1 /*- 2 * Copyright (c) 2007-2009 Bruce Simpson. 3 * Copyright (c) 2005 Robert N. M. Watson. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * IPv4 multicast socket, group, and socket option processing module. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/protosw.h> 47 #include <sys/sysctl.h> 48 #include <sys/ktr.h> 49 #include <sys/taskqueue.h> 50 #include <sys/tree.h> 51 52 #include <net/if.h> 53 #include <net/if_dl.h> 54 #include <net/route.h> 55 #include <net/vnet.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip_var.h> 62 #include <netinet/igmp_var.h> 63 64 #ifndef KTR_IGMPV3 65 #define KTR_IGMPV3 KTR_INET 66 #endif 67 68 #ifndef __SOCKUNION_DECLARED 69 union sockunion { 70 struct sockaddr_storage ss; 71 struct sockaddr sa; 72 struct sockaddr_dl sdl; 73 struct sockaddr_in sin; 74 }; 75 typedef union sockunion sockunion_t; 76 #define __SOCKUNION_DECLARED 77 #endif /* __SOCKUNION_DECLARED */ 78 79 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 80 "IPv4 multicast PCB-layer source filter"); 81 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 82 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 83 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 84 "IPv4 multicast IGMP-layer source filter"); 85 86 /* 87 * Locking: 88 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 89 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 90 * it can be taken by code in net/if.c also. 91 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 92 * 93 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly 94 * any need for in_multi itself to be virtualized -- it is bound to an ifp 95 * anyway no matter what happens. 96 */ 97 struct mtx in_multi_mtx; 98 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF); 99 100 /* 101 * Functions with non-static linkage defined in this file should be 102 * declared in in_var.h: 103 * imo_multi_filter() 104 * in_addmulti() 105 * in_delmulti() 106 * in_joingroup() 107 * in_joingroup_locked() 108 * in_leavegroup() 109 * in_leavegroup_locked() 110 * and ip_var.h: 111 * inp_freemoptions() 112 * inp_getmoptions() 113 * inp_setmoptions() 114 * 115 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 116 * and in_delmulti(). 117 */ 118 static void imf_commit(struct in_mfilter *); 119 static int imf_get_source(struct in_mfilter *imf, 120 const struct sockaddr_in *psin, 121 struct in_msource **); 122 static struct in_msource * 123 imf_graft(struct in_mfilter *, const uint8_t, 124 const struct sockaddr_in *); 125 static void imf_leave(struct in_mfilter *); 126 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 127 static void imf_purge(struct in_mfilter *); 128 static void imf_rollback(struct in_mfilter *); 129 static void imf_reap(struct in_mfilter *); 130 static int imo_grow(struct ip_moptions *); 131 static size_t imo_match_group(const struct ip_moptions *, 132 const struct ifnet *, const struct sockaddr *); 133 static struct in_msource * 134 imo_match_source(const struct ip_moptions *, const size_t, 135 const struct sockaddr *); 136 static void ims_merge(struct ip_msource *ims, 137 const struct in_msource *lims, const int rollback); 138 static int in_getmulti(struct ifnet *, const struct in_addr *, 139 struct in_multi **); 140 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 141 const int noalloc, struct ip_msource **pims); 142 static int inm_is_ifp_detached(const struct in_multi *); 143 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 144 static void inm_purge(struct in_multi *); 145 static void inm_reap(struct in_multi *); 146 static struct ip_moptions * 147 inp_findmoptions(struct inpcb *); 148 static void inp_freemoptions_internal(struct ip_moptions *); 149 static void inp_gcmoptions(void *, int); 150 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 151 static int inp_join_group(struct inpcb *, struct sockopt *); 152 static int inp_leave_group(struct inpcb *, struct sockopt *); 153 static struct ifnet * 154 inp_lookup_mcast_ifp(const struct inpcb *, 155 const struct sockaddr_in *, const struct in_addr); 156 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 157 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 158 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 159 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 160 161 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, 162 "IPv4 multicast"); 163 164 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 165 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 166 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0, 167 "Max source filters per group"); 168 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc); 169 170 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 171 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 172 CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0, 173 "Max source filters per socket"); 174 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc); 175 176 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 177 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN, 178 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 179 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop); 180 181 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 182 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 183 "Per-interface stack-wide source filters"); 184 185 static STAILQ_HEAD(, ip_moptions) imo_gc_list = 186 STAILQ_HEAD_INITIALIZER(imo_gc_list); 187 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL); 188 189 /* 190 * Inline function which wraps assertions for a valid ifp. 191 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 192 * is detached. 193 */ 194 static int __inline 195 inm_is_ifp_detached(const struct in_multi *inm) 196 { 197 struct ifnet *ifp; 198 199 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 200 ifp = inm->inm_ifma->ifma_ifp; 201 if (ifp != NULL) { 202 /* 203 * Sanity check that netinet's notion of ifp is the 204 * same as net's. 205 */ 206 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 207 } 208 209 return (ifp == NULL); 210 } 211 212 /* 213 * Initialize an in_mfilter structure to a known state at t0, t1 214 * with an empty source filter list. 215 */ 216 static __inline void 217 imf_init(struct in_mfilter *imf, const int st0, const int st1) 218 { 219 memset(imf, 0, sizeof(struct in_mfilter)); 220 RB_INIT(&imf->imf_sources); 221 imf->imf_st[0] = st0; 222 imf->imf_st[1] = st1; 223 } 224 225 /* 226 * Resize the ip_moptions vector to the next power-of-two minus 1. 