 2888 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2889 if (retval) 2890 return (retval); 2891 2892 IN_MULTI_LOCK(); 2893 2894 IF_ADDR_RLOCK(ifp); 2895 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2896 if (ifma->ifma_addr->sa_family != AF_INET || 2897 ifma->ifma_protospec == NULL) 2898 continue; 2899 inm = (struct in_multi *)ifma->ifma_protospec; 2900 if (!in_hosteq(inm->inm_addr, group)) 2901 continue; 2902 fmode = inm->inm_st[1].iss_fmode; 2903 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2904 if (retval != 0) 2905 break; 2906 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2907 #ifdef KTR 2908 struct in_addr ina; 2909 ina.s_addr = htonl(ims->ims_haddr); 2910 CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, 2911 inet_ntoa(ina)); 2912 #endif 2913 /* 2914 * Only copy-out sources which are in-mode. 2915 */ 2916 if (fmode != ims_get_mode(inm, ims, 1)) { 2917 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2918 __func__); 2919 continue; 2920 } 2921 src.s_addr = htonl(ims->ims_haddr); 2922 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2923 if (retval != 0) 2924 break; 2925 } 2926 } 2927 IF_ADDR_RUNLOCK(ifp); 2928 2929 IN_MULTI_UNLOCK(); 2930 2931 return (retval); 2932 } 2933 2934 #ifdef KTR 2935 2936 static const char *inm_modestrs[] = { "un", "in", "ex" }; 2937 2938 static const char * 2939 inm_mode_str(const int mode) 2940 { 2941 2942 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2943 return (inm_modestrs[mode]); 2944 return ("??"); 2945 } 2946 2947 static const char *inm_statestrs[] = { 2948 "not-member", 2949 "silent", 2950 "idle", 2951 "lazy", 2952 "sleeping", 2953 "awakening", 2954 "query-pending", 2955 "sg-query-pending", 2956 "leaving" 2957 }; 2958 2959 static const char * 2960 inm_state_str(const int state) 2961 { 2962 2963 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2964 return (inm_statestrs[state]); 2965 return ("??"); 2966 } 2967 2968 /* 2969 * Dump an in_multi structure to the console. 2970 */ 2971 void 2972 inm_print(const struct in_multi *inm) 2973 { 2974 int t; 2975 2976 if ((ktr_mask & KTR_IGMPV3) == 0) 2977 return; 2978 2979 printf("%s: --- begin inm %p ---\n", __func__, inm); 2980 printf("addr %s ifp %p(%s) ifma %p\n", 2981 inet_ntoa(inm->inm_addr), 2982 inm->inm_ifp, 2983 inm->inm_ifp->if_xname, 2984 inm->inm_ifma); 2985 printf("timer %u state %s refcount %u scq.len %u\n", 2986 inm->inm_timer, 2987 inm_state_str(inm->inm_state), 2988 inm->inm_refcount, 2989 inm->inm_scq.ifq_len); 2990 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 2991 inm->inm_igi, 2992 inm->inm_nsrc, 2993 inm->inm_sctimer, 2994 inm->inm_scrv); 2995 for (t = 0; t < 2; t++) { 2996 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2997 inm_mode_str(inm->inm_st[t].iss_fmode), 2998 inm->inm_st[t].iss_asm, 2999 inm->inm_st[t].iss_ex, 3000 inm->inm_st[t].iss_in, 3001 inm->inm_st[t].iss_rec); 3002 } 3003 printf("%s: --- end inm %p ---\n", __func__, inm); 3004 } 3005 3006 #else /* !KTR */ 3007 3008 void 3009 inm_print(const struct in_multi *inm) 3010 { 3011 3012 } 3013 3014 #endif /* KTR */ 3015 3016 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3017