xref: /freebsd/sys/netinet/in_mcast.c (revision 2397aecf28352676c462122ead5ffe9b363b6cd0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/gtaskqueue.h>
55 #include <sys/tree.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
98  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
99  *   it can be taken by code in net/if.c also.
100  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
101  *
102  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
103  * any need for in_multi itself to be virtualized -- it is bound to an ifp
104  * anyway no matter what happens.
105  */
106 struct mtx in_multi_list_mtx;
107 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
108 
109 struct mtx in_multi_free_mtx;
110 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
111 
112 struct sx in_multi_sx;
113 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
114 
115 int ifma_restart;
116 
117 /*
118  * Functions with non-static linkage defined in this file should be
119  * declared in in_var.h:
120  *  imo_multi_filter()
121  *  in_addmulti()
122  *  in_delmulti()
123  *  in_joingroup()
124  *  in_joingroup_locked()
125  *  in_leavegroup()
126  *  in_leavegroup_locked()
127  * and ip_var.h:
128  *  inp_freemoptions()
129  *  inp_getmoptions()
130  *  inp_setmoptions()
131  *
132  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
133  * and in_delmulti().
134  */
135 static void	imf_commit(struct in_mfilter *);
136 static int	imf_get_source(struct in_mfilter *imf,
137 		    const struct sockaddr_in *psin,
138 		    struct in_msource **);
139 static struct in_msource *
140 		imf_graft(struct in_mfilter *, const uint8_t,
141 		    const struct sockaddr_in *);
142 static void	imf_leave(struct in_mfilter *);
143 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
144 static void	imf_purge(struct in_mfilter *);
145 static void	imf_rollback(struct in_mfilter *);
146 static void	imf_reap(struct in_mfilter *);
147 static int	imo_grow(struct ip_moptions *);
148 static size_t	imo_match_group(const struct ip_moptions *,
149 		    const struct ifnet *, const struct sockaddr *);
150 static struct in_msource *
151 		imo_match_source(const struct ip_moptions *, const size_t,
152 		    const struct sockaddr *);
153 static void	ims_merge(struct ip_msource *ims,
154 		    const struct in_msource *lims, const int rollback);
155 static int	in_getmulti(struct ifnet *, const struct in_addr *,
156 		    struct in_multi **);
157 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
158 		    const int noalloc, struct ip_msource **pims);
159 #ifdef KTR
160 static int	inm_is_ifp_detached(const struct in_multi *);
161 #endif
162 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
163 static void	inm_purge(struct in_multi *);
164 static void	inm_reap(struct in_multi *);
165 static void inm_release(struct in_multi *);
166 static struct ip_moptions *
167 		inp_findmoptions(struct inpcb *);
168 static void	inp_freemoptions_internal(struct ip_moptions *);
169 static void	inp_gcmoptions(void *, int);
170 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
171 static int	inp_join_group(struct inpcb *, struct sockopt *);
172 static int	inp_leave_group(struct inpcb *, struct sockopt *);
173 static struct ifnet *
174 		inp_lookup_mcast_ifp(const struct inpcb *,
175 		    const struct sockaddr_in *, const struct in_addr);
176 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
177 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
178 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
179 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
180 
181 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
182     "IPv4 multicast");
183 
184 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
185 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
186     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
187     "Max source filters per group");
188 
189 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
190 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
191     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
192     "Max source filters per socket");
193 
194 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
195 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
196     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
197 
198 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
199     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
200     "Per-interface stack-wide source filters");
201 
202 static STAILQ_HEAD(, ip_moptions) imo_gc_list =
203     STAILQ_HEAD_INITIALIZER(imo_gc_list);
204 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL);
205 
206 #ifdef KTR
207 /*
208  * Inline function which wraps assertions for a valid ifp.
209  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
210  * is detached.
211  */
212 static int __inline
213 inm_is_ifp_detached(const struct in_multi *inm)
214 {
215 	struct ifnet *ifp;
216 
217 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
218 	ifp = inm->inm_ifma->ifma_ifp;
219 	if (ifp != NULL) {
220 		/*
221 		 * Sanity check that netinet's notion of ifp is the
222 		 * same as net's.
223 		 */
224 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
225 	}
226 
227 	return (ifp == NULL);
228 }
229 #endif
230 
231 static struct grouptask free_gtask;
232 static struct in_multi_head inm_free_list;
233 static void inm_release_task(void *arg __unused);
234 static void inm_init(void)
235 {
236 	SLIST_INIT(&inm_free_list);
237 	taskqgroup_config_gtask_init(NULL, &free_gtask, inm_release_task, "inm release task");
238 }
239 
240 SYSINIT(inm_init, SI_SUB_SMP + 1, SI_ORDER_FIRST,
241 	inm_init, NULL);
242 
243 
244 void
245 inm_release_list_deferred(struct in_multi_head *inmh)
246 {
247 
248 	if (SLIST_EMPTY(inmh))
249 		return;
250 	mtx_lock(&in_multi_free_mtx);
251 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
252 	mtx_unlock(&in_multi_free_mtx);
253 	GROUPTASK_ENQUEUE(&free_gtask);
254 }
255 
256 void
257 inm_disconnect(struct in_multi *inm)
258 {
259 	struct ifnet *ifp;
260 	struct ifmultiaddr *ifma, *ll_ifma;
261 
262 	ifp = inm->inm_ifp;
263 	IF_ADDR_WLOCK_ASSERT(ifp);
264 	ifma = inm->inm_ifma;
265 
266 	if_ref(ifp);
267 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
268 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
269 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
270 		MPASS(ifma != ll_ifma);
271 		ifma->ifma_llifma = NULL;
272 		MPASS(ll_ifma->ifma_llifma == NULL);
273 		MPASS(ll_ifma->ifma_ifp == ifp);
274 		if (--ll_ifma->ifma_refcount == 0) {
275 			TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link);
276 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
277 			if_freemulti(ll_ifma);
278 			ifma_restart = true;
279 		}
280 	}
281 }
282 
283 void
284 inm_release_deferred(struct in_multi *inm)
285 {
286 	struct in_multi_head tmp;
287 
288 	IN_MULTI_LIST_LOCK_ASSERT();
289 	MPASS(inm->inm_refcount > 0);
290 	if (--inm->inm_refcount == 0) {
291 		SLIST_INIT(&tmp);
292 		inm_disconnect(inm);
293 		inm->inm_ifma->ifma_protospec = NULL;
294 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
295 		inm_release_list_deferred(&tmp);
296 	}
297 }
298 
299 static void
300 inm_release_task(void *arg __unused)
301 {
302 	struct in_multi_head inm_free_tmp;
303 	struct in_multi *inm, *tinm;
304 
305 	SLIST_INIT(&inm_free_tmp);
306 	mtx_lock(&in_multi_free_mtx);
307 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
308 	mtx_unlock(&in_multi_free_mtx);
309 	IN_MULTI_LOCK();
310 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
311 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
312 		MPASS(inm);
313 		inm_release(inm);
314 	}
315 	IN_MULTI_UNLOCK();
316 }
317 
318 /*
319  * Initialize an in_mfilter structure to a known state at t0, t1
320  * with an empty source filter list.
321  */
322 static __inline void
323 imf_init(struct in_mfilter *imf, const int st0, const int st1)
324 {
325 	memset(imf, 0, sizeof(struct in_mfilter));
326 	RB_INIT(&imf->imf_sources);
327 	imf->imf_st[0] = st0;
328 	imf->imf_st[1] = st1;
329 }
330 
331 /*
332  * Function for looking up an in_multi record for an IPv4 multicast address
333  * on a given interface. ifp must be valid. If no record found, return NULL.
334  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
335  */
336 struct in_multi *
337 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
338 {
339 	struct ifmultiaddr *ifma;
340 	struct in_multi *inm;
341 
342 	IN_MULTI_LIST_LOCK_ASSERT();
343 	IF_ADDR_LOCK_ASSERT(ifp);
344 
345 	inm = NULL;
346 	TAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
347 		if (ifma->ifma_addr->sa_family != AF_INET ||
348 		    ifma->ifma_protospec == NULL)
349 			continue;
350 		inm = (struct in_multi *)ifma->ifma_protospec;
351 		if (inm->inm_addr.s_addr == ina.s_addr)
352 			break;
353 		inm = NULL;
354 	}
355 	return (inm);
356 }
357 
358 /*
359  * Wrapper for inm_lookup_locked().
360  * The IF_ADDR_LOCK will be taken on ifp and released on return.
361  */
362 struct in_multi *
363 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
364 {
365 	struct in_multi *inm;
366 
367 	IN_MULTI_LIST_LOCK_ASSERT();
368 	IF_ADDR_RLOCK(ifp);
369 	inm = inm_lookup_locked(ifp, ina);
370 	IF_ADDR_RUNLOCK(ifp);
371 
372 	return (inm);
373 }
374 
375 /*
376  * Resize the ip_moptions vector to the next power-of-two minus 1.
377  * May be called with locks held; do not sleep.
378  */
379 static int
380 imo_grow(struct ip_moptions *imo)
381 {
382 	struct in_multi		**nmships;
383 	struct in_multi		**omships;
384 	struct in_mfilter	 *nmfilters;
385 	struct in_mfilter	 *omfilters;
386 	size_t			  idx;
387 	size_t			  newmax;
388 	size_t			  oldmax;
389 
390 	nmships = NULL;
391 	nmfilters = NULL;
392 	omships = imo->imo_membership;
393 	omfilters = imo->imo_mfilters;
394 	oldmax = imo->imo_max_memberships;
395 	newmax = ((oldmax + 1) * 2) - 1;
396 
397 	if (newmax <= IP_MAX_MEMBERSHIPS) {
398 		nmships = (struct in_multi **)realloc(omships,
399 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
400 		nmfilters = (struct in_mfilter *)realloc(omfilters,
401 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
402 		if (nmships != NULL && nmfilters != NULL) {
403 			/* Initialize newly allocated source filter heads. */
404 			for (idx = oldmax; idx < newmax; idx++) {
405 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
406 				    MCAST_EXCLUDE);
407 			}
408 			imo->imo_max_memberships = newmax;
409 			imo->imo_membership = nmships;
410 			imo->imo_mfilters = nmfilters;
411 		}
412 	}
413 
414 	if (nmships == NULL || nmfilters == NULL) {
415 		if (nmships != NULL)
416 			free(nmships, M_IPMOPTS);
417 		if (nmfilters != NULL)
418 			free(nmfilters, M_INMFILTER);
419 		return (ETOOMANYREFS);
420 	}
421 
422 	return (0);
423 }
424 
425 /*
426  * Find an IPv4 multicast group entry for this ip_moptions instance
427  * which matches the specified group, and optionally an interface.
428  * Return its index into the array, or -1 if not found.
429  */
430 static size_t
431 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
432     const struct sockaddr *group)
433 {
434 	const struct sockaddr_in *gsin;
435 	struct in_multi	**pinm;
436 	int		  idx;
437 	int		  nmships;
438 
439 	gsin = (const struct sockaddr_in *)group;
440 
441 	/* The imo_membership array may be lazy allocated. */
442 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
443 		return (-1);
444 
445 	nmships = imo->imo_num_memberships;
446 	pinm = &imo->imo_membership[0];
447 	for (idx = 0; idx < nmships; idx++, pinm++) {
448 		if (*pinm == NULL)
449 			continue;
450 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
451 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
452 			break;
453 		}
454 	}
455 	if (idx >= nmships)
456 		idx = -1;
457 
458 	return (idx);
459 }
460 
461 /*
462  * Find an IPv4 multicast source entry for this imo which matches
463  * the given group index for this socket, and source address.
