1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2007-2009 Bruce Simpson. 5 * Copyright (c) 2005 Robert N. M. Watson. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote 17 * products derived from this software without specific prior written 18 * permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * IPv4 multicast socket, group, and socket option processing module. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/protosw.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/sysctl.h> 51 #include <sys/ktr.h> 52 #include <sys/taskqueue.h> 53 #include <sys/tree.h> 54 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <net/route/nhop.h> 60 #include <net/vnet.h> 61 62 #include <net/ethernet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_fib.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_var.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/igmp_var.h> 71 72 #ifndef KTR_IGMPV3 73 #define KTR_IGMPV3 KTR_INET 74 #endif 75 76 #ifndef __SOCKUNION_DECLARED 77 union sockunion { 78 struct sockaddr_storage ss; 79 struct sockaddr sa; 80 struct sockaddr_dl sdl; 81 struct sockaddr_in sin; 82 }; 83 typedef union sockunion sockunion_t; 84 #define __SOCKUNION_DECLARED 85 #endif /* __SOCKUNION_DECLARED */ 86 87 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 88 "IPv4 multicast PCB-layer source filter"); 89 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 90 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 91 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 92 "IPv4 multicast IGMP-layer source filter"); 93 94 /* 95 * Locking: 96 * 97 * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, 98 * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 99 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 100 * it can be taken by code in net/if.c also. 101 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 102 * 103 * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly 104 * any need for in_multi itself to be virtualized -- it is bound to an ifp 105 * anyway no matter what happens. 106 */ 107 struct mtx in_multi_list_mtx; 108 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); 109 110 struct mtx in_multi_free_mtx; 111 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); 112 113 struct sx in_multi_sx; 114 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); 115 116 int ifma_restart; 117 118 /* 119 * Functions with non-static linkage defined in this file should be 120 * declared in in_var.h: 121 * imo_multi_filter() 122 * in_joingroup() 123 * in_joingroup_locked() 124 * in_leavegroup() 125 * in_leavegroup_locked() 126 * and ip_var.h: 127 * inp_freemoptions() 128 * inp_getmoptions() 129 * inp_setmoptions() 130 */ 131 static void imf_commit(struct in_mfilter *); 132 static int imf_get_source(struct in_mfilter *imf, 133 const struct sockaddr_in *psin, 134 struct in_msource **); 135 static struct in_msource * 136 imf_graft(struct in_mfilter *, const uint8_t, 137 const struct sockaddr_in *); 138 static void imf_leave(struct in_mfilter *); 139 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 140 static void imf_purge(struct in_mfilter *); 141 static void imf_rollback(struct in_mfilter *); 142 static void imf_reap(struct in_mfilter *); 143 static struct in_mfilter * 144 imo_match_group(const struct ip_moptions *, 145 const struct ifnet *, const struct sockaddr *); 146 static struct in_msource * 147 imo_match_source(struct in_mfilter *, const struct sockaddr *); 148 static void ims_merge(struct ip_msource *ims, 149 const struct in_msource *lims, const int rollback); 150 static int in_getmulti(struct ifnet *, const struct in_addr *, 151 struct in_multi **); 152 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 153 const int noalloc, struct ip_msource **pims); 154 #ifdef KTR 155 static int inm_is_ifp_detached(const struct in_multi *); 156 #endif 157 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 158 static void inm_purge(struct in_multi *); 159 static void inm_reap(struct in_multi *); 160 static void inm_release(struct in_multi *); 161 static struct ip_moptions * 162 inp_findmoptions(struct inpcb *); 163 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 164 static int inp_join_group(struct inpcb *, struct sockopt *); 165 static int inp_leave_group(struct inpcb *, struct sockopt *); 166 static struct ifnet * 167 inp_lookup_mcast_ifp(const struct inpcb *, 168 const struct sockaddr_in *, const struct in_addr); 169 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 170 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 171 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 172 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 173 174 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, 175 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 176 "IPv4 multicast"); 177 178 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 179 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 180 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, 181 "Max source filters per group"); 182 183 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 184 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 185 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, 186 "Max source filters per socket"); 187 188 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 189 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 190 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 191 192 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 193 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 194 "Per-interface stack-wide source filters"); 195 196 #ifdef KTR 197 /* 198 * Inline function which wraps assertions for a valid ifp. 199 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 200 * is detached. 201 */ 202 static int __inline 203 inm_is_ifp_detached(const struct in_multi *inm) 204 { 205 struct ifnet *ifp; 206 207 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 208 ifp = inm->inm_ifma->ifma_ifp; 209 if (ifp != NULL) { 210 /* 211 * Sanity check that netinet's notion of ifp is the 212 * same as net's. 213 */ 214 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 215 } 216 217 return (ifp == NULL); 218 } 219 #endif 220 221 /* 222 * Interface detach can happen in a taskqueue thread context, so we must use a 223 * dedicated thread to avoid deadlocks when draining inm_release tasks. 224 */ 225 TASKQUEUE_DEFINE_THREAD(inm_free); 226 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); 227 static void inm_release_task(void *arg __unused, int pending __unused); 228 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL); 229 230 void 231 inm_release_wait(void *arg __unused) 232 { 233 234 /* 235 * Make sure all pending multicast addresses are freed before 236 * the VNET or network device is destroyed: 237 */ 238 taskqueue_drain(taskqueue_inm_free, &inm_free_task); 239 } 240 #ifdef VIMAGE 241 /* XXX-BZ FIXME, see D24914. */ 242 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); 243 #endif 244 245 void 246 inm_release_list_deferred(struct in_multi_head *inmh) 247 { 248 249 if (SLIST_EMPTY(inmh)) 250 return; 251 mtx_lock(&in_multi_free_mtx); 252 SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); 253 mtx_unlock(&in_multi_free_mtx); 254 taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); 255 } 256 257 void 258 inm_disconnect(struct in_multi *inm) 259 { 260 struct ifnet *ifp; 261 struct ifmultiaddr *ifma, *ll_ifma; 262 263 ifp = inm->inm_ifp; 264 IF_ADDR_WLOCK_ASSERT(ifp); 265 ifma = inm->inm_ifma; 266 267 if_ref(ifp); 268 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 269 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 270 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 271 } 272 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 273 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 274 MPASS(ifma != ll_ifma); 275 ifma->ifma_llifma = NULL; 276 MPASS(ll_ifma->ifma_llifma == NULL); 277 MPASS(ll_ifma->ifma_ifp == ifp); 278 if (--ll_ifma->ifma_refcount == 0) { 279 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 280 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 281 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 282 } 283 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 284 if_freemulti(ll_ifma); 285 ifma_restart = true; 286 } 287 } 288 } 289 290 void 291 inm_release_deferred(struct in_multi *inm) 292 { 293 struct in_multi_head tmp; 294 295 IN_MULTI_LIST_LOCK_ASSERT(); 296 MPASS(inm->inm_refcount > 0); 297 if (--inm->inm_refcount == 0) { 298 SLIST_INIT(&tmp); 299 inm_disconnect(inm); 300 inm->inm_ifma->ifma_protospec = NULL; 301 SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); 302 inm_release_list_deferred(&tmp); 303 } 304 } 305 306 static void 307 inm_release_task(void *arg __unused, int pending __unused) 308 { 309 struct in_multi_head inm_free_tmp; 310 struct in_multi *inm, *tinm; 311 312 SLIST_INIT(&inm_free_tmp); 313 mtx_lock(&in_multi_free_mtx); 314 SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); 315 mtx_unlock(&in_multi_free_mtx); 316 IN_MULTI_LOCK(); 317 SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { 318 SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); 319 MPASS(inm); 320 inm_release(inm); 321 } 322 IN_MULTI_UNLOCK(); 323 } 324 325 /* 326 * Initialize an in_mfilter structure to a known state at t0, t1 327 * with an empty source filter list. 328 */ 329 static __inline void 330 imf_init(struct in_mfilter *imf, const int st0, const int st1) 331 { 332 memset(imf, 0, sizeof(struct in_mfilter)); 333 RB_INIT(&imf->imf_sources); 334 imf->imf_st[0] = st0; 335 imf->imf_st[1] = st1; 336 } 337 338 struct in_mfilter * 339 ip_mfilter_alloc(const int mflags, const int st0, const int st1) 340 { 341 struct in_mfilter *imf; 342 343 imf = malloc(sizeof(*imf), M_INMFILTER, mflags); 344 if (imf != NULL) 345 imf_init(imf, st0, st1); 346 347 return (imf); 348 } 349 350 void 351 ip_mfilter_free(struct in_mfilter *imf) 352 { 353 354 imf_purge(imf); 355 free(imf, M_INMFILTER); 356 } 357 358 /* 359 * Function for looking up an in_multi record for an IPv4 multicast address 360 * on a given interface. ifp must be valid. If no record found, return NULL. 361 * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. 362 */ 363 struct in_multi * 364 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 365 { 366 struct ifmultiaddr *ifma; 367 struct in_multi *inm; 368 369 IN_MULTI_LIST_LOCK_ASSERT(); 370 IF_ADDR_LOCK_ASSERT(ifp); 371 372 inm = NULL; 373 CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 374 if (ifma->ifma_addr->sa_family != AF_INET || 375 ifma->ifma_protospec == NULL) 376 continue; 377 inm = (struct in_multi *)ifma->ifma_protospec; 378 if (inm->inm_addr.s_addr == ina.s_addr) 379 break; 380 inm = NULL; 381 } 382 return (inm); 383 } 384 385 /* 386 * Wrapper for inm_lookup_locked(). 