xref: /freebsd/sys/netinet/in_mcast.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/protosw.h>
47 #include <sys/sysctl.h>
48 #include <sys/ktr.h>
49 #include <sys/taskqueue.h>
50 #include <sys/tree.h>
51 
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/route.h>
56 #include <net/route/nhop.h>
57 #include <net/vnet.h>
58 
59 #include <net/ethernet.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_fib.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_var.h>
66 #include <net/if_private.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/igmp_var.h>
69 
70 #ifndef KTR_IGMPV3
71 #define KTR_IGMPV3 KTR_INET
72 #endif
73 
74 #ifndef __SOCKUNION_DECLARED
75 union sockunion {
76 	struct sockaddr_storage	ss;
77 	struct sockaddr		sa;
78 	struct sockaddr_dl	sdl;
79 	struct sockaddr_in	sin;
80 };
81 typedef union sockunion sockunion_t;
82 #define __SOCKUNION_DECLARED
83 #endif /* __SOCKUNION_DECLARED */
84 
85 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
86     "IPv4 multicast PCB-layer source filter");
87 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
88 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
89 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
90     "IPv4 multicast IGMP-layer source filter");
91 
92 /*
93  * Locking:
94  *
95  * - Lock order is: IN_MULTI_LOCK, INP_WLOCK, IN_MULTI_LIST_LOCK, IGMP_LOCK,
96  *                  IF_ADDR_LOCK.
97  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
98  *   it can be taken by code in net/if.c also.
99  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
100  *
101  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
102  * any need for in_multi itself to be virtualized -- it is bound to an ifp
103  * anyway no matter what happens.
104  */
105 struct mtx in_multi_list_mtx;
106 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
107 
108 struct mtx in_multi_free_mtx;
109 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
110 
111 struct sx in_multi_sx;
112 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
113 
114 /*
115  * Functions with non-static linkage defined in this file should be
116  * declared in in_var.h:
117  *  imo_multi_filter()
118  *  in_joingroup()
119  *  in_joingroup_locked()
120  *  in_leavegroup()
121  *  in_leavegroup_locked()
122  * and ip_var.h:
123  *  inp_freemoptions()
124  *  inp_getmoptions()
125  *  inp_setmoptions()
126  */
127 static void	imf_commit(struct in_mfilter *);
128 static int	imf_get_source(struct in_mfilter *imf,
129 		    const struct sockaddr_in *psin,
130 		    struct in_msource **);
131 static struct in_msource *
132 		imf_graft(struct in_mfilter *, const uint8_t,
133 		    const struct sockaddr_in *);
134 static void	imf_leave(struct in_mfilter *);
135 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
136 static void	imf_purge(struct in_mfilter *);
137 static void	imf_rollback(struct in_mfilter *);
138 static void	imf_reap(struct in_mfilter *);
139 static struct in_mfilter *
140 		imo_match_group(const struct ip_moptions *,
141 		    const struct ifnet *, const struct sockaddr *);
142 static struct in_msource *
143 		imo_match_source(struct in_mfilter *, const struct sockaddr *);
144 static void	ims_merge(struct ip_msource *ims,
145 		    const struct in_msource *lims, const int rollback);
146 static int	in_getmulti(struct ifnet *, const struct in_addr *,
147 		    struct in_multi **);
148 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
149 		    const int noalloc, struct ip_msource **pims);
150 #ifdef KTR
151 static int	inm_is_ifp_detached(const struct in_multi *);
152 #endif
153 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
154 static void	inm_purge(struct in_multi *);
155 static void	inm_reap(struct in_multi *);
156 static void inm_release(struct in_multi *);
157 static struct ip_moptions *
158 		inp_findmoptions(struct inpcb *);
159 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
160 static int	inp_join_group(struct inpcb *, struct sockopt *);
161 static int	inp_leave_group(struct inpcb *, struct sockopt *);
162 static struct ifnet *
163 		inp_lookup_mcast_ifp(const struct inpcb *,
164 		    const struct sockaddr_in *, const struct in_addr);
165 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
166 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
167 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
168 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
169 
170 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "IPv4 multicast");
173 
174 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
175 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
176     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
177     "Max source filters per group");
178 
179 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
180 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
181     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
182     "Max source filters per socket");
183 
184 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
185 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
186     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
187 
188 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
189     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
190     "Per-interface stack-wide source filters");
191 
192 #ifdef KTR
193 /*
194  * Inline function which wraps assertions for a valid ifp.
195  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
196  * is detached.
197  */
198 static int __inline
199 inm_is_ifp_detached(const struct in_multi *inm)
200 {
201 	struct ifnet *ifp;
202 
203 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
204 	ifp = inm->inm_ifma->ifma_ifp;
205 	if (ifp != NULL) {
206 		/*
207 		 * Sanity check that netinet's notion of ifp is the
208 		 * same as net's.
209 		 */
210 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
211 	}
212 
213 	return (ifp == NULL);
214 }
215 #endif
216 
217 /*
218  * Interface detach can happen in a taskqueue thread context, so we must use a
219  * dedicated thread to avoid deadlocks when draining inm_release tasks.
220  */
221 TASKQUEUE_DEFINE_THREAD(inm_free);
222 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
223 static void inm_release_task(void *arg __unused, int pending __unused);
224 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL);
225 
226 void
227 inm_release_wait(void *arg __unused)
228 {
229 
230 	/*
231 	 * Make sure all pending multicast addresses are freed before
232 	 * the VNET or network device is destroyed:
233 	 */
234 	taskqueue_drain(taskqueue_inm_free, &inm_free_task);
235 }
236 #ifdef VIMAGE
237 /* XXX-BZ FIXME, see D24914. */
238 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL);
239 #endif
240 
241 void
242 inm_release_list_deferred(struct in_multi_head *inmh)
243 {
244 
245 	if (SLIST_EMPTY(inmh))
246 		return;
247 	mtx_lock(&in_multi_free_mtx);
248 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
249 	mtx_unlock(&in_multi_free_mtx);
250 	taskqueue_enqueue(taskqueue_inm_free, &inm_free_task);
251 }
252 
253 void
254 inm_disconnect(struct in_multi *inm)
255 {
256 	struct ifnet *ifp;
257 	struct ifmultiaddr *ifma, *ll_ifma;
258 
259 	ifp = inm->inm_ifp;
260 	IF_ADDR_WLOCK_ASSERT(ifp);
261 	ifma = inm->inm_ifma;
262 
263 	if_ref(ifp);
264 	if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
265 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
266 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
267 	}
268 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
269 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
270 		MPASS(ifma != ll_ifma);
271 		ifma->ifma_llifma = NULL;
272 		MPASS(ll_ifma->ifma_llifma == NULL);
273 		MPASS(ll_ifma->ifma_ifp == ifp);
274 		if (--ll_ifma->ifma_refcount == 0) {
275 			if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
276 				CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
277 				ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
278 			}
279 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
280 			if_freemulti(ll_ifma);
281 		}
282 	}
283 }
284 
285 void
286 inm_release_deferred(struct in_multi *inm)
287 {
288 	struct in_multi_head tmp;
289 
290 	IN_MULTI_LIST_LOCK_ASSERT();
291 	MPASS(inm->inm_refcount > 0);
292 	if (--inm->inm_refcount == 0) {
293 		SLIST_INIT(&tmp);
294 		inm_disconnect(inm);
295 		inm->inm_ifma->ifma_protospec = NULL;
296 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
297 		inm_release_list_deferred(&tmp);
298 	}
299 }
300 
301 static void
302 inm_release_task(void *arg __unused, int pending __unused)
303 {
304 	struct in_multi_head inm_free_tmp;
305 	struct in_multi *inm, *tinm;
306 
307 	SLIST_INIT(&inm_free_tmp);
308 	mtx_lock(&in_multi_free_mtx);
309 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
310 	mtx_unlock(&in_multi_free_mtx);
311 	IN_MULTI_LOCK();
312 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
313 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
314 		MPASS(inm);
315 		inm_release(inm);
316 	}
317 	IN_MULTI_UNLOCK();
318 }
319 
320 /*
321  * Initialize an in_mfilter structure to a known state at t0, t1
322  * with an empty source filter list.
323  */
324 static __inline void
325 imf_init(struct in_mfilter *imf, const int st0, const int st1)
326 {
327 	memset(imf, 0, sizeof(struct in_mfilter));
328 	RB_INIT(&imf->imf_sources);
329 	imf->imf_st[0] = st0;
330 	imf->imf_st[1] = st1;
331 }
332 
333 struct in_mfilter *
334 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
335 {
336 	struct in_mfilter *imf;
337 
338 	imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
339 	if (imf != NULL)
340 		imf_init(imf, st0, st1);
341 
342 	return (imf);
343 }
344 
345 void
346 ip_mfilter_free(struct in_mfilter *imf)
347 {
348 
349 	imf_purge(imf);
350 	free(imf, M_INMFILTER);
351 }
352 
353 /*
354  * Function for looking up an in_multi record for an IPv4 multicast address
355  * on a given interface. ifp must be valid. If no record found, return NULL.
356  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
357  */
358 struct in_multi *
359 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
360 {
361 	struct ifmultiaddr *ifma;
362 	struct in_multi *inm;
363 
364 	IN_MULTI_LIST_LOCK_ASSERT();
365 	IF_ADDR_LOCK_ASSERT(ifp);
366 
367 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
368 		inm = inm_ifmultiaddr_get_inm(ifma);
369 		if (inm == NULL)
370 			continue;
371 		if (inm->inm_addr.s_addr == ina.s_addr)
372 			return (inm);
373 	}
374 	return (NULL);
375 }
376 
377 /*
378  * Wrapper for inm_lookup_locked().
379  * The IF_ADDR_LOCK will be taken on ifp and released on return.
380  */
381 struct in_multi *
382 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
383 {
384 	struct epoch_tracker et;
385 	struct in_multi *inm;
386 
387 	IN_MULTI_LIST_LOCK_ASSERT();
388 	NET_EPOCH_ENTER(et);
389 
390 	inm = inm_lookup_locked(ifp, ina);
391 	NET_EPOCH_EXIT(et);
392 
393 	return (inm);
394 }
395 
396 /*
397  * Find an IPv4 multicast group entry for this ip_moptions instance
398  * which matches the specified group, and optionally an interface.
399  * Return its index into the array, or -1 if not found.
400  */
401 static struct in_mfilter *
402 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
403     const struct sockaddr *group)
404 {
405 	const struct sockaddr_in *gsin;
406 	struct in_mfilter *imf;
407 	struct in_multi	*inm;
408 
409 	gsin = (const struct sockaddr_in *)group;
410 
411 	IP_MFILTER_FOREACH(imf, &imo->imo_head) {
412 		inm = imf->imf_inm;
413 		if (inm == NULL)
414 			continue;
415 		if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
416 		    in_hosteq(inm->inm_addr, gsin->sin_addr)) {
417 			break;
418 		}
419 	}
420 	return (imf);
421 }
422 
423 /*
424  * Find an IPv4 multicast source entry for this imo which matches
425  * the given group index for this socket, and source address.
426  *
427  * NOTE: This does not check if the entry is in-mode, merely if
428  * it exists, which may not be the desired behaviour.