464  *
465  * NOTE: This does not check if the entry is in-mode, merely if
466  * it exists, which may not be the desired behaviour.
467  */
468 static struct in_msource *
469 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
470     const struct sockaddr *src)
471 {
472 	struct ip_msource	 find;
473 	struct in_mfilter	*imf;
474 	struct ip_msource	*ims;
475 	const sockunion_t	*psa;
476 
477 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
478 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
479 	    ("%s: invalid index %d\n", __func__, (int)gidx));
480 
481 	/* The imo_mfilters array may be lazy allocated. */
482 	if (imo->imo_mfilters == NULL)
483 		return (NULL);
484 	imf = &imo->imo_mfilters[gidx];
485 
486 	/* Source trees are keyed in host byte order. */
487 	psa = (const sockunion_t *)src;
488 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
489 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
490 
491 	return ((struct in_msource *)ims);
492 }
493 
494 /*
495  * Perform filtering for multicast datagrams on a socket by group and source.
496  *
497  * Returns 0 if a datagram should be allowed through, or various error codes
498  * if the socket was not a member of the group, or the source was muted, etc.
499  */
500 int
501 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
502     const struct sockaddr *group, const struct sockaddr *src)
503 {
504 	size_t gidx;
505 	struct in_msource *ims;
506 	int mode;
507 
508 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
509 
510 	gidx = imo_match_group(imo, ifp, group);
511 	if (gidx == -1)
512 		return (MCAST_NOTGMEMBER);
513 
514 	/*
515 	 * Check if the source was included in an (S,G) join.
516 	 * Allow reception on exclusive memberships by default,
517 	 * reject reception on inclusive memberships by default.
518 	 * Exclude source only if an in-mode exclude filter exists.
519 	 * Include source only if an in-mode include filter exists.
520 	 * NOTE: We are comparing group state here at IGMP t1 (now)
521 	 * with socket-layer t0 (since last downcall).
522 	 */
523 	mode = imo->imo_mfilters[gidx].imf_st[1];
524 	ims = imo_match_source(imo, gidx, src);
525 
526 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
527 	    (ims != NULL && ims->imsl_st[0] != mode))
528 		return (MCAST_NOTSMEMBER);
529 
530 	return (MCAST_PASS);
531 }
532 
533 /*
534  * Find and return a reference to an in_multi record for (ifp, group),
535  * and bump its reference count.
536  * If one does not exist, try to allocate it, and update link-layer multicast
537  * filters on ifp to listen for group.
538  * Assumes the IN_MULTI lock is held across the call.
539  * Return 0 if successful, otherwise return an appropriate error code.
540  */
541 static int
542 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
543     struct in_multi **pinm)
544 {
545 	struct sockaddr_in	 gsin;
546 	struct ifmultiaddr	*ifma;
547 	struct in_ifinfo	*ii;
548 	struct in_multi		*inm;
549 	int error;
550 
551 	IN_MULTI_LOCK_ASSERT();
552 
553 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
554 	IN_MULTI_LIST_LOCK();
555 	inm = inm_lookup(ifp, *group);
556 	if (inm != NULL) {
557 		/*
558 		 * If we already joined this group, just bump the
559 		 * refcount and return it.
560 		 */
561 		KASSERT(inm->inm_refcount >= 1,
562 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
563 		inm_acquire_locked(inm);
564 		*pinm = inm;
565 	}
566 	IN_MULTI_LIST_UNLOCK();
567 	if (inm != NULL)
568 		return (0);
569 
570 	memset(&gsin, 0, sizeof(gsin));
571 	gsin.sin_family = AF_INET;
572 	gsin.sin_len = sizeof(struct sockaddr_in);
573 	gsin.sin_addr = *group;
574 
575 	/*
576 	 * Check if a link-layer group is already associated
577 	 * with this network-layer group on the given ifnet.
578 	 */
579 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
580 	if (error != 0)
581 		return (error);
582 
583 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
584 	IN_MULTI_LIST_LOCK();
585 	IF_ADDR_WLOCK(ifp);
586 
587 	/*
588 	 * If something other than netinet is occupying the link-layer
589 	 * group, print a meaningful error message and back out of
590 	 * the allocation.
591 	 * Otherwise, bump the refcount on the existing network-layer
592 	 * group association and return it.
593 	 */
594 	if (ifma->ifma_protospec != NULL) {
595 		inm = (struct in_multi *)ifma->ifma_protospec;
596 #ifdef INVARIANTS
597 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
598 		    __func__));
599 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
600 		    ("%s: ifma not AF_INET", __func__));
601 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
602 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
603 		    !in_hosteq(inm->inm_addr, *group)) {
604 			char addrbuf[INET_ADDRSTRLEN];
605 
606 			panic("%s: ifma %p is inconsistent with %p (%s)",
607 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
608 		}
609 #endif
610 		inm_acquire_locked(inm);
611 		*pinm = inm;
612 		goto out_locked;
613 	}
614 
615 	IF_ADDR_WLOCK_ASSERT(ifp);
616 
617 	/*
618 	 * A new in_multi record is needed; allocate and initialize it.
619 	 * We DO NOT perform an IGMP join as the in_ layer may need to
620 	 * push an initial source list down to IGMP to support SSM.
621 	 *
622 	 * The initial source filter state is INCLUDE, {} as per the RFC.
623 	 */
624 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
625 	if (inm == NULL) {
626 		IF_ADDR_WUNLOCK(ifp);
627 		IN_MULTI_LIST_UNLOCK();
628 		if_delmulti_ifma(ifma);
629 		return (ENOMEM);
630 	}
631 	inm->inm_addr = *group;
632 	inm->inm_ifp = ifp;
633 	inm->inm_igi = ii->ii_igmp;
634 	inm->inm_ifma = ifma;
635 	inm->inm_refcount = 1;
636 	inm->inm_state = IGMP_NOT_MEMBER;
637 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
638 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
639 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
640 	RB_INIT(&inm->inm_srcs);
641 
642 	ifma->ifma_protospec = inm;
643 
644 	*pinm = inm;
645  out_locked:
646 	IF_ADDR_WUNLOCK(ifp);
647 	IN_MULTI_LIST_UNLOCK();
648 	return (0);
649 }
650 
651 /*
652  * Drop a reference to an in_multi record.
653  *
654  * If the refcount drops to 0, free the in_multi record and
655  * delete the underlying link-layer membership.
656  */
657 static void
658 inm_release(struct in_multi *inm)
659 {
660 	struct ifmultiaddr *ifma;
661 	struct ifnet *ifp;
662 
663 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
664 	MPASS(inm->inm_refcount == 0);
665 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
666 
667 	ifma = inm->inm_ifma;
668 	ifp = inm->inm_ifp;
669 
670 	/* XXX this access is not covered by IF_ADDR_LOCK */
671 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
672 	if (ifp)
673 		CURVNET_SET(ifp->if_vnet);
674 	inm_purge(inm);
675 	free(inm, M_IPMADDR);
676 
677 	if_delmulti_ifma_flags(ifma, 1);
678 	if (ifp) {
679 		CURVNET_RESTORE();
680 		if_rele(ifp);
681 	}
682 }
683 
684 /*
685  * Clear recorded source entries for a group.
686  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
687  * FIXME: Should reap.
688  */
689 void
690 inm_clear_recorded(struct in_multi *inm)
691 {
692 	struct ip_msource	*ims;
693 
694 	IN_MULTI_LIST_LOCK_ASSERT();
695 
696 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
697 		if (ims->ims_stp) {
698 			ims->ims_stp = 0;
699 			--inm->inm_st[1].iss_rec;
700 		}
701 	}
702 	KASSERT(inm->inm_st[1].iss_rec == 0,
703 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
704 }
705 
706 /*
707  * Record a source as pending for a Source-Group IGMPv3 query.
708  * This lives here as it modifies the shared tree.
709  *
710  * inm is the group descriptor.
711  * naddr is the address of the source to record in network-byte order.
712  *
713  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
714  * lazy-allocate a source node in response to an SG query.
715  * Otherwise, no allocation is performed. This saves some memory
716  * with the trade-off that the source will not be reported to the
717  * router if joined in the window between the query response and
718  * the group actually being joined on the local host.
719  *
720  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
721  * This turns off the allocation of a recorded source entry if
722  * the group has not been joined.
723  *
724  * Return 0 if the source didn't exist or was already marked as recorded.
725  * Return 1 if the source was marked as recorded by this function.
726  * Return <0 if any error occurred (negated errno code).
727  */
728 int
729 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
730 {
731 	struct ip_msource	 find;
732 	struct ip_msource	*ims, *nims;
733 
734 	IN_MULTI_LIST_LOCK_ASSERT();
735 
736 	find.ims_haddr = ntohl(naddr);
737 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
738 	if (ims && ims->ims_stp)
739 		return (0);
740 	if (ims == NULL) {
741 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
742 			return (-ENOSPC);
743 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
744 		    M_NOWAIT | M_ZERO);
745 		if (nims == NULL)
746 			return (-ENOMEM);
747 		nims->ims_haddr = find.ims_haddr;
748 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
749 		++inm->inm_nsrc;
750 		ims = nims;
751 	}
752 
753 	/*
754 	 * Mark the source as recorded and update the recorded
755 	 * source count.
756 	 */
757 	++ims->ims_stp;
758 	++inm->inm_st[1].iss_rec;
759 
760 	return (1);
761 }
762 
763 /*
764  * Return a pointer to an in_msource owned by an in_mfilter,
765  * given its source address.
766  * Lazy-allocate if needed. If this is a new entry its filter state is
767  * undefined at t0.
768  *
769  * imf is the filter set being modified.
770  * haddr is the source address in *host* byte-order.
771  *
772  * SMPng: May be called with locks held; malloc must not block.
773  */
774 static int
775 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
776     struct in_msource **plims)
777 {
778 	struct ip_msource	 find;
779 	struct ip_msource	*ims, *nims;
780 	struct in_msource	*lims;
781 	int			 error;
782 
783 	error = 0;
784 	ims = NULL;
785 	lims = NULL;
786 
787 	/* key is host byte order */
788 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
789 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
790 	lims = (struct in_msource *)ims;
791 	if (lims == NULL) {
792 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
793 			return (ENOSPC);
794 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
795 		    M_NOWAIT | M_ZERO);
796 		if (nims == NULL)
797 			return (ENOMEM);
798 		lims = (struct in_msource *)nims;
799 		lims->ims_haddr = find.ims_haddr;
800 		lims->imsl_st[0] = MCAST_UNDEFINED;
801 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
802 		++imf->imf_nsrc;
803 	}
804 
805 	*plims = lims;
806 
807 	return (error);
808 }
809 
810 /*
811  * Graft a source entry into an existing socket-layer filter set,
812  * maintaining any required invariants and checking allocations.
813  *
814  * The source is marked as being in the new filter mode at t1.
815  *
816  * Return the pointer to the new node, otherwise return NULL.
817  */
818 static struct in_msource *
819 imf_graft(struct in_mfilter *imf, const uint8_t st1,
820     const struct sockaddr_in *psin)
821 {
822 	struct ip_msource	*nims;
823 	struct in_msource	*lims;
824 
825 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
826 	    M_NOWAIT | M_ZERO);
827 	if (nims == NULL)
828 		return (NULL);
829 	lims = (struct in_msource *)nims;
830 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
831 	lims->imsl_st[0] = MCAST_UNDEFINED;
832 	lims->imsl_st[1] = st1;
833 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
834 	++imf->imf_nsrc;
835 
836 	return (lims);
837 }
838 
839 /*
840  * Prune a source entry from an existing socket-layer filter set,
841  * maintaining any required invariants and checking allocations.