387 * The IF_ADDR_LOCK will be taken on ifp and released on return. 388 */ 389 struct in_multi * 390 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 391 { 392 struct epoch_tracker et; 393 struct in_multi *inm; 394 395 IN_MULTI_LIST_LOCK_ASSERT(); 396 NET_EPOCH_ENTER(et); 397 398 inm = inm_lookup_locked(ifp, ina); 399 NET_EPOCH_EXIT(et); 400 401 return (inm); 402 } 403 404 /* 405 * Find an IPv4 multicast group entry for this ip_moptions instance 406 * which matches the specified group, and optionally an interface. 407 * Return its index into the array, or -1 if not found. 408 */ 409 static struct in_mfilter * 410 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 411 const struct sockaddr *group) 412 { 413 const struct sockaddr_in *gsin; 414 struct in_mfilter *imf; 415 struct in_multi *inm; 416 417 gsin = (const struct sockaddr_in *)group; 418 419 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 420 inm = imf->imf_inm; 421 if (inm == NULL) 422 continue; 423 if ((ifp == NULL || (inm->inm_ifp == ifp)) && 424 in_hosteq(inm->inm_addr, gsin->sin_addr)) { 425 break; 426 } 427 } 428 return (imf); 429 } 430 431 /* 432 * Find an IPv4 multicast source entry for this imo which matches 433 * the given group index for this socket, and source address. 434 * 435 * NOTE: This does not check if the entry is in-mode, merely if 436 * it exists, which may not be the desired behaviour. 437 */ 438 static struct in_msource * 439 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) 440 { 441 struct ip_msource find; 442 struct ip_msource *ims; 443 const sockunion_t *psa; 444 445 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 446 447 /* Source trees are keyed in host byte order. */ 448 psa = (const sockunion_t *)src; 449 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 450 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 451 452 return ((struct in_msource *)ims); 453 } 454 455 /* 456 * Perform filtering for multicast datagrams on a socket by group and source. 457 * 458 * Returns 0 if a datagram should be allowed through, or various error codes 459 * if the socket was not a member of the group, or the source was muted, etc. 460 */ 461 int 462 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 463 const struct sockaddr *group, const struct sockaddr *src) 464 { 465 struct in_mfilter *imf; 466 struct in_msource *ims; 467 int mode; 468 469 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 470 471 imf = imo_match_group(imo, ifp, group); 472 if (imf == NULL) 473 return (MCAST_NOTGMEMBER); 474 475 /* 476 * Check if the source was included in an (S,G) join. 477 * Allow reception on exclusive memberships by default, 478 * reject reception on inclusive memberships by default. 479 * Exclude source only if an in-mode exclude filter exists. 480 * Include source only if an in-mode include filter exists. 481 * NOTE: We are comparing group state here at IGMP t1 (now) 482 * with socket-layer t0 (since last downcall). 483 */ 484 mode = imf->imf_st[1]; 485 ims = imo_match_source(imf, src); 486 487 if ((ims == NULL && mode == MCAST_INCLUDE) || 488 (ims != NULL && ims->imsl_st[0] != mode)) 489 return (MCAST_NOTSMEMBER); 490 491 return (MCAST_PASS); 492 } 493 494 /* 495 * Find and return a reference to an in_multi record for (ifp, group), 496 * and bump its reference count. 497 * If one does not exist, try to allocate it, and update link-layer multicast 498 * filters on ifp to listen for group. 499 * Assumes the IN_MULTI lock is held across the call. 500 * Return 0 if successful, otherwise return an appropriate error code. 501 */ 502 static int 503 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 504 struct in_multi **pinm) 505 { 506 struct sockaddr_in gsin; 507 struct ifmultiaddr *ifma; 508 struct in_ifinfo *ii; 509 struct in_multi *inm; 510 int error; 511 512 IN_MULTI_LOCK_ASSERT(); 513 514 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 515 IN_MULTI_LIST_LOCK(); 516 inm = inm_lookup(ifp, *group); 517 if (inm != NULL) { 518 /* 519 * If we already joined this group, just bump the 520 * refcount and return it. 521 */ 522 KASSERT(inm->inm_refcount >= 1, 523 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 524 inm_acquire_locked(inm); 525 *pinm = inm; 526 } 527 IN_MULTI_LIST_UNLOCK(); 528 if (inm != NULL) 529 return (0); 530 531 memset(&gsin, 0, sizeof(gsin)); 532 gsin.sin_family = AF_INET; 533 gsin.sin_len = sizeof(struct sockaddr_in); 534 gsin.sin_addr = *group; 535 536 /* 537 * Check if a link-layer group is already associated 538 * with this network-layer group on the given ifnet. 539 */ 540 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 541 if (error != 0) 542 return (error); 543 544 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 545 IN_MULTI_LIST_LOCK(); 546 IF_ADDR_WLOCK(ifp); 547 548 /* 549 * If something other than netinet is occupying the link-layer 550 * group, print a meaningful error message and back out of 551 * the allocation. 552 * Otherwise, bump the refcount on the existing network-layer 553 * group association and return it. 554 */ 555 if (ifma->ifma_protospec != NULL) { 556 inm = (struct in_multi *)ifma->ifma_protospec; 557 #ifdef INVARIANTS 558 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 559 __func__)); 560 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 561 ("%s: ifma not AF_INET", __func__)); 562 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 563 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 564 !in_hosteq(inm->inm_addr, *group)) { 565 char addrbuf[INET_ADDRSTRLEN]; 566 567 panic("%s: ifma %p is inconsistent with %p (%s)", 568 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); 569 } 570 #endif 571 inm_acquire_locked(inm); 572 *pinm = inm; 573 goto out_locked; 574 } 575 576 IF_ADDR_WLOCK_ASSERT(ifp); 577 578 /* 579 * A new in_multi record is needed; allocate and initialize it. 580 * We DO NOT perform an IGMP join as the in_ layer may need to 581 * push an initial source list down to IGMP to support SSM. 582 * 583 * The initial source filter state is INCLUDE, {} as per the RFC. 584 */ 585 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 586 if (inm == NULL) { 587 IF_ADDR_WUNLOCK(ifp); 588 IN_MULTI_LIST_UNLOCK(); 589 if_delmulti_ifma(ifma); 590 return (ENOMEM); 591 } 592 inm->inm_addr = *group; 593 inm->inm_ifp = ifp; 594 inm->inm_igi = ii->ii_igmp; 595 inm->inm_ifma = ifma; 596 inm->inm_refcount = 1; 597 inm->inm_state = IGMP_NOT_MEMBER; 598 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 599 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 600 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 601 RB_INIT(&inm->inm_srcs); 602 603 ifma->ifma_protospec = inm; 604 605 *pinm = inm; 606 out_locked: 607 IF_ADDR_WUNLOCK(ifp); 608 IN_MULTI_LIST_UNLOCK(); 609 return (0); 610 } 611 612 /* 613 * Drop a reference to an in_multi record. 614 * 615 * If the refcount drops to 0, free the in_multi record and 616 * delete the underlying link-layer membership. 617 */ 618 static void 619 inm_release(struct in_multi *inm) 620 { 621 struct ifmultiaddr *ifma; 622 struct ifnet *ifp; 623 624 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 625 MPASS(inm->inm_refcount == 0); 626 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 627 628 ifma = inm->inm_ifma; 629 ifp = inm->inm_ifp; 630 631 /* XXX this access is not covered by IF_ADDR_LOCK */ 632 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 633 if (ifp != NULL) { 634 CURVNET_SET(ifp->if_vnet); 635 inm_purge(inm); 636 free(inm, M_IPMADDR); 637 if_delmulti_ifma_flags(ifma, 1); 638 CURVNET_RESTORE(); 639 if_rele(ifp); 640 } else { 641 inm_purge(inm); 642 free(inm, M_IPMADDR); 643 if_delmulti_ifma_flags(ifma, 1); 644 } 645 } 646 647 /* 648 * Clear recorded source entries for a group. 649 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 650 * FIXME: Should reap. 651 */ 652 void 653 inm_clear_recorded(struct in_multi *inm) 654 { 655 struct ip_msource *ims; 656 657 IN_MULTI_LIST_LOCK_ASSERT(); 658 659 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 660 if (ims->ims_stp) { 661 ims->ims_stp = 0; 662 --inm->inm_st[1].iss_rec; 663 } 664 } 665 KASSERT(inm->inm_st[1].iss_rec == 0, 666 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 667 } 668 669 /* 670 * Record a source as pending for a Source-Group IGMPv3 query. 671 * This lives here as it modifies the shared tree. 672 * 673 * inm is the group descriptor. 674 * naddr is the address of the source to record in network-byte order. 675 * 676 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 677 * lazy-allocate a source node in response to an SG query. 678 * Otherwise, no allocation is performed. This saves some memory 679 * with the trade-off that the source will not be reported to the 680 * router if joined in the window between the query response and 681 * the group actually being joined on the local host. 682 * 683 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 684 * This turns off the allocation of a recorded source entry if 685 * the group has not been joined. 686 * 687 * Return 0 if the source didn't exist or was already marked as recorded. 688 * Return 1 if the source was marked as recorded by this function. 689 * Return <0 if any error occurred (negated errno code). 690 */ 691 int 692 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 693 { 694 struct ip_msource find; 695 struct ip_msource *ims, *nims; 696 697 IN_MULTI_LIST_LOCK_ASSERT(); 698 699 find.ims_haddr = ntohl(naddr); 700 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 701 if (ims && ims->ims_stp) 702 return (0); 703 if (ims == NULL) { 704 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 705 return (-ENOSPC); 706 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 707 M_NOWAIT | M_ZERO); 708 if (nims == NULL) 709 return (-ENOMEM); 710 nims->ims_haddr = find.ims_haddr; 711 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 712 ++inm->inm_nsrc; 713 ims = nims; 714 } 715 716 /* 717 * Mark the source as recorded and update the recorded 718 * source count. 719 */ 720 ++ims->ims_stp; 721 ++inm->inm_st[1].iss_rec; 722 723 return (1); 724 } 725 726 /* 727 * Return a pointer to an in_msource owned by an in_mfilter, 728 * given its source address. 729 * Lazy-allocate if needed. If this is a new entry its filter state is 730 * undefined at t0. 731 * 732 * imf is the filter set being modified. 733 * haddr is the source address in *host* byte-order. 734 * 735 * SMPng: May be called with locks held; malloc must not block. 