429  */
430 static struct in_msource *
431 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
432 {
433 	struct ip_msource	 find;
434 	struct ip_msource	*ims;
435 	const sockunion_t	*psa;
436 
437 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
438 
439 	/* Source trees are keyed in host byte order. */
440 	psa = (const sockunion_t *)src;
441 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
442 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
443 
444 	return ((struct in_msource *)ims);
445 }
446 
447 /*
448  * Perform filtering for multicast datagrams on a socket by group and source.
449  *
450  * Returns 0 if a datagram should be allowed through, or various error codes
451  * if the socket was not a member of the group, or the source was muted, etc.
452  */
453 int
454 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
455     const struct sockaddr *group, const struct sockaddr *src)
456 {
457 	struct in_mfilter *imf;
458 	struct in_msource *ims;
459 	int mode;
460 
461 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
462 
463 	imf = imo_match_group(imo, ifp, group);
464 	if (imf == NULL)
465 		return (MCAST_NOTGMEMBER);
466 
467 	/*
468 	 * Check if the source was included in an (S,G) join.
469 	 * Allow reception on exclusive memberships by default,
470 	 * reject reception on inclusive memberships by default.
471 	 * Exclude source only if an in-mode exclude filter exists.
472 	 * Include source only if an in-mode include filter exists.
473 	 * NOTE: We are comparing group state here at IGMP t1 (now)
474 	 * with socket-layer t0 (since last downcall).
475 	 */
476 	mode = imf->imf_st[1];
477 	ims = imo_match_source(imf, src);
478 
479 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
480 	    (ims != NULL && ims->imsl_st[0] == MCAST_EXCLUDE))
481 		return (MCAST_NOTSMEMBER);
482 
483 	return (MCAST_PASS);
484 }
485 
486 /*
487  * Find and return a reference to an in_multi record for (ifp, group),
488  * and bump its reference count.
489  * If one does not exist, try to allocate it, and update link-layer multicast
490  * filters on ifp to listen for group.
491  * Assumes the IN_MULTI lock is held across the call.
492  * Return 0 if successful, otherwise return an appropriate error code.
493  */
494 static int
495 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
496     struct in_multi **pinm)
497 {
498 	struct sockaddr_in	 gsin;
499 	struct ifmultiaddr	*ifma;
500 	struct in_ifinfo	*ii;
501 	struct in_multi		*inm;
502 	int error;
503 
504 	IN_MULTI_LOCK_ASSERT();
505 
506 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
507 	IN_MULTI_LIST_LOCK();
508 	inm = inm_lookup(ifp, *group);
509 	if (inm != NULL) {
510 		/*
511 		 * If we already joined this group, just bump the
512 		 * refcount and return it.
513 		 */
514 		KASSERT(inm->inm_refcount >= 1,
515 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
516 		inm_acquire_locked(inm);
517 		*pinm = inm;
518 	}
519 	IN_MULTI_LIST_UNLOCK();
520 	if (inm != NULL)
521 		return (0);
522 
523 	memset(&gsin, 0, sizeof(gsin));
524 	gsin.sin_family = AF_INET;
525 	gsin.sin_len = sizeof(struct sockaddr_in);
526 	gsin.sin_addr = *group;
527 
528 	/*
529 	 * Check if a link-layer group is already associated
530 	 * with this network-layer group on the given ifnet.
531 	 */
532 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
533 	if (error != 0)
534 		return (error);
535 
536 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
537 	IN_MULTI_LIST_LOCK();
538 	IF_ADDR_WLOCK(ifp);
539 
540 	/*
541 	 * If something other than netinet is occupying the link-layer
542 	 * group, print a meaningful error message and back out of
543 	 * the allocation.
544 	 * Otherwise, bump the refcount on the existing network-layer
545 	 * group association and return it.
546 	 */
547 	if (ifma->ifma_protospec != NULL) {
548 		inm = (struct in_multi *)ifma->ifma_protospec;
549 #ifdef INVARIANTS
550 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
551 		    __func__));
552 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
553 		    ("%s: ifma not AF_INET", __func__));
554 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
555 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
556 		    !in_hosteq(inm->inm_addr, *group)) {
557 			char addrbuf[INET_ADDRSTRLEN];
558 
559 			panic("%s: ifma %p is inconsistent with %p (%s)",
560 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
561 		}
562 #endif
563 		inm_acquire_locked(inm);
564 		*pinm = inm;
565 		goto out_locked;
566 	}
567 
568 	IF_ADDR_WLOCK_ASSERT(ifp);
569 
570 	/*
571 	 * A new in_multi record is needed; allocate and initialize it.
572 	 * We DO NOT perform an IGMP join as the in_ layer may need to
573 	 * push an initial source list down to IGMP to support SSM.
574 	 *
575 	 * The initial source filter state is INCLUDE, {} as per the RFC.
576 	 */
577 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
578 	if (inm == NULL) {
579 		IF_ADDR_WUNLOCK(ifp);
580 		IN_MULTI_LIST_UNLOCK();
581 		if_delmulti_ifma(ifma);
582 		return (ENOMEM);
583 	}
584 	inm->inm_addr = *group;
585 	inm->inm_ifp = ifp;
586 	inm->inm_igi = ii->ii_igmp;
587 	inm->inm_ifma = ifma;
588 	inm->inm_refcount = 1;
589 	inm->inm_state = IGMP_NOT_MEMBER;
590 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
591 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
592 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
593 	RB_INIT(&inm->inm_srcs);
594 
595 	ifma->ifma_protospec = inm;
596 
597 	*pinm = inm;
598  out_locked:
599 	IF_ADDR_WUNLOCK(ifp);
600 	IN_MULTI_LIST_UNLOCK();
601 	return (0);
602 }
603 
604 /*
605  * Drop a reference to an in_multi record.
606  *
607  * If the refcount drops to 0, free the in_multi record and
608  * delete the underlying link-layer membership.
609  */
610 static void
611 inm_release(struct in_multi *inm)
612 {
613 	struct ifmultiaddr *ifma;
614 	struct ifnet *ifp;
615 
616 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
617 	MPASS(inm->inm_refcount == 0);
618 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
619 
620 	ifma = inm->inm_ifma;
621 	ifp = inm->inm_ifp;
622 
623 	/* XXX this access is not covered by IF_ADDR_LOCK */
624 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
625 	if (ifp != NULL) {
626 		CURVNET_SET(ifp->if_vnet);
627 		inm_purge(inm);
628 		free(inm, M_IPMADDR);
629 		if_delmulti_ifma_flags(ifma, 1);
630 		CURVNET_RESTORE();
631 		if_rele(ifp);
632 	} else {
633 		inm_purge(inm);
634 		free(inm, M_IPMADDR);
635 		if_delmulti_ifma_flags(ifma, 1);
636 	}
637 }
638 
639 /*
640  * Clear recorded source entries for a group.
641  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
642  * FIXME: Should reap.
643  */
644 void
645 inm_clear_recorded(struct in_multi *inm)
646 {
647 	struct ip_msource	*ims;
648 
649 	IN_MULTI_LIST_LOCK_ASSERT();
650 
651 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
652 		if (ims->ims_stp) {
653 			ims->ims_stp = 0;
654 			--inm->inm_st[1].iss_rec;
655 		}
656 	}
657 	KASSERT(inm->inm_st[1].iss_rec == 0,
658 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
659 }
660 
661 /*
662  * Record a source as pending for a Source-Group IGMPv3 query.
663  * This lives here as it modifies the shared tree.
664  *
665  * inm is the group descriptor.
666  * naddr is the address of the source to record in network-byte order.
667  *
668  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
669  * lazy-allocate a source node in response to an SG query.
670  * Otherwise, no allocation is performed. This saves some memory
671  * with the trade-off that the source will not be reported to the
672  * router if joined in the window between the query response and
673  * the group actually being joined on the local host.
674  *
675  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
676  * This turns off the allocation of a recorded source entry if
677  * the group has not been joined.
678  *
679  * Return 0 if the source didn't exist or was already marked as recorded.
680  * Return 1 if the source was marked as recorded by this function.
681  * Return <0 if any error occurred (negated errno code).
682  */
683 int
684 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
685 {
686 	struct ip_msource	 find;
687 	struct ip_msource	*ims, *nims;
688 
689 	IN_MULTI_LIST_LOCK_ASSERT();
690 
691 	find.ims_haddr = ntohl(naddr);
692 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
693 	if (ims && ims->ims_stp)
694 		return (0);
695 	if (ims == NULL) {
696 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
697 			return (-ENOSPC);
698 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
699 		    M_NOWAIT | M_ZERO);
700 		if (nims == NULL)
701 			return (-ENOMEM);
702 		nims->ims_haddr = find.ims_haddr;
703 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
704 		++inm->inm_nsrc;
705 		ims = nims;
706 	}
707 
708 	/*
709 	 * Mark the source as recorded and update the recorded
710 	 * source count.
711 	 */
712 	++ims->ims_stp;
713 	++inm->inm_st[1].iss_rec;
714 
715 	return (1);
716 }
717 
718 /*
719  * Return a pointer to an in_msource owned by an in_mfilter,
720  * given its source address.
721  * Lazy-allocate if needed. If this is a new entry its filter state is
722  * undefined at t0.
723  *
724  * imf is the filter set being modified.
725  * haddr is the source address in *host* byte-order.
726  *
727  * SMPng: May be called with locks held; malloc must not block.
728  */
729 static int
730 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
731     struct in_msource **plims)
732 {
733 	struct ip_msource	 find;
734 	struct ip_msource	*ims, *nims;
735 	struct in_msource	*lims;
736 	int			 error;
737 
738 	error = 0;
739 	ims = NULL;
740 	lims = NULL;
741 
742 	/* key is host byte order */
743 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
744 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
745 	lims = (struct in_msource *)ims;
746 	if (lims == NULL) {
747 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
748 			return (ENOSPC);
749 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
750 		    M_NOWAIT | M_ZERO);
751 		if (nims == NULL)
752 			return (ENOMEM);
753 		lims = (struct in_msource *)nims;
754 		lims->ims_haddr = find.ims_haddr;
755 		lims->imsl_st[0] = MCAST_UNDEFINED;
756 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
757 		++imf->imf_nsrc;
758 	}
759 
760 	*plims = lims;
761 
762 	return (error);
763 }
764 
765 /*
766  * Graft a source entry into an existing socket-layer filter set,
767  * maintaining any required invariants and checking allocations.
768  *
769  * The source is marked as being in the new filter mode at t1.
770  *
771  * Return the pointer to the new node, otherwise return NULL.
772  */
773 static struct in_msource *
774 imf_graft(struct in_mfilter *imf, const uint8_t st1,
775     const struct sockaddr_in *psin)
776 {
777 	struct ip_msource	*nims;
778 	struct in_msource	*lims;
779 
780 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
781 	    M_NOWAIT | M_ZERO);
782 	if (nims == NULL)
783 		return (NULL);
784 	lims = (struct in_msource *)nims;
785 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
786 	lims->imsl_st[0] = MCAST_UNDEFINED;
787 	lims->imsl_st[1] = st1;
788 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
789 	++imf->imf_nsrc;
790 
791 	return (lims);
792 }
793 
794 /*
795  * Prune a source entry from an existing socket-layer filter set,
796  * maintaining any required invariants and checking allocations.
797  *
798  * The source is marked as being left at t1, it is not freed.
799  *
800  * Return 0 if no error occurred, otherwise return an errno value.