842  *
843  * The source is marked as being left at t1, it is not freed.
844  *
845  * Return 0 if no error occurred, otherwise return an errno value.
846  */
847 static int
848 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
849 {
850 	struct ip_msource	 find;
851 	struct ip_msource	*ims;
852 	struct in_msource	*lims;
853 
854 	/* key is host byte order */
855 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
856 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
857 	if (ims == NULL)
858 		return (ENOENT);
859 	lims = (struct in_msource *)ims;
860 	lims->imsl_st[1] = MCAST_UNDEFINED;
861 	return (0);
862 }
863 
864 /*
865  * Revert socket-layer filter set deltas at t1 to t0 state.
866  */
867 static void
868 imf_rollback(struct in_mfilter *imf)
869 {
870 	struct ip_msource	*ims, *tims;
871 	struct in_msource	*lims;
872 
873 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
874 		lims = (struct in_msource *)ims;
875 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
876 			/* no change at t1 */
877 			continue;
878 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
879 			/* revert change to existing source at t1 */
880 			lims->imsl_st[1] = lims->imsl_st[0];
881 		} else {
882 			/* revert source added t1 */
883 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
884 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
885 			free(ims, M_INMFILTER);
886 			imf->imf_nsrc--;
887 		}
888 	}
889 	imf->imf_st[1] = imf->imf_st[0];
890 }
891 
892 /*
893  * Mark socket-layer filter set as INCLUDE {} at t1.
894  */
895 static void
896 imf_leave(struct in_mfilter *imf)
897 {
898 	struct ip_msource	*ims;
899 	struct in_msource	*lims;
900 
901 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
902 		lims = (struct in_msource *)ims;
903 		lims->imsl_st[1] = MCAST_UNDEFINED;
904 	}
905 	imf->imf_st[1] = MCAST_INCLUDE;
906 }
907 
908 /*
909  * Mark socket-layer filter set deltas as committed.
910  */
911 static void
912 imf_commit(struct in_mfilter *imf)
913 {
914 	struct ip_msource	*ims;
915 	struct in_msource	*lims;
916 
917 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
918 		lims = (struct in_msource *)ims;
919 		lims->imsl_st[0] = lims->imsl_st[1];
920 	}
921 	imf->imf_st[0] = imf->imf_st[1];
922 }
923 
924 /*
925  * Reap unreferenced sources from socket-layer filter set.
926  */
927 static void
928 imf_reap(struct in_mfilter *imf)
929 {
930 	struct ip_msource	*ims, *tims;
931 	struct in_msource	*lims;
932 
933 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
934 		lims = (struct in_msource *)ims;
935 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
936 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
937 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
938 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
939 			free(ims, M_INMFILTER);
940 			imf->imf_nsrc--;
941 		}
942 	}
943 }
944 
945 /*
946  * Purge socket-layer filter set.
947  */
948 static void
949 imf_purge(struct in_mfilter *imf)
950 {
951 	struct ip_msource	*ims, *tims;
952 
953 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
954 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
955 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
956 		free(ims, M_INMFILTER);
957 		imf->imf_nsrc--;
958 	}
959 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
960 	KASSERT(RB_EMPTY(&imf->imf_sources),
961 	    ("%s: imf_sources not empty", __func__));
962 }
963 
964 /*
965  * Look up a source filter entry for a multicast group.
966  *
967  * inm is the group descriptor to work with.
968  * haddr is the host-byte-order IPv4 address to look up.
969  * noalloc may be non-zero to suppress allocation of sources.
970  * *pims will be set to the address of the retrieved or allocated source.
971  *
972  * SMPng: NOTE: may be called with locks held.
973  * Return 0 if successful, otherwise return a non-zero error code.
974  */
975 static int
976 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
977     const int noalloc, struct ip_msource **pims)
978 {
979 	struct ip_msource	 find;
980 	struct ip_msource	*ims, *nims;
981 
982 	find.ims_haddr = haddr;
983 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
984 	if (ims == NULL && !noalloc) {
985 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
986 			return (ENOSPC);
987 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
988 		    M_NOWAIT | M_ZERO);
989 		if (nims == NULL)
990 			return (ENOMEM);
991 		nims->ims_haddr = haddr;
992 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
993 		++inm->inm_nsrc;
994 		ims = nims;
995 #ifdef KTR
996 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
997 		    haddr, ims);
998 #endif
999 	}
1000 
1001 	*pims = ims;
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Merge socket-layer source into IGMP-layer source.
1007  * If rollback is non-zero, perform the inverse of the merge.
1008  */
1009 static void
1010 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1011     const int rollback)
1012 {
1013 	int n = rollback ? -1 : 1;
1014 
1015 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1016 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
1017 		    __func__, n, ims->ims_haddr);
1018 		ims->ims_st[1].ex -= n;
1019 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1020 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
1021 		    __func__, n, ims->ims_haddr);
1022 		ims->ims_st[1].in -= n;
1023 	}
1024 
1025 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1026 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
1027 		    __func__, n, ims->ims_haddr);
1028 		ims->ims_st[1].ex += n;
1029 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1030 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
1031 		    __func__, n, ims->ims_haddr);
1032 		ims->ims_st[1].in += n;
1033 	}
1034 }
1035 
1036 /*
1037  * Atomically update the global in_multi state, when a membership's
1038  * filter list is being updated in any way.
1039  *
1040  * imf is the per-inpcb-membership group filter pointer.
1041  * A fake imf may be passed for in-kernel consumers.
1042  *
1043  * XXX This is a candidate for a set-symmetric-difference style loop
1044  * which would eliminate the repeated lookup from root of ims nodes,
1045  * as they share the same key space.
1046  *
1047  * If any error occurred this function will back out of refcounts
1048  * and return a non-zero value.
1049  */
1050 static int
1051 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1052 {
1053 	struct ip_msource	*ims, *nims;
1054 	struct in_msource	*lims;
1055 	int			 schanged, error;
1056 	int			 nsrc0, nsrc1;
1057 
1058 	schanged = 0;
1059 	error = 0;
1060 	nsrc1 = nsrc0 = 0;
1061 	IN_MULTI_LIST_LOCK_ASSERT();
1062 
1063 	/*
1064 	 * Update the source filters first, as this may fail.
1065 	 * Maintain count of in-mode filters at t0, t1. These are
1066 	 * used to work out if we transition into ASM mode or not.
1067 	 * Maintain a count of source filters whose state was
1068 	 * actually modified by this operation.
1069 	 */
1070 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1071 		lims = (struct in_msource *)ims;
1072 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1073 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1074 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1075 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1076 		++schanged;
1077 		if (error)
1078 			break;
1079 		ims_merge(nims, lims, 0);
1080 	}
1081 	if (error) {
1082 		struct ip_msource *bims;
1083 
1084 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1085 			lims = (struct in_msource *)ims;
1086 			if (lims->imsl_st[0] == lims->imsl_st[1])
1087 				continue;
1088 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1089 			if (bims == NULL)
1090 				continue;
1091 			ims_merge(bims, lims, 1);
1092 		}
1093 		goto out_reap;
1094 	}
1095 
1096 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1097 	    __func__, nsrc0, nsrc1);
1098 
1099 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1100 	if (imf->imf_st[0] == imf->imf_st[1] &&
1101 	    imf->imf_st[1] == MCAST_INCLUDE) {
1102 		if (nsrc1 == 0) {
1103 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1104 			--inm->inm_st[1].iss_in;
1105 		}
1106 	}
1107 
1108 	/* Handle filter mode transition on socket. */
1109 	if (imf->imf_st[0] != imf->imf_st[1]) {
1110 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1111 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1112 
1113 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1114 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1115 			--inm->inm_st[1].iss_ex;
1116 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1117 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1118 			--inm->inm_st[1].iss_in;
1119 		}
1120 
1121 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1122 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1123 			inm->inm_st[1].iss_ex++;
1124 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1125 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1126 			inm->inm_st[1].iss_in++;
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * Track inm filter state in terms of listener counts.
1132 	 * If there are any exclusive listeners, stack-wide
1133 	 * membership is exclusive.
1134 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1135 	 * If no listeners remain, state is undefined at t1,
1136 	 * and the IGMP lifecycle for this group should finish.
1137 	 */
1138 	if (inm->inm_st[1].iss_ex > 0) {
1139 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1140 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1141 	} else if (inm->inm_st[1].iss_in > 0) {
1142 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1143 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1144 	} else {
1145 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1146 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1147 	}
1148 
1149 	/* Decrement ASM listener count on transition out of ASM mode. */
1150 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1151 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1152 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1153 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1154 			--inm->inm_st[1].iss_asm;
1155 		}
1156 	}
1157 
1158 	/* Increment ASM listener count on transition to ASM mode. */
1159 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1160 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1161 		inm->inm_st[1].iss_asm++;
1162 	}
1163 
1164 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1165 	inm_print(inm);
1166 
1167 out_reap:
1168 	if (schanged > 0) {
1169 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1170 		inm_reap(inm);
1171 	}
1172 	return (error);
1173 }
1174 
1175 /*
1176  * Mark an in_multi's filter set deltas as committed.
1177  * Called by IGMP after a state change has been enqueued.
1178  */
1179 void
1180 inm_commit(struct in_multi *inm)
1181 {
1182 	struct ip_msource	*ims;
1183 
1184 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1185 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1186 	inm_print(inm);
1187 
1188 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1189 		ims->ims_st[0] = ims->ims_st[1];
1190 	}
1191 	inm->inm_st[0] = inm->inm_st[1];
1192 }
1193 
1194 /*
1195  * Reap unreferenced nodes from an in_multi's filter set.
1196  */
1197 static void
1198 inm_reap(struct in_multi *inm)
1199 {
1200 	struct ip_msource	*ims, *tims;
1201 
1202 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1203 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1204 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1205 		    ims->ims_stp != 0)
1206 			continue;
1207 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1208 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1209 		free(ims, M_IPMSOURCE);
1210 		inm->inm_nsrc--;
1211 	}
1212 }
1213 
1214 /*
1215  * Purge all source nodes from an in_multi's filter set.
1216  */
1217 static void
1218 inm_purge(struct in_multi *inm)
1219 {
1220 	struct ip_msource	*ims, *tims;
1221 
1222 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1223 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1224 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1225 		free(ims, M_IPMSOURCE);
1226 		inm->inm_nsrc--;
1227 	}
1228 }
1229 
1230 /*
1231  * Join a multicast group; unlocked entry point.
1232  *
1233  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1234  * is not held. Fortunately, ifp is unlikely to have been detached
1235  * at this point, so we assume it's OK to recurse.
1236  */
1237 int
1238 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1239     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1240 {
1241 	int error;
1242 
1243 	IN_MULTI_LOCK();
1244 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1245 	IN_MULTI_UNLOCK();
1246 
1247 	return (error);
1248 }
1249 
1250 /*
1251  * Join a multicast group; real entry point.
1252  *
1253  * Only preserves atomicity at inm level.
1254  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1255  *
1256  * If the IGMP downcall fails, the group is not joined, and an error
1257  * code is returned.
1258  */
1259 int
1260 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1261     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1262 {
1263 	struct in_mfilter	 timf;
1264 	struct in_multi		*inm;
1265 	int			 error;
1266 
1267 	IN_MULTI_LOCK_ASSERT();
1268 	IN_MULTI_LIST_UNLOCK_ASSERT();
1269 
1270 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1271 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1272 
1273 	error = 0;
1274 	inm = NULL;
1275 
1276 	/*
1277 	 * If no imf was specified (i.e. kernel consumer),
1278 	 * fake one up and assume it is an ASM join.