736 */ 737 static int 738 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 739 struct in_msource **plims) 740 { 741 struct ip_msource find; 742 struct ip_msource *ims, *nims; 743 struct in_msource *lims; 744 int error; 745 746 error = 0; 747 ims = NULL; 748 lims = NULL; 749 750 /* key is host byte order */ 751 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 752 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 753 lims = (struct in_msource *)ims; 754 if (lims == NULL) { 755 if (imf->imf_nsrc == in_mcast_maxsocksrc) 756 return (ENOSPC); 757 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 758 M_NOWAIT | M_ZERO); 759 if (nims == NULL) 760 return (ENOMEM); 761 lims = (struct in_msource *)nims; 762 lims->ims_haddr = find.ims_haddr; 763 lims->imsl_st[0] = MCAST_UNDEFINED; 764 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 765 ++imf->imf_nsrc; 766 } 767 768 *plims = lims; 769 770 return (error); 771 } 772 773 /* 774 * Graft a source entry into an existing socket-layer filter set, 775 * maintaining any required invariants and checking allocations. 776 * 777 * The source is marked as being in the new filter mode at t1. 778 * 779 * Return the pointer to the new node, otherwise return NULL. 780 */ 781 static struct in_msource * 782 imf_graft(struct in_mfilter *imf, const uint8_t st1, 783 const struct sockaddr_in *psin) 784 { 785 struct ip_msource *nims; 786 struct in_msource *lims; 787 788 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 789 M_NOWAIT | M_ZERO); 790 if (nims == NULL) 791 return (NULL); 792 lims = (struct in_msource *)nims; 793 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 794 lims->imsl_st[0] = MCAST_UNDEFINED; 795 lims->imsl_st[1] = st1; 796 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 797 ++imf->imf_nsrc; 798 799 return (lims); 800 } 801 802 /* 803 * Prune a source entry from an existing socket-layer filter set, 804 * maintaining any required invariants and checking allocations. 805 * 806 * The source is marked as being left at t1, it is not freed. 807 * 808 * Return 0 if no error occurred, otherwise return an errno value. 809 */ 810 static int 811 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 812 { 813 struct ip_msource find; 814 struct ip_msource *ims; 815 struct in_msource *lims; 816 817 /* key is host byte order */ 818 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 819 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 820 if (ims == NULL) 821 return (ENOENT); 822 lims = (struct in_msource *)ims; 823 lims->imsl_st[1] = MCAST_UNDEFINED; 824 return (0); 825 } 826 827 /* 828 * Revert socket-layer filter set deltas at t1 to t0 state. 829 */ 830 static void 831 imf_rollback(struct in_mfilter *imf) 832 { 833 struct ip_msource *ims, *tims; 834 struct in_msource *lims; 835 836 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 837 lims = (struct in_msource *)ims; 838 if (lims->imsl_st[0] == lims->imsl_st[1]) { 839 /* no change at t1 */ 840 continue; 841 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 842 /* revert change to existing source at t1 */ 843 lims->imsl_st[1] = lims->imsl_st[0]; 844 } else { 845 /* revert source added t1 */ 846 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 847 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 848 free(ims, M_INMFILTER); 849 imf->imf_nsrc--; 850 } 851 } 852 imf->imf_st[1] = imf->imf_st[0]; 853 } 854 855 /* 856 * Mark socket-layer filter set as INCLUDE {} at t1. 857 */ 858 static void 859 imf_leave(struct in_mfilter *imf) 860 { 861 struct ip_msource *ims; 862 struct in_msource *lims; 863 864 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 865 lims = (struct in_msource *)ims; 866 lims->imsl_st[1] = MCAST_UNDEFINED; 867 } 868 imf->imf_st[1] = MCAST_INCLUDE; 869 } 870 871 /* 872 * Mark socket-layer filter set deltas as committed. 873 */ 874 static void 875 imf_commit(struct in_mfilter *imf) 876 { 877 struct ip_msource *ims; 878 struct in_msource *lims; 879 880 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 881 lims = (struct in_msource *)ims; 882 lims->imsl_st[0] = lims->imsl_st[1]; 883 } 884 imf->imf_st[0] = imf->imf_st[1]; 885 } 886 887 /* 888 * Reap unreferenced sources from socket-layer filter set. 889 */ 890 static void 891 imf_reap(struct in_mfilter *imf) 892 { 893 struct ip_msource *ims, *tims; 894 struct in_msource *lims; 895 896 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 897 lims = (struct in_msource *)ims; 898 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 899 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 900 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 901 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 902 free(ims, M_INMFILTER); 903 imf->imf_nsrc--; 904 } 905 } 906 } 907 908 /* 909 * Purge socket-layer filter set. 910 */ 911 static void 912 imf_purge(struct in_mfilter *imf) 913 { 914 struct ip_msource *ims, *tims; 915 916 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 917 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 918 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 919 free(ims, M_INMFILTER); 920 imf->imf_nsrc--; 921 } 922 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 923 KASSERT(RB_EMPTY(&imf->imf_sources), 924 ("%s: imf_sources not empty", __func__)); 925 } 926 927 /* 928 * Look up a source filter entry for a multicast group. 929 * 930 * inm is the group descriptor to work with. 931 * haddr is the host-byte-order IPv4 address to look up. 932 * noalloc may be non-zero to suppress allocation of sources. 933 * *pims will be set to the address of the retrieved or allocated source. 934 * 935 * SMPng: NOTE: may be called with locks held. 936 * Return 0 if successful, otherwise return a non-zero error code. 937 */ 938 static int 939 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 940 const int noalloc, struct ip_msource **pims) 941 { 942 struct ip_msource find; 943 struct ip_msource *ims, *nims; 944 945 find.ims_haddr = haddr; 946 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 947 if (ims == NULL && !noalloc) { 948 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 949 return (ENOSPC); 950 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 951 M_NOWAIT | M_ZERO); 952 if (nims == NULL) 953 return (ENOMEM); 954 nims->ims_haddr = haddr; 955 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 956 ++inm->inm_nsrc; 957 ims = nims; 958 #ifdef KTR 959 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, 960 haddr, ims); 961 #endif 962 } 963 964 *pims = ims; 965 return (0); 966 } 967 968 /* 969 * Merge socket-layer source into IGMP-layer source. 970 * If rollback is non-zero, perform the inverse of the merge. 971 */ 972 static void 973 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 974 const int rollback) 975 { 976 int n = rollback ? -1 : 1; 977 978 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 979 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", 980 __func__, n, ims->ims_haddr); 981 ims->ims_st[1].ex -= n; 982 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 983 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", 984 __func__, n, ims->ims_haddr); 985 ims->ims_st[1].in -= n; 986 } 987 988 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 989 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", 990 __func__, n, ims->ims_haddr); 991 ims->ims_st[1].ex += n; 992 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 993 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", 994 __func__, n, ims->ims_haddr); 995 ims->ims_st[1].in += n; 996 } 997 } 998 999 /* 1000 * Atomically update the global in_multi state, when a membership's 1001 * filter list is being updated in any way. 1002 * 1003 * imf is the per-inpcb-membership group filter pointer. 1004 * A fake imf may be passed for in-kernel consumers. 1005 * 1006 * XXX This is a candidate for a set-symmetric-difference style loop 1007 * which would eliminate the repeated lookup from root of ims nodes, 1008 * as they share the same key space. 1009 * 1010 * If any error occurred this function will back out of refcounts 1011 * and return a non-zero value. 1012 */ 1013 static int 1014 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1015 { 1016 struct ip_msource *ims, *nims; 1017 struct in_msource *lims; 1018 int schanged, error; 1019 int nsrc0, nsrc1; 1020 1021 schanged = 0; 1022 error = 0; 1023 nsrc1 = nsrc0 = 0; 1024 IN_MULTI_LIST_LOCK_ASSERT(); 1025 1026 /* 1027 * Update the source filters first, as this may fail. 1028 * Maintain count of in-mode filters at t0, t1. These are 1029 * used to work out if we transition into ASM mode or not. 1030 * Maintain a count of source filters whose state was 1031 * actually modified by this operation. 1032 */ 1033 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1034 lims = (struct in_msource *)ims; 1035 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 1036 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 1037 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 1038 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 1039 ++schanged; 1040 if (error) 1041 break; 1042 ims_merge(nims, lims, 0); 1043 } 1044 if (error) { 1045 struct ip_msource *bims; 1046 1047 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 1048 lims = (struct in_msource *)ims; 1049 if (lims->imsl_st[0] == lims->imsl_st[1]) 1050 continue; 1051 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 1052 if (bims == NULL) 1053 continue; 1054 ims_merge(bims, lims, 1); 1055 } 1056 goto out_reap; 1057 } 1058 1059 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1060 __func__, nsrc0, nsrc1); 1061 1062 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1063 if (imf->imf_st[0] == imf->imf_st[1] && 1064 imf->imf_st[1] == MCAST_INCLUDE) { 1065 if (nsrc1 == 0) { 1066 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1067 --inm->inm_st[1].iss_in; 1068 } 1069 } 1070 1071 /* Handle filter mode transition on socket. */ 1072 if (imf->imf_st[0] != imf->imf_st[1]) { 1073 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1074 __func__, imf->imf_st[0], imf->imf_st[1]); 1075 1076 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1077 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1078 --inm->inm_st[1].iss_ex; 1079 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1080 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1081 --inm->inm_st[1].iss_in; 1082 } 1083 1084 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1085 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1086 inm->inm_st[1].iss_ex++; 1087 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1088 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1089 inm->inm_st[1].iss_in++; 1090 } 1091 } 1092 1093 /* 1094 * Track inm filter state in terms of listener counts. 1095 * If there are any exclusive listeners, stack-wide 1096 * membership is exclusive. 1097 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1098 * If no listeners remain, state is undefined at t1, 1099 * and the IGMP lifecycle for this group should finish. 