801  */
802 static int
803 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
804 {
805 	struct ip_msource	 find;
806 	struct ip_msource	*ims;
807 	struct in_msource	*lims;
808 
809 	/* key is host byte order */
810 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
811 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
812 	if (ims == NULL)
813 		return (ENOENT);
814 	lims = (struct in_msource *)ims;
815 	lims->imsl_st[1] = MCAST_UNDEFINED;
816 	return (0);
817 }
818 
819 /*
820  * Revert socket-layer filter set deltas at t1 to t0 state.
821  */
822 static void
823 imf_rollback(struct in_mfilter *imf)
824 {
825 	struct ip_msource	*ims, *tims;
826 	struct in_msource	*lims;
827 
828 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
829 		lims = (struct in_msource *)ims;
830 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
831 			/* no change at t1 */
832 			continue;
833 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
834 			/* revert change to existing source at t1 */
835 			lims->imsl_st[1] = lims->imsl_st[0];
836 		} else {
837 			/* revert source added t1 */
838 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
839 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
840 			free(ims, M_INMFILTER);
841 			imf->imf_nsrc--;
842 		}
843 	}
844 	imf->imf_st[1] = imf->imf_st[0];
845 }
846 
847 /*
848  * Mark socket-layer filter set as INCLUDE {} at t1.
849  */
850 static void
851 imf_leave(struct in_mfilter *imf)
852 {
853 	struct ip_msource	*ims;
854 	struct in_msource	*lims;
855 
856 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
857 		lims = (struct in_msource *)ims;
858 		lims->imsl_st[1] = MCAST_UNDEFINED;
859 	}
860 	imf->imf_st[1] = MCAST_INCLUDE;
861 }
862 
863 /*
864  * Mark socket-layer filter set deltas as committed.
865  */
866 static void
867 imf_commit(struct in_mfilter *imf)
868 {
869 	struct ip_msource	*ims;
870 	struct in_msource	*lims;
871 
872 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
873 		lims = (struct in_msource *)ims;
874 		lims->imsl_st[0] = lims->imsl_st[1];
875 	}
876 	imf->imf_st[0] = imf->imf_st[1];
877 }
878 
879 /*
880  * Reap unreferenced sources from socket-layer filter set.
881  */
882 static void
883 imf_reap(struct in_mfilter *imf)
884 {
885 	struct ip_msource	*ims, *tims;
886 	struct in_msource	*lims;
887 
888 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
889 		lims = (struct in_msource *)ims;
890 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
891 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
892 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
893 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
894 			free(ims, M_INMFILTER);
895 			imf->imf_nsrc--;
896 		}
897 	}
898 }
899 
900 /*
901  * Purge socket-layer filter set.
902  */
903 static void
904 imf_purge(struct in_mfilter *imf)
905 {
906 	struct ip_msource	*ims, *tims;
907 
908 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
909 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
910 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
911 		free(ims, M_INMFILTER);
912 		imf->imf_nsrc--;
913 	}
914 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
915 	KASSERT(RB_EMPTY(&imf->imf_sources),
916 	    ("%s: imf_sources not empty", __func__));
917 }
918 
919 /*
920  * Look up a source filter entry for a multicast group.
921  *
922  * inm is the group descriptor to work with.
923  * haddr is the host-byte-order IPv4 address to look up.
924  * noalloc may be non-zero to suppress allocation of sources.
925  * *pims will be set to the address of the retrieved or allocated source.
926  *
927  * SMPng: NOTE: may be called with locks held.
928  * Return 0 if successful, otherwise return a non-zero error code.
929  */
930 static int
931 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
932     const int noalloc, struct ip_msource **pims)
933 {
934 	struct ip_msource	 find;
935 	struct ip_msource	*ims, *nims;
936 
937 	find.ims_haddr = haddr;
938 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
939 	if (ims == NULL && !noalloc) {
940 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
941 			return (ENOSPC);
942 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
943 		    M_NOWAIT | M_ZERO);
944 		if (nims == NULL)
945 			return (ENOMEM);
946 		nims->ims_haddr = haddr;
947 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
948 		++inm->inm_nsrc;
949 		ims = nims;
950 #ifdef KTR
951 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
952 		    haddr, ims);
953 #endif
954 	}
955 
956 	*pims = ims;
957 	return (0);
958 }
959 
960 /*
961  * Merge socket-layer source into IGMP-layer source.
962  * If rollback is non-zero, perform the inverse of the merge.
963  */
964 static void
965 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
966     const int rollback)
967 {
968 	int n = rollback ? -1 : 1;
969 
970 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
971 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
972 		    __func__, n, ims->ims_haddr);
973 		ims->ims_st[1].ex -= n;
974 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
975 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
976 		    __func__, n, ims->ims_haddr);
977 		ims->ims_st[1].in -= n;
978 	}
979 
980 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
981 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
982 		    __func__, n, ims->ims_haddr);
983 		ims->ims_st[1].ex += n;
984 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
985 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
986 		    __func__, n, ims->ims_haddr);
987 		ims->ims_st[1].in += n;
988 	}
989 }
990 
991 /*
992  * Atomically update the global in_multi state, when a membership's
993  * filter list is being updated in any way.
994  *
995  * imf is the per-inpcb-membership group filter pointer.
996  * A fake imf may be passed for in-kernel consumers.
997  *
998  * XXX This is a candidate for a set-symmetric-difference style loop
999  * which would eliminate the repeated lookup from root of ims nodes,
1000  * as they share the same key space.
1001  *
1002  * If any error occurred this function will back out of refcounts
1003  * and return a non-zero value.
1004  */
1005 static int
1006 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1007 {
1008 	struct ip_msource	*ims, *nims;
1009 	struct in_msource	*lims;
1010 	int			 schanged, error;
1011 	int			 nsrc0, nsrc1;
1012 
1013 	schanged = 0;
1014 	error = 0;
1015 	nsrc1 = nsrc0 = 0;
1016 	IN_MULTI_LIST_LOCK_ASSERT();
1017 
1018 	/*
1019 	 * Update the source filters first, as this may fail.
1020 	 * Maintain count of in-mode filters at t0, t1. These are
1021 	 * used to work out if we transition into ASM mode or not.
1022 	 * Maintain a count of source filters whose state was
1023 	 * actually modified by this operation.
1024 	 */
1025 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1026 		lims = (struct in_msource *)ims;
1027 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1028 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1029 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1030 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1031 		++schanged;
1032 		if (error)
1033 			break;
1034 		ims_merge(nims, lims, 0);
1035 	}
1036 	if (error) {
1037 		struct ip_msource *bims;
1038 
1039 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1040 			lims = (struct in_msource *)ims;
1041 			if (lims->imsl_st[0] == lims->imsl_st[1])
1042 				continue;
1043 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1044 			if (bims == NULL)
1045 				continue;
1046 			ims_merge(bims, lims, 1);
1047 		}
1048 		goto out_reap;
1049 	}
1050 
1051 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1052 	    __func__, nsrc0, nsrc1);
1053 
1054 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1055 	if (imf->imf_st[0] == imf->imf_st[1] &&
1056 	    imf->imf_st[1] == MCAST_INCLUDE) {
1057 		if (nsrc1 == 0) {
1058 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1059 			--inm->inm_st[1].iss_in;
1060 		}
1061 	}
1062 
1063 	/* Handle filter mode transition on socket. */
1064 	if (imf->imf_st[0] != imf->imf_st[1]) {
1065 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1066 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1067 
1068 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1069 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1070 			--inm->inm_st[1].iss_ex;
1071 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1072 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1073 			--inm->inm_st[1].iss_in;
1074 		}
1075 
1076 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1077 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1078 			inm->inm_st[1].iss_ex++;
1079 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1080 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1081 			inm->inm_st[1].iss_in++;
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Track inm filter state in terms of listener counts.
1087 	 * If there are any exclusive listeners, stack-wide
1088 	 * membership is exclusive.
1089 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1090 	 * If no listeners remain, state is undefined at t1,
1091 	 * and the IGMP lifecycle for this group should finish.
1092 	 */
1093 	if (inm->inm_st[1].iss_ex > 0) {
1094 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1095 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1096 	} else if (inm->inm_st[1].iss_in > 0) {
1097 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1098 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1099 	} else {
1100 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1101 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1102 	}
1103 
1104 	/* Decrement ASM listener count on transition out of ASM mode. */
1105 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1106 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1107 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1108 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1109 			--inm->inm_st[1].iss_asm;
1110 		}
1111 	}
1112 
1113 	/* Increment ASM listener count on transition to ASM mode. */
1114 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1115 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1116 		inm->inm_st[1].iss_asm++;
1117 	}
1118 
1119 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1120 	inm_print(inm);
1121 
1122 out_reap:
1123 	if (schanged > 0) {
1124 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1125 		inm_reap(inm);
1126 	}
1127 	return (error);
1128 }
1129 
1130 /*
1131  * Mark an in_multi's filter set deltas as committed.
1132  * Called by IGMP after a state change has been enqueued.
1133  */
1134 void
1135 inm_commit(struct in_multi *inm)
1136 {
1137 	struct ip_msource	*ims;
1138 
1139 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1140 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1141 	inm_print(inm);
1142 
1143 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1144 		ims->ims_st[0] = ims->ims_st[1];
1145 	}
1146 	inm->inm_st[0] = inm->inm_st[1];
1147 }
1148 
1149 /*
1150  * Reap unreferenced nodes from an in_multi's filter set.
1151  */
1152 static void
1153 inm_reap(struct in_multi *inm)
1154 {
1155 	struct ip_msource	*ims, *tims;
1156 
1157 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1158 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1159 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1160 		    ims->ims_stp != 0)
1161 			continue;
1162 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1163 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1164 		free(ims, M_IPMSOURCE);
1165 		inm->inm_nsrc--;
1166 	}
1167 }
1168 
1169 /*
1170  * Purge all source nodes from an in_multi's filter set.
1171  */
1172 static void
1173 inm_purge(struct in_multi *inm)
1174 {
1175 	struct ip_msource	*ims, *tims;
1176 
1177 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1178 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1179 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1180 		free(ims, M_IPMSOURCE);
1181 		inm->inm_nsrc--;
1182 	}
1183 	mbufq_drain(&inm->inm_scq);
1184 }
1185 
1186 /*
1187  * Join a multicast group; unlocked entry point.
1188  *
1189  * SMPng: XXX: in_joingroup() is called from in_control().  Fortunately,
1190  * ifp is unlikely to have been detached at this point, so we assume
1191  * it's OK to recurse.
1192  */
1193 int
1194 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1195     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1196 {
1197 	int error;
1198 
1199 	IN_MULTI_LOCK();
1200 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1201 	IN_MULTI_UNLOCK();
1202 
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Join a multicast group; real entry point.
1208  *
1209  * Only preserves atomicity at inm level.
1210  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1211  *
1212  * If the IGMP downcall fails, the group is not joined, and an error
1213  * code is returned.
1214  */
1215 int
1216 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1217     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1218 {
1219 	struct in_mfilter	 timf;
1220 	struct in_multi		*inm;
1221 	int			 error;
1222 
1223 	IN_MULTI_LOCK_ASSERT();
1224 	IN_MULTI_LIST_UNLOCK_ASSERT();
1225 
1226 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1227 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1228 
1229 	error = 0;
1230 	inm = NULL;
1231 
1232 	/*
1233 	 * If no imf was specified (i.e. kernel consumer),
1234 	 * fake one up and assume it is an ASM join.