1279 	 */
1280 	if (imf == NULL) {
1281 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1282 		imf = &timf;
1283 	}
1284 
1285 	error = in_getmulti(ifp, gina, &inm);
1286 	if (error) {
1287 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1288 		return (error);
1289 	}
1290 	IN_MULTI_LIST_LOCK();
1291 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1292 	error = inm_merge(inm, imf);
1293 	if (error) {
1294 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1295 		goto out_inm_release;
1296 	}
1297 
1298 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1299 	error = igmp_change_state(inm);
1300 	if (error) {
1301 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1302 		goto out_inm_release;
1303 	}
1304 
1305  out_inm_release:
1306 	if (error) {
1307 
1308 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1309 		inm_release_deferred(inm);
1310 	} else {
1311 		*pinm = inm;
1312 	}
1313 	IN_MULTI_LIST_UNLOCK();
1314 
1315 	return (error);
1316 }
1317 
1318 /*
1319  * Leave a multicast group; unlocked entry point.
1320  */
1321 int
1322 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1323 {
1324 	int error;
1325 
1326 	IN_MULTI_LOCK();
1327 	error = in_leavegroup_locked(inm, imf);
1328 	IN_MULTI_UNLOCK();
1329 
1330 	return (error);
1331 }
1332 
1333 /*
1334  * Leave a multicast group; real entry point.
1335  * All source filters will be expunged.
1336  *
1337  * Only preserves atomicity at inm level.
1338  *
1339  * Holding the write lock for the INP which contains imf
1340  * is highly advisable. We can't assert for it as imf does not
1341  * contain a back-pointer to the owning inp.
1342  *
1343  * Note: This is not the same as inm_release(*) as this function also
1344  * makes a state change downcall into IGMP.
1345  */
1346 int
1347 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1348 {
1349 	struct in_mfilter	 timf;
1350 	int			 error;
1351 
1352 	error = 0;
1353 
1354 	IN_MULTI_LOCK_ASSERT();
1355 	IN_MULTI_LIST_UNLOCK_ASSERT();
1356 
1357 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1358 	    inm, ntohl(inm->inm_addr.s_addr),
1359 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1360 	    imf);
1361 
1362 	/*
1363 	 * If no imf was specified (i.e. kernel consumer),
1364 	 * fake one up and assume it is an ASM join.
1365 	 */
1366 	if (imf == NULL) {
1367 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1368 		imf = &timf;
1369 	}
1370 
1371 	/*
1372 	 * Begin state merge transaction at IGMP layer.
1373 	 *
1374 	 * As this particular invocation should not cause any memory
1375 	 * to be allocated, and there is no opportunity to roll back
1376 	 * the transaction, it MUST NOT fail.
1377 	 */
1378 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1379 	IN_MULTI_LIST_LOCK();
1380 	error = inm_merge(inm, imf);
1381 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1382 
1383 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1384 	CURVNET_SET(inm->inm_ifp->if_vnet);
1385 	error = igmp_change_state(inm);
1386 	IF_ADDR_WLOCK(inm->inm_ifp);
1387 	inm_release_deferred(inm);
1388 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1389 	IN_MULTI_LIST_UNLOCK();
1390 	CURVNET_RESTORE();
1391 	if (error)
1392 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1393 
1394 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1395 
1396 	return (error);
1397 }
1398 
1399 /*#ifndef BURN_BRIDGES*/
1400 /*
1401  * Join an IPv4 multicast group in (*,G) exclusive mode.
1402  * The group must be a 224.0.0.0/24 link-scope group.
1403  * This KPI is for legacy kernel consumers only.
1404  */
1405 struct in_multi *
1406 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1407 {
1408 	struct in_multi *pinm;
1409 	int error;
1410 #ifdef INVARIANTS
1411 	char addrbuf[INET_ADDRSTRLEN];
1412 #endif
1413 
1414 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1415 	    ("%s: %s not in 224.0.0.0/24", __func__,
1416 	    inet_ntoa_r(*ap, addrbuf)));
1417 
1418 	error = in_joingroup(ifp, ap, NULL, &pinm);
1419 	if (error != 0)
1420 		pinm = NULL;
1421 
1422 	return (pinm);
1423 }
1424 
1425 /*
1426  * Block or unblock an ASM multicast source on an inpcb.
1427  * This implements the delta-based API described in RFC 3678.
1428  *
1429  * The delta-based API applies only to exclusive-mode memberships.
1430  * An IGMP downcall will be performed.
1431  *
1432  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1433  *
1434  * Return 0 if successful, otherwise return an appropriate error code.
1435  */
1436 static int
1437 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1438 {
1439 	struct group_source_req		 gsr;
1440 	sockunion_t			*gsa, *ssa;
1441 	struct ifnet			*ifp;
1442 	struct in_mfilter		*imf;
1443 	struct ip_moptions		*imo;
1444 	struct in_msource		*ims;
1445 	struct in_multi			*inm;
1446 	size_t				 idx;
1447 	uint16_t			 fmode;
1448 	int				 error, doblock;
1449 
1450 	ifp = NULL;
1451 	error = 0;
1452 	doblock = 0;
1453 
1454 	memset(&gsr, 0, sizeof(struct group_source_req));
1455 	gsa = (sockunion_t *)&gsr.gsr_group;
1456 	ssa = (sockunion_t *)&gsr.gsr_source;
1457 
1458 	switch (sopt->sopt_name) {
1459 	case IP_BLOCK_SOURCE:
1460 	case IP_UNBLOCK_SOURCE: {
1461 		struct ip_mreq_source	 mreqs;
1462 
1463 		error = sooptcopyin(sopt, &mreqs,
1464 		    sizeof(struct ip_mreq_source),
1465 		    sizeof(struct ip_mreq_source));
1466 		if (error)
1467 			return (error);
1468 
1469 		gsa->sin.sin_family = AF_INET;
1470 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1471 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1472 
1473 		ssa->sin.sin_family = AF_INET;
1474 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1475 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1476 
1477 		if (!in_nullhost(mreqs.imr_interface))
1478 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1479 
1480 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1481 			doblock = 1;
1482 
1483 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1484 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1485 		break;
1486 	    }
1487 
1488 	case MCAST_BLOCK_SOURCE:
1489 	case MCAST_UNBLOCK_SOURCE:
1490 		error = sooptcopyin(sopt, &gsr,
1491 		    sizeof(struct group_source_req),
1492 		    sizeof(struct group_source_req));
1493 		if (error)
1494 			return (error);
1495 
1496 		if (gsa->sin.sin_family != AF_INET ||
1497 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1498 			return (EINVAL);
1499 
1500 		if (ssa->sin.sin_family != AF_INET ||
1501 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1502 			return (EINVAL);
1503 
1504 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1505 			return (EADDRNOTAVAIL);
1506 
1507 		ifp = ifnet_byindex(gsr.gsr_interface);
1508 
1509 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1510 			doblock = 1;
1511 		break;
1512 
1513 	default:
1514 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1515 		    __func__, sopt->sopt_name);
1516 		return (EOPNOTSUPP);
1517 		break;
1518 	}
1519 
1520 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1521 		return (EINVAL);
1522 
1523 	/*
1524 	 * Check if we are actually a member of this group.
1525 	 */
1526 	imo = inp_findmoptions(inp);
1527 	idx = imo_match_group(imo, ifp, &gsa->sa);
1528 	if (idx == -1 || imo->imo_mfilters == NULL) {
1529 		error = EADDRNOTAVAIL;
1530 		goto out_inp_locked;
1531 	}
1532 
1533 	KASSERT(imo->imo_mfilters != NULL,
1534 	    ("%s: imo_mfilters not allocated", __func__));
1535 	imf = &imo->imo_mfilters[idx];
1536 	inm = imo->imo_membership[idx];
1537 
1538 	/*
1539 	 * Attempting to use the delta-based API on an
1540 	 * non exclusive-mode membership is an error.
1541 	 */
1542 	fmode = imf->imf_st[0];
1543 	if (fmode != MCAST_EXCLUDE) {
1544 		error = EINVAL;
1545 		goto out_inp_locked;
1546 	}
1547 
1548 	/*
1549 	 * Deal with error cases up-front:
1550 	 *  Asked to block, but already blocked; or
1551 	 *  Asked to unblock, but nothing to unblock.
1552 	 * If adding a new block entry, allocate it.
1553 	 */
1554 	ims = imo_match_source(imo, idx, &ssa->sa);
1555 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1556 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1557 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1558 		error = EADDRNOTAVAIL;
1559 		goto out_inp_locked;
1560 	}
1561 
1562 	INP_WLOCK_ASSERT(inp);
1563 
1564 	/*
1565 	 * Begin state merge transaction at socket layer.
1566 	 */
1567 	if (doblock) {
1568 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1569 		ims = imf_graft(imf, fmode, &ssa->sin);
1570 		if (ims == NULL)
1571 			error = ENOMEM;
1572 	} else {
1573 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1574 		error = imf_prune(imf, &ssa->sin);
1575 	}
1576 
1577 	if (error) {
1578 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1579 		goto out_imf_rollback;
1580 	}
1581 
1582 	/*
1583 	 * Begin state merge transaction at IGMP layer.
1584 	 */
1585 	IN_MULTI_LOCK();
1586 	IN_MULTI_LIST_LOCK();
1587 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1588 	error = inm_merge(inm, imf);
1589 	if (error) {
1590 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1591 		goto out_in_multi_locked;
1592 	}
1593 
1594 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1595 	error = igmp_change_state(inm);
1596 	if (error)
1597 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1598 
1599 out_in_multi_locked:
1600 
1601 	IN_MULTI_UNLOCK();
1602 	IN_MULTI_UNLOCK();
1603 out_imf_rollback:
1604 	if (error)
1605 		imf_rollback(imf);
1606 	else
1607 		imf_commit(imf);
1608 
1609 	imf_reap(imf);
1610 
1611 out_inp_locked:
1612 	INP_WUNLOCK(inp);
1613 	return (error);
1614 }
1615 
1616 /*
1617  * Given an inpcb, return its multicast options structure pointer.  Accepts
1618  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1619  *
1620  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1621  * SMPng: NOTE: Returns with the INP write lock held.
1622  */
1623 static struct ip_moptions *
1624 inp_findmoptions(struct inpcb *inp)
1625 {
1626 	struct ip_moptions	 *imo;
1627 	struct in_multi		**immp;
1628 	struct in_mfilter	 *imfp;
1629 	size_t			  idx;
1630 
1631 	INP_WLOCK(inp);
1632 	if (inp->inp_moptions != NULL)
1633 		return (inp->inp_moptions);
1634 
1635 	INP_WUNLOCK(inp);
1636 
1637 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1638 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1639 	    M_WAITOK | M_ZERO);
1640 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1641 	    M_INMFILTER, M_WAITOK);
1642 
1643 	imo->imo_multicast_ifp = NULL;
1644 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1645 	imo->imo_multicast_vif = -1;
1646 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1647 	imo->imo_multicast_loop = in_mcast_loop;
1648 	imo->imo_num_memberships = 0;
1649 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1650 	imo->imo_membership = immp;
1651 
1652 	/* Initialize per-group source filters. */
1653 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1654 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1655 	imo->imo_mfilters = imfp;
1656 
1657 	INP_WLOCK(inp);
1658 	if (inp->inp_moptions != NULL) {
1659 		free(imfp, M_INMFILTER);
1660 		free(immp, M_IPMOPTS);
1661 		free(imo, M_IPMOPTS);
1662 		return (inp->inp_moptions);
1663 	}
1664 	inp->inp_moptions = imo;
1665 	return (imo);
1666 }
1667 
1668 /*
1669  * Discard the IP multicast options (and source filters).  To minimize
1670  * the amount of work done while holding locks such as the INP's
1671  * pcbinfo lock (which is used in the receive path), the free
1672  * operation is performed asynchronously in a separate task.