227 * May be called with locks held; do not sleep. 228 */ 229 static int 230 imo_grow(struct ip_moptions *imo) 231 { 232 struct in_multi **nmships; 233 struct in_multi **omships; 234 struct in_mfilter *nmfilters; 235 struct in_mfilter *omfilters; 236 size_t idx; 237 size_t newmax; 238 size_t oldmax; 239 240 nmships = NULL; 241 nmfilters = NULL; 242 omships = imo->imo_membership; 243 omfilters = imo->imo_mfilters; 244 oldmax = imo->imo_max_memberships; 245 newmax = ((oldmax + 1) * 2) - 1; 246 247 if (newmax <= IP_MAX_MEMBERSHIPS) { 248 nmships = (struct in_multi **)realloc(omships, 249 sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT); 250 nmfilters = (struct in_mfilter *)realloc(omfilters, 251 sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT); 252 if (nmships != NULL && nmfilters != NULL) { 253 /* Initialize newly allocated source filter heads. */ 254 for (idx = oldmax; idx < newmax; idx++) { 255 imf_init(&nmfilters[idx], MCAST_UNDEFINED, 256 MCAST_EXCLUDE); 257 } 258 imo->imo_max_memberships = newmax; 259 imo->imo_membership = nmships; 260 imo->imo_mfilters = nmfilters; 261 } 262 } 263 264 if (nmships == NULL || nmfilters == NULL) { 265 if (nmships != NULL) 266 free(nmships, M_IPMOPTS); 267 if (nmfilters != NULL) 268 free(nmfilters, M_INMFILTER); 269 return (ETOOMANYREFS); 270 } 271 272 return (0); 273 } 274 275 /* 276 * Find an IPv4 multicast group entry for this ip_moptions instance 277 * which matches the specified group, and optionally an interface. 278 * Return its index into the array, or -1 if not found. 279 */ 280 static size_t 281 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 282 const struct sockaddr *group) 283 { 284 const struct sockaddr_in *gsin; 285 struct in_multi **pinm; 286 int idx; 287 int nmships; 288 289 gsin = (const struct sockaddr_in *)group; 290 291 /* The imo_membership array may be lazy allocated. */ 292 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) 293 return (-1); 294 295 nmships = imo->imo_num_memberships; 296 pinm = &imo->imo_membership[0]; 297 for (idx = 0; idx < nmships; idx++, pinm++) { 298 if (*pinm == NULL) 299 continue; 300 if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) && 301 in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) { 302 break; 303 } 304 } 305 if (idx >= nmships) 306 idx = -1; 307 308 return (idx); 309 } 310 311 /* 312 * Find an IPv4 multicast source entry for this imo which matches 313 * the given group index for this socket, and source address. 314 * 315 * NOTE: This does not check if the entry is in-mode, merely if 316 * it exists, which may not be the desired behaviour. 317 */ 318 static struct in_msource * 319 imo_match_source(const struct ip_moptions *imo, const size_t gidx, 320 const struct sockaddr *src) 321 { 322 struct ip_msource find; 323 struct in_mfilter *imf; 324 struct ip_msource *ims; 325 const sockunion_t *psa; 326 327 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 328 KASSERT(gidx != -1 && gidx < imo->imo_num_memberships, 329 ("%s: invalid index %d\n", __func__, (int)gidx)); 330 331 /* The imo_mfilters array may be lazy allocated. */ 332 if (imo->imo_mfilters == NULL) 333 return (NULL); 334 imf = &imo->imo_mfilters[gidx]; 335 336 /* Source trees are keyed in host byte order. */ 337 psa = (const sockunion_t *)src; 338 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 339 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 340 341 return ((struct in_msource *)ims); 342 } 343 344 /* 345 * Perform filtering for multicast datagrams on a socket by group and source. 346 * 347 * Returns 0 if a datagram should be allowed through, or various error codes 348 * if the socket was not a member of the group, or the source was muted, etc. 349 */ 350 int 351 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 352 const struct sockaddr *group, const struct sockaddr *src) 353 { 354 size_t gidx; 355 struct in_msource *ims; 356 int mode; 357 358 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 359 360 gidx = imo_match_group(imo, ifp, group); 361 if (gidx == -1) 362 return (MCAST_NOTGMEMBER); 363 364 /* 365 * Check if the source was included in an (S,G) join. 366 * Allow reception on exclusive memberships by default, 367 * reject reception on inclusive memberships by default. 368 * Exclude source only if an in-mode exclude filter exists. 369 * Include source only if an in-mode include filter exists. 370 * NOTE: We are comparing group state here at IGMP t1 (now) 371 * with socket-layer t0 (since last downcall). 372 */ 373 mode = imo->imo_mfilters[gidx].imf_st[1]; 374 ims = imo_match_source(imo, gidx, src); 375 376 if ((ims == NULL && mode == MCAST_INCLUDE) || 377 (ims != NULL && ims->imsl_st[0] != mode)) 378 return (MCAST_NOTSMEMBER); 379 380 return (MCAST_PASS); 381 } 382 383 /* 384 * Find and return a reference to an in_multi record for (ifp, group), 385 * and bump its reference count. 386 * If one does not exist, try to allocate it, and update link-layer multicast 387 * filters on ifp to listen for group. 388 * Assumes the IN_MULTI lock is held across the call. 389 * Return 0 if successful, otherwise return an appropriate error code. 390 */ 391 static int 392 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 393 struct in_multi **pinm) 394 { 395 struct sockaddr_in gsin; 396 struct ifmultiaddr *ifma; 397 struct in_ifinfo *ii; 398 struct in_multi *inm; 399 int error; 400 401 IN_MULTI_LOCK_ASSERT(); 402 403 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 404 405 inm = inm_lookup(ifp, *group); 406 if (inm != NULL) { 407 /* 408 * If we already joined this group, just bump the 409 * refcount and return it. 410 */ 411 KASSERT(inm->inm_refcount >= 1, 412 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 413 ++inm->inm_refcount; 414 *pinm = inm; 415 return (0); 416 } 417 418 memset(&gsin, 0, sizeof(gsin)); 419 gsin.sin_family = AF_INET; 420 gsin.sin_len = sizeof(struct sockaddr_in); 421 gsin.sin_addr = *group; 422 423 /* 424 * Check if a link-layer group is already associated 425 * with this network-layer group on the given ifnet. 426 */ 427 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 428 if (error != 0) 429 return (error); 430 431 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 432 IF_ADDR_WLOCK(ifp); 433 434 /* 435 * If something other than netinet is occupying the link-layer 436 * group, print a meaningful error message and back out of 437 * the allocation. 