1235 	 */
1236 	if (imf == NULL) {
1237 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1238 		imf = &timf;
1239 	}
1240 
1241 	error = in_getmulti(ifp, gina, &inm);
1242 	if (error) {
1243 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1244 		return (error);
1245 	}
1246 	IN_MULTI_LIST_LOCK();
1247 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1248 	error = inm_merge(inm, imf);
1249 	if (error) {
1250 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1251 		goto out_inm_release;
1252 	}
1253 
1254 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1255 	error = igmp_change_state(inm);
1256 	if (error) {
1257 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1258 		goto out_inm_release;
1259 	}
1260 
1261  out_inm_release:
1262 	if (error) {
1263 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1264 		IF_ADDR_WLOCK(ifp);
1265 		inm_release_deferred(inm);
1266 		IF_ADDR_WUNLOCK(ifp);
1267 	} else {
1268 		*pinm = inm;
1269 	}
1270 	IN_MULTI_LIST_UNLOCK();
1271 
1272 	return (error);
1273 }
1274 
1275 /*
1276  * Leave a multicast group; unlocked entry point.
1277  */
1278 int
1279 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1280 {
1281 	int error;
1282 
1283 	IN_MULTI_LOCK();
1284 	error = in_leavegroup_locked(inm, imf);
1285 	IN_MULTI_UNLOCK();
1286 
1287 	return (error);
1288 }
1289 
1290 /*
1291  * Leave a multicast group; real entry point.
1292  * All source filters will be expunged.
1293  *
1294  * Only preserves atomicity at inm level.
1295  *
1296  * Holding the write lock for the INP which contains imf
1297  * is highly advisable. We can't assert for it as imf does not
1298  * contain a back-pointer to the owning inp.
1299  *
1300  * Note: This is not the same as inm_release(*) as this function also
1301  * makes a state change downcall into IGMP.
1302  */
1303 int
1304 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1305 {
1306 	struct in_mfilter	 timf;
1307 	int			 error;
1308 
1309 	IN_MULTI_LOCK_ASSERT();
1310 	IN_MULTI_LIST_UNLOCK_ASSERT();
1311 
1312 	error = 0;
1313 
1314 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1315 	    inm, ntohl(inm->inm_addr.s_addr),
1316 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1317 	    imf);
1318 
1319 	/*
1320 	 * If no imf was specified (i.e. kernel consumer),
1321 	 * fake one up and assume it is an ASM join.
1322 	 */
1323 	if (imf == NULL) {
1324 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1325 		imf = &timf;
1326 	}
1327 
1328 	/*
1329 	 * Begin state merge transaction at IGMP layer.
1330 	 *
1331 	 * As this particular invocation should not cause any memory
1332 	 * to be allocated, and there is no opportunity to roll back
1333 	 * the transaction, it MUST NOT fail.
1334 	 */
1335 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1336 	IN_MULTI_LIST_LOCK();
1337 	error = inm_merge(inm, imf);
1338 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1339 
1340 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1341 	CURVNET_SET(inm->inm_ifp->if_vnet);
1342 	error = igmp_change_state(inm);
1343 	IF_ADDR_WLOCK(inm->inm_ifp);
1344 	inm_release_deferred(inm);
1345 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1346 	IN_MULTI_LIST_UNLOCK();
1347 	CURVNET_RESTORE();
1348 	if (error)
1349 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1350 
1351 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1352 
1353 	return (error);
1354 }
1355 
1356 /*#ifndef BURN_BRIDGES*/
1357 
1358 /*
1359  * Block or unblock an ASM multicast source on an inpcb.
1360  * This implements the delta-based API described in RFC 3678.
1361  *
1362  * The delta-based API applies only to exclusive-mode memberships.
1363  * An IGMP downcall will be performed.
1364  *
1365  * Return 0 if successful, otherwise return an appropriate error code.
1366  */
1367 static int
1368 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1369 {
1370 	struct epoch_tracker		 et;
1371 	struct group_source_req		 gsr;
1372 	sockunion_t			*gsa, *ssa;
1373 	struct ifnet			*ifp;
1374 	struct in_mfilter		*imf;
1375 	struct ip_moptions		*imo;
1376 	struct in_msource		*ims;
1377 	struct in_multi			*inm;
1378 	uint16_t			 fmode;
1379 	int				 error, doblock;
1380 
1381 	ifp = NULL;
1382 	error = 0;
1383 	doblock = 0;
1384 
1385 	memset(&gsr, 0, sizeof(struct group_source_req));
1386 	gsa = (sockunion_t *)&gsr.gsr_group;
1387 	ssa = (sockunion_t *)&gsr.gsr_source;
1388 
1389 	switch (sopt->sopt_name) {
1390 	case IP_BLOCK_SOURCE:
1391 	case IP_UNBLOCK_SOURCE: {
1392 		struct ip_mreq_source	 mreqs;
1393 
1394 		error = sooptcopyin(sopt, &mreqs,
1395 		    sizeof(struct ip_mreq_source),
1396 		    sizeof(struct ip_mreq_source));
1397 		if (error)
1398 			return (error);
1399 
1400 		gsa->sin.sin_family = AF_INET;
1401 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1402 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1403 
1404 		ssa->sin.sin_family = AF_INET;
1405 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1406 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1407 
1408 		if (!in_nullhost(mreqs.imr_interface)) {
1409 			NET_EPOCH_ENTER(et);
1410 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1411 			/* XXXGL: ifref? */
1412 			NET_EPOCH_EXIT(et);
1413 		}
1414 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1415 			doblock = 1;
1416 
1417 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1418 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1419 		break;
1420 	    }
1421 
1422 	case MCAST_BLOCK_SOURCE:
1423 	case MCAST_UNBLOCK_SOURCE:
1424 		error = sooptcopyin(sopt, &gsr,
1425 		    sizeof(struct group_source_req),
1426 		    sizeof(struct group_source_req));
1427 		if (error)
1428 			return (error);
1429 
1430 		if (gsa->sin.sin_family != AF_INET ||
1431 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1432 			return (EINVAL);
1433 
1434 		if (ssa->sin.sin_family != AF_INET ||
1435 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1436 			return (EINVAL);
1437 
1438 		NET_EPOCH_ENTER(et);
1439 		ifp = ifnet_byindex(gsr.gsr_interface);
1440 		NET_EPOCH_EXIT(et);
1441 		if (ifp == NULL)
1442 			return (EADDRNOTAVAIL);
1443 
1444 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1445 			doblock = 1;
1446 		break;
1447 
1448 	default:
1449 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1450 		    __func__, sopt->sopt_name);
1451 		return (EOPNOTSUPP);
1452 		break;
1453 	}
1454 
1455 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1456 		return (EINVAL);
1457 
1458 	IN_MULTI_LOCK();
1459 
1460 	/*
1461 	 * Check if we are actually a member of this group.
1462 	 */
1463 	imo = inp_findmoptions(inp);
1464 	imf = imo_match_group(imo, ifp, &gsa->sa);
1465 	if (imf == NULL) {
1466 		error = EADDRNOTAVAIL;
1467 		goto out_inp_locked;
1468 	}
1469 	inm = imf->imf_inm;
1470 
1471 	/*
1472 	 * Attempting to use the delta-based API on an
1473 	 * non exclusive-mode membership is an error.
1474 	 */
1475 	fmode = imf->imf_st[0];
1476 	if (fmode != MCAST_EXCLUDE) {
1477 		error = EINVAL;
1478 		goto out_inp_locked;
1479 	}
1480 
1481 	/*
1482 	 * Deal with error cases up-front:
1483 	 *  Asked to block, but already blocked; or
1484 	 *  Asked to unblock, but nothing to unblock.
1485 	 * If adding a new block entry, allocate it.
1486 	 */
1487 	ims = imo_match_source(imf, &ssa->sa);
1488 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1489 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1490 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1491 		error = EADDRNOTAVAIL;
1492 		goto out_inp_locked;
1493 	}
1494 
1495 	INP_WLOCK_ASSERT(inp);
1496 
1497 	/*
1498 	 * Begin state merge transaction at socket layer.
1499 	 */
1500 	if (doblock) {
1501 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1502 		ims = imf_graft(imf, fmode, &ssa->sin);
1503 		if (ims == NULL)
1504 			error = ENOMEM;
1505 	} else {
1506 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1507 		error = imf_prune(imf, &ssa->sin);
1508 	}
1509 
1510 	if (error) {
1511 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1512 		goto out_imf_rollback;
1513 	}
1514 
1515 	/*
1516 	 * Begin state merge transaction at IGMP layer.
1517 	 */
1518 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1519 	IN_MULTI_LIST_LOCK();
1520 	error = inm_merge(inm, imf);
1521 	if (error) {
1522 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1523 		IN_MULTI_LIST_UNLOCK();
1524 		goto out_imf_rollback;
1525 	}
1526 
1527 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1528 	error = igmp_change_state(inm);
1529 	IN_MULTI_LIST_UNLOCK();
1530 	if (error)
1531 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1532 
1533 out_imf_rollback:
1534 	if (error)
1535 		imf_rollback(imf);
1536 	else
1537 		imf_commit(imf);
1538 
1539 	imf_reap(imf);
1540 
1541 out_inp_locked:
1542 	INP_WUNLOCK(inp);
1543 	IN_MULTI_UNLOCK();
1544 	return (error);
1545 }
1546 
1547 /*
1548  * Given an inpcb, return its multicast options structure pointer.  Accepts
1549  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1550  *
1551  * SMPng: NOTE: Returns with the INP write lock held.
1552  */
1553 static struct ip_moptions *
1554 inp_findmoptions(struct inpcb *inp)
1555 {
1556 	struct ip_moptions	 *imo;
1557 
1558 	INP_WLOCK(inp);
1559 	if (inp->inp_moptions != NULL)
1560 		return (inp->inp_moptions);
1561 
1562 	INP_WUNLOCK(inp);
1563 
1564 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1565 
1566 	imo->imo_multicast_ifp = NULL;
1567 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1568 	imo->imo_multicast_vif = -1;
1569 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1570 	imo->imo_multicast_loop = in_mcast_loop;
1571 	STAILQ_INIT(&imo->imo_head);
1572 
1573 	INP_WLOCK(inp);
1574 	if (inp->inp_moptions != NULL) {
1575 		free(imo, M_IPMOPTS);
1576 		return (inp->inp_moptions);
1577 	}
1578 	inp->inp_moptions = imo;
1579 	return (imo);
1580 }
1581 
1582 void
1583 inp_freemoptions(struct ip_moptions *imo)
1584 {
1585 	struct in_mfilter *imf;
1586 	struct in_multi *inm;
1587 	struct ifnet *ifp;
1588 
1589 	if (imo == NULL)
1590 		return;
1591 
1592 	while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1593 		ip_mfilter_remove(&imo->imo_head, imf);
1594 
1595 		imf_leave(imf);
1596 		if ((inm = imf->imf_inm) != NULL) {
1597 			if ((ifp = inm->inm_ifp) != NULL) {
1598 				CURVNET_SET(ifp->if_vnet);
1599 				(void)in_leavegroup(inm, imf);
1600 				CURVNET_RESTORE();
1601 			} else {
1602 				(void)in_leavegroup(inm, imf);
1603 			}
1604 		}
1605 		ip_mfilter_free(imf);
1606 	}
1607 	free(imo, M_IPMOPTS);
1608 }
1609 
1610 /*
1611  * Atomically get source filters on a socket for an IPv4 multicast group.