1673  *
1674  * SMPng: NOTE: assumes INP write lock is held.
1675  */
1676 void
1677 inp_freemoptions(struct ip_moptions *imo, struct inpcbinfo *pcbinfo)
1678 {
1679 	int wlock;
1680 
1681 	if (imo == NULL)
1682 		return;
1683 
1684 	INP_INFO_LOCK_ASSERT(pcbinfo);
1685 	wlock = INP_INFO_WLOCKED(pcbinfo);
1686 	if (wlock)
1687 		INP_INFO_WUNLOCK(pcbinfo);
1688 	else
1689 		INP_INFO_RUNLOCK(pcbinfo);
1690 
1691 	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1692 	IN_MULTI_LIST_LOCK();
1693 	STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link);
1694 	IN_MULTI_LIST_UNLOCK();
1695 	taskqueue_enqueue(taskqueue_thread, &imo_gc_task);
1696 	if (wlock)
1697 		INP_INFO_WLOCK(pcbinfo);
1698 	else
1699 		INP_INFO_RLOCK(pcbinfo);
1700 }
1701 
1702 static void
1703 inp_freemoptions_internal(struct ip_moptions *imo)
1704 {
1705 	struct in_mfilter	*imf;
1706 	size_t			 idx, nmships;
1707 
1708 	nmships = imo->imo_num_memberships;
1709 	for (idx = 0; idx < nmships; ++idx) {
1710 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1711 		if (imf)
1712 			imf_leave(imf);
1713 		(void)in_leavegroup(imo->imo_membership[idx], imf);
1714 		if (imf)
1715 			imf_purge(imf);
1716 	}
1717 
1718 	if (imo->imo_mfilters)
1719 		free(imo->imo_mfilters, M_INMFILTER);
1720 	free(imo->imo_membership, M_IPMOPTS);
1721 	free(imo, M_IPMOPTS);
1722 }
1723 
1724 static void
1725 inp_gcmoptions(void *context, int pending)
1726 {
1727 	struct ip_moptions *imo;
1728 
1729 	IN_MULTI_LIST_LOCK();
1730 	while (!STAILQ_EMPTY(&imo_gc_list)) {
1731 		imo = STAILQ_FIRST(&imo_gc_list);
1732 		STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link);
1733 		IN_MULTI_LIST_UNLOCK();
1734 		inp_freemoptions_internal(imo);
1735 		IN_MULTI_LIST_LOCK();
1736 	}
1737 	IN_MULTI_LIST_UNLOCK();
1738 }
1739 
1740 /*
1741  * Atomically get source filters on a socket for an IPv4 multicast group.
1742  * Called with INP lock held; returns with lock released.
1743  */
1744 static int
1745 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1746 {
1747 	struct __msfilterreq	 msfr;
1748 	sockunion_t		*gsa;
1749 	struct ifnet		*ifp;
1750 	struct ip_moptions	*imo;
1751 	struct in_mfilter	*imf;
1752 	struct ip_msource	*ims;
1753 	struct in_msource	*lims;
1754 	struct sockaddr_in	*psin;
1755 	struct sockaddr_storage	*ptss;
1756 	struct sockaddr_storage	*tss;
1757 	int			 error;
1758 	size_t			 idx, nsrcs, ncsrcs;
1759 
1760 	INP_WLOCK_ASSERT(inp);
1761 
1762 	imo = inp->inp_moptions;
1763 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1764 
1765 	INP_WUNLOCK(inp);
1766 
1767 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1768 	    sizeof(struct __msfilterreq));
1769 	if (error)
1770 		return (error);
1771 
1772 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1773 		return (EINVAL);
1774 
1775 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1776 	if (ifp == NULL)
1777 		return (EINVAL);
1778 
1779 	INP_WLOCK(inp);
1780 
1781 	/*
1782 	 * Lookup group on the socket.
1783 	 */
1784 	gsa = (sockunion_t *)&msfr.msfr_group;
1785 	idx = imo_match_group(imo, ifp, &gsa->sa);
1786 	if (idx == -1 || imo->imo_mfilters == NULL) {
1787 		INP_WUNLOCK(inp);
1788 		return (EADDRNOTAVAIL);
1789 	}
1790 	imf = &imo->imo_mfilters[idx];
1791 
1792 	/*
1793 	 * Ignore memberships which are in limbo.
1794 	 */
1795 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1796 		INP_WUNLOCK(inp);
1797 		return (EAGAIN);
1798 	}
1799 	msfr.msfr_fmode = imf->imf_st[1];
1800 
1801 	/*
1802 	 * If the user specified a buffer, copy out the source filter
1803 	 * entries to userland gracefully.
1804 	 * We only copy out the number of entries which userland
1805 	 * has asked for, but we always tell userland how big the
1806 	 * buffer really needs to be.
1807 	 */
1808 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1809 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1810 	tss = NULL;
1811 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1812 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1813 		    M_TEMP, M_NOWAIT | M_ZERO);
1814 		if (tss == NULL) {
1815 			INP_WUNLOCK(inp);
1816 			return (ENOBUFS);
1817 		}
1818 	}
1819 
1820 	/*
1821 	 * Count number of sources in-mode at t0.
1822 	 * If buffer space exists and remains, copy out source entries.
1823 	 */
1824 	nsrcs = msfr.msfr_nsrcs;
1825 	ncsrcs = 0;
1826 	ptss = tss;
1827 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1828 		lims = (struct in_msource *)ims;
1829 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1830 		    lims->imsl_st[0] != imf->imf_st[0])
1831 			continue;
1832 		++ncsrcs;
1833 		if (tss != NULL && nsrcs > 0) {
1834 			psin = (struct sockaddr_in *)ptss;
1835 			psin->sin_family = AF_INET;
1836 			psin->sin_len = sizeof(struct sockaddr_in);
1837 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1838 			psin->sin_port = 0;
1839 			++ptss;
1840 			--nsrcs;
1841 		}
1842 	}
1843 
1844 	INP_WUNLOCK(inp);
1845 
1846 	if (tss != NULL) {
1847 		error = copyout(tss, msfr.msfr_srcs,
1848 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1849 		free(tss, M_TEMP);
1850 		if (error)
1851 			return (error);
1852 	}
1853 
1854 	msfr.msfr_nsrcs = ncsrcs;
1855 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1856 
1857 	return (error);
1858 }
1859 
1860 /*
1861  * Return the IP multicast options in response to user getsockopt().
1862  */
1863 int
1864 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1865 {
1866 	struct rm_priotracker	 in_ifa_tracker;
1867 	struct ip_mreqn		 mreqn;
1868 	struct ip_moptions	*imo;
1869 	struct ifnet		*ifp;
1870 	struct in_ifaddr	*ia;
1871 	int			 error, optval;
1872 	u_char			 coptval;
1873 
1874 	INP_WLOCK(inp);
1875 	imo = inp->inp_moptions;
1876 	/*
1877 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1878 	 * or is a divert socket, reject it.
1879 	 */
1880 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1881 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1882 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1883 		INP_WUNLOCK(inp);
1884 		return (EOPNOTSUPP);
1885 	}
1886 
1887 	error = 0;
1888 	switch (sopt->sopt_name) {
1889 	case IP_MULTICAST_VIF:
1890 		if (imo != NULL)
1891 			optval = imo->imo_multicast_vif;
1892 		else
1893 			optval = -1;
1894 		INP_WUNLOCK(inp);
1895 		error = sooptcopyout(sopt, &optval, sizeof(int));
1896 		break;
1897 
1898 	case IP_MULTICAST_IF:
1899 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1900 		if (imo != NULL) {
1901 			ifp = imo->imo_multicast_ifp;
1902 			if (!in_nullhost(imo->imo_multicast_addr)) {
1903 				mreqn.imr_address = imo->imo_multicast_addr;
1904 			} else if (ifp != NULL) {
1905 				mreqn.imr_ifindex = ifp->if_index;
1906 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1907 				if (ia != NULL) {
1908 					mreqn.imr_address =
1909 					    IA_SIN(ia)->sin_addr;
1910 					ifa_free(&ia->ia_ifa);
1911 				}
1912 			}
1913 		}
1914 		INP_WUNLOCK(inp);
1915 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1916 			error = sooptcopyout(sopt, &mreqn,
1917 			    sizeof(struct ip_mreqn));
1918 		} else {
1919 			error = sooptcopyout(sopt, &mreqn.imr_address,
1920 			    sizeof(struct in_addr));
1921 		}
1922 		break;
1923 
1924 	case IP_MULTICAST_TTL:
1925 		if (imo == NULL)
1926 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1927 		else
1928 			optval = coptval = imo->imo_multicast_ttl;
1929 		INP_WUNLOCK(inp);
1930 		if (sopt->sopt_valsize == sizeof(u_char))
1931 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1932 		else
1933 			error = sooptcopyout(sopt, &optval, sizeof(int));
1934 		break;
1935 
1936 	case IP_MULTICAST_LOOP:
1937 		if (imo == NULL)
1938 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1939 		else
1940 			optval = coptval = imo->imo_multicast_loop;
1941 		INP_WUNLOCK(inp);
1942 		if (sopt->sopt_valsize == sizeof(u_char))
1943 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1944 		else
1945 			error = sooptcopyout(sopt, &optval, sizeof(int));
1946 		break;
1947 
1948 	case IP_MSFILTER:
1949 		if (imo == NULL) {
1950 			error = EADDRNOTAVAIL;
1951 			INP_WUNLOCK(inp);
1952 		} else {
1953 			error = inp_get_source_filters(inp, sopt);
1954 		}
1955 		break;
1956 
1957 	default:
1958 		INP_WUNLOCK(inp);
1959 		error = ENOPROTOOPT;
1960 		break;
1961 	}
1962 
1963 	INP_UNLOCK_ASSERT(inp);
1964 
1965 	return (error);
1966 }
1967 
1968 /*
1969  * Look up the ifnet to use for a multicast group membership,
1970  * given the IPv4 address of an interface, and the IPv4 group address.
1971  *
1972  * This routine exists to support legacy multicast applications
1973  * which do not understand that multicast memberships are scoped to
1974  * specific physical links in the networking stack, or which need
1975  * to join link-scope groups before IPv4 addresses are configured.
1976  *
1977  * If inp is non-NULL, use this socket's current FIB number for any
1978  * required FIB lookup.
1979  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1980  * and use its ifp; usually, this points to the default next-hop.
1981  *
1982  * If the FIB lookup fails, attempt to use the first non-loopback
1983  * interface with multicast capability in the system as a
1984  * last resort. The legacy IPv4 ASM API requires that we do
1985  * this in order to allow groups to be joined when the routing
1986  * table has not yet been populated during boot.
1987  *
1988  * Returns NULL if no ifp could be found.
1989  *
1990  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1991  * FUTURE: Implement IPv4 source-address selection.