438 * Otherwise, bump the refcount on the existing network-layer 439 * group association and return it. 440 */ 441 if (ifma->ifma_protospec != NULL) { 442 inm = (struct in_multi *)ifma->ifma_protospec; 443 #ifdef INVARIANTS 444 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 445 __func__)); 446 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 447 ("%s: ifma not AF_INET", __func__)); 448 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 449 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 450 !in_hosteq(inm->inm_addr, *group)) 451 panic("%s: ifma %p is inconsistent with %p (%s)", 452 __func__, ifma, inm, inet_ntoa(*group)); 453 #endif 454 ++inm->inm_refcount; 455 *pinm = inm; 456 IF_ADDR_WUNLOCK(ifp); 457 return (0); 458 } 459 460 IF_ADDR_WLOCK_ASSERT(ifp); 461 462 /* 463 * A new in_multi record is needed; allocate and initialize it. 464 * We DO NOT perform an IGMP join as the in_ layer may need to 465 * push an initial source list down to IGMP to support SSM. 466 * 467 * The initial source filter state is INCLUDE, {} as per the RFC. 468 */ 469 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 470 if (inm == NULL) { 471 if_delmulti_ifma(ifma); 472 IF_ADDR_WUNLOCK(ifp); 473 return (ENOMEM); 474 } 475 inm->inm_addr = *group; 476 inm->inm_ifp = ifp; 477 inm->inm_igi = ii->ii_igmp; 478 inm->inm_ifma = ifma; 479 inm->inm_refcount = 1; 480 inm->inm_state = IGMP_NOT_MEMBER; 481 482 /* 483 * Pending state-changes per group are subject to a bounds check. 484 */ 485 IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 486 487 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 488 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 489 RB_INIT(&inm->inm_srcs); 490 491 ifma->ifma_protospec = inm; 492 493 *pinm = inm; 494 495 IF_ADDR_WUNLOCK(ifp); 496 return (0); 497 } 498 499 /* 500 * Drop a reference to an in_multi record. 501 * 502 * If the refcount drops to 0, free the in_multi record and 503 * delete the underlying link-layer membership. 504 */ 505 void 506 inm_release_locked(struct in_multi *inm) 507 { 508 struct ifmultiaddr *ifma; 509 510 IN_MULTI_LOCK_ASSERT(); 511 512 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 513 514 if (--inm->inm_refcount > 0) { 515 CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__, 516 inm->inm_refcount); 517 return; 518 } 519 520 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 521 522 ifma = inm->inm_ifma; 523 524 /* XXX this access is not covered by IF_ADDR_LOCK */ 525 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 526 KASSERT(ifma->ifma_protospec == inm, 527 ("%s: ifma_protospec != inm", __func__)); 528 ifma->ifma_protospec = NULL; 529 530 inm_purge(inm); 531 532 free(inm, M_IPMADDR); 533 534 if_delmulti_ifma(ifma); 535 } 536 537 /* 538 * Clear recorded source entries for a group. 539 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 540 * FIXME: Should reap. 541 */ 542 void 543 inm_clear_recorded(struct in_multi *inm) 544 { 545 struct ip_msource *ims; 546 547 IN_MULTI_LOCK_ASSERT(); 548 549 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 550 if (ims->ims_stp) { 551 ims->ims_stp = 0; 552 --inm->inm_st[1].iss_rec; 553 } 554 } 555 KASSERT(inm->inm_st[1].iss_rec == 0, 556 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 557 } 558 559 /* 560 * Record a source as pending for a Source-Group IGMPv3 query. 561 * This lives here as it modifies the shared tree. 562 * 563 * inm is the group descriptor. 564 * naddr is the address of the source to record in network-byte order. 565 * 566 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 567 * lazy-allocate a source node in response to an SG query. 568 * Otherwise, no allocation is performed. This saves some memory 569 * with the trade-off that the source will not be reported to the 570 * router if joined in the window between the query response and 571 * the group actually being joined on the local host. 572 * 573 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 574 * This turns off the allocation of a recorded source entry if 575 * the group has not been joined. 576 * 577 * Return 0 if the source didn't exist or was already marked as recorded. 578 * Return 1 if the source was marked as recorded by this function. 579 * Return <0 if any error occured (negated errno code). 580 */ 581 int 582 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 583 { 584 struct ip_msource find; 585 struct ip_msource *ims, *nims; 586 587 IN_MULTI_LOCK_ASSERT(); 588 589 find.ims_haddr = ntohl(naddr); 590 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 591 if (ims && ims->ims_stp) 592 return (0); 593 if (ims == NULL) { 594 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 595 return (-ENOSPC); 596 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 597 M_NOWAIT | M_ZERO); 598 if (nims == NULL) 599 return (-ENOMEM); 600 nims->ims_haddr = find.ims_haddr; 601 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 602 ++inm->inm_nsrc; 603 ims = nims; 604 } 605 606 /* 607 * Mark the source as recorded and update the recorded 608 * source count. 609 */ 610 ++ims->ims_stp; 611 ++inm->inm_st[1].iss_rec; 612 613 return (1); 614 } 615 616 /* 617 * Return a pointer to an in_msource owned by an in_mfilter, 618 * given its source address. 619 * Lazy-allocate if needed. If this is a new entry its filter state is 620 * undefined at t0. 621 * 622 * imf is the filter set being modified. 623 * haddr is the source address in *host* byte-order. 624 * 625 * SMPng: May be called with locks held; malloc must not block. 626 */ 627 static int 628 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 629 struct in_msource **plims) 630 { 631 struct ip_msource find; 632 struct ip_msource *ims, *nims; 633 struct in_msource *lims; 634 int error; 635 636 error = 0; 637 ims = NULL; 638 lims = NULL; 639 640 /* key is host byte order */ 641 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 642 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 643 lims = (struct in_msource *)ims; 644 if (lims == NULL) { 645 if (imf->imf_nsrc == in_mcast_maxsocksrc) 646 return (ENOSPC); 647 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 648 M_NOWAIT | M_ZERO); 649 if (nims == NULL) 650 return (ENOMEM); 651 lims = (struct in_msource *)nims; 652 lims->ims_haddr = find.ims_haddr; 653 lims->imsl_st[0] = MCAST_UNDEFINED; 654 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 655 ++imf->imf_nsrc; 656 } 657 658 *plims = lims; 659 660 return (error); 661 } 662 663 /* 664 * Graft a source entry into an existing socket-layer filter set, 665 * maintaining any required invariants and checking allocations. 