1100 */ 1101 if (inm->inm_st[1].iss_ex > 0) { 1102 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1103 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1104 } else if (inm->inm_st[1].iss_in > 0) { 1105 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1106 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1107 } else { 1108 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1109 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1110 } 1111 1112 /* Decrement ASM listener count on transition out of ASM mode. */ 1113 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1114 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1115 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1116 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1117 --inm->inm_st[1].iss_asm; 1118 } 1119 } 1120 1121 /* Increment ASM listener count on transition to ASM mode. */ 1122 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1123 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1124 inm->inm_st[1].iss_asm++; 1125 } 1126 1127 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1128 inm_print(inm); 1129 1130 out_reap: 1131 if (schanged > 0) { 1132 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1133 inm_reap(inm); 1134 } 1135 return (error); 1136 } 1137 1138 /* 1139 * Mark an in_multi's filter set deltas as committed. 1140 * Called by IGMP after a state change has been enqueued. 1141 */ 1142 void 1143 inm_commit(struct in_multi *inm) 1144 { 1145 struct ip_msource *ims; 1146 1147 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1148 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1149 inm_print(inm); 1150 1151 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1152 ims->ims_st[0] = ims->ims_st[1]; 1153 } 1154 inm->inm_st[0] = inm->inm_st[1]; 1155 } 1156 1157 /* 1158 * Reap unreferenced nodes from an in_multi's filter set. 1159 */ 1160 static void 1161 inm_reap(struct in_multi *inm) 1162 { 1163 struct ip_msource *ims, *tims; 1164 1165 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1166 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1167 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1168 ims->ims_stp != 0) 1169 continue; 1170 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1171 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1172 free(ims, M_IPMSOURCE); 1173 inm->inm_nsrc--; 1174 } 1175 } 1176 1177 /* 1178 * Purge all source nodes from an in_multi's filter set. 1179 */ 1180 static void 1181 inm_purge(struct in_multi *inm) 1182 { 1183 struct ip_msource *ims, *tims; 1184 1185 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1186 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1187 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1188 free(ims, M_IPMSOURCE); 1189 inm->inm_nsrc--; 1190 } 1191 } 1192 1193 /* 1194 * Join a multicast group; unlocked entry point. 1195 * 1196 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1197 * is not held. Fortunately, ifp is unlikely to have been detached 1198 * at this point, so we assume it's OK to recurse. 1199 */ 1200 int 1201 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1202 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1203 { 1204 int error; 1205 1206 IN_MULTI_LOCK(); 1207 error = in_joingroup_locked(ifp, gina, imf, pinm); 1208 IN_MULTI_UNLOCK(); 1209 1210 return (error); 1211 } 1212 1213 /* 1214 * Join a multicast group; real entry point. 1215 * 1216 * Only preserves atomicity at inm level. 1217 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1218 * 1219 * If the IGMP downcall fails, the group is not joined, and an error 1220 * code is returned. 1221 */ 1222 int 1223 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1224 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1225 { 1226 struct in_mfilter timf; 1227 struct in_multi *inm; 1228 int error; 1229 1230 IN_MULTI_LOCK_ASSERT(); 1231 IN_MULTI_LIST_UNLOCK_ASSERT(); 1232 1233 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, 1234 ntohl(gina->s_addr), ifp, ifp->if_xname); 1235 1236 error = 0; 1237 inm = NULL; 1238 1239 /* 1240 * If no imf was specified (i.e. kernel consumer), 1241 * fake one up and assume it is an ASM join. 1242 */ 1243 if (imf == NULL) { 1244 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1245 imf = &timf; 1246 } 1247 1248 error = in_getmulti(ifp, gina, &inm); 1249 if (error) { 1250 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1251 return (error); 1252 } 1253 IN_MULTI_LIST_LOCK(); 1254 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1255 error = inm_merge(inm, imf); 1256 if (error) { 1257 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1258 goto out_inm_release; 1259 } 1260 1261 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1262 error = igmp_change_state(inm); 1263 if (error) { 1264 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1265 goto out_inm_release; 1266 } 1267 1268 out_inm_release: 1269 if (error) { 1270 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1271 IF_ADDR_WLOCK(ifp); 1272 inm_release_deferred(inm); 1273 IF_ADDR_WUNLOCK(ifp); 1274 } else { 1275 *pinm = inm; 1276 } 1277 IN_MULTI_LIST_UNLOCK(); 1278 1279 return (error); 1280 } 1281 1282 /* 1283 * Leave a multicast group; unlocked entry point. 1284 */ 1285 int 1286 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1287 { 1288 int error; 1289 1290 IN_MULTI_LOCK(); 1291 error = in_leavegroup_locked(inm, imf); 1292 IN_MULTI_UNLOCK(); 1293 1294 return (error); 1295 } 1296 1297 /* 1298 * Leave a multicast group; real entry point. 1299 * All source filters will be expunged. 1300 * 1301 * Only preserves atomicity at inm level. 1302 * 1303 * Holding the write lock for the INP which contains imf 1304 * is highly advisable. We can't assert for it as imf does not 1305 * contain a back-pointer to the owning inp. 1306 * 1307 * Note: This is not the same as inm_release(*) as this function also 1308 * makes a state change downcall into IGMP. 1309 */ 1310 int 1311 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1312 { 1313 struct in_mfilter timf; 1314 int error; 1315 1316 IN_MULTI_LOCK_ASSERT(); 1317 IN_MULTI_LIST_UNLOCK_ASSERT(); 1318 1319 error = 0; 1320 1321 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, 1322 inm, ntohl(inm->inm_addr.s_addr), 1323 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1324 imf); 1325 1326 /* 1327 * If no imf was specified (i.e. kernel consumer), 1328 * fake one up and assume it is an ASM join. 1329 */ 1330 if (imf == NULL) { 1331 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1332 imf = &timf; 1333 } 1334 1335 /* 1336 * Begin state merge transaction at IGMP layer. 1337 * 1338 * As this particular invocation should not cause any memory 1339 * to be allocated, and there is no opportunity to roll back 1340 * the transaction, it MUST NOT fail. 1341 */ 1342 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1343 IN_MULTI_LIST_LOCK(); 1344 error = inm_merge(inm, imf); 1345 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1346 1347 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1348 CURVNET_SET(inm->inm_ifp->if_vnet); 1349 error = igmp_change_state(inm); 1350 IF_ADDR_WLOCK(inm->inm_ifp); 1351 inm_release_deferred(inm); 1352 IF_ADDR_WUNLOCK(inm->inm_ifp); 1353 IN_MULTI_LIST_UNLOCK(); 1354 CURVNET_RESTORE(); 1355 if (error) 1356 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1357 1358 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1359 1360 return (error); 1361 } 1362 1363 /*#ifndef BURN_BRIDGES*/ 1364 1365 /* 1366 * Block or unblock an ASM multicast source on an inpcb. 1367 * This implements the delta-based API described in RFC 3678. 1368 * 1369 * The delta-based API applies only to exclusive-mode memberships. 1370 * An IGMP downcall will be performed. 1371 * 1372 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1373 * 1374 * Return 0 if successful, otherwise return an appropriate error code. 1375 */ 1376 static int 1377 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1378 { 1379 struct group_source_req gsr; 1380 sockunion_t *gsa, *ssa; 1381 struct ifnet *ifp; 1382 struct in_mfilter *imf; 1383 struct ip_moptions *imo; 1384 struct in_msource *ims; 1385 struct in_multi *inm; 1386 uint16_t fmode; 1387 int error, doblock; 1388 1389 ifp = NULL; 1390 error = 0; 1391 doblock = 0; 1392 1393 memset(&gsr, 0, sizeof(struct group_source_req)); 1394 gsa = (sockunion_t *)&gsr.gsr_group; 1395 ssa = (sockunion_t *)&gsr.gsr_source; 1396 1397 switch (sopt->sopt_name) { 1398 case IP_BLOCK_SOURCE: 1399 case IP_UNBLOCK_SOURCE: { 1400 struct ip_mreq_source mreqs; 1401 1402 error = sooptcopyin(sopt, &mreqs, 1403 sizeof(struct ip_mreq_source), 1404 sizeof(struct ip_mreq_source)); 1405 if (error) 1406 return (error); 1407 1408 gsa->sin.sin_family = AF_INET; 1409 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1410 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1411 1412 ssa->sin.sin_family = AF_INET; 1413 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1414 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1415 1416 if (!in_nullhost(mreqs.imr_interface)) { 1417 struct epoch_tracker et; 1418 1419 NET_EPOCH_ENTER(et); 1420 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1421 /* XXXGL: ifref? */ 1422 NET_EPOCH_EXIT(et); 1423 } 1424 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1425 doblock = 1; 1426 1427 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1428 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1429 break; 1430 } 1431 1432 case MCAST_BLOCK_SOURCE: 1433 case MCAST_UNBLOCK_SOURCE: 1434 error = sooptcopyin(sopt, &gsr, 1435 sizeof(struct group_source_req), 1436 sizeof(struct group_source_req)); 1437 if (error) 1438 return (error); 1439 1440 if (gsa->sin.sin_family != AF_INET || 1441 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1442 return (EINVAL); 1443 1444 if (ssa->sin.sin_family != AF_INET || 1445 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1446 return (EINVAL); 1447 1448 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1449 return (EADDRNOTAVAIL); 1450 1451 ifp = ifnet_byindex(gsr.gsr_interface); 1452 1453 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1454 doblock = 1; 1455 break; 1456 1457 default: 1458 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1459 __func__, sopt->sopt_name); 1460 return (EOPNOTSUPP); 1461 break; 1462 } 1463 1464 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1465 return (EINVAL); 1466 1467 IN_MULTI_LOCK(); 1468 1469 /* 1470 * Check if we are actually a member of this group. 1471 */ 1472 imo = inp_findmoptions(inp); 1473 imf = imo_match_group(imo, ifp, &gsa->sa); 1474 if (imf == NULL) { 1475 error = EADDRNOTAVAIL; 1476 goto out_inp_locked; 1477 } 1478 inm = imf->imf_inm; 1479 1480 /* 1481 * Attempting to use the delta-based API on an 1482 * non exclusive-mode membership is an error. 