1612  * Called with INP lock held; returns with lock released.
1613  */
1614 static int
1615 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1616 {
1617 	struct epoch_tracker	 et;
1618 	struct __msfilterreq	 msfr;
1619 	sockunion_t		*gsa;
1620 	struct ifnet		*ifp;
1621 	struct ip_moptions	*imo;
1622 	struct in_mfilter	*imf;
1623 	struct ip_msource	*ims;
1624 	struct in_msource	*lims;
1625 	struct sockaddr_in	*psin;
1626 	struct sockaddr_storage	*ptss;
1627 	struct sockaddr_storage	*tss;
1628 	int			 error;
1629 	size_t			 nsrcs, ncsrcs;
1630 
1631 	INP_WLOCK_ASSERT(inp);
1632 
1633 	imo = inp->inp_moptions;
1634 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1635 
1636 	INP_WUNLOCK(inp);
1637 
1638 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1639 	    sizeof(struct __msfilterreq));
1640 	if (error)
1641 		return (error);
1642 
1643 	NET_EPOCH_ENTER(et);
1644 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1645 	NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifnet pointer left */
1646 	if (ifp == NULL)
1647 		return (EINVAL);
1648 
1649 	INP_WLOCK(inp);
1650 
1651 	/*
1652 	 * Lookup group on the socket.
1653 	 */
1654 	gsa = (sockunion_t *)&msfr.msfr_group;
1655 	imf = imo_match_group(imo, ifp, &gsa->sa);
1656 	if (imf == NULL) {
1657 		INP_WUNLOCK(inp);
1658 		return (EADDRNOTAVAIL);
1659 	}
1660 
1661 	/*
1662 	 * Ignore memberships which are in limbo.
1663 	 */
1664 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1665 		INP_WUNLOCK(inp);
1666 		return (EAGAIN);
1667 	}
1668 	msfr.msfr_fmode = imf->imf_st[1];
1669 
1670 	/*
1671 	 * If the user specified a buffer, copy out the source filter
1672 	 * entries to userland gracefully.
1673 	 * We only copy out the number of entries which userland
1674 	 * has asked for, but we always tell userland how big the
1675 	 * buffer really needs to be.
1676 	 */
1677 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1678 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1679 	tss = NULL;
1680 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1681 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1682 		    M_TEMP, M_NOWAIT | M_ZERO);
1683 		if (tss == NULL) {
1684 			INP_WUNLOCK(inp);
1685 			return (ENOBUFS);
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * Count number of sources in-mode at t0.
1691 	 * If buffer space exists and remains, copy out source entries.
1692 	 */
1693 	nsrcs = msfr.msfr_nsrcs;
1694 	ncsrcs = 0;
1695 	ptss = tss;
1696 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1697 		lims = (struct in_msource *)ims;
1698 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1699 		    lims->imsl_st[0] != imf->imf_st[0])
1700 			continue;
1701 		++ncsrcs;
1702 		if (tss != NULL && nsrcs > 0) {
1703 			psin = (struct sockaddr_in *)ptss;
1704 			psin->sin_family = AF_INET;
1705 			psin->sin_len = sizeof(struct sockaddr_in);
1706 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1707 			psin->sin_port = 0;
1708 			++ptss;
1709 			--nsrcs;
1710 		}
1711 	}
1712 
1713 	INP_WUNLOCK(inp);
1714 
1715 	if (tss != NULL) {
1716 		error = copyout(tss, msfr.msfr_srcs,
1717 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1718 		free(tss, M_TEMP);
1719 		if (error)
1720 			return (error);
1721 	}
1722 
1723 	msfr.msfr_nsrcs = ncsrcs;
1724 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1725 
1726 	return (error);
1727 }
1728 
1729 /*
1730  * Return the IP multicast options in response to user getsockopt().
1731  */
1732 int
1733 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1734 {
1735 	struct ip_mreqn		 mreqn;
1736 	struct ip_moptions	*imo;
1737 	struct ifnet		*ifp;
1738 	struct in_ifaddr	*ia;
1739 	int			 error, optval;
1740 	u_char			 coptval;
1741 
1742 	INP_WLOCK(inp);
1743 	imo = inp->inp_moptions;
1744 	/* If socket is neither of type SOCK_RAW or SOCK_DGRAM reject it. */
1745 	if (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1746 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) {
1747 		INP_WUNLOCK(inp);
1748 		return (EOPNOTSUPP);
1749 	}
1750 
1751 	error = 0;
1752 	switch (sopt->sopt_name) {
1753 	case IP_MULTICAST_VIF:
1754 		if (imo != NULL)
1755 			optval = imo->imo_multicast_vif;
1756 		else
1757 			optval = -1;
1758 		INP_WUNLOCK(inp);
1759 		error = sooptcopyout(sopt, &optval, sizeof(int));
1760 		break;
1761 
1762 	case IP_MULTICAST_IF:
1763 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1764 		if (imo != NULL) {
1765 			ifp = imo->imo_multicast_ifp;
1766 			if (!in_nullhost(imo->imo_multicast_addr)) {
1767 				mreqn.imr_address = imo->imo_multicast_addr;
1768 			} else if (ifp != NULL) {
1769 				struct epoch_tracker et;
1770 
1771 				mreqn.imr_ifindex = ifp->if_index;
1772 				NET_EPOCH_ENTER(et);
1773 				IFP_TO_IA(ifp, ia);
1774 				if (ia != NULL)
1775 					mreqn.imr_address =
1776 					    IA_SIN(ia)->sin_addr;
1777 				NET_EPOCH_EXIT(et);
1778 			}
1779 		}
1780 		INP_WUNLOCK(inp);
1781 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1782 			error = sooptcopyout(sopt, &mreqn,
1783 			    sizeof(struct ip_mreqn));
1784 		} else {
1785 			error = sooptcopyout(sopt, &mreqn.imr_address,
1786 			    sizeof(struct in_addr));
1787 		}
1788 		break;
1789 
1790 	case IP_MULTICAST_TTL:
1791 		if (imo == NULL)
1792 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1793 		else
1794 			optval = coptval = imo->imo_multicast_ttl;
1795 		INP_WUNLOCK(inp);
1796 		if (sopt->sopt_valsize == sizeof(u_char))
1797 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1798 		else
1799 			error = sooptcopyout(sopt, &optval, sizeof(int));
1800 		break;
1801 
1802 	case IP_MULTICAST_LOOP:
1803 		if (imo == NULL)
1804 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1805 		else
1806 			optval = coptval = imo->imo_multicast_loop;
1807 		INP_WUNLOCK(inp);
1808 		if (sopt->sopt_valsize == sizeof(u_char))
1809 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1810 		else
1811 			error = sooptcopyout(sopt, &optval, sizeof(int));
1812 		break;
1813 
1814 	case IP_MSFILTER:
1815 		if (imo == NULL) {
1816 			error = EADDRNOTAVAIL;
1817 			INP_WUNLOCK(inp);
1818 		} else {
1819 			error = inp_get_source_filters(inp, sopt);
1820 		}
1821 		break;
1822 
1823 	default:
1824 		INP_WUNLOCK(inp);
1825 		error = ENOPROTOOPT;
1826 		break;
1827 	}
1828 
1829 	INP_UNLOCK_ASSERT(inp);
1830 
1831 	return (error);
1832 }
1833 
1834 /*
1835  * Look up the ifnet to use for a multicast group membership,
1836  * given the IPv4 address of an interface, and the IPv4 group address.
1837  *
1838  * This routine exists to support legacy multicast applications
1839  * which do not understand that multicast memberships are scoped to
1840  * specific physical links in the networking stack, or which need
1841  * to join link-scope groups before IPv4 addresses are configured.
1842  *
1843  * Use this socket's current FIB number for any required FIB lookup.
1844  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1845  * and use its ifp; usually, this points to the default next-hop.
1846  *
1847  * If the FIB lookup fails, attempt to use the first non-loopback
1848  * interface with multicast capability in the system as a
1849  * last resort. The legacy IPv4 ASM API requires that we do
1850  * this in order to allow groups to be joined when the routing
1851  * table has not yet been populated during boot.
1852  *
1853  * Returns NULL if no ifp could be found, otherwise return referenced ifp.
1854  *
1855  * FUTURE: Implement IPv4 source-address selection.
1856  */
1857 static struct ifnet *
1858 inp_lookup_mcast_ifp(const struct inpcb *inp,
1859     const struct sockaddr_in *gsin, const struct in_addr ina)
1860 {
1861 	struct ifnet *ifp;
1862 	struct nhop_object *nh;
1863 
1864 	NET_EPOCH_ASSERT();
1865 	KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__));
1866 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1867 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1868 	    ("%s: not multicast", __func__));
1869 
1870 	ifp = NULL;
1871 	if (!in_nullhost(ina)) {
1872 		INADDR_TO_IFP(ina, ifp);
1873 		if (ifp != NULL)
1874 			if_ref(ifp);
1875 	} else {
1876 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0);
1877 		if (nh != NULL) {
1878 			ifp = nh->nh_ifp;
1879 			if_ref(ifp);
1880 		} else {
1881 			struct in_ifaddr *ia;
1882 			struct ifnet *mifp;
1883 
1884 			mifp = NULL;
1885 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1886 				mifp = ia->ia_ifp;
1887 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1888 				     (mifp->if_flags & IFF_MULTICAST)) {
1889 					ifp = mifp;
1890 					if_ref(ifp);
1891 					break;
1892 				}
1893 			}
1894 		}
1895 	}
1896 
1897 	return (ifp);
1898 }
1899 
1900 /*
1901  * Join an IPv4 multicast group, possibly with a source.