666 * 667 * The source is marked as being in the new filter mode at t1. 668 * 669 * Return the pointer to the new node, otherwise return NULL. 670 */ 671 static struct in_msource * 672 imf_graft(struct in_mfilter *imf, const uint8_t st1, 673 const struct sockaddr_in *psin) 674 { 675 struct ip_msource *nims; 676 struct in_msource *lims; 677 678 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 679 M_NOWAIT | M_ZERO); 680 if (nims == NULL) 681 return (NULL); 682 lims = (struct in_msource *)nims; 683 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 684 lims->imsl_st[0] = MCAST_UNDEFINED; 685 lims->imsl_st[1] = st1; 686 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 687 ++imf->imf_nsrc; 688 689 return (lims); 690 } 691 692 /* 693 * Prune a source entry from an existing socket-layer filter set, 694 * maintaining any required invariants and checking allocations. 695 * 696 * The source is marked as being left at t1, it is not freed. 697 * 698 * Return 0 if no error occurred, otherwise return an errno value. 699 */ 700 static int 701 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 702 { 703 struct ip_msource find; 704 struct ip_msource *ims; 705 struct in_msource *lims; 706 707 /* key is host byte order */ 708 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 709 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 710 if (ims == NULL) 711 return (ENOENT); 712 lims = (struct in_msource *)ims; 713 lims->imsl_st[1] = MCAST_UNDEFINED; 714 return (0); 715 } 716 717 /* 718 * Revert socket-layer filter set deltas at t1 to t0 state. 719 */ 720 static void 721 imf_rollback(struct in_mfilter *imf) 722 { 723 struct ip_msource *ims, *tims; 724 struct in_msource *lims; 725 726 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 727 lims = (struct in_msource *)ims; 728 if (lims->imsl_st[0] == lims->imsl_st[1]) { 729 /* no change at t1 */ 730 continue; 731 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 732 /* revert change to existing source at t1 */ 733 lims->imsl_st[1] = lims->imsl_st[0]; 734 } else { 735 /* revert source added t1 */ 736 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 737 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 738 free(ims, M_INMFILTER); 739 imf->imf_nsrc--; 740 } 741 } 742 imf->imf_st[1] = imf->imf_st[0]; 743 } 744 745 /* 746 * Mark socket-layer filter set as INCLUDE {} at t1. 747 */ 748 static void 749 imf_leave(struct in_mfilter *imf) 750 { 751 struct ip_msource *ims; 752 struct in_msource *lims; 753 754 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 755 lims = (struct in_msource *)ims; 756 lims->imsl_st[1] = MCAST_UNDEFINED; 757 } 758 imf->imf_st[1] = MCAST_INCLUDE; 759 } 760 761 /* 762 * Mark socket-layer filter set deltas as committed. 763 */ 764 static void 765 imf_commit(struct in_mfilter *imf) 766 { 767 struct ip_msource *ims; 768 struct in_msource *lims; 769 770 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 771 lims = (struct in_msource *)ims; 772 lims->imsl_st[0] = lims->imsl_st[1]; 773 } 774 imf->imf_st[0] = imf->imf_st[1]; 775 } 776 777 /* 778 * Reap unreferenced sources from socket-layer filter set. 779 */ 780 static void 781 imf_reap(struct in_mfilter *imf) 782 { 783 struct ip_msource *ims, *tims; 784 struct in_msource *lims; 785 786 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 787 lims = (struct in_msource *)ims; 788 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 789 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 790 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 791 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 792 free(ims, M_INMFILTER); 793 imf->imf_nsrc--; 794 } 795 } 796 } 797 798 /* 799 * Purge socket-layer filter set. 800 */ 801 static void 802 imf_purge(struct in_mfilter *imf) 803 { 804 struct ip_msource *ims, *tims; 805 806 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 807 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 808 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 809 free(ims, M_INMFILTER); 810 imf->imf_nsrc--; 811 } 812 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 813 KASSERT(RB_EMPTY(&imf->imf_sources), 814 ("%s: imf_sources not empty", __func__)); 815 } 816 817 /* 818 * Look up a source filter entry for a multicast group. 819 * 820 * inm is the group descriptor to work with. 821 * haddr is the host-byte-order IPv4 address to look up. 822 * noalloc may be non-zero to suppress allocation of sources. 823 * *pims will be set to the address of the retrieved or allocated source. 824 * 825 * SMPng: NOTE: may be called with locks held. 826 * Return 0 if successful, otherwise return a non-zero error code. 827 */ 828 static int 829 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 830 const int noalloc, struct ip_msource **pims) 831 { 832 struct ip_msource find; 833 struct ip_msource *ims, *nims; 834 #ifdef KTR 835 struct in_addr ia; 836 #endif 837 838 find.ims_haddr = haddr; 839 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 840 if (ims == NULL && !noalloc) { 841 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 842 return (ENOSPC); 843 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 844 M_NOWAIT | M_ZERO); 845 if (nims == NULL) 846 return (ENOMEM); 847 nims->ims_haddr = haddr; 848 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 849 ++inm->inm_nsrc; 850 ims = nims; 851 #ifdef KTR 852 ia.s_addr = htonl(haddr); 853 CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__, 854 inet_ntoa(ia), ims); 855 #endif 856 } 857 858 *pims = ims; 859 return (0); 860 } 861 862 /* 863 * Merge socket-layer source into IGMP-layer source. 864 * If rollback is non-zero, perform the inverse of the merge. 865 */ 866 static void 867 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 868 const int rollback) 869 { 870 int n = rollback ? -1 : 1; 871 #ifdef KTR 872 struct in_addr ia; 873 874 ia.s_addr = htonl(ims->ims_haddr); 875 #endif 876 877 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 878 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s", 879 __func__, n, inet_ntoa(ia)); 880 ims->ims_st[1].ex -= n; 881 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 882 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s", 883 __func__, n, inet_ntoa(ia)); 884 ims->ims_st[1].in -= n; 885 } 886 887 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 888 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s", 889 __func__, n, inet_ntoa(ia)); 890 ims->ims_st[1].ex += n; 891 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 892 CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s", 893 __func__, n, inet_ntoa(ia)); 894 ims->ims_st[1].in += n; 895 } 896 } 897 898 /* 899 * Atomically update the global in_multi state, when a membership's 900 * filter list is being updated in any way. 901 * 902 * imf is the per-inpcb-membership group filter pointer. 