1992  */
1993 static struct ifnet *
1994 inp_lookup_mcast_ifp(const struct inpcb *inp,
1995     const struct sockaddr_in *gsin, const struct in_addr ina)
1996 {
1997 	struct rm_priotracker in_ifa_tracker;
1998 	struct ifnet *ifp;
1999 	struct nhop4_basic nh4;
2000 	uint32_t fibnum;
2001 
2002 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
2003 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
2004 	    ("%s: not multicast", __func__));
2005 
2006 	ifp = NULL;
2007 	if (!in_nullhost(ina)) {
2008 		INADDR_TO_IFP(ina, ifp);
2009 	} else {
2010 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
2011 		if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0)
2012 			ifp = nh4.nh_ifp;
2013 		else {
2014 			struct in_ifaddr *ia;
2015 			struct ifnet *mifp;
2016 
2017 			mifp = NULL;
2018 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2019 			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
2020 				mifp = ia->ia_ifp;
2021 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
2022 				     (mifp->if_flags & IFF_MULTICAST)) {
2023 					ifp = mifp;
2024 					break;
2025 				}
2026 			}
2027 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2028 		}
2029 	}
2030 
2031 	return (ifp);
2032 }
2033 
2034 /*
2035  * Join an IPv4 multicast group, possibly with a source.
2036  */
2037 static int
2038 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2039 {
2040 	struct group_source_req		 gsr;
2041 	sockunion_t			*gsa, *ssa;
2042 	struct ifnet			*ifp;
2043 	struct in_mfilter		*imf;
2044 	struct ip_moptions		*imo;
2045 	struct in_multi			*inm;
2046 	struct in_msource		*lims;
2047 	size_t				 idx;
2048 	int				 error, is_new;
2049 
2050 	ifp = NULL;
2051 	imf = NULL;
2052 	lims = NULL;
2053 	error = 0;
2054 	is_new = 0;
2055 
2056 	memset(&gsr, 0, sizeof(struct group_source_req));
2057 	gsa = (sockunion_t *)&gsr.gsr_group;
2058 	gsa->ss.ss_family = AF_UNSPEC;
2059 	ssa = (sockunion_t *)&gsr.gsr_source;
2060 	ssa->ss.ss_family = AF_UNSPEC;
2061 
2062 	switch (sopt->sopt_name) {
2063 	case IP_ADD_MEMBERSHIP:
2064 	case IP_ADD_SOURCE_MEMBERSHIP: {
2065 		struct ip_mreq_source	 mreqs;
2066 
2067 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2068 			error = sooptcopyin(sopt, &mreqs,
2069 			    sizeof(struct ip_mreq),
2070 			    sizeof(struct ip_mreq));
2071 			/*
2072 			 * Do argument switcharoo from ip_mreq into
2073 			 * ip_mreq_source to avoid using two instances.
2074 			 */
2075 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2076 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2077 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2078 			error = sooptcopyin(sopt, &mreqs,
2079 			    sizeof(struct ip_mreq_source),
2080 			    sizeof(struct ip_mreq_source));
2081 		}
2082 		if (error)
2083 			return (error);
2084 
2085 		gsa->sin.sin_family = AF_INET;
2086 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2087 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2088 
2089 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2090 			ssa->sin.sin_family = AF_INET;
2091 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2092 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2093 		}
2094 
2095 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2096 			return (EINVAL);
2097 
2098 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2099 		    mreqs.imr_interface);
2100 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2101 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2102 		break;
2103 	}
2104 
2105 	case MCAST_JOIN_GROUP:
2106 	case MCAST_JOIN_SOURCE_GROUP:
2107 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2108 			error = sooptcopyin(sopt, &gsr,
2109 			    sizeof(struct group_req),
2110 			    sizeof(struct group_req));
2111 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2112 			error = sooptcopyin(sopt, &gsr,
2113 			    sizeof(struct group_source_req),
2114 			    sizeof(struct group_source_req));
2115 		}
2116 		if (error)
2117 			return (error);
2118 
2119 		if (gsa->sin.sin_family != AF_INET ||
2120 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2121 			return (EINVAL);
2122 
2123 		/*
2124 		 * Overwrite the port field if present, as the sockaddr
2125 		 * being copied in may be matched with a binary comparison.
2126 		 */
2127 		gsa->sin.sin_port = 0;
2128 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2129 			if (ssa->sin.sin_family != AF_INET ||
2130 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2131 				return (EINVAL);
2132 			ssa->sin.sin_port = 0;
2133 		}
2134 
2135 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2136 			return (EINVAL);
2137 
2138 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2139 			return (EADDRNOTAVAIL);
2140 		ifp = ifnet_byindex(gsr.gsr_interface);
2141 		break;
2142 
2143 	default:
2144 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2145 		    __func__, sopt->sopt_name);
2146 		return (EOPNOTSUPP);
2147 		break;
2148 	}
2149 
2150 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2151 		return (EADDRNOTAVAIL);
2152 
2153 	imo = inp_findmoptions(inp);
2154 	idx = imo_match_group(imo, ifp, &gsa->sa);
2155 	if (idx == -1) {
2156 		is_new = 1;
2157 	} else {
2158 		inm = imo->imo_membership[idx];
2159 		imf = &imo->imo_mfilters[idx];
2160 		if (ssa->ss.ss_family != AF_UNSPEC) {
2161 			/*
2162 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2163 			 * is an error. On an existing inclusive membership,
2164 			 * it just adds the source to the filter list.
2165 			 */
2166 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2167 				error = EINVAL;
2168 				goto out_inp_locked;
2169 			}
2170 			/*
2171 			 * Throw out duplicates.
2172 			 *
2173 			 * XXX FIXME: This makes a naive assumption that
2174 			 * even if entries exist for *ssa in this imf,
2175 			 * they will be rejected as dupes, even if they
2176 			 * are not valid in the current mode (in-mode).
2177 			 *
2178 			 * in_msource is transactioned just as for anything
2179 			 * else in SSM -- but note naive use of inm_graft()
2180 			 * below for allocating new filter entries.
2181 			 *
2182 			 * This is only an issue if someone mixes the
2183 			 * full-state SSM API with the delta-based API,
2184 			 * which is discouraged in the relevant RFCs.
2185 			 */
2186 			lims = imo_match_source(imo, idx, &ssa->sa);
2187 			if (lims != NULL /*&&
2188 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2189 				error = EADDRNOTAVAIL;
2190 				goto out_inp_locked;
2191 			}
2192 		} else {
2193 			/*
2194 			 * MCAST_JOIN_GROUP on an existing exclusive
2195 			 * membership is an error; return EADDRINUSE
2196 			 * to preserve 4.4BSD API idempotence, and
2197 			 * avoid tedious detour to code below.
2198 			 * NOTE: This is bending RFC 3678 a bit.
2199 			 *
2200 			 * On an existing inclusive membership, this is also
2201 			 * an error; if you want to change filter mode,
2202 			 * you must use the userland API setsourcefilter().
2203 			 * XXX We don't reject this for imf in UNDEFINED
2204 			 * state at t1, because allocation of a filter
2205 			 * is atomic with allocation of a membership.
2206 			 */
2207 			error = EINVAL;
2208 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2209 				error = EADDRINUSE;
2210 			goto out_inp_locked;
2211 		}
2212 	}
2213 
2214 	/*
2215 	 * Begin state merge transaction at socket layer.
2216 	 */
2217 	INP_WLOCK_ASSERT(inp);
2218 
2219 	if (is_new) {
2220 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2221 			error = imo_grow(imo);
2222 			if (error)
2223 				goto out_inp_locked;
2224 		}
2225 		/*
2226 		 * Allocate the new slot upfront so we can deal with
2227 		 * grafting the new source filter in same code path
2228 		 * as for join-source on existing membership.
2229 		 */
2230 		idx = imo->imo_num_memberships;
2231 		imo->imo_membership[idx] = NULL;
2232 		imo->imo_num_memberships++;
2233 		KASSERT(imo->imo_mfilters != NULL,
2234 		    ("%s: imf_mfilters vector was not allocated", __func__));
2235 		imf = &imo->imo_mfilters[idx];
2236 		KASSERT(RB_EMPTY(&imf->imf_sources),
2237 		    ("%s: imf_sources not empty", __func__));
2238 	}
2239 
2240 	/*
2241 	 * Graft new source into filter list for this inpcb's
2242 	 * membership of the group. The in_multi may not have
2243 	 * been allocated yet if this is a new membership, however,
2244 	 * the in_mfilter slot will be allocated and must be initialized.
2245 	 *
2246 	 * Note: Grafting of exclusive mode filters doesn't happen
2247 	 * in this path.
2248 	 * XXX: Should check for non-NULL lims (node exists but may
2249 	 * not be in-mode) for interop with full-state API.
2250 	 */
2251 	if (ssa->ss.ss_family != AF_UNSPEC) {
2252 		/* Membership starts in IN mode */
2253 		if (is_new) {
2254 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2255 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2256 		} else {
2257 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2258 		}
2259 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2260 		if (lims == NULL) {
2261 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2262 			    __func__);
2263 			error = ENOMEM;
2264 			goto out_imo_free;
2265 		}
2266 	} else {
2267 		/* No address specified; Membership starts in EX mode */
2268 		if (is_new) {
2269 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2270 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * Begin state merge transaction at IGMP layer.
2276 	 */
2277 	in_pcbref(inp);
2278 	INP_WUNLOCK(inp);
2279 	IN_MULTI_LOCK();
2280 
2281 	if (is_new) {
2282 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2283 		    &inm);
2284 		if (error) {
2285                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2286                             __func__);
2287                         IN_MULTI_LIST_UNLOCK();
2288 			goto out_imo_free;
2289                 }
2290 		imo->imo_membership[idx] = inm;
2291 	} else {
2292 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2293 		IN_MULTI_LIST_LOCK();
2294 		error = inm_merge(inm, imf);
2295 		if (error) {
2296 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2297 				 __func__);
2298 			IN_MULTI_LIST_UNLOCK();
2299 			goto out_in_multi_locked;
2300 		}
2301 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2302 		error = igmp_change_state(inm);
2303 		IN_MULTI_LIST_UNLOCK();
2304 		if (error) {
2305 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2306 			    __func__);
2307 			goto out_in_multi_locked;
2308 		}
2309 	}
2310 
2311 out_in_multi_locked:
2312 
2313 	IN_MULTI_UNLOCK();
2314 	INP_WLOCK(inp);
2315 	if (in_pcbrele_wlocked(inp))
2316 		return (ENXIO);
2317 	if (error) {
2318 		imf_rollback(imf);
2319 		if (is_new)
2320 			imf_purge(imf);
2321 		else
2322 			imf_reap(imf);
2323 	} else {
2324 		imf_commit(imf);
2325 	}
2326 
2327 out_imo_free:
2328 	if (error && is_new) {
2329 		imo->imo_membership[idx] = NULL;
2330 		--imo->imo_num_memberships;
2331 	}
2332 
2333 out_inp_locked:
2334 	INP_WUNLOCK(inp);
2335 	return (error);
2336 }
2337 
2338 /*
2339  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2340  */
2341 static int
2342 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2343 {
2344 	struct group_source_req		 gsr;
2345 	struct ip_mreq_source		 mreqs;
2346 	sockunion_t			*gsa, *ssa;
2347 	struct ifnet			*ifp;
2348 	struct in_mfilter		*imf;
2349 	struct ip_moptions		*imo;
2350 	struct in_msource		*ims;
2351 	struct in_multi			*inm;
2352 	size_t				 idx;
2353 	int				 error, is_final;
2354 
2355 	ifp = NULL;
2356 	error = 0;
2357 	is_final = 1;
2358 
2359 	memset(&gsr, 0, sizeof(struct group_source_req));
2360 	gsa = (sockunion_t *)&gsr.gsr_group;
2361 	gsa->ss.ss_family = AF_UNSPEC;
2362 	ssa = (sockunion_t *)&gsr.gsr_source;
2363 	ssa->ss.ss_family = AF_UNSPEC;
2364 
2365 	switch (sopt->sopt_name) {
2366 	case IP_DROP_MEMBERSHIP:
2367 	case IP_DROP_SOURCE_MEMBERSHIP:
2368 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2369 			error = sooptcopyin(sopt, &mreqs,
2370 			    sizeof(struct ip_mreq),
2371 			    sizeof(struct ip_mreq));
2372 			/*
2373 			 * Swap interface and sourceaddr arguments,
2374 			 * as ip_mreq and ip_mreq_source are laid
2375 			 * out differently.