1902  */
1903 static int
1904 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1905 {
1906 	struct group_source_req		 gsr;
1907 	sockunion_t			*gsa, *ssa;
1908 	struct ifnet			*ifp;
1909 	struct in_mfilter		*imf;
1910 	struct ip_moptions		*imo;
1911 	struct in_multi			*inm;
1912 	struct in_msource		*lims;
1913 	struct epoch_tracker		 et;
1914 	int				 error, is_new;
1915 
1916 	ifp = NULL;
1917 	lims = NULL;
1918 	error = 0;
1919 
1920 	memset(&gsr, 0, sizeof(struct group_source_req));
1921 	gsa = (sockunion_t *)&gsr.gsr_group;
1922 	gsa->ss.ss_family = AF_UNSPEC;
1923 	ssa = (sockunion_t *)&gsr.gsr_source;
1924 	ssa->ss.ss_family = AF_UNSPEC;
1925 
1926 	switch (sopt->sopt_name) {
1927 	case IP_ADD_MEMBERSHIP: {
1928 		struct ip_mreqn mreqn;
1929 
1930 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1931 			error = sooptcopyin(sopt, &mreqn,
1932 			    sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1933 		else
1934 			error = sooptcopyin(sopt, &mreqn,
1935 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1936 		if (error)
1937 			return (error);
1938 
1939 		gsa->sin.sin_family = AF_INET;
1940 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1941 		gsa->sin.sin_addr = mreqn.imr_multiaddr;
1942 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1943 			return (EINVAL);
1944 
1945 		NET_EPOCH_ENTER(et);
1946 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
1947 		    mreqn.imr_ifindex != 0)
1948 			ifp = ifnet_byindex_ref(mreqn.imr_ifindex);
1949 		else
1950 			ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1951 			    mreqn.imr_address);
1952 		NET_EPOCH_EXIT(et);
1953 		break;
1954 	}
1955 	case IP_ADD_SOURCE_MEMBERSHIP: {
1956 		struct ip_mreq_source	 mreqs;
1957 
1958 		error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
1959 			    sizeof(struct ip_mreq_source));
1960 		if (error)
1961 			return (error);
1962 
1963 		gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
1964 		gsa->sin.sin_len = ssa->sin.sin_len =
1965 		    sizeof(struct sockaddr_in);
1966 
1967 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1968 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1969 			return (EINVAL);
1970 
1971 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1972 
1973 		NET_EPOCH_ENTER(et);
1974 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1975 		    mreqs.imr_interface);
1976 		NET_EPOCH_EXIT(et);
1977 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1978 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1979 		break;
1980 	}
1981 
1982 	case MCAST_JOIN_GROUP:
1983 	case MCAST_JOIN_SOURCE_GROUP:
1984 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1985 			error = sooptcopyin(sopt, &gsr,
1986 			    sizeof(struct group_req),
1987 			    sizeof(struct group_req));
1988 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1989 			error = sooptcopyin(sopt, &gsr,
1990 			    sizeof(struct group_source_req),
1991 			    sizeof(struct group_source_req));
1992 		}
1993 		if (error)
1994 			return (error);
1995 
1996 		if (gsa->sin.sin_family != AF_INET ||
1997 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1998 			return (EINVAL);
1999 
2000 		/*
2001 		 * Overwrite the port field if present, as the sockaddr
2002 		 * being copied in may be matched with a binary comparison.
2003 		 */
2004 		gsa->sin.sin_port = 0;
2005 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2006 			if (ssa->sin.sin_family != AF_INET ||
2007 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2008 				return (EINVAL);
2009 			ssa->sin.sin_port = 0;
2010 		}
2011 
2012 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2013 			return (EINVAL);
2014 
2015 		NET_EPOCH_ENTER(et);
2016 		ifp = ifnet_byindex_ref(gsr.gsr_interface);
2017 		NET_EPOCH_EXIT(et);
2018 		if (ifp == NULL)
2019 			return (EADDRNOTAVAIL);
2020 		break;
2021 
2022 	default:
2023 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2024 		    __func__, sopt->sopt_name);
2025 		return (EOPNOTSUPP);
2026 		break;
2027 	}
2028 
2029 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2030 		if (ifp != NULL)
2031 			if_rele(ifp);
2032 		return (EADDRNOTAVAIL);
2033 	}
2034 
2035 	IN_MULTI_LOCK();
2036 
2037 	/*
2038 	 * Find the membership in the membership list.
2039 	 */
2040 	imo = inp_findmoptions(inp);
2041 	imf = imo_match_group(imo, ifp, &gsa->sa);
2042 	if (imf == NULL) {
2043 		is_new = 1;
2044 		inm = NULL;
2045 
2046 		if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2047 			error = ENOMEM;
2048 			goto out_inp_locked;
2049 		}
2050 	} else {
2051 		is_new = 0;
2052 		inm = imf->imf_inm;
2053 
2054 		if (ssa->ss.ss_family != AF_UNSPEC) {
2055 			/*
2056 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2057 			 * is an error. On an existing inclusive membership,
2058 			 * it just adds the source to the filter list.
2059 			 */
2060 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2061 				error = EINVAL;
2062 				goto out_inp_locked;
2063 			}
2064 			/*
2065 			 * Throw out duplicates.
2066 			 *
2067 			 * XXX FIXME: This makes a naive assumption that
2068 			 * even if entries exist for *ssa in this imf,
2069 			 * they will be rejected as dupes, even if they
2070 			 * are not valid in the current mode (in-mode).
2071 			 *
2072 			 * in_msource is transactioned just as for anything
2073 			 * else in SSM -- but note naive use of inm_graft()
2074 			 * below for allocating new filter entries.
2075 			 *
2076 			 * This is only an issue if someone mixes the
2077 			 * full-state SSM API with the delta-based API,
2078 			 * which is discouraged in the relevant RFCs.
2079 			 */
2080 			lims = imo_match_source(imf, &ssa->sa);
2081 			if (lims != NULL /*&&
2082 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2083 				error = EADDRNOTAVAIL;
2084 				goto out_inp_locked;
2085 			}
2086 		} else {
2087 			/*
2088 			 * MCAST_JOIN_GROUP on an existing exclusive
2089 			 * membership is an error; return EADDRINUSE
2090 			 * to preserve 4.4BSD API idempotence, and
2091 			 * avoid tedious detour to code below.
2092 			 * NOTE: This is bending RFC 3678 a bit.
2093 			 *
2094 			 * On an existing inclusive membership, this is also
2095 			 * an error; if you want to change filter mode,
2096 			 * you must use the userland API setsourcefilter().
2097 			 * XXX We don't reject this for imf in UNDEFINED
2098 			 * state at t1, because allocation of a filter
2099 			 * is atomic with allocation of a membership.
2100 			 */
2101 			error = EINVAL;
2102 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2103 				error = EADDRINUSE;
2104 			goto out_inp_locked;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * Begin state merge transaction at socket layer.
2110 	 */
2111 	INP_WLOCK_ASSERT(inp);
2112 
2113 	/*
2114 	 * Graft new source into filter list for this inpcb's
2115 	 * membership of the group. The in_multi may not have
2116 	 * been allocated yet if this is a new membership, however,
2117 	 * the in_mfilter slot will be allocated and must be initialized.
2118 	 *
2119 	 * Note: Grafting of exclusive mode filters doesn't happen
2120 	 * in this path.
2121 	 * XXX: Should check for non-NULL lims (node exists but may
2122 	 * not be in-mode) for interop with full-state API.
2123 	 */
2124 	if (ssa->ss.ss_family != AF_UNSPEC) {
2125 		/* Membership starts in IN mode */
2126 		if (is_new) {
2127 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2128 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2129 			if (imf == NULL) {
2130 				error = ENOMEM;
2131 				goto out_inp_locked;
2132 			}
2133 		} else {
2134 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2135 		}
2136 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2137 		if (lims == NULL) {
2138 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2139 			    __func__);
2140 			error = ENOMEM;
2141 			goto out_inp_locked;
2142 		}
2143 	} else {
2144 		/* No address specified; Membership starts in EX mode */
2145 		if (is_new) {
2146 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2147 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2148 			if (imf == NULL) {
2149 				error = ENOMEM;
2150 				goto out_inp_locked;
2151 			}
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * Begin state merge transaction at IGMP layer.
2157 	 */
2158 	if (is_new) {
2159 		in_pcbref(inp);
2160 		INP_WUNLOCK(inp);
2161 
2162 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2163 		    &imf->imf_inm);
2164 
2165 		INP_WLOCK(inp);
2166 		if (in_pcbrele_wlocked(inp)) {
2167 			error = ENXIO;
2168 			goto out_inp_unlocked;
2169 		}
2170 		if (error) {
2171                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2172                             __func__);
2173 			goto out_inp_locked;
2174 		}
2175 		/*
2176 		 * NOTE: Refcount from in_joingroup_locked()
2177 		 * is protecting membership.
2178 		 */
2179 		ip_mfilter_insert(&imo->imo_head, imf);
2180 	} else {
2181 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2182 		IN_MULTI_LIST_LOCK();
2183 		error = inm_merge(inm, imf);
2184 		if (error) {
2185 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2186 				 __func__);
2187 			IN_MULTI_LIST_UNLOCK();
2188 			imf_rollback(imf);
2189 			imf_reap(imf);
2190 			goto out_inp_locked;
2191 		}
2192 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2193 		error = igmp_change_state(inm);
2194 		IN_MULTI_LIST_UNLOCK();
2195 		if (error) {
2196 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2197 			    __func__);
2198 			imf_rollback(imf);
2199 			imf_reap(imf);
2200 			goto out_inp_locked;
2201 		}
2202 	}
2203 
2204 	imf_commit(imf);
2205 	imf = NULL;
2206 
2207 out_inp_locked:
2208 	INP_WUNLOCK(inp);
2209 out_inp_unlocked:
2210 	IN_MULTI_UNLOCK();
2211 
2212 	if (is_new && imf) {
2213 		if (imf->imf_inm != NULL) {
2214 			IN_MULTI_LIST_LOCK();
2215 			IF_ADDR_WLOCK(ifp);
2216 			inm_release_deferred(imf->imf_inm);
2217 			IF_ADDR_WUNLOCK(ifp);
2218 			IN_MULTI_LIST_UNLOCK();
2219 		}
2220 		ip_mfilter_free(imf);
2221 	}
2222 	if_rele(ifp);
2223 	return (error);
2224 }
2225 
2226 /*
2227  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2228  */
2229 static int
2230 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2231 {
2232 	struct epoch_tracker		 et;
2233 	struct group_source_req		 gsr;
2234 	struct ip_mreq_source		 mreqs;
2235 	sockunion_t			*gsa, *ssa;
2236 	struct ifnet			*ifp;
2237 	struct in_mfilter		*imf;
2238 	struct ip_moptions		*imo;
2239 	struct in_msource		*ims;
2240 	struct in_multi			*inm;
2241 	int				 error;
2242 	bool				 is_final;
2243 
2244 	ifp = NULL;
2245 	error = 0;
2246 	is_final = true;
2247 
2248 	memset(&gsr, 0, sizeof(struct group_source_req));
2249 	gsa = (sockunion_t *)&gsr.gsr_group;
2250 	gsa->ss.ss_family = AF_UNSPEC;
2251 	ssa = (sockunion_t *)&gsr.gsr_source;
2252 	ssa->ss.ss_family = AF_UNSPEC;
2253 
2254 	switch (sopt->sopt_name) {
2255 	case IP_DROP_MEMBERSHIP:
2256 	case IP_DROP_SOURCE_MEMBERSHIP:
2257 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2258 			error = sooptcopyin(sopt, &mreqs,
2259 			    sizeof(struct ip_mreq),
2260 			    sizeof(struct ip_mreq));
2261 			/*
2262 			 * Swap interface and sourceaddr arguments,
2263 			 * as ip_mreq and ip_mreq_source are laid
2264 			 * out differently.
2265 			 */
2266 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2267 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2268 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2269 			error = sooptcopyin(sopt, &mreqs,
2270 			    sizeof(struct ip_mreq_source),
2271 			    sizeof(struct ip_mreq_source));
2272 		}
2273 		if (error)
2274 			return (error);
2275 
2276 		gsa->sin.sin_family = AF_INET;
2277 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2278 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2279 
2280 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2281 			ssa->sin.sin_family = AF_INET;
2282 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2283 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2284 		}
2285 
2286 		/*
2287 		 * Attempt to look up hinted ifp from interface address.
2288 		 * Fallthrough with null ifp iff lookup fails, to
2289 		 * preserve 4.4BSD mcast API idempotence.
2290 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2291 		 * using an IPv4 address as a key is racy.