1483 */ 1484 fmode = imf->imf_st[0]; 1485 if (fmode != MCAST_EXCLUDE) { 1486 error = EINVAL; 1487 goto out_inp_locked; 1488 } 1489 1490 /* 1491 * Deal with error cases up-front: 1492 * Asked to block, but already blocked; or 1493 * Asked to unblock, but nothing to unblock. 1494 * If adding a new block entry, allocate it. 1495 */ 1496 ims = imo_match_source(imf, &ssa->sa); 1497 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1498 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, 1499 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); 1500 error = EADDRNOTAVAIL; 1501 goto out_inp_locked; 1502 } 1503 1504 INP_WLOCK_ASSERT(inp); 1505 1506 /* 1507 * Begin state merge transaction at socket layer. 1508 */ 1509 if (doblock) { 1510 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1511 ims = imf_graft(imf, fmode, &ssa->sin); 1512 if (ims == NULL) 1513 error = ENOMEM; 1514 } else { 1515 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1516 error = imf_prune(imf, &ssa->sin); 1517 } 1518 1519 if (error) { 1520 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1521 goto out_imf_rollback; 1522 } 1523 1524 /* 1525 * Begin state merge transaction at IGMP layer. 1526 */ 1527 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1528 IN_MULTI_LIST_LOCK(); 1529 error = inm_merge(inm, imf); 1530 if (error) { 1531 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1532 IN_MULTI_LIST_UNLOCK(); 1533 goto out_imf_rollback; 1534 } 1535 1536 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1537 error = igmp_change_state(inm); 1538 IN_MULTI_LIST_UNLOCK(); 1539 if (error) 1540 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1541 1542 out_imf_rollback: 1543 if (error) 1544 imf_rollback(imf); 1545 else 1546 imf_commit(imf); 1547 1548 imf_reap(imf); 1549 1550 out_inp_locked: 1551 INP_WUNLOCK(inp); 1552 IN_MULTI_UNLOCK(); 1553 return (error); 1554 } 1555 1556 /* 1557 * Given an inpcb, return its multicast options structure pointer. Accepts 1558 * an unlocked inpcb pointer, but will return it locked. May sleep. 1559 * 1560 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1561 * SMPng: NOTE: Returns with the INP write lock held. 1562 */ 1563 static struct ip_moptions * 1564 inp_findmoptions(struct inpcb *inp) 1565 { 1566 struct ip_moptions *imo; 1567 1568 INP_WLOCK(inp); 1569 if (inp->inp_moptions != NULL) 1570 return (inp->inp_moptions); 1571 1572 INP_WUNLOCK(inp); 1573 1574 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1575 1576 imo->imo_multicast_ifp = NULL; 1577 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1578 imo->imo_multicast_vif = -1; 1579 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1580 imo->imo_multicast_loop = in_mcast_loop; 1581 STAILQ_INIT(&imo->imo_head); 1582 1583 INP_WLOCK(inp); 1584 if (inp->inp_moptions != NULL) { 1585 free(imo, M_IPMOPTS); 1586 return (inp->inp_moptions); 1587 } 1588 inp->inp_moptions = imo; 1589 return (imo); 1590 } 1591 1592 void 1593 inp_freemoptions(struct ip_moptions *imo) 1594 { 1595 struct in_mfilter *imf; 1596 struct in_multi *inm; 1597 struct ifnet *ifp; 1598 1599 if (imo == NULL) 1600 return; 1601 1602 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { 1603 ip_mfilter_remove(&imo->imo_head, imf); 1604 1605 imf_leave(imf); 1606 if ((inm = imf->imf_inm) != NULL) { 1607 if ((ifp = inm->inm_ifp) != NULL) { 1608 CURVNET_SET(ifp->if_vnet); 1609 (void)in_leavegroup(inm, imf); 1610 CURVNET_RESTORE(); 1611 } else { 1612 (void)in_leavegroup(inm, imf); 1613 } 1614 } 1615 ip_mfilter_free(imf); 1616 } 1617 free(imo, M_IPMOPTS); 1618 } 1619 1620 /* 1621 * Atomically get source filters on a socket for an IPv4 multicast group. 1622 * Called with INP lock held; returns with lock released. 1623 */ 1624 static int 1625 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1626 { 1627 struct __msfilterreq msfr; 1628 sockunion_t *gsa; 1629 struct ifnet *ifp; 1630 struct ip_moptions *imo; 1631 struct in_mfilter *imf; 1632 struct ip_msource *ims; 1633 struct in_msource *lims; 1634 struct sockaddr_in *psin; 1635 struct sockaddr_storage *ptss; 1636 struct sockaddr_storage *tss; 1637 int error; 1638 size_t nsrcs, ncsrcs; 1639 1640 INP_WLOCK_ASSERT(inp); 1641 1642 imo = inp->inp_moptions; 1643 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1644 1645 INP_WUNLOCK(inp); 1646 1647 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1648 sizeof(struct __msfilterreq)); 1649 if (error) 1650 return (error); 1651 1652 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1653 return (EINVAL); 1654 1655 ifp = ifnet_byindex(msfr.msfr_ifindex); 1656 if (ifp == NULL) 1657 return (EINVAL); 1658 1659 INP_WLOCK(inp); 1660 1661 /* 1662 * Lookup group on the socket. 1663 */ 1664 gsa = (sockunion_t *)&msfr.msfr_group; 1665 imf = imo_match_group(imo, ifp, &gsa->sa); 1666 if (imf == NULL) { 1667 INP_WUNLOCK(inp); 1668 return (EADDRNOTAVAIL); 1669 } 1670 1671 /* 1672 * Ignore memberships which are in limbo. 1673 */ 1674 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1675 INP_WUNLOCK(inp); 1676 return (EAGAIN); 1677 } 1678 msfr.msfr_fmode = imf->imf_st[1]; 1679 1680 /* 1681 * If the user specified a buffer, copy out the source filter 1682 * entries to userland gracefully. 1683 * We only copy out the number of entries which userland 1684 * has asked for, but we always tell userland how big the 1685 * buffer really needs to be. 1686 */ 1687 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1688 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1689 tss = NULL; 1690 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1691 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1692 M_TEMP, M_NOWAIT | M_ZERO); 1693 if (tss == NULL) { 1694 INP_WUNLOCK(inp); 1695 return (ENOBUFS); 1696 } 1697 } 1698 1699 /* 1700 * Count number of sources in-mode at t0. 1701 * If buffer space exists and remains, copy out source entries. 1702 */ 1703 nsrcs = msfr.msfr_nsrcs; 1704 ncsrcs = 0; 1705 ptss = tss; 1706 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1707 lims = (struct in_msource *)ims; 1708 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1709 lims->imsl_st[0] != imf->imf_st[0]) 1710 continue; 1711 ++ncsrcs; 1712 if (tss != NULL && nsrcs > 0) { 1713 psin = (struct sockaddr_in *)ptss; 1714 psin->sin_family = AF_INET; 1715 psin->sin_len = sizeof(struct sockaddr_in); 1716 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1717 psin->sin_port = 0; 1718 ++ptss; 1719 --nsrcs; 1720 } 1721 } 1722 1723 INP_WUNLOCK(inp); 1724 1725 if (tss != NULL) { 1726 error = copyout(tss, msfr.msfr_srcs, 1727 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1728 free(tss, M_TEMP); 1729 if (error) 1730 return (error); 1731 } 1732 1733 msfr.msfr_nsrcs = ncsrcs; 1734 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1735 1736 return (error); 1737 } 1738 1739 /* 1740 * Return the IP multicast options in response to user getsockopt(). 1741 */ 1742 int 1743 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1744 { 1745 struct ip_mreqn mreqn; 1746 struct ip_moptions *imo; 1747 struct ifnet *ifp; 1748 struct in_ifaddr *ia; 1749 int error, optval; 1750 u_char coptval; 1751 1752 INP_WLOCK(inp); 1753 imo = inp->inp_moptions; 1754 /* 1755 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1756 * or is a divert socket, reject it. 1757 */ 1758 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1759 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1760 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1761 INP_WUNLOCK(inp); 1762 return (EOPNOTSUPP); 1763 } 1764 1765 error = 0; 1766 switch (sopt->sopt_name) { 1767 case IP_MULTICAST_VIF: 1768 if (imo != NULL) 1769 optval = imo->imo_multicast_vif; 1770 else 1771 optval = -1; 1772 INP_WUNLOCK(inp); 1773 error = sooptcopyout(sopt, &optval, sizeof(int)); 1774 break; 1775 1776 case IP_MULTICAST_IF: 1777 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1778 if (imo != NULL) { 1779 ifp = imo->imo_multicast_ifp; 1780 if (!in_nullhost(imo->imo_multicast_addr)) { 1781 mreqn.imr_address = imo->imo_multicast_addr; 1782 } else if (ifp != NULL) { 1783 struct epoch_tracker et; 1784 1785 mreqn.imr_ifindex = ifp->if_index; 1786 NET_EPOCH_ENTER(et); 1787 IFP_TO_IA(ifp, ia); 1788 if (ia != NULL) 1789 mreqn.imr_address = 1790 IA_SIN(ia)->sin_addr; 1791 NET_EPOCH_EXIT(et); 1792 } 1793 } 1794 INP_WUNLOCK(inp); 1795 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1796 error = sooptcopyout(sopt, &mreqn, 1797 sizeof(struct ip_mreqn)); 1798 } else { 1799 error = sooptcopyout(sopt, &mreqn.imr_address, 1800 sizeof(struct in_addr)); 1801 } 1802 break; 1803 1804 case IP_MULTICAST_TTL: 1805 if (imo == NULL) 1806 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1807 else 1808 optval = coptval = imo->imo_multicast_ttl; 1809 INP_WUNLOCK(inp); 1810 if (sopt->sopt_valsize == sizeof(u_char)) 1811 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1812 else 1813 error = sooptcopyout(sopt, &optval, sizeof(int)); 1814 break; 1815 1816 case IP_MULTICAST_LOOP: 1817 if (imo == NULL) 1818 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1819 else 1820 optval = coptval = imo->imo_multicast_loop; 1821 INP_WUNLOCK(inp); 1822 if (sopt->sopt_valsize == sizeof(u_char)) 1823 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1824 else 1825 error = sooptcopyout(sopt, &optval, sizeof(int)); 1826 break; 1827 1828 case IP_MSFILTER: 1829 if (imo == NULL) { 1830 error = EADDRNOTAVAIL; 1831 INP_WUNLOCK(inp); 1832 } else { 1833 error = inp_get_source_filters(inp, sopt); 1834 } 1835 break; 1836 1837 default: 1838 INP_WUNLOCK(inp); 1839 error = ENOPROTOOPT; 1840 break; 1841 } 1842 1843 INP_UNLOCK_ASSERT(inp); 1844 1845 return (error); 1846 } 1847 1848 /* 1849 * Look up the ifnet to use for a multicast group membership, 1850 * given the IPv4 address of an interface, and the IPv4 group address. 1851 * 1852 * This routine exists to support legacy multicast applications 1853 * which do not understand that multicast memberships are scoped to 1854 * specific physical links in the networking stack, or which need 1855 * to join link-scope groups before IPv4 addresses are configured. 1856 * 1857 * Use this socket's current FIB number for any required FIB lookup. 1858 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1859 * and use its ifp; usually, this points to the default next-hop. 1860 * 1861 * If the FIB lookup fails, attempt to use the first non-loopback 1862 * interface with multicast capability in the system as a 1863 * last resort. The legacy IPv4 ASM API requires that we do 1864 * this in order to allow groups to be joined when the routing 1865 * table has not yet been populated during boot. 1866 * 1867 * Returns NULL if no ifp could be found, otherwise return referenced ifp. 1868 * 1869 * FUTURE: Implement IPv4 source-address selection. 