2376 			 */
2377 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2378 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2379 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2380 			error = sooptcopyin(sopt, &mreqs,
2381 			    sizeof(struct ip_mreq_source),
2382 			    sizeof(struct ip_mreq_source));
2383 		}
2384 		if (error)
2385 			return (error);
2386 
2387 		gsa->sin.sin_family = AF_INET;
2388 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2389 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2390 
2391 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2392 			ssa->sin.sin_family = AF_INET;
2393 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2394 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2395 		}
2396 
2397 		/*
2398 		 * Attempt to look up hinted ifp from interface address.
2399 		 * Fallthrough with null ifp iff lookup fails, to
2400 		 * preserve 4.4BSD mcast API idempotence.
2401 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2402 		 * using an IPv4 address as a key is racy.
2403 		 */
2404 		if (!in_nullhost(mreqs.imr_interface))
2405 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2406 
2407 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2408 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2409 
2410 		break;
2411 
2412 	case MCAST_LEAVE_GROUP:
2413 	case MCAST_LEAVE_SOURCE_GROUP:
2414 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2415 			error = sooptcopyin(sopt, &gsr,
2416 			    sizeof(struct group_req),
2417 			    sizeof(struct group_req));
2418 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2419 			error = sooptcopyin(sopt, &gsr,
2420 			    sizeof(struct group_source_req),
2421 			    sizeof(struct group_source_req));
2422 		}
2423 		if (error)
2424 			return (error);
2425 
2426 		if (gsa->sin.sin_family != AF_INET ||
2427 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2428 			return (EINVAL);
2429 
2430 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2431 			if (ssa->sin.sin_family != AF_INET ||
2432 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2433 				return (EINVAL);
2434 		}
2435 
2436 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2437 			return (EADDRNOTAVAIL);
2438 
2439 		ifp = ifnet_byindex(gsr.gsr_interface);
2440 
2441 		if (ifp == NULL)
2442 			return (EADDRNOTAVAIL);
2443 		break;
2444 
2445 	default:
2446 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2447 		    __func__, sopt->sopt_name);
2448 		return (EOPNOTSUPP);
2449 		break;
2450 	}
2451 
2452 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2453 		return (EINVAL);
2454 
2455 	/*
2456 	 * Find the membership in the membership array.
2457 	 */
2458 	imo = inp_findmoptions(inp);
2459 	idx = imo_match_group(imo, ifp, &gsa->sa);
2460 	if (idx == -1) {
2461 		error = EADDRNOTAVAIL;
2462 		goto out_inp_locked;
2463 	}
2464 	inm = imo->imo_membership[idx];
2465 	imf = &imo->imo_mfilters[idx];
2466 
2467 	if (ssa->ss.ss_family != AF_UNSPEC)
2468 		is_final = 0;
2469 
2470 	/*
2471 	 * Begin state merge transaction at socket layer.
2472 	 */
2473 	INP_WLOCK_ASSERT(inp);
2474 
2475 	/*
2476 	 * If we were instructed only to leave a given source, do so.
2477 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2478 	 */
2479 	if (is_final) {
2480 		imf_leave(imf);
2481 	} else {
2482 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2483 			error = EADDRNOTAVAIL;
2484 			goto out_inp_locked;
2485 		}
2486 		ims = imo_match_source(imo, idx, &ssa->sa);
2487 		if (ims == NULL) {
2488 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2489 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2490 			error = EADDRNOTAVAIL;
2491 			goto out_inp_locked;
2492 		}
2493 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2494 		error = imf_prune(imf, &ssa->sin);
2495 		if (error) {
2496 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2497 			    __func__);
2498 			goto out_inp_locked;
2499 		}
2500 	}
2501 
2502 	/*
2503 	 * Begin state merge transaction at IGMP layer.
2504 	 */
2505 	in_pcbref(inp);
2506 	INP_WUNLOCK(inp);
2507 	IN_MULTI_LOCK();
2508 
2509 	if (is_final) {
2510 		/*
2511 		 * Give up the multicast address record to which
2512 		 * the membership points.
2513 		 */
2514 		(void)in_leavegroup_locked(inm, imf);
2515 	} else {
2516 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2517 		IN_MULTI_LIST_LOCK();
2518 		error = inm_merge(inm, imf);
2519 		if (error) {
2520 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2521 			    __func__);
2522 			goto out_in_multi_locked;
2523 		}
2524 
2525 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2526 		error = igmp_change_state(inm);
2527 		IN_MULTI_LIST_UNLOCK();
2528 		if (error) {
2529 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2530 			    __func__);
2531 		}
2532 	}
2533 
2534 out_in_multi_locked:
2535 
2536 	IN_MULTI_UNLOCK();
2537 	INP_WLOCK(inp);
2538 	if (in_pcbrele_wlocked(inp))
2539 		return (ENXIO);
2540 
2541 	if (error)
2542 		imf_rollback(imf);
2543 	else
2544 		imf_commit(imf);
2545 
2546 	imf_reap(imf);
2547 
2548 	if (is_final) {
2549 		/* Remove the gap in the membership and filter array. */
2550 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2551 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2552 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2553 		}
2554 		imo->imo_num_memberships--;
2555 	}
2556 
2557 out_inp_locked:
2558 	INP_WUNLOCK(inp);
2559 	return (error);
2560 }
2561 
2562 /*
2563  * Select the interface for transmitting IPv4 multicast datagrams.
2564  *
2565  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2566  * may be passed to this socket option. An address of INADDR_ANY or an
2567  * interface index of 0 is used to remove a previous selection.
2568  * When no interface is selected, one is chosen for every send.
2569  */
2570 static int
2571 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2572 {
2573 	struct in_addr		 addr;
2574 	struct ip_mreqn		 mreqn;
2575 	struct ifnet		*ifp;
2576 	struct ip_moptions	*imo;
2577 	int			 error;
2578 
2579 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2580 		/*
2581 		 * An interface index was specified using the
2582 		 * Linux-derived ip_mreqn structure.
2583 		 */
2584 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2585 		    sizeof(struct ip_mreqn));
2586 		if (error)
2587 			return (error);
2588 
2589 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2590 			return (EINVAL);
2591 
2592 		if (mreqn.imr_ifindex == 0) {
2593 			ifp = NULL;
2594 		} else {
2595 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2596 			if (ifp == NULL)
2597 				return (EADDRNOTAVAIL);
2598 		}
2599 	} else {
2600 		/*
2601 		 * An interface was specified by IPv4 address.
2602 		 * This is the traditional BSD usage.
2603 		 */
2604 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2605 		    sizeof(struct in_addr));
2606 		if (error)
2607 			return (error);
2608 		if (in_nullhost(addr)) {
2609 			ifp = NULL;
2610 		} else {
2611 			INADDR_TO_IFP(addr, ifp);
2612 			if (ifp == NULL)
2613 				return (EADDRNOTAVAIL);
2614 		}
2615 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2616 		    ntohl(addr.s_addr));
2617 	}
2618 
2619 	/* Reject interfaces which do not support multicast. */
2620 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2621 		return (EOPNOTSUPP);
2622 
2623 	imo = inp_findmoptions(inp);
2624 	imo->imo_multicast_ifp = ifp;
2625 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2626 	INP_WUNLOCK(inp);
2627 
2628 	return (0);
2629 }
2630 
2631 /*
2632  * Atomically set source filters on a socket for an IPv4 multicast group.
2633  *
2634  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2635  */
2636 static int
2637 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2638 {
2639 	struct __msfilterreq	 msfr;
2640 	sockunion_t		*gsa;
2641 	struct ifnet		*ifp;
2642 	struct in_mfilter	*imf;
2643 	struct ip_moptions	*imo;
2644 	struct in_multi		*inm;
2645 	size_t			 idx;
2646 	int			 error;
2647 
2648 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2649 	    sizeof(struct __msfilterreq));
2650 	if (error)
2651 		return (error);
2652 
2653 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2654 		return (ENOBUFS);
2655 
2656 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2657 	     msfr.msfr_fmode != MCAST_INCLUDE))
2658 		return (EINVAL);
2659 
2660 	if (msfr.msfr_group.ss_family != AF_INET ||
2661 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2662 		return (EINVAL);
2663 
2664 	gsa = (sockunion_t *)&msfr.msfr_group;
2665 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2666 		return (EINVAL);
2667 
2668 	gsa->sin.sin_port = 0;	/* ignore port */
2669 
2670 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2671 		return (EADDRNOTAVAIL);
2672 
2673 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2674 	if (ifp == NULL)
2675 		return (EADDRNOTAVAIL);
2676 
2677 	/*
2678 	 * Take the INP write lock.
2679 	 * Check if this socket is a member of this group.
2680 	 */
2681 	imo = inp_findmoptions(inp);
2682 	idx = imo_match_group(imo, ifp, &gsa->sa);
2683 	if (idx == -1 || imo->imo_mfilters == NULL) {
2684 		error = EADDRNOTAVAIL;
2685 		goto out_inp_locked;
2686 	}
2687 	inm = imo->imo_membership[idx];
2688 	imf = &imo->imo_mfilters[idx];
2689 
2690 	/*
2691 	 * Begin state merge transaction at socket layer.
2692 	 */
2693 	INP_WLOCK_ASSERT(inp);
2694 
2695 	imf->imf_st[1] = msfr.msfr_fmode;
2696 
2697 	/*
2698 	 * Apply any new source filters, if present.
2699 	 * Make a copy of the user-space source vector so
2700 	 * that we may copy them with a single copyin. This
2701 	 * allows us to deal with page faults up-front.
2702 	 */
2703 	if (msfr.msfr_nsrcs > 0) {
2704 		struct in_msource	*lims;
2705 		struct sockaddr_in	*psin;
2706 		struct sockaddr_storage	*kss, *pkss;
2707 		int			 i;
2708 
2709 		INP_WUNLOCK(inp);
2710 
2711 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2712 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2713 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2714 		    M_TEMP, M_WAITOK);
2715 		error = copyin(msfr.msfr_srcs, kss,
2716 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2717 		if (error) {
2718 			free(kss, M_TEMP);
2719 			return (error);
2720 		}
2721 
2722 		INP_WLOCK(inp);
2723 
2724 		/*
2725 		 * Mark all source filters as UNDEFINED at t1.
2726 		 * Restore new group filter mode, as imf_leave()
2727 		 * will set it to INCLUDE.
2728 		 */
2729 		imf_leave(imf);
2730 		imf->imf_st[1] = msfr.msfr_fmode;
2731 
2732 		/*
2733 		 * Update socket layer filters at t1, lazy-allocating
2734 		 * new entries. This saves a bunch of memory at the
2735 		 * cost of one RB_FIND() per source entry; duplicate
2736 		 * entries in the msfr_nsrcs vector are ignored.
2737 		 * If we encounter an error, rollback transaction.
2738 		 *
2739 		 * XXX This too could be replaced with a set-symmetric
2740 		 * difference like loop to avoid walking from root
2741 		 * every time, as the key space is common.