2292 		 */
2293 		if (!in_nullhost(mreqs.imr_interface)) {
2294 			NET_EPOCH_ENTER(et);
2295 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2296 			/* XXXGL ifref? */
2297 			NET_EPOCH_EXIT(et);
2298 		}
2299 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2300 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2301 
2302 		break;
2303 
2304 	case MCAST_LEAVE_GROUP:
2305 	case MCAST_LEAVE_SOURCE_GROUP:
2306 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2307 			error = sooptcopyin(sopt, &gsr,
2308 			    sizeof(struct group_req),
2309 			    sizeof(struct group_req));
2310 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2311 			error = sooptcopyin(sopt, &gsr,
2312 			    sizeof(struct group_source_req),
2313 			    sizeof(struct group_source_req));
2314 		}
2315 		if (error)
2316 			return (error);
2317 
2318 		if (gsa->sin.sin_family != AF_INET ||
2319 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2320 			return (EINVAL);
2321 
2322 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2323 			if (ssa->sin.sin_family != AF_INET ||
2324 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2325 				return (EINVAL);
2326 		}
2327 
2328 		NET_EPOCH_ENTER(et);
2329 		ifp = ifnet_byindex(gsr.gsr_interface);
2330 		NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2331 		if (ifp == NULL)
2332 			return (EADDRNOTAVAIL);
2333 		break;
2334 
2335 	default:
2336 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2337 		    __func__, sopt->sopt_name);
2338 		return (EOPNOTSUPP);
2339 		break;
2340 	}
2341 
2342 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2343 		return (EINVAL);
2344 
2345 	IN_MULTI_LOCK();
2346 
2347 	/*
2348 	 * Find the membership in the membership list.
2349 	 */
2350 	imo = inp_findmoptions(inp);
2351 	imf = imo_match_group(imo, ifp, &gsa->sa);
2352 	if (imf == NULL) {
2353 		error = EADDRNOTAVAIL;
2354 		goto out_inp_locked;
2355 	}
2356 	inm = imf->imf_inm;
2357 
2358 	if (ssa->ss.ss_family != AF_UNSPEC)
2359 		is_final = false;
2360 
2361 	/*
2362 	 * Begin state merge transaction at socket layer.
2363 	 */
2364 	INP_WLOCK_ASSERT(inp);
2365 
2366 	/*
2367 	 * If we were instructed only to leave a given source, do so.
2368 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2369 	 */
2370 	if (is_final) {
2371 		ip_mfilter_remove(&imo->imo_head, imf);
2372 		imf_leave(imf);
2373 
2374 		/*
2375 		 * Give up the multicast address record to which
2376 		 * the membership points.
2377 		 */
2378 		(void) in_leavegroup_locked(imf->imf_inm, imf);
2379 	} else {
2380 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2381 			error = EADDRNOTAVAIL;
2382 			goto out_inp_locked;
2383 		}
2384 		ims = imo_match_source(imf, &ssa->sa);
2385 		if (ims == NULL) {
2386 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2387 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2388 			error = EADDRNOTAVAIL;
2389 			goto out_inp_locked;
2390 		}
2391 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2392 		error = imf_prune(imf, &ssa->sin);
2393 		if (error) {
2394 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2395 			    __func__);
2396 			goto out_inp_locked;
2397 		}
2398 	}
2399 
2400 	/*
2401 	 * Begin state merge transaction at IGMP layer.
2402 	 */
2403 	if (!is_final) {
2404 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2405 		IN_MULTI_LIST_LOCK();
2406 		error = inm_merge(inm, imf);
2407 		if (error) {
2408 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2409 			    __func__);
2410 			IN_MULTI_LIST_UNLOCK();
2411 			imf_rollback(imf);
2412 			imf_reap(imf);
2413 			goto out_inp_locked;
2414 		}
2415 
2416 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2417 		error = igmp_change_state(inm);
2418 		IN_MULTI_LIST_UNLOCK();
2419 		if (error) {
2420 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2421 			    __func__);
2422 			imf_rollback(imf);
2423 			imf_reap(imf);
2424 			goto out_inp_locked;
2425 		}
2426 	}
2427 	imf_commit(imf);
2428 	imf_reap(imf);
2429 
2430 out_inp_locked:
2431 	INP_WUNLOCK(inp);
2432 
2433 	if (is_final && imf)
2434 		ip_mfilter_free(imf);
2435 
2436 	IN_MULTI_UNLOCK();
2437 	return (error);
2438 }
2439 
2440 /*
2441  * Select the interface for transmitting IPv4 multicast datagrams.
2442  *
2443  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2444  * may be passed to this socket option. An address of INADDR_ANY or an
2445  * interface index of 0 is used to remove a previous selection.
2446  * When no interface is selected, one is chosen for every send.
2447  */
2448 static int
2449 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2450 {
2451 	struct in_addr		 addr;
2452 	struct ip_mreqn		 mreqn;
2453 	struct ifnet		*ifp;
2454 	struct ip_moptions	*imo;
2455 	int			 error;
2456 
2457 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2458 		/*
2459 		 * An interface index was specified using the
2460 		 * Linux-derived ip_mreqn structure.
2461 		 */
2462 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2463 		    sizeof(struct ip_mreqn));
2464 		if (error)
2465 			return (error);
2466 
2467 		if (mreqn.imr_ifindex < 0)
2468 			return (EINVAL);
2469 
2470 		if (mreqn.imr_ifindex == 0) {
2471 			ifp = NULL;
2472 		} else {
2473 			struct epoch_tracker et;
2474 
2475 			NET_EPOCH_ENTER(et);
2476 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2477 			NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2478 			if (ifp == NULL)
2479 				return (EADDRNOTAVAIL);
2480 		}
2481 	} else {
2482 		/*
2483 		 * An interface was specified by IPv4 address.
2484 		 * This is the traditional BSD usage.
2485 		 */
2486 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2487 		    sizeof(struct in_addr));
2488 		if (error)
2489 			return (error);
2490 		if (in_nullhost(addr)) {
2491 			ifp = NULL;
2492 		} else {
2493 			struct epoch_tracker et;
2494 
2495 			NET_EPOCH_ENTER(et);
2496 			INADDR_TO_IFP(addr, ifp);
2497 			/* XXXGL ifref? */
2498 			NET_EPOCH_EXIT(et);
2499 			if (ifp == NULL)
2500 				return (EADDRNOTAVAIL);
2501 		}
2502 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2503 		    ntohl(addr.s_addr));
2504 	}
2505 
2506 	/* Reject interfaces which do not support multicast. */
2507 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2508 		return (EOPNOTSUPP);
2509 
2510 	imo = inp_findmoptions(inp);
2511 	imo->imo_multicast_ifp = ifp;
2512 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2513 	INP_WUNLOCK(inp);
2514 
2515 	return (0);
2516 }
2517 
2518 /*
2519  * Atomically set source filters on a socket for an IPv4 multicast group.
2520  */
2521 static int
2522 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2523 {
2524 	struct epoch_tracker	 et;
2525 	struct __msfilterreq	 msfr;
2526 	sockunion_t		*gsa;
2527 	struct ifnet		*ifp;
2528 	struct in_mfilter	*imf;
2529 	struct ip_moptions	*imo;
2530 	struct in_multi		*inm;
2531 	int			 error;
2532 
2533 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2534 	    sizeof(struct __msfilterreq));
2535 	if (error)
2536 		return (error);
2537 
2538 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2539 		return (ENOBUFS);
2540 
2541 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2542 	     msfr.msfr_fmode != MCAST_INCLUDE))
2543 		return (EINVAL);
2544 
2545 	if (msfr.msfr_group.ss_family != AF_INET ||
2546 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2547 		return (EINVAL);
2548 
2549 	gsa = (sockunion_t *)&msfr.msfr_group;
2550 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2551 		return (EINVAL);
2552 
2553 	gsa->sin.sin_port = 0;	/* ignore port */
2554 
2555 	NET_EPOCH_ENTER(et);
2556 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2557 	NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2558 	if (ifp == NULL)
2559 		return (EADDRNOTAVAIL);
2560 
2561 	IN_MULTI_LOCK();
2562 
2563 	/*
2564 	 * Take the INP write lock.
2565 	 * Check if this socket is a member of this group.
2566 	 */
2567 	imo = inp_findmoptions(inp);
2568 	imf = imo_match_group(imo, ifp, &gsa->sa);
2569 	if (imf == NULL) {
2570 		error = EADDRNOTAVAIL;
2571 		goto out_inp_locked;
2572 	}
2573 	inm = imf->imf_inm;
2574 
2575 	/*
2576 	 * Begin state merge transaction at socket layer.
2577 	 */
2578 	INP_WLOCK_ASSERT(inp);
2579 
2580 	imf->imf_st[1] = msfr.msfr_fmode;
2581 
2582 	/*
2583 	 * Apply any new source filters, if present.
2584 	 * Make a copy of the user-space source vector so
2585 	 * that we may copy them with a single copyin. This
2586 	 * allows us to deal with page faults up-front.
2587 	 */
2588 	if (msfr.msfr_nsrcs > 0) {
2589 		struct in_msource	*lims;
2590 		struct sockaddr_in	*psin;
2591 		struct sockaddr_storage	*kss, *pkss;
2592 		int			 i;
2593 
2594 		INP_WUNLOCK(inp);
2595 
2596 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2597 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2598 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2599 		    M_TEMP, M_WAITOK);
2600 		error = copyin(msfr.msfr_srcs, kss,
2601 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2602 		if (error) {
2603 			free(kss, M_TEMP);
2604 			return (error);
2605 		}
2606 
2607 		INP_WLOCK(inp);
2608 
2609 		/*
2610 		 * Mark all source filters as UNDEFINED at t1.
2611 		 * Restore new group filter mode, as imf_leave()
2612 		 * will set it to INCLUDE.
2613 		 */
2614 		imf_leave(imf);
2615 		imf->imf_st[1] = msfr.msfr_fmode;
2616 
2617 		/*
2618 		 * Update socket layer filters at t1, lazy-allocating
2619 		 * new entries. This saves a bunch of memory at the
2620 		 * cost of one RB_FIND() per source entry; duplicate
2621 		 * entries in the msfr_nsrcs vector are ignored.
2622 		 * If we encounter an error, rollback transaction.
2623 		 *
2624 		 * XXX This too could be replaced with a set-symmetric
2625 		 * difference like loop to avoid walking from root
2626 		 * every time, as the key space is common.
2627 		 */
2628 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2629 			psin = (struct sockaddr_in *)pkss;
2630 			if (psin->sin_family != AF_INET) {
2631 				error = EAFNOSUPPORT;
2632 				break;
2633 			}
2634 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2635 				error = EINVAL;
2636 				break;
2637 			}
2638 			error = imf_get_source(imf, psin, &lims);
2639 			if (error)
2640 				break;
2641 			lims->imsl_st[1] = imf->imf_st[1];
2642 		}
2643 		free(kss, M_TEMP);
2644 	}
2645 
2646 	if (error)
2647 		goto out_imf_rollback;
2648 
2649 	INP_WLOCK_ASSERT(inp);
2650 
2651 	/*
2652 	 * Begin state merge transaction at IGMP layer.