1870 */ 1871 static struct ifnet * 1872 inp_lookup_mcast_ifp(const struct inpcb *inp, 1873 const struct sockaddr_in *gsin, const struct in_addr ina) 1874 { 1875 struct ifnet *ifp; 1876 struct nhop_object *nh; 1877 1878 NET_EPOCH_ASSERT(); 1879 KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__)); 1880 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1881 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1882 ("%s: not multicast", __func__)); 1883 1884 ifp = NULL; 1885 if (!in_nullhost(ina)) { 1886 INADDR_TO_IFP(ina, ifp); 1887 if (ifp != NULL) 1888 if_ref(ifp); 1889 } else { 1890 nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0); 1891 if (nh != NULL) { 1892 ifp = nh->nh_ifp; 1893 if_ref(ifp); 1894 } else { 1895 struct in_ifaddr *ia; 1896 struct ifnet *mifp; 1897 1898 mifp = NULL; 1899 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1900 mifp = ia->ia_ifp; 1901 if (!(mifp->if_flags & IFF_LOOPBACK) && 1902 (mifp->if_flags & IFF_MULTICAST)) { 1903 ifp = mifp; 1904 if_ref(ifp); 1905 break; 1906 } 1907 } 1908 } 1909 } 1910 1911 return (ifp); 1912 } 1913 1914 /* 1915 * Join an IPv4 multicast group, possibly with a source. 1916 */ 1917 static int 1918 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1919 { 1920 struct group_source_req gsr; 1921 sockunion_t *gsa, *ssa; 1922 struct ifnet *ifp; 1923 struct in_mfilter *imf; 1924 struct ip_moptions *imo; 1925 struct in_multi *inm; 1926 struct in_msource *lims; 1927 struct epoch_tracker et; 1928 int error, is_new; 1929 1930 ifp = NULL; 1931 lims = NULL; 1932 error = 0; 1933 1934 memset(&gsr, 0, sizeof(struct group_source_req)); 1935 gsa = (sockunion_t *)&gsr.gsr_group; 1936 gsa->ss.ss_family = AF_UNSPEC; 1937 ssa = (sockunion_t *)&gsr.gsr_source; 1938 ssa->ss.ss_family = AF_UNSPEC; 1939 1940 switch (sopt->sopt_name) { 1941 case IP_ADD_MEMBERSHIP: { 1942 struct ip_mreqn mreqn; 1943 1944 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) 1945 error = sooptcopyin(sopt, &mreqn, 1946 sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); 1947 else 1948 error = sooptcopyin(sopt, &mreqn, 1949 sizeof(struct ip_mreq), sizeof(struct ip_mreq)); 1950 if (error) 1951 return (error); 1952 1953 gsa->sin.sin_family = AF_INET; 1954 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1955 gsa->sin.sin_addr = mreqn.imr_multiaddr; 1956 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1957 return (EINVAL); 1958 1959 NET_EPOCH_ENTER(et); 1960 if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && 1961 mreqn.imr_ifindex != 0) 1962 ifp = ifnet_byindex_ref(mreqn.imr_ifindex); 1963 else 1964 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1965 mreqn.imr_address); 1966 NET_EPOCH_EXIT(et); 1967 break; 1968 } 1969 case IP_ADD_SOURCE_MEMBERSHIP: { 1970 struct ip_mreq_source mreqs; 1971 1972 error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), 1973 sizeof(struct ip_mreq_source)); 1974 if (error) 1975 return (error); 1976 1977 gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; 1978 gsa->sin.sin_len = ssa->sin.sin_len = 1979 sizeof(struct sockaddr_in); 1980 1981 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1982 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1983 return (EINVAL); 1984 1985 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1986 1987 NET_EPOCH_ENTER(et); 1988 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1989 mreqs.imr_interface); 1990 NET_EPOCH_EXIT(et); 1991 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1992 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1993 break; 1994 } 1995 1996 case MCAST_JOIN_GROUP: 1997 case MCAST_JOIN_SOURCE_GROUP: 1998 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1999 error = sooptcopyin(sopt, &gsr, 2000 sizeof(struct group_req), 2001 sizeof(struct group_req)); 2002 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2003 error = sooptcopyin(sopt, &gsr, 2004 sizeof(struct group_source_req), 2005 sizeof(struct group_source_req)); 2006 } 2007 if (error) 2008 return (error); 2009 2010 if (gsa->sin.sin_family != AF_INET || 2011 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2012 return (EINVAL); 2013 2014 /* 2015 * Overwrite the port field if present, as the sockaddr 2016 * being copied in may be matched with a binary comparison. 2017 */ 2018 gsa->sin.sin_port = 0; 2019 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2020 if (ssa->sin.sin_family != AF_INET || 2021 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2022 return (EINVAL); 2023 ssa->sin.sin_port = 0; 2024 } 2025 2026 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2027 return (EINVAL); 2028 2029 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2030 return (EADDRNOTAVAIL); 2031 NET_EPOCH_ENTER(et); 2032 ifp = ifnet_byindex_ref(gsr.gsr_interface); 2033 NET_EPOCH_EXIT(et); 2034 break; 2035 2036 default: 2037 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2038 __func__, sopt->sopt_name); 2039 return (EOPNOTSUPP); 2040 break; 2041 } 2042 2043 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2044 if (ifp != NULL) 2045 if_rele(ifp); 2046 return (EADDRNOTAVAIL); 2047 } 2048 2049 IN_MULTI_LOCK(); 2050 2051 /* 2052 * Find the membership in the membership list. 2053 */ 2054 imo = inp_findmoptions(inp); 2055 imf = imo_match_group(imo, ifp, &gsa->sa); 2056 if (imf == NULL) { 2057 is_new = 1; 2058 inm = NULL; 2059 2060 if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { 2061 error = ENOMEM; 2062 goto out_inp_locked; 2063 } 2064 } else { 2065 is_new = 0; 2066 inm = imf->imf_inm; 2067 2068 if (ssa->ss.ss_family != AF_UNSPEC) { 2069 /* 2070 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2071 * is an error. On an existing inclusive membership, 2072 * it just adds the source to the filter list. 2073 */ 2074 if (imf->imf_st[1] != MCAST_INCLUDE) { 2075 error = EINVAL; 2076 goto out_inp_locked; 2077 } 2078 /* 2079 * Throw out duplicates. 2080 * 2081 * XXX FIXME: This makes a naive assumption that 2082 * even if entries exist for *ssa in this imf, 2083 * they will be rejected as dupes, even if they 2084 * are not valid in the current mode (in-mode). 2085 * 2086 * in_msource is transactioned just as for anything 2087 * else in SSM -- but note naive use of inm_graft() 2088 * below for allocating new filter entries. 2089 * 2090 * This is only an issue if someone mixes the 2091 * full-state SSM API with the delta-based API, 2092 * which is discouraged in the relevant RFCs. 2093 */ 2094 lims = imo_match_source(imf, &ssa->sa); 2095 if (lims != NULL /*&& 2096 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2097 error = EADDRNOTAVAIL; 2098 goto out_inp_locked; 2099 } 2100 } else { 2101 /* 2102 * MCAST_JOIN_GROUP on an existing exclusive 2103 * membership is an error; return EADDRINUSE 2104 * to preserve 4.4BSD API idempotence, and 2105 * avoid tedious detour to code below. 2106 * NOTE: This is bending RFC 3678 a bit. 2107 * 2108 * On an existing inclusive membership, this is also 2109 * an error; if you want to change filter mode, 2110 * you must use the userland API setsourcefilter(). 2111 * XXX We don't reject this for imf in UNDEFINED 2112 * state at t1, because allocation of a filter 2113 * is atomic with allocation of a membership. 2114 */ 2115 error = EINVAL; 2116 if (imf->imf_st[1] == MCAST_EXCLUDE) 2117 error = EADDRINUSE; 2118 goto out_inp_locked; 2119 } 2120 } 2121 2122 /* 2123 * Begin state merge transaction at socket layer. 2124 */ 2125 INP_WLOCK_ASSERT(inp); 2126 2127 /* 2128 * Graft new source into filter list for this inpcb's 2129 * membership of the group. The in_multi may not have 2130 * been allocated yet if this is a new membership, however, 2131 * the in_mfilter slot will be allocated and must be initialized. 2132 * 2133 * Note: Grafting of exclusive mode filters doesn't happen 2134 * in this path. 2135 * XXX: Should check for non-NULL lims (node exists but may 2136 * not be in-mode) for interop with full-state API. 2137 */ 2138 if (ssa->ss.ss_family != AF_UNSPEC) { 2139 /* Membership starts in IN mode */ 2140 if (is_new) { 2141 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2142 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2143 if (imf == NULL) { 2144 error = ENOMEM; 2145 goto out_inp_locked; 2146 } 2147 } else { 2148 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2149 } 2150 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2151 if (lims == NULL) { 2152 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2153 __func__); 2154 error = ENOMEM; 2155 goto out_inp_locked; 2156 } 2157 } else { 2158 /* No address specified; Membership starts in EX mode */ 2159 if (is_new) { 2160 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2161 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2162 if (imf == NULL) { 2163 error = ENOMEM; 2164 goto out_inp_locked; 2165 } 2166 } 2167 } 2168 2169 /* 2170 * Begin state merge transaction at IGMP layer. 2171 */ 2172 if (is_new) { 2173 in_pcbref(inp); 2174 INP_WUNLOCK(inp); 2175 2176 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2177 &imf->imf_inm); 2178 2179 INP_WLOCK(inp); 2180 if (in_pcbrele_wlocked(inp)) { 2181 error = ENXIO; 2182 goto out_inp_unlocked; 2183 } 2184 if (error) { 2185 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2186 __func__); 2187 goto out_inp_locked; 2188 } 2189 /* 2190 * NOTE: Refcount from in_joingroup_locked() 2191 * is protecting membership. 2192 */ 2193 ip_mfilter_insert(&imo->imo_head, imf); 2194 } else { 2195 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2196 IN_MULTI_LIST_LOCK(); 2197 error = inm_merge(inm, imf); 2198 if (error) { 2199 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2200 __func__); 2201 IN_MULTI_LIST_UNLOCK(); 2202 imf_rollback(imf); 2203 imf_reap(imf); 2204 goto out_inp_locked; 2205 } 2206 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2207 error = igmp_change_state(inm); 2208 IN_MULTI_LIST_UNLOCK(); 2209 if (error) { 2210 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2211 __func__); 2212 imf_rollback(imf); 2213 imf_reap(imf); 2214 goto out_inp_locked; 2215 } 2216 } 2217 2218 imf_commit(imf); 2219 imf = NULL; 2220 2221 out_inp_locked: 2222 INP_WUNLOCK(inp); 2223 out_inp_unlocked: 2224 IN_MULTI_UNLOCK(); 2225 2226 if (is_new && imf) { 2227 if (imf->imf_inm != NULL) { 2228 IN_MULTI_LIST_LOCK(); 2229 IF_ADDR_WLOCK(ifp); 2230 inm_release_deferred(imf->imf_inm); 2231 IF_ADDR_WUNLOCK(ifp); 2232 IN_MULTI_LIST_UNLOCK(); 2233 } 2234 ip_mfilter_free(imf); 2235 } 2236 if_rele(ifp); 2237 return (error); 2238 } 2239 2240 /* 2241 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2242 */ 2243 static int 2244 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2245 { 2246 struct group_source_req gsr; 2247 struct ip_mreq_source mreqs; 2248 sockunion_t *gsa, *ssa; 2249 struct ifnet *ifp; 2250 struct in_mfilter *imf; 2251 struct ip_moptions *imo; 2252 struct in_msource *ims; 2253 struct in_multi *inm; 2254 int error; 2255 bool is_final; 2256 2257 ifp = NULL; 2258 error = 0; 2259 is_final = true; 2260 2261 memset(&gsr, 0, sizeof(struct group_source_req)); 2262 gsa = (sockunion_t *)&gsr.gsr_group; 2263 gsa->ss.ss_family = AF_UNSPEC; 2264 ssa = (sockunion_t *)&gsr.gsr_source; 2265 ssa->ss.ss_family = AF_UNSPEC; 2266 2267 switch (sopt->sopt_name) { 2268 case IP_DROP_MEMBERSHIP: 2269 case IP_DROP_SOURCE_MEMBERSHIP: 2270 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2271 error = sooptcopyin(sopt, &mreqs, 2272 sizeof(struct ip_mreq), 2273 sizeof(struct ip_mreq)); 2274 /* 2275 * Swap interface and sourceaddr arguments, 2276 * as ip_mreq and ip_mreq_source are laid 2277 * out differently. 