2742 		 */
2743 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2744 			psin = (struct sockaddr_in *)pkss;
2745 			if (psin->sin_family != AF_INET) {
2746 				error = EAFNOSUPPORT;
2747 				break;
2748 			}
2749 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2750 				error = EINVAL;
2751 				break;
2752 			}
2753 			error = imf_get_source(imf, psin, &lims);
2754 			if (error)
2755 				break;
2756 			lims->imsl_st[1] = imf->imf_st[1];
2757 		}
2758 		free(kss, M_TEMP);
2759 	}
2760 
2761 	if (error)
2762 		goto out_imf_rollback;
2763 
2764 	INP_WLOCK_ASSERT(inp);
2765 	IN_MULTI_LOCK();
2766 	IN_MULTI_LIST_LOCK();
2767 
2768 	/*
2769 	 * Begin state merge transaction at IGMP layer.
2770 	 */
2771 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2772 	error = inm_merge(inm, imf);
2773 	if (error) {
2774 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2775 		IN_MULTI_LIST_UNLOCK();
2776 		goto out_in_multi_locked;
2777 	}
2778 
2779 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2780 	error = igmp_change_state(inm);
2781 	IN_MULTI_LIST_UNLOCK();
2782 	if (error)
2783 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2784 
2785 out_in_multi_locked:
2786 
2787 	IN_MULTI_UNLOCK();
2788 
2789 out_imf_rollback:
2790 	if (error)
2791 		imf_rollback(imf);
2792 	else
2793 		imf_commit(imf);
2794 
2795 	imf_reap(imf);
2796 
2797 out_inp_locked:
2798 	INP_WUNLOCK(inp);
2799 	return (error);
2800 }
2801 
2802 /*
2803  * Set the IP multicast options in response to user setsockopt().
2804  *
2805  * Many of the socket options handled in this function duplicate the
2806  * functionality of socket options in the regular unicast API. However,
2807  * it is not possible to merge the duplicate code, because the idempotence
2808  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2809  * the effects of these options must be treated as separate and distinct.
2810  *
2811  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2812  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2813  * is refactored to no longer use vifs.
2814  */
2815 int
2816 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2817 {
2818 	struct ip_moptions	*imo;
2819 	int			 error;
2820 
2821 	error = 0;
2822 
2823 	/*
2824 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2825 	 * or is a divert socket, reject it.
2826 	 */
2827 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2828 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2829 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2830 		return (EOPNOTSUPP);
2831 
2832 	switch (sopt->sopt_name) {
2833 	case IP_MULTICAST_VIF: {
2834 		int vifi;
2835 		/*
2836 		 * Select a multicast VIF for transmission.
2837 		 * Only useful if multicast forwarding is active.
2838 		 */
2839 		if (legal_vif_num == NULL) {
2840 			error = EOPNOTSUPP;
2841 			break;
2842 		}
2843 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2844 		if (error)
2845 			break;
2846 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2847 			error = EINVAL;
2848 			break;
2849 		}
2850 		imo = inp_findmoptions(inp);
2851 		imo->imo_multicast_vif = vifi;
2852 		INP_WUNLOCK(inp);
2853 		break;
2854 	}
2855 
2856 	case IP_MULTICAST_IF:
2857 		error = inp_set_multicast_if(inp, sopt);
2858 		break;
2859 
2860 	case IP_MULTICAST_TTL: {
2861 		u_char ttl;
2862 
2863 		/*
2864 		 * Set the IP time-to-live for outgoing multicast packets.
2865 		 * The original multicast API required a char argument,
2866 		 * which is inconsistent with the rest of the socket API.
2867 		 * We allow either a char or an int.
2868 		 */
2869 		if (sopt->sopt_valsize == sizeof(u_char)) {
2870 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2871 			    sizeof(u_char));
2872 			if (error)
2873 				break;
2874 		} else {
2875 			u_int ittl;
2876 
2877 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2878 			    sizeof(u_int));
2879 			if (error)
2880 				break;
2881 			if (ittl > 255) {
2882 				error = EINVAL;
2883 				break;
2884 			}
2885 			ttl = (u_char)ittl;
2886 		}
2887 		imo = inp_findmoptions(inp);
2888 		imo->imo_multicast_ttl = ttl;
2889 		INP_WUNLOCK(inp);
2890 		break;
2891 	}
2892 
2893 	case IP_MULTICAST_LOOP: {
2894 		u_char loop;
2895 
2896 		/*
2897 		 * Set the loopback flag for outgoing multicast packets.
2898 		 * Must be zero or one.  The original multicast API required a
2899 		 * char argument, which is inconsistent with the rest
2900 		 * of the socket API.  We allow either a char or an int.
2901 		 */
2902 		if (sopt->sopt_valsize == sizeof(u_char)) {
2903 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2904 			    sizeof(u_char));
2905 			if (error)
2906 				break;
2907 		} else {
2908 			u_int iloop;
2909 
2910 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2911 					    sizeof(u_int));
2912 			if (error)
2913 				break;
2914 			loop = (u_char)iloop;
2915 		}
2916 		imo = inp_findmoptions(inp);
2917 		imo->imo_multicast_loop = !!loop;
2918 		INP_WUNLOCK(inp);
2919 		break;
2920 	}
2921 
2922 	case IP_ADD_MEMBERSHIP:
2923 	case IP_ADD_SOURCE_MEMBERSHIP:
2924 	case MCAST_JOIN_GROUP:
2925 	case MCAST_JOIN_SOURCE_GROUP:
2926 		error = inp_join_group(inp, sopt);
2927 		break;
2928 
2929 	case IP_DROP_MEMBERSHIP:
2930 	case IP_DROP_SOURCE_MEMBERSHIP:
2931 	case MCAST_LEAVE_GROUP:
2932 	case MCAST_LEAVE_SOURCE_GROUP:
2933 		error = inp_leave_group(inp, sopt);
2934 		break;
2935 
2936 	case IP_BLOCK_SOURCE:
2937 	case IP_UNBLOCK_SOURCE:
2938 	case MCAST_BLOCK_SOURCE:
2939 	case MCAST_UNBLOCK_SOURCE:
2940 		error = inp_block_unblock_source(inp, sopt);
2941 		break;
2942 
2943 	case IP_MSFILTER:
2944 		error = inp_set_source_filters(inp, sopt);
2945 		break;
2946 
2947 	default:
2948 		error = EOPNOTSUPP;
2949 		break;
2950 	}
2951 
2952 	INP_UNLOCK_ASSERT(inp);
2953 
2954 	return (error);
2955 }
2956 
2957 /*
2958  * Expose IGMP's multicast filter mode and source list(s) to userland,
2959  * keyed by (ifindex, group).
2960  * The filter mode is written out as a uint32_t, followed by
2961  * 0..n of struct in_addr.
2962  * For use by ifmcstat(8).
2963  * SMPng: NOTE: unlocked read of ifindex space.
2964  */
2965 static int
2966 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2967 {
2968 	struct in_addr			 src, group;
2969 	struct ifnet			*ifp;
2970 	struct ifmultiaddr		*ifma;
2971 	struct in_multi			*inm;
2972 	struct ip_msource		*ims;
2973 	int				*name;
2974 	int				 retval;
2975 	u_int				 namelen;
2976 	uint32_t			 fmode, ifindex;
2977 
2978 	name = (int *)arg1;
2979 	namelen = arg2;
2980 
2981 	if (req->newptr != NULL)
2982 		return (EPERM);
2983 
2984 	if (namelen != 2)
2985 		return (EINVAL);
2986 
2987 	ifindex = name[0];
2988 	if (ifindex <= 0 || ifindex > V_if_index) {
2989 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2990 		    __func__, ifindex);
2991 		return (ENOENT);
2992 	}
2993 
2994 	group.s_addr = name[1];
2995 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2996 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2997 		    __func__, ntohl(group.s_addr));
2998 		return (EINVAL);
2999 	}
3000 
3001 	ifp = ifnet_byindex(ifindex);
3002 	if (ifp == NULL) {
3003 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
3004 		    __func__, ifindex);
3005 		return (ENOENT);
3006 	}
3007 
3008 	retval = sysctl_wire_old_buffer(req,
3009 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
3010 	if (retval)
3011 		return (retval);
3012 
3013 	IN_MULTI_LIST_LOCK();
3014 
3015 	IF_ADDR_RLOCK(ifp);
3016 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3017 		if (ifma->ifma_addr->sa_family != AF_INET ||
3018 		    ifma->ifma_protospec == NULL)
3019 			continue;
3020 		inm = (struct in_multi *)ifma->ifma_protospec;
3021 		if (!in_hosteq(inm->inm_addr, group))
3022 			continue;
3023 		fmode = inm->inm_st[1].iss_fmode;
3024 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
3025 		if (retval != 0)
3026 			break;
3027 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3028 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
3029 			    ims->ims_haddr);
3030 			/*
3031 			 * Only copy-out sources which are in-mode.
3032 			 */
3033 			if (fmode != ims_get_mode(inm, ims, 1)) {
3034 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
3035 				    __func__);
3036 				continue;
3037 			}
3038 			src.s_addr = htonl(ims->ims_haddr);
3039 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3040 			if (retval != 0)
3041 				break;
3042 		}
3043 	}
3044 	IF_ADDR_RUNLOCK(ifp);
3045 
3046 	IN_MULTI_LIST_UNLOCK();
3047 
3048 	return (retval);
3049 }
3050 
3051 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
3052 
3053 static const char *inm_modestrs[] = { "un", "in", "ex" };
3054 
3055 static const char *
3056 inm_mode_str(const int mode)
3057 {
3058 
3059 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3060 		return (inm_modestrs[mode]);
3061 	return ("??");
3062 }
3063 
3064 static const char *inm_statestrs[] = {
3065 	"not-member",
3066 	"silent",
3067 	"idle",
3068 	"lazy",
3069 	"sleeping",
3070 	"awakening",
3071 	"query-pending",
3072 	"sg-query-pending",
3073 	"leaving"
3074 };
3075 
3076 static const char *
3077 inm_state_str(const int state)
3078 {
3079 
3080 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3081 		return (inm_statestrs[state]);
3082 	return ("??");
3083 }
3084 
3085 /*
3086  * Dump an in_multi structure to the console.
3087  */
3088 void
3089 inm_print(const struct in_multi *inm)
3090 {
3091 	int t;
3092 	char addrbuf[INET_ADDRSTRLEN];
3093 
3094 	if ((ktr_mask & KTR_IGMPV3) == 0)
3095 		return;
3096 
3097 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3098 	printf("addr %s ifp %p(%s) ifma %p\n",
3099 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3100 	    inm->inm_ifp,
3101 	    inm->inm_ifp->if_xname,
3102 	    inm->inm_ifma);
3103 	printf("timer %u state %s refcount %u scq.len %u\n",
3104 	    inm->inm_timer,
3105 	    inm_state_str(inm->inm_state),
3106 	    inm->inm_refcount,
3107 	    inm->inm_scq.mq_len);
3108 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3109 	    inm->inm_igi,
3110 	    inm->inm_nsrc,
3111 	    inm->inm_sctimer,
3112 	    inm->inm_scrv);
3113 	for (t = 0; t < 2; t++) {
3114 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3115 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3116 		    inm->inm_st[t].iss_asm,
3117 		    inm->inm_st[t].iss_ex,
3118 		    inm->inm_st[t].iss_in,
3119 		    inm->inm_st[t].iss_rec);
3120 	}
3121 	printf("%s: --- end inm %p ---\n", __func__, inm);
3122 }
3123 
3124 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3125 
3126 void
3127 inm_print(const struct in_multi *inm)
3128 {
3129 
3130 }
3131 
3132 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3133 
3134 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3135