903 * A fake imf may be passed for in-kernel consumers. 904 * 905 * XXX This is a candidate for a set-symmetric-difference style loop 906 * which would eliminate the repeated lookup from root of ims nodes, 907 * as they share the same key space. 908 * 909 * If any error occurred this function will back out of refcounts 910 * and return a non-zero value. 911 */ 912 static int 913 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 914 { 915 struct ip_msource *ims, *nims; 916 struct in_msource *lims; 917 int schanged, error; 918 int nsrc0, nsrc1; 919 920 schanged = 0; 921 error = 0; 922 nsrc1 = nsrc0 = 0; 923 924 /* 925 * Update the source filters first, as this may fail. 926 * Maintain count of in-mode filters at t0, t1. These are 927 * used to work out if we transition into ASM mode or not. 928 * Maintain a count of source filters whose state was 929 * actually modified by this operation. 930 */ 931 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 932 lims = (struct in_msource *)ims; 933 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 934 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 935 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 936 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 937 ++schanged; 938 if (error) 939 break; 940 ims_merge(nims, lims, 0); 941 } 942 if (error) { 943 struct ip_msource *bims; 944 945 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 946 lims = (struct in_msource *)ims; 947 if (lims->imsl_st[0] == lims->imsl_st[1]) 948 continue; 949 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 950 if (bims == NULL) 951 continue; 952 ims_merge(bims, lims, 1); 953 } 954 goto out_reap; 955 } 956 957 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 958 __func__, nsrc0, nsrc1); 959 960 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 961 if (imf->imf_st[0] == imf->imf_st[1] && 962 imf->imf_st[1] == MCAST_INCLUDE) { 963 if (nsrc1 == 0) { 964 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 965 --inm->inm_st[1].iss_in; 966 } 967 } 968 969 /* Handle filter mode transition on socket. */ 970 if (imf->imf_st[0] != imf->imf_st[1]) { 971 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 972 __func__, imf->imf_st[0], imf->imf_st[1]); 973 974 if (imf->imf_st[0] == MCAST_EXCLUDE) { 975 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 976 --inm->inm_st[1].iss_ex; 977 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 978 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 979 --inm->inm_st[1].iss_in; 980 } 981 982 if (imf->imf_st[1] == MCAST_EXCLUDE) { 983 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 984 inm->inm_st[1].iss_ex++; 985 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 986 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 987 inm->inm_st[1].iss_in++; 988 } 989 } 990 991 /* 992 * Track inm filter state in terms of listener counts. 993 * If there are any exclusive listeners, stack-wide 994 * membership is exclusive. 995 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 996 * If no listeners remain, state is undefined at t1, 997 * and the IGMP lifecycle for this group should finish. 998 */ 999 if (inm->inm_st[1].iss_ex > 0) { 1000 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1001 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1002 } else if (inm->inm_st[1].iss_in > 0) { 1003 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1004 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1005 } else { 1006 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1007 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1008 } 1009 1010 /* Decrement ASM listener count on transition out of ASM mode. */ 1011 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1012 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1013 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1014 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1015 --inm->inm_st[1].iss_asm; 1016 } 1017 1018 /* Increment ASM listener count on transition to ASM mode. */ 1019 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1020 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1021 inm->inm_st[1].iss_asm++; 1022 } 1023 1024 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1025 inm_print(inm); 1026 1027 out_reap: 1028 if (schanged > 0) { 1029 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1030 inm_reap(inm); 1031 } 1032 return (error); 1033 } 1034 1035 /* 1036 * Mark an in_multi's filter set deltas as committed. 1037 * Called by IGMP after a state change has been enqueued. 1038 */ 1039 void 1040 inm_commit(struct in_multi *inm) 1041 { 1042 struct ip_msource *ims; 1043 1044 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1045 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1046 inm_print(inm); 1047 1048 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1049 ims->ims_st[0] = ims->ims_st[1]; 1050 } 1051 inm->inm_st[0] = inm->inm_st[1]; 1052 } 1053 1054 /* 1055 * Reap unreferenced nodes from an in_multi's filter set. 1056 */ 1057 static void 1058 inm_reap(struct in_multi *inm) 1059 { 1060 struct ip_msource *ims, *tims; 1061 1062 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1063 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1064 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1065 ims->ims_stp != 0) 1066 continue; 1067 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1068 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1069 free(ims, M_IPMSOURCE); 1070 inm->inm_nsrc--; 1071 } 1072 } 1073 1074 /* 1075 * Purge all source nodes from an in_multi's filter set. 1076 */ 1077 static void 1078 inm_purge(struct in_multi *inm) 1079 { 1080 struct ip_msource *ims, *tims; 1081 1082 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1083 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1084 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1085 free(ims, M_IPMSOURCE); 1086 inm->inm_nsrc--; 1087 } 1088 } 1089 1090 /* 1091 * Join a multicast group; unlocked entry point. 