2278 */ 2279 mreqs.imr_interface = mreqs.imr_sourceaddr; 2280 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2281 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2282 error = sooptcopyin(sopt, &mreqs, 2283 sizeof(struct ip_mreq_source), 2284 sizeof(struct ip_mreq_source)); 2285 } 2286 if (error) 2287 return (error); 2288 2289 gsa->sin.sin_family = AF_INET; 2290 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2291 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2292 2293 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2294 ssa->sin.sin_family = AF_INET; 2295 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2296 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2297 } 2298 2299 /* 2300 * Attempt to look up hinted ifp from interface address. 2301 * Fallthrough with null ifp iff lookup fails, to 2302 * preserve 4.4BSD mcast API idempotence. 2303 * XXX NOTE WELL: The RFC 3678 API is preferred because 2304 * using an IPv4 address as a key is racy. 2305 */ 2306 if (!in_nullhost(mreqs.imr_interface)) { 2307 struct epoch_tracker et; 2308 2309 NET_EPOCH_ENTER(et); 2310 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2311 /* XXXGL ifref? */ 2312 NET_EPOCH_EXIT(et); 2313 } 2314 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2315 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2316 2317 break; 2318 2319 case MCAST_LEAVE_GROUP: 2320 case MCAST_LEAVE_SOURCE_GROUP: 2321 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2322 error = sooptcopyin(sopt, &gsr, 2323 sizeof(struct group_req), 2324 sizeof(struct group_req)); 2325 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2326 error = sooptcopyin(sopt, &gsr, 2327 sizeof(struct group_source_req), 2328 sizeof(struct group_source_req)); 2329 } 2330 if (error) 2331 return (error); 2332 2333 if (gsa->sin.sin_family != AF_INET || 2334 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2335 return (EINVAL); 2336 2337 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2338 if (ssa->sin.sin_family != AF_INET || 2339 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2340 return (EINVAL); 2341 } 2342 2343 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2344 return (EADDRNOTAVAIL); 2345 2346 ifp = ifnet_byindex(gsr.gsr_interface); 2347 2348 if (ifp == NULL) 2349 return (EADDRNOTAVAIL); 2350 break; 2351 2352 default: 2353 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2354 __func__, sopt->sopt_name); 2355 return (EOPNOTSUPP); 2356 break; 2357 } 2358 2359 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2360 return (EINVAL); 2361 2362 IN_MULTI_LOCK(); 2363 2364 /* 2365 * Find the membership in the membership list. 2366 */ 2367 imo = inp_findmoptions(inp); 2368 imf = imo_match_group(imo, ifp, &gsa->sa); 2369 if (imf == NULL) { 2370 error = EADDRNOTAVAIL; 2371 goto out_inp_locked; 2372 } 2373 inm = imf->imf_inm; 2374 2375 if (ssa->ss.ss_family != AF_UNSPEC) 2376 is_final = false; 2377 2378 /* 2379 * Begin state merge transaction at socket layer. 2380 */ 2381 INP_WLOCK_ASSERT(inp); 2382 2383 /* 2384 * If we were instructed only to leave a given source, do so. 2385 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2386 */ 2387 if (is_final) { 2388 ip_mfilter_remove(&imo->imo_head, imf); 2389 imf_leave(imf); 2390 2391 /* 2392 * Give up the multicast address record to which 2393 * the membership points. 2394 */ 2395 (void) in_leavegroup_locked(imf->imf_inm, imf); 2396 } else { 2397 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2398 error = EADDRNOTAVAIL; 2399 goto out_inp_locked; 2400 } 2401 ims = imo_match_source(imf, &ssa->sa); 2402 if (ims == NULL) { 2403 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", 2404 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); 2405 error = EADDRNOTAVAIL; 2406 goto out_inp_locked; 2407 } 2408 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2409 error = imf_prune(imf, &ssa->sin); 2410 if (error) { 2411 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2412 __func__); 2413 goto out_inp_locked; 2414 } 2415 } 2416 2417 /* 2418 * Begin state merge transaction at IGMP layer. 2419 */ 2420 if (!is_final) { 2421 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2422 IN_MULTI_LIST_LOCK(); 2423 error = inm_merge(inm, imf); 2424 if (error) { 2425 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2426 __func__); 2427 IN_MULTI_LIST_UNLOCK(); 2428 imf_rollback(imf); 2429 imf_reap(imf); 2430 goto out_inp_locked; 2431 } 2432 2433 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2434 error = igmp_change_state(inm); 2435 IN_MULTI_LIST_UNLOCK(); 2436 if (error) { 2437 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2438 __func__); 2439 imf_rollback(imf); 2440 imf_reap(imf); 2441 goto out_inp_locked; 2442 } 2443 } 2444 imf_commit(imf); 2445 imf_reap(imf); 2446 2447 out_inp_locked: 2448 INP_WUNLOCK(inp); 2449 2450 if (is_final && imf) 2451 ip_mfilter_free(imf); 2452 2453 IN_MULTI_UNLOCK(); 2454 return (error); 2455 } 2456 2457 /* 2458 * Select the interface for transmitting IPv4 multicast datagrams. 2459 * 2460 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2461 * may be passed to this socket option. An address of INADDR_ANY or an 2462 * interface index of 0 is used to remove a previous selection. 2463 * When no interface is selected, one is chosen for every send. 2464 */ 2465 static int 2466 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2467 { 2468 struct in_addr addr; 2469 struct ip_mreqn mreqn; 2470 struct ifnet *ifp; 2471 struct ip_moptions *imo; 2472 int error; 2473 2474 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2475 /* 2476 * An interface index was specified using the 2477 * Linux-derived ip_mreqn structure. 2478 */ 2479 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2480 sizeof(struct ip_mreqn)); 2481 if (error) 2482 return (error); 2483 2484 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2485 return (EINVAL); 2486 2487 if (mreqn.imr_ifindex == 0) { 2488 ifp = NULL; 2489 } else { 2490 ifp = ifnet_byindex(mreqn.imr_ifindex); 2491 if (ifp == NULL) 2492 return (EADDRNOTAVAIL); 2493 } 2494 } else { 2495 /* 2496 * An interface was specified by IPv4 address. 2497 * This is the traditional BSD usage. 2498 */ 2499 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2500 sizeof(struct in_addr)); 2501 if (error) 2502 return (error); 2503 if (in_nullhost(addr)) { 2504 ifp = NULL; 2505 } else { 2506 struct epoch_tracker et; 2507 2508 NET_EPOCH_ENTER(et); 2509 INADDR_TO_IFP(addr, ifp); 2510 /* XXXGL ifref? */ 2511 NET_EPOCH_EXIT(et); 2512 if (ifp == NULL) 2513 return (EADDRNOTAVAIL); 2514 } 2515 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, 2516 ntohl(addr.s_addr)); 2517 } 2518 2519 /* Reject interfaces which do not support multicast. */ 2520 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2521 return (EOPNOTSUPP); 2522 2523 imo = inp_findmoptions(inp); 2524 imo->imo_multicast_ifp = ifp; 2525 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2526 INP_WUNLOCK(inp); 2527 2528 return (0); 2529 } 2530 2531 /* 2532 * Atomically set source filters on a socket for an IPv4 multicast group. 2533 * 2534 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2535 */ 2536 static int 2537 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2538 { 2539 struct __msfilterreq msfr; 2540 sockunion_t *gsa; 2541 struct ifnet *ifp; 2542 struct in_mfilter *imf; 2543 struct ip_moptions *imo; 2544 struct in_multi *inm; 2545 int error; 2546 2547 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2548 sizeof(struct __msfilterreq)); 2549 if (error) 2550 return (error); 2551 2552 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2553 return (ENOBUFS); 2554 2555 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2556 msfr.msfr_fmode != MCAST_INCLUDE)) 2557 return (EINVAL); 2558 2559 if (msfr.msfr_group.ss_family != AF_INET || 2560 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2561 return (EINVAL); 2562 2563 gsa = (sockunion_t *)&msfr.msfr_group; 2564 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2565 return (EINVAL); 2566 2567 gsa->sin.sin_port = 0; /* ignore port */ 2568 2569 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2570 return (EADDRNOTAVAIL); 2571 2572 ifp = ifnet_byindex(msfr.msfr_ifindex); 2573 if (ifp == NULL) 2574 return (EADDRNOTAVAIL); 2575 2576 IN_MULTI_LOCK(); 2577 2578 /* 2579 * Take the INP write lock. 2580 * Check if this socket is a member of this group. 2581 */ 2582 imo = inp_findmoptions(inp); 2583 imf = imo_match_group(imo, ifp, &gsa->sa); 2584 if (imf == NULL) { 2585 error = EADDRNOTAVAIL; 2586 goto out_inp_locked; 2587 } 2588 inm = imf->imf_inm; 2589 2590 /* 2591 * Begin state merge transaction at socket layer. 2592 */ 2593 INP_WLOCK_ASSERT(inp); 2594 2595 imf->imf_st[1] = msfr.msfr_fmode; 2596 2597 /* 2598 * Apply any new source filters, if present. 2599 * Make a copy of the user-space source vector so 2600 * that we may copy them with a single copyin. This 2601 * allows us to deal with page faults up-front. 2602 */ 2603 if (msfr.msfr_nsrcs > 0) { 2604 struct in_msource *lims; 2605 struct sockaddr_in *psin; 2606 struct sockaddr_storage *kss, *pkss; 2607 int i; 2608 2609 INP_WUNLOCK(inp); 2610 2611 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2612 __func__, (unsigned long)msfr.msfr_nsrcs); 2613 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2614 M_TEMP, M_WAITOK); 2615 error = copyin(msfr.msfr_srcs, kss, 2616 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2617 if (error) { 2618 free(kss, M_TEMP); 2619 return (error); 2620 } 2621 2622 INP_WLOCK(inp); 2623 2624 /* 2625 * Mark all source filters as UNDEFINED at t1. 2626 * Restore new group filter mode, as imf_leave() 2627 * will set it to INCLUDE. 2628 */ 2629 imf_leave(imf); 2630 imf->imf_st[1] = msfr.msfr_fmode; 2631 2632 /* 2633 * Update socket layer filters at t1, lazy-allocating 2634 * new entries. This saves a bunch of memory at the 2635 * cost of one RB_FIND() per source entry; duplicate 2636 * entries in the msfr_nsrcs vector are ignored. 2637 * If we encounter an error, rollback transaction. 2638 * 2639 * XXX This too could be replaced with a set-symmetric 2640 * difference like loop to avoid walking from root 2641 * every time, as the key space is common. 