2653 	 */
2654 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2655 	IN_MULTI_LIST_LOCK();
2656 	error = inm_merge(inm, imf);
2657 	if (error) {
2658 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2659 		IN_MULTI_LIST_UNLOCK();
2660 		goto out_imf_rollback;
2661 	}
2662 
2663 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2664 	error = igmp_change_state(inm);
2665 	IN_MULTI_LIST_UNLOCK();
2666 	if (error)
2667 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2668 
2669 out_imf_rollback:
2670 	if (error)
2671 		imf_rollback(imf);
2672 	else
2673 		imf_commit(imf);
2674 
2675 	imf_reap(imf);
2676 
2677 out_inp_locked:
2678 	INP_WUNLOCK(inp);
2679 	IN_MULTI_UNLOCK();
2680 	return (error);
2681 }
2682 
2683 /*
2684  * Set the IP multicast options in response to user setsockopt().
2685  *
2686  * Many of the socket options handled in this function duplicate the
2687  * functionality of socket options in the regular unicast API. However,
2688  * it is not possible to merge the duplicate code, because the idempotence
2689  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2690  * the effects of these options must be treated as separate and distinct.
2691  *
2692  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2693  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2694  * is refactored to no longer use vifs.
2695  */
2696 int
2697 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2698 {
2699 	struct ip_moptions	*imo;
2700 	int			 error;
2701 
2702 	error = 0;
2703 
2704 	/* If socket is neither of type SOCK_RAW or SOCK_DGRAM, reject it. */
2705 	if (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2706 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)
2707 		return (EOPNOTSUPP);
2708 
2709 	switch (sopt->sopt_name) {
2710 	case IP_MULTICAST_VIF: {
2711 		int vifi;
2712 		/*
2713 		 * Select a multicast VIF for transmission.
2714 		 * Only useful if multicast forwarding is active.
2715 		 */
2716 		if (legal_vif_num == NULL) {
2717 			error = EOPNOTSUPP;
2718 			break;
2719 		}
2720 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2721 		if (error)
2722 			break;
2723 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2724 			error = EINVAL;
2725 			break;
2726 		}
2727 		imo = inp_findmoptions(inp);
2728 		imo->imo_multicast_vif = vifi;
2729 		INP_WUNLOCK(inp);
2730 		break;
2731 	}
2732 
2733 	case IP_MULTICAST_IF:
2734 		error = inp_set_multicast_if(inp, sopt);
2735 		break;
2736 
2737 	case IP_MULTICAST_TTL: {
2738 		u_char ttl;
2739 
2740 		/*
2741 		 * Set the IP time-to-live for outgoing multicast packets.
2742 		 * The original multicast API required a char argument,
2743 		 * which is inconsistent with the rest of the socket API.
2744 		 * We allow either a char or an int.
2745 		 */
2746 		if (sopt->sopt_valsize == sizeof(u_char)) {
2747 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2748 			    sizeof(u_char));
2749 			if (error)
2750 				break;
2751 		} else {
2752 			u_int ittl;
2753 
2754 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2755 			    sizeof(u_int));
2756 			if (error)
2757 				break;
2758 			if (ittl > 255) {
2759 				error = EINVAL;
2760 				break;
2761 			}
2762 			ttl = (u_char)ittl;
2763 		}
2764 		imo = inp_findmoptions(inp);
2765 		imo->imo_multicast_ttl = ttl;
2766 		INP_WUNLOCK(inp);
2767 		break;
2768 	}
2769 
2770 	case IP_MULTICAST_LOOP: {
2771 		u_char loop;
2772 
2773 		/*
2774 		 * Set the loopback flag for outgoing multicast packets.
2775 		 * Must be zero or one.  The original multicast API required a
2776 		 * char argument, which is inconsistent with the rest
2777 		 * of the socket API.  We allow either a char or an int.
2778 		 */
2779 		if (sopt->sopt_valsize == sizeof(u_char)) {
2780 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2781 			    sizeof(u_char));
2782 			if (error)
2783 				break;
2784 		} else {
2785 			u_int iloop;
2786 
2787 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2788 					    sizeof(u_int));
2789 			if (error)
2790 				break;
2791 			loop = (u_char)iloop;
2792 		}
2793 		imo = inp_findmoptions(inp);
2794 		imo->imo_multicast_loop = !!loop;
2795 		INP_WUNLOCK(inp);
2796 		break;
2797 	}
2798 
2799 	case IP_ADD_MEMBERSHIP:
2800 	case IP_ADD_SOURCE_MEMBERSHIP:
2801 	case MCAST_JOIN_GROUP:
2802 	case MCAST_JOIN_SOURCE_GROUP:
2803 		error = inp_join_group(inp, sopt);
2804 		break;
2805 
2806 	case IP_DROP_MEMBERSHIP:
2807 	case IP_DROP_SOURCE_MEMBERSHIP:
2808 	case MCAST_LEAVE_GROUP:
2809 	case MCAST_LEAVE_SOURCE_GROUP:
2810 		error = inp_leave_group(inp, sopt);
2811 		break;
2812 
2813 	case IP_BLOCK_SOURCE:
2814 	case IP_UNBLOCK_SOURCE:
2815 	case MCAST_BLOCK_SOURCE:
2816 	case MCAST_UNBLOCK_SOURCE:
2817 		error = inp_block_unblock_source(inp, sopt);
2818 		break;
2819 
2820 	case IP_MSFILTER:
2821 		error = inp_set_source_filters(inp, sopt);
2822 		break;
2823 
2824 	default:
2825 		error = EOPNOTSUPP;
2826 		break;
2827 	}
2828 
2829 	INP_UNLOCK_ASSERT(inp);
2830 
2831 	return (error);
2832 }
2833 
2834 /*
2835  * Expose IGMP's multicast filter mode and source list(s) to userland,
2836  * keyed by (ifindex, group).
2837  * The filter mode is written out as a uint32_t, followed by
2838  * 0..n of struct in_addr.
2839  * For use by ifmcstat(8).
2840  * SMPng: NOTE: unlocked read of ifindex space.
2841  */
2842 static int
2843 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2844 {
2845 	struct in_addr			 src, group;
2846 	struct epoch_tracker		 et;
2847 	struct ifnet			*ifp;
2848 	struct ifmultiaddr		*ifma;
2849 	struct in_multi			*inm;
2850 	struct ip_msource		*ims;
2851 	int				*name;
2852 	int				 retval;
2853 	u_int				 namelen;
2854 	uint32_t			 fmode, ifindex;
2855 
2856 	name = (int *)arg1;
2857 	namelen = arg2;
2858 
2859 	if (req->newptr != NULL)
2860 		return (EPERM);
2861 
2862 	if (namelen != 2)
2863 		return (EINVAL);
2864 
2865 	group.s_addr = name[1];
2866 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2867 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2868 		    __func__, ntohl(group.s_addr));
2869 		return (EINVAL);
2870 	}
2871 
2872 	ifindex = name[0];
2873 	NET_EPOCH_ENTER(et);
2874 	ifp = ifnet_byindex(ifindex);
2875 	if (ifp == NULL) {
2876 		NET_EPOCH_EXIT(et);
2877 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2878 		    __func__, ifindex);
2879 		return (ENOENT);
2880 	}
2881 
2882 	retval = sysctl_wire_old_buffer(req,
2883 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2884 	if (retval) {
2885 		NET_EPOCH_EXIT(et);
2886 		return (retval);
2887 	}
2888 
2889 	IN_MULTI_LIST_LOCK();
2890 
2891 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2892 		inm = inm_ifmultiaddr_get_inm(ifma);
2893 		if (inm == NULL)
2894 			continue;
2895 		if (!in_hosteq(inm->inm_addr, group))
2896 			continue;
2897 		fmode = inm->inm_st[1].iss_fmode;
2898 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2899 		if (retval != 0)
2900 			break;
2901 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2902 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2903 			    ims->ims_haddr);
2904 			/*
2905 			 * Only copy-out sources which are in-mode.
2906 			 */
2907 			if (fmode != ims_get_mode(inm, ims, 1)) {
2908 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2909 				    __func__);
2910 				continue;
2911 			}
2912 			src.s_addr = htonl(ims->ims_haddr);
2913 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2914 			if (retval != 0)
2915 				break;
2916 		}
2917 	}
2918 
2919 	IN_MULTI_LIST_UNLOCK();
2920 	NET_EPOCH_EXIT(et);
2921 
2922 	return (retval);
2923 }
2924 
2925 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2926 
2927 static const char *inm_modestrs[] = {
2928 	[MCAST_UNDEFINED] = "un",
2929 	[MCAST_INCLUDE] = "in",
2930 	[MCAST_EXCLUDE] = "ex",
2931 };
2932 _Static_assert(MCAST_UNDEFINED == 0 &&
2933 	       MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
2934 	       "inm_modestrs: no longer matches #defines");
2935 
2936 static const char *
2937 inm_mode_str(const int mode)
2938 {
2939 
2940 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2941 		return (inm_modestrs[mode]);
2942 	return ("??");
2943 }
2944 
2945 static const char *inm_statestrs[] = {
2946 	[IGMP_NOT_MEMBER] = "not-member",
2947 	[IGMP_SILENT_MEMBER] = "silent",
2948 	[IGMP_REPORTING_MEMBER] = "reporting",
2949 	[IGMP_IDLE_MEMBER] = "idle",
2950 	[IGMP_LAZY_MEMBER] = "lazy",
2951 	[IGMP_SLEEPING_MEMBER] = "sleeping",
2952 	[IGMP_AWAKENING_MEMBER] = "awakening",
2953 	[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
2954 	[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
2955 	[IGMP_LEAVING_MEMBER] = "leaving",
2956 };
2957 _Static_assert(IGMP_NOT_MEMBER == 0 &&
2958 	       IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
2959 	       "inm_statetrs: no longer matches #defines");
2960 
2961 static const char *
2962 inm_state_str(const int state)
2963 {
2964 
2965 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2966 		return (inm_statestrs[state]);
2967 	return ("??");
2968 }
2969 
2970 /*
2971  * Dump an in_multi structure to the console.
2972  */
2973 void
2974 inm_print(const struct in_multi *inm)
2975 {
2976 	int t;
2977 	char addrbuf[INET_ADDRSTRLEN];
2978 
2979 	if ((ktr_mask & KTR_IGMPV3) == 0)
2980 		return;
2981 
2982 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2983 	printf("addr %s ifp %p(%s) ifma %p\n",
2984 	    inet_ntoa_r(inm->inm_addr, addrbuf),
2985 	    inm->inm_ifp,
2986 	    inm->inm_ifp->if_xname,
2987 	    inm->inm_ifma);
2988 	printf("timer %u state %s refcount %u scq.len %u\n",
2989 	    inm->inm_timer,
2990 	    inm_state_str(inm->inm_state),
2991 	    inm->inm_refcount,
2992 	    inm->inm_scq.mq_len);
2993 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2994 	    inm->inm_igi,
2995 	    inm->inm_nsrc,
2996 	    inm->inm_sctimer,
2997 	    inm->inm_scrv);
2998 	for (t = 0; t < 2; t++) {
2999 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3000 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3001 		    inm->inm_st[t].iss_asm,
3002 		    inm->inm_st[t].iss_ex,
3003 		    inm->inm_st[t].iss_in,
3004 		    inm->inm_st[t].iss_rec);
3005 	}
3006 	printf("%s: --- end inm %p ---\n", __func__, inm);
3007 }
3008 
3009 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3010 
3011 void
3012 inm_print(const struct in_multi *inm)
3013 {
3014 
3015 }
3016 
3017 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3018 
3019 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3020