1092 * 1093 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1094 * is not held. Fortunately, ifp is unlikely to have been detached 1095 * at this point, so we assume it's OK to recurse. 1096 */ 1097 int 1098 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1099 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1100 { 1101 int error; 1102 1103 IN_MULTI_LOCK(); 1104 error = in_joingroup_locked(ifp, gina, imf, pinm); 1105 IN_MULTI_UNLOCK(); 1106 1107 return (error); 1108 } 1109 1110 /* 1111 * Join a multicast group; real entry point. 1112 * 1113 * Only preserves atomicity at inm level. 1114 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1115 * 1116 * If the IGMP downcall fails, the group is not joined, and an error 1117 * code is returned. 1118 */ 1119 int 1120 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1121 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1122 { 1123 struct in_mfilter timf; 1124 struct in_multi *inm; 1125 int error; 1126 1127 IN_MULTI_LOCK_ASSERT(); 1128 1129 CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__, 1130 inet_ntoa(*gina), ifp, ifp->if_xname); 1131 1132 error = 0; 1133 inm = NULL; 1134 1135 /* 1136 * If no imf was specified (i.e. kernel consumer), 1137 * fake one up and assume it is an ASM join. 1138 */ 1139 if (imf == NULL) { 1140 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1141 imf = &timf; 1142 } 1143 1144 error = in_getmulti(ifp, gina, &inm); 1145 if (error) { 1146 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1147 return (error); 1148 } 1149 1150 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1151 error = inm_merge(inm, imf); 1152 if (error) { 1153 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1154 goto out_inm_release; 1155 } 1156 1157 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1158 error = igmp_change_state(inm); 1159 if (error) { 1160 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1161 goto out_inm_release; 1162 } 1163 1164 out_inm_release: 1165 if (error) { 1166 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1167 inm_release_locked(inm); 1168 } else { 1169 *pinm = inm; 1170 } 1171 1172 return (error); 1173 } 1174 1175 /* 1176 * Leave a multicast group; unlocked entry point. 1177 */ 1178 int 1179 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1180 { 1181 int error; 1182 1183 IN_MULTI_LOCK(); 1184 error = in_leavegroup_locked(inm, imf); 1185 IN_MULTI_UNLOCK(); 1186 1187 return (error); 1188 } 1189 1190 /* 1191 * Leave a multicast group; real entry point. 1192 * All source filters will be expunged. 1193 * 1194 * Only preserves atomicity at inm level. 1195 * 1196 * Holding the write lock for the INP which contains imf 1197 * is highly advisable. We can't assert for it as imf does not 1198 * contain a back-pointer to the owning inp. 1199 * 1200 * Note: This is not the same as inm_release(*) as this function also 1201 * makes a state change downcall into IGMP. 1202 */ 1203 int 1204 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1205 { 1206 struct in_mfilter timf; 1207 int error; 1208 1209 error = 0; 1210 1211 IN_MULTI_LOCK_ASSERT(); 1212 1213 CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__, 1214 inm, inet_ntoa(inm->inm_addr), 1215 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1216 imf); 1217 1218 /* 1219 * If no imf was specified (i.e. kernel consumer), 1220 * fake one up and assume it is an ASM join. 1221 */ 1222 if (imf == NULL) { 1223 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1224 imf = &timf; 1225 } 1226 1227 /* 1228 * Begin state merge transaction at IGMP layer. 1229 * 1230 * As this particular invocation should not cause any memory 1231 * to be allocated, and there is no opportunity to roll back 1232 * the transaction, it MUST NOT fail. 1233 */ 1234 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1235 error = inm_merge(inm, imf); 1236 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1237 1238 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1239 CURVNET_SET(inm->inm_ifp->if_vnet); 1240 error = igmp_change_state(inm); 1241 CURVNET_RESTORE(); 1242 if (error) 1243 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1244 1245 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1246 inm_release_locked(inm); 1247 1248 return (error); 1249 } 1250 1251 /*#ifndef BURN_BRIDGES*/ 1252 /* 1253 * Join an IPv4 multicast group in (*,G) exclusive mode. 1254 * The group must be a 224.0.0.0/24 link-scope group. 1255 * This KPI is for legacy kernel consumers only. 1256 */ 1257 struct in_multi * 1258 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1259 { 1260 struct in_multi *pinm; 1261 int error; 1262 1263 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1264 ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap))); 1265 1266 error = in_joingroup(ifp, ap, NULL, &pinm); 1267 if (error != 0) 1268 pinm = NULL; 1269 1270 return (pinm); 1271 } 1272 1273 /* 1274 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. 1275 * This KPI is for legacy kernel consumers only. 1276 */ 1277 void 1278 in_delmulti(struct in_multi *inm) 1279 { 1280 1281 (void)in_leavegroup(inm, NULL); 1282 } 1283 /*#endif*/ 1284 1285 /* 1286 * Block or unblock an ASM multicast source on an inpcb. 1287 * This implements the delta-based API described in RFC 3678. 1288 * 1289 * The delta-based API applies only to exclusive-mode memberships. 1290 * An IGMP downcall will be performed. 1291 * 1292 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1293 * 1294 * Return 0 if successful, otherwise return an appropriate error code. 1295 */ 1296 static int 1297 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1298 { 1299 struct group_source_req gsr; 1300 sockunion_t *gsa, *ssa; 1301 struct ifnet *ifp; 1302 struct in_mfilter *imf; 1303 struct ip_moptions *imo; 1304 struct in_msource *ims; 1305 struct in_multi *inm; 1306 size_t idx; 1307 uint16_t fmode; 1308 int error, doblock; 1309 1310 ifp = NULL; 1311 error = 0; 1312 doblock = 0; 1313 1314 memset(&gsr, 0, sizeof(struct group_source_req)); 1315 gsa = (sockunion_t *)&gsr.gsr_group; 1316 ssa = (sockunion_t *)&gsr.gsr_source; 1317 1318 switch (sopt->sopt_name) { 1319 case IP_BLOCK_SOURCE: 1320 case IP_UNBLOCK_SOURCE: { 1321 struct ip_mreq_source mreqs; 1322 1323 error = sooptcopyin(sopt, &mreqs, 1324 sizeof(struct ip_mreq_source), 1325 sizeof(struct ip_mreq_source)); 1326 if (error) 1327 return (error); 1328 1329 gsa->sin.sin_family = AF_INET; 1330 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1331 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1332 1333 ssa->sin.sin_family = AF_INET; 1334 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1335 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1336 1337 if (!in_nullhost(mreqs.imr_interface)) 1338 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1339 1340 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1341 doblock = 1; 1342 1343 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1344 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1345 break; 1346 } 1347 1348 case MCAST_BLOCK_SOURCE: 1349 case MCAST_UNBLOCK_SOURCE: 1350 error = sooptcopyin(sopt, &gsr, 1351 sizeof(struct group_source_req), 1352 sizeof(struct group_source_req)); 1353 if (error) 1354 return (error); 1355 1356 if (gsa->sin.sin_family != AF_INET || 1357 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1358 return (EINVAL); 1359 1360 if (ssa->sin.sin_family != AF_INET || 1361 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1362 return (EINVAL); 1363 1364 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1365 return (EADDRNOTAVAIL); 1366 1367 ifp = ifnet_byindex(gsr.gsr_interface); 1368 1369 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1370 doblock = 1; 1371 break; 1372 1373 default: 1374 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1375 __func__, sopt->sopt_name); 1376 return (EOPNOTSUPP); 1377 break; 1378 } 1379 1380 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1381 return (EINVAL); 1382 1383 /* 1384 * Check if we are actually a member of this group. 1385 */ 1386 imo = inp_findmoptions(inp); 1387 idx = imo_match_group(imo, ifp, &gsa->sa); 1388 if (idx == -1 || imo->imo_mfilters == NULL) { 1389 error = EADDRNOTAVAIL; 1390 goto out_inp_locked; 1391 } 1392 1393 KASSERT(imo->imo_mfilters != NULL, 1394 ("%s: imo_mfilters not allocated", __func__)); 1395 imf = &imo->imo_mfilters[idx]; 1396 inm = imo->imo_membership[idx]; 1397 1398 /* 1399 * Attempting to use the delta-based API on an 1400 * non exclusive-mode membership is an error. 1401 */ 1402 fmode = imf->imf_st[0]; 1403 if (fmode != MCAST_EXCLUDE) { 1404 error = EINVAL; 1405 goto out_inp_locked; 1406 } 1407 1408 /* 1409 * Deal with error cases up-front: 1410 * Asked to block, but already blocked; or 1411 * Asked to unblock, but nothing to unblock. 1412 * If adding a new block entry, allocate it. 1413 */ 1414 ims = imo_match_source(imo, idx, &ssa->sa); 1415 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1416 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 1417 inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not "); 1418 error = EADDRNOTAVAIL; 1419 goto out_inp_locked; 1420 } 1421 1422 INP_WLOCK_ASSERT(inp); 1423 1424 /* 1425 * Begin state merge transaction at socket layer. 1426 */ 1427 if (doblock) { 1428 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1429 ims = imf_graft(imf, fmode, &ssa->sin); 1430 if (ims == NULL) 1431 error = ENOMEM; 1432 } else { 1433 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1434 error = imf_prune(imf, &ssa->sin); 1435 } 1436 1437 if (error) { 1438 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1439 goto out_imf_rollback; 1440 } 1441 1442 /* 1443 * Begin state merge transaction at IGMP layer. 1444 */ 1445 IN_MULTI_LOCK(); 1446 1447 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1448 error = inm_merge(inm, imf); 1449 if (error) { 1450 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1451 goto out_imf_rollback; 1452 } 1453 1454 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1455 error = igmp_change_state(inm); 1456 if (error) 1457 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1458 1459 IN_MULTI_UNLOCK(); 1460 1461 out_imf_rollback: 1462 if (error) 1463 imf_rollback(imf); 1464 else 1465 imf_commit(imf); 1466 1467 imf_reap(imf); 1468 1469 out_inp_locked: 1470 INP_WUNLOCK(inp); 1471 return (error); 1472 } 1473 1474 /* 1475 * Given an inpcb, return its multicast options structure pointer. Accepts 1476 * an unlocked inpcb pointer, but will return it locked. May sleep. 1477 * 1478 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1479 * SMPng: NOTE: Returns with the INP write lock held. 1480 */ 1481 static struct ip_moptions * 1482 inp_findmoptions(struct inpcb *inp) 1483 { 1484 struct ip_moptions *imo; 1485 struct in_multi **immp; 1486 struct in_mfilter *imfp; 1487 size_t idx; 1488 1489 INP_WLOCK(inp); 1490 if (inp->inp_moptions != NULL) 1491 return (inp->inp_moptions); 1492 1493 INP_WUNLOCK(inp); 1494 1495 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1496 immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, 1497 M_WAITOK | M_ZERO); 1498 imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, 1499 M_INMFILTER, M_WAITOK); 1500 1501 imo->imo_multicast_ifp = NULL; 1502 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1503 imo->imo_multicast_vif = -1; 1504 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1505 imo->imo_multicast_loop = in_mcast_loop; 1506 imo->imo_num_memberships = 0; 1507 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; 1508 imo->imo_membership = immp; 1509 1510 /* Initialize per-group source filters. */ 1511 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) 1512 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1513 imo->imo_mfilters = imfp; 1514 1515 INP_WLOCK(inp); 1516 if (inp->inp_moptions != NULL) { 1517 free(imfp, M_INMFILTER); 1518 free(immp, M_IPMOPTS); 1519 free(imo, M_IPMOPTS); 1520 return (inp->inp_moptions); 1521 } 1522 inp->inp_moptions = imo; 1523 return (imo); 1524 } 1525 1526 /* 1527 * Discard the IP multicast options (and source filters). To minimize 1528 * the amount of work done while holding locks such as the INP's 1529 * pcbinfo lock (which is used in the receive path), the free 1530 * operation is performed asynchronously in a separate task. 1531 * 1532 * SMPng: NOTE: assumes INP write lock is held. 1533 */ 1534 void 1535 inp_freemoptions(struct ip_moptions *imo) 1536 { 1537 1538 KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__)); 1539 IN_MULTI_LOCK(); 1540 STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link); 1541 IN_MULTI_UNLOCK(); 1542 taskqueue_enqueue(taskqueue_thread, &imo_gc_task); 1543 } 1544 1545 static void 1546 inp_freemoptions_internal(struct ip_moptions *imo) 1547 { 1548 struct in_mfilter *imf; 1549 size_t idx, nmships; 1550 1551 nmships = imo->imo_num_memberships; 1552 for (idx = 0; idx < nmships; ++idx) { 1553 imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL; 1554 if (imf) 1555 imf_leave(imf); 1556 (void)in_leavegroup(imo->imo_membership[idx], imf); 1557 if (imf) 1558 imf_purge(imf); 1559 } 1560 1561 if (imo->imo_mfilters) 1562 free(imo->imo_mfilters, M_INMFILTER); 1563 free(imo->imo_membership, M_IPMOPTS); 1564 free(imo, M_IPMOPTS); 1565 } 1566 1567 static void 1568 inp_gcmoptions(void *context, int pending) 1569 { 1570 struct ip_moptions *imo; 1571 1572 IN_MULTI_LOCK(); 1573 while (!STAILQ_EMPTY(&imo_gc_list)) { 1574 imo = STAILQ_FIRST(&imo_gc_list); 1575 STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link); 1576 IN_MULTI_UNLOCK(); 1577 inp_freemoptions_internal(imo); 1578 IN_MULTI_LOCK(); 1579 } 1580 IN_MULTI_UNLOCK(); 1581 } 1582 1583 /* 1584 * Atomically get source filters on a socket for an IPv4 multicast group. 1585 * Called with INP lock held; returns with lock released. 1586 */ 1587 static int 1588 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1589 { 1590 struct __msfilterreq msfr; 1591 sockunion_t *gsa; 1592 struct ifnet *ifp; 1593 struct ip_moptions *imo; 1594 struct in_mfilter *imf; 1595 struct ip_msource *ims; 1596 struct in_msource *lims; 1597 struct sockaddr_in *psin; 1598 struct sockaddr_storage *ptss; 1599 struct sockaddr_storage *tss; 1600 int error; 1601 size_t idx, nsrcs, ncsrcs; 1602 1603 INP_WLOCK_ASSERT(inp); 1604 1605 imo = inp->inp_moptions; 1606 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1607 1608 INP_WUNLOCK(inp); 1609 1610 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1611 sizeof(struct __msfilterreq)); 1612 if (error) 1613 return (error); 1614 1615 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1616 return (EINVAL); 1617 1618 ifp = ifnet_byindex(msfr.msfr_ifindex); 1619 if (ifp == NULL) 1620 return (EINVAL); 1621 1622 INP_WLOCK(inp); 1623 1624 /* 1625 * Lookup group on the socket. 1626 */ 1627 gsa = (sockunion_t *)&msfr.msfr_group; 1628 idx = imo_match_group(imo, ifp, &gsa->sa); 1629 if (idx == -1 || imo->imo_mfilters == NULL) { 1630 INP_WUNLOCK(inp); 1631 return (EADDRNOTAVAIL); 1632 } 1633 imf = &imo->imo_mfilters[idx]; 1634 1635 /* 1636 * Ignore memberships which are in limbo. 1637 */ 1638 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1639 INP_WUNLOCK(inp); 1640 return (EAGAIN); 1641 } 1642 msfr.msfr_fmode = imf->imf_st[1]; 1643 1644 /* 1645 * If the user specified a buffer, copy out the source filter 1646 * entries to userland gracefully. 1647 * We only copy out the number of entries which userland 1648 * has asked for, but we always tell userland how big the 1649 * buffer really needs to be. 1650 */ 1651 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1652 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1653 tss = NULL; 1654 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1655 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1656 M_TEMP, M_NOWAIT | M_ZERO); 1657 if (tss == NULL) { 1658 INP_WUNLOCK(inp); 1659 return (ENOBUFS); 1660 } 1661 } 1662 1663 /* 1664 * Count number of sources in-mode at t0. 1665 * If buffer space exists and remains, copy out source entries. 1666 */ 1667 nsrcs = msfr.msfr_nsrcs; 1668 ncsrcs = 0; 1669 ptss = tss; 1670 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1671 lims = (struct in_msource *)ims; 1672 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1673 lims->imsl_st[0] != imf->imf_st[0]) 1674 continue; 1675 ++ncsrcs; 1676 if (tss != NULL && nsrcs > 0) { 1677 psin = (struct sockaddr_in *)ptss; 1678 psin->sin_family = AF_INET; 1679 psin->sin_len = sizeof(struct sockaddr_in); 1680 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1681 psin->sin_port = 0; 1682 ++ptss; 1683 --nsrcs; 1684 } 1685 } 1686 1687 INP_WUNLOCK(inp); 1688 1689 if (tss != NULL) { 1690 error = copyout(tss, msfr.msfr_srcs, 1691 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1692 free(tss, M_TEMP); 1693 if (error) 1694 return (error); 1695 } 1696 1697 msfr.msfr_nsrcs = ncsrcs; 1698 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1699 1700 return (error); 1701 } 1702 1703 /* 1704 * Return the IP multicast options in response to user getsockopt(). 1705 */ 1706 int 1707 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1708 { 1709 struct ip_mreqn mreqn; 1710 struct ip_moptions *imo; 1711 struct ifnet *ifp; 1712 struct in_ifaddr *ia; 1713 int error, optval; 1714 u_char coptval; 1715 1716 INP_WLOCK(inp); 1717 imo = inp->inp_moptions; 1718 /* 1719 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1720 * or is a divert socket, reject it. 1721 */ 1722 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1723 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1724 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1725 INP_WUNLOCK(inp); 1726 return (EOPNOTSUPP); 1727 } 1728 1729 error = 0; 1730 switch (sopt->sopt_name) { 1731 case IP_MULTICAST_VIF: 1732 if (imo != NULL) 1733 optval = imo->imo_multicast_vif; 1734 else 1735 optval = -1; 1736 INP_WUNLOCK(inp); 1737 error = sooptcopyout(sopt, &optval, sizeof(int)); 1738 break; 1739 1740 case IP_MULTICAST_IF: 1741 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1742 if (imo != NULL) { 1743 ifp = imo->imo_multicast_ifp; 1744 if (!in_nullhost(imo->imo_multicast_addr)) { 1745 mreqn.imr_address = imo->imo_multicast_addr; 1746 } else if (ifp != NULL) { 1747 mreqn.imr_ifindex = ifp->if_index; 1748 IFP_TO_IA(ifp, ia); 1749 if (ia != NULL) { 1750 mreqn.imr_address = 1751 IA_SIN(ia)->sin_addr; 1752 ifa_free(&ia->ia_ifa); 1753 } 1754 } 1755 } 1756 INP_WUNLOCK(inp); 1757 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1758 error = sooptcopyout(sopt, &mreqn, 1759 sizeof(struct ip_mreqn)); 1760 } else { 1761 error = sooptcopyout(sopt, &mreqn.imr_address, 1762 sizeof(struct in_addr)); 1763 } 1764 break; 1765 1766 case IP_MULTICAST_TTL: 1767 if (imo == 0) 1768 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1769 else 1770 optval = coptval = imo->imo_multicast_ttl; 1771 INP_WUNLOCK(inp); 1772 if (sopt->sopt_valsize == sizeof(u_char)) 1773 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1774 else 1775 error = sooptcopyout(sopt, &optval, sizeof(int)); 1776 break; 1777 1778 case IP_MULTICAST_LOOP: 1779 if (imo == 0) 1780 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1781 else 1782 optval = coptval = imo->imo_multicast_loop; 1783 INP_WUNLOCK(inp); 1784 if (sopt->sopt_valsize == sizeof(u_