2642 */ 2643 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2644 psin = (struct sockaddr_in *)pkss; 2645 if (psin->sin_family != AF_INET) { 2646 error = EAFNOSUPPORT; 2647 break; 2648 } 2649 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2650 error = EINVAL; 2651 break; 2652 } 2653 error = imf_get_source(imf, psin, &lims); 2654 if (error) 2655 break; 2656 lims->imsl_st[1] = imf->imf_st[1]; 2657 } 2658 free(kss, M_TEMP); 2659 } 2660 2661 if (error) 2662 goto out_imf_rollback; 2663 2664 INP_WLOCK_ASSERT(inp); 2665 2666 /* 2667 * Begin state merge transaction at IGMP layer. 2668 */ 2669 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2670 IN_MULTI_LIST_LOCK(); 2671 error = inm_merge(inm, imf); 2672 if (error) { 2673 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2674 IN_MULTI_LIST_UNLOCK(); 2675 goto out_imf_rollback; 2676 } 2677 2678 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2679 error = igmp_change_state(inm); 2680 IN_MULTI_LIST_UNLOCK(); 2681 if (error) 2682 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2683 2684 out_imf_rollback: 2685 if (error) 2686 imf_rollback(imf); 2687 else 2688 imf_commit(imf); 2689 2690 imf_reap(imf); 2691 2692 out_inp_locked: 2693 INP_WUNLOCK(inp); 2694 IN_MULTI_UNLOCK(); 2695 return (error); 2696 } 2697 2698 /* 2699 * Set the IP multicast options in response to user setsockopt(). 2700 * 2701 * Many of the socket options handled in this function duplicate the 2702 * functionality of socket options in the regular unicast API. However, 2703 * it is not possible to merge the duplicate code, because the idempotence 2704 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2705 * the effects of these options must be treated as separate and distinct. 2706 * 2707 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2708 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2709 * is refactored to no longer use vifs. 2710 */ 2711 int 2712 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2713 { 2714 struct ip_moptions *imo; 2715 int error; 2716 2717 error = 0; 2718 2719 /* 2720 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2721 * or is a divert socket, reject it. 2722 */ 2723 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2724 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2725 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2726 return (EOPNOTSUPP); 2727 2728 switch (sopt->sopt_name) { 2729 case IP_MULTICAST_VIF: { 2730 int vifi; 2731 /* 2732 * Select a multicast VIF for transmission. 2733 * Only useful if multicast forwarding is active. 2734 */ 2735 if (legal_vif_num == NULL) { 2736 error = EOPNOTSUPP; 2737 break; 2738 } 2739 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2740 if (error) 2741 break; 2742 if (!legal_vif_num(vifi) && (vifi != -1)) { 2743 error = EINVAL; 2744 break; 2745 } 2746 imo = inp_findmoptions(inp); 2747 imo->imo_multicast_vif = vifi; 2748 INP_WUNLOCK(inp); 2749 break; 2750 } 2751 2752 case IP_MULTICAST_IF: 2753 error = inp_set_multicast_if(inp, sopt); 2754 break; 2755 2756 case IP_MULTICAST_TTL: { 2757 u_char ttl; 2758 2759 /* 2760 * Set the IP time-to-live for outgoing multicast packets. 2761 * The original multicast API required a char argument, 2762 * which is inconsistent with the rest of the socket API. 2763 * We allow either a char or an int. 2764 */ 2765 if (sopt->sopt_valsize == sizeof(u_char)) { 2766 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2767 sizeof(u_char)); 2768 if (error) 2769 break; 2770 } else { 2771 u_int ittl; 2772 2773 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2774 sizeof(u_int)); 2775 if (error) 2776 break; 2777 if (ittl > 255) { 2778 error = EINVAL; 2779 break; 2780 } 2781 ttl = (u_char)ittl; 2782 } 2783 imo = inp_findmoptions(inp); 2784 imo->imo_multicast_ttl = ttl; 2785 INP_WUNLOCK(inp); 2786 break; 2787 } 2788 2789 case IP_MULTICAST_LOOP: { 2790 u_char loop; 2791 2792 /* 2793 * Set the loopback flag for outgoing multicast packets. 2794 * Must be zero or one. The original multicast API required a 2795 * char argument, which is inconsistent with the rest 2796 * of the socket API. We allow either a char or an int. 2797 */ 2798 if (sopt->sopt_valsize == sizeof(u_char)) { 2799 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2800 sizeof(u_char)); 2801 if (error) 2802 break; 2803 } else { 2804 u_int iloop; 2805 2806 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2807 sizeof(u_int)); 2808 if (error) 2809 break; 2810 loop = (u_char)iloop; 2811 } 2812 imo = inp_findmoptions(inp); 2813 imo->imo_multicast_loop = !!loop; 2814 INP_WUNLOCK(inp); 2815 break; 2816 } 2817 2818 case IP_ADD_MEMBERSHIP: 2819 case IP_ADD_SOURCE_MEMBERSHIP: 2820 case MCAST_JOIN_GROUP: 2821 case MCAST_JOIN_SOURCE_GROUP: 2822 error = inp_join_group(inp, sopt); 2823 break; 2824 2825 case IP_DROP_MEMBERSHIP: 2826 case IP_DROP_SOURCE_MEMBERSHIP: 2827 case MCAST_LEAVE_GROUP: 2828 case MCAST_LEAVE_SOURCE_GROUP: 2829 error = inp_leave_group(inp, sopt); 2830 break; 2831 2832 case IP_BLOCK_SOURCE: 2833 case IP_UNBLOCK_SOURCE: 2834 case MCAST_BLOCK_SOURCE: 2835 case MCAST_UNBLOCK_SOURCE: 2836 error = inp_block_unblock_source(inp, sopt); 2837 break; 2838 2839 case IP_MSFILTER: 2840 error = inp_set_source_filters(inp, sopt); 2841 break; 2842 2843 default: 2844 error = EOPNOTSUPP; 2845 break; 2846 } 2847 2848 INP_UNLOCK_ASSERT(inp); 2849 2850 return (error); 2851 } 2852 2853 /* 2854 * Expose IGMP's multicast filter mode and source list(s) to userland, 2855 * keyed by (ifindex, group). 2856 * The filter mode is written out as a uint32_t, followed by 2857 * 0..n of struct in_addr. 2858 * For use by ifmcstat(8). 2859 * SMPng: NOTE: unlocked read of ifindex space. 2860 */ 2861 static int 2862 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2863 { 2864 struct in_addr src, group; 2865 struct epoch_tracker et; 2866 struct ifnet *ifp; 2867 struct ifmultiaddr *ifma; 2868 struct in_multi *inm; 2869 struct ip_msource *ims; 2870 int *name; 2871 int retval; 2872 u_int namelen; 2873 uint32_t fmode, ifindex; 2874 2875 name = (int *)arg1; 2876 namelen = arg2; 2877 2878 if (req->newptr != NULL) 2879 return (EPERM); 2880 2881 if (namelen != 2) 2882 return (EINVAL); 2883 2884 ifindex = name[0]; 2885 if (ifindex <= 0 || ifindex > V_if_index) { 2886 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2887 __func__, ifindex); 2888 return (ENOENT); 2889 } 2890 2891 group.s_addr = name[1]; 2892 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2893 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", 2894 __func__, ntohl(group.s_addr)); 2895 return (EINVAL); 2896 } 2897 2898 NET_EPOCH_ENTER(et); 2899 ifp = ifnet_byindex(ifindex); 2900 if (ifp == NULL) { 2901 NET_EPOCH_EXIT(et); 2902 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2903 __func__, ifindex); 2904 return (ENOENT); 2905 } 2906 2907 retval = sysctl_wire_old_buffer(req, 2908 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2909 if (retval) { 2910 NET_EPOCH_EXIT(et); 2911 return (retval); 2912 } 2913 2914 IN_MULTI_LIST_LOCK(); 2915 2916 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2917 if (ifma->ifma_addr->sa_family != AF_INET || 2918 ifma->ifma_protospec == NULL) 2919 continue; 2920 inm = (struct in_multi *)ifma->ifma_protospec; 2921 if (!in_hosteq(inm->inm_addr, group)) 2922 continue; 2923 fmode = inm->inm_st[1].iss_fmode; 2924 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2925 if (retval != 0) 2926 break; 2927 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2928 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, 2929 ims->ims_haddr); 2930 /* 2931 * Only copy-out sources which are in-mode. 2932 */ 2933 if (fmode != ims_get_mode(inm, ims, 1)) { 2934 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2935 __func__); 2936 continue; 2937 } 2938 src.s_addr = htonl(ims->ims_haddr); 2939 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2940 if (retval != 0) 2941 break; 2942 } 2943 } 2944 2945 IN_MULTI_LIST_UNLOCK(); 2946 NET_EPOCH_EXIT(et); 2947 2948 return (retval); 2949 } 2950 2951 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) 2952 2953 static const char *inm_modestrs[] = { 2954 [MCAST_UNDEFINED] = "un", 2955 [MCAST_INCLUDE] = "in", 2956 [MCAST_EXCLUDE] = "ex", 2957 }; 2958 _Static_assert(MCAST_UNDEFINED == 0 && 2959 MCAST_EXCLUDE + 1 == nitems(inm_modestrs), 2960 "inm_modestrs: no longer matches #defines"); 2961 2962 static const char * 2963 inm_mode_str(const int mode) 2964 { 2965 2966 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2967 return (inm_modestrs[mode]); 2968 return ("??"); 2969 } 2970 2971 static const char *inm_statestrs[] = { 2972 [IGMP_NOT_MEMBER] = "not-member", 2973 [IGMP_SILENT_MEMBER] = "silent", 2974 [IGMP_REPORTING_MEMBER] = "reporting", 2975 [IGMP_IDLE_MEMBER] = "idle", 2976 [IGMP_LAZY_MEMBER] = "lazy", 2977 [IGMP_SLEEPING_MEMBER] = "sleeping", 2978 [IGMP_AWAKENING_MEMBER] = "awakening", 2979 [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", 2980 [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", 2981 [IGMP_LEAVING_MEMBER] = "leaving", 2982 }; 2983 _Static_assert(IGMP_NOT_MEMBER == 0 && 2984 IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), 2985 "inm_statetrs: no longer matches #defines"); 2986 2987 static const char * 2988 inm_state_str(const int state) 2989 { 2990 2991 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2992 return (inm_statestrs[state]); 2993 return ("??"); 2994 } 2995 2996 /* 2997 * Dump an in_multi structure to the console. 2998 */ 2999 void 3000 inm_print(const struct in_multi *inm) 3001 { 3002 int t; 3003 char addrbuf[INET_ADDRSTRLEN]; 3004 3005 if ((ktr_mask & KTR_IGMPV3) == 0) 3006 return; 3007 3008 printf("%s: --- begin inm %p ---\n", __func__, inm); 3009 printf("addr %s ifp %p(%s) ifma %p\n", 3010 inet_ntoa_r(inm->inm_addr, addrbuf), 3011 inm->inm_ifp, 3012 inm->inm_ifp->if_xname, 3013 inm->inm_ifma); 3014 printf("timer %u state %s refcount %u scq.len %u\n", 3015 inm->inm_timer, 3016 inm_state_str(inm->inm_state), 3017 inm->inm_refcount, 3018 inm->inm_scq.mq_len); 3019 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 3020 inm->inm_igi, 3021 inm->inm_nsrc, 3022 inm->inm_sctimer, 3023 inm->inm_scrv); 3024 for (t = 0; t < 2; t++) { 3025 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 3026 inm_mode_str(inm->inm_st[t].iss_fmode), 3027 inm->inm_st[t].iss_asm, 3028 inm->inm_st[t].iss_ex, 3029 inm->inm_st[t].iss_in, 3030 inm->inm_st[t].iss_rec); 3031 } 3032 printf("%s: --- end inm %p ---\n", __func__, inm); 3033 } 3034 3035 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ 3036 3037 void 3038 inm_print(const struct in_multi *inm) 3039 { 3040 3041 } 3042 3043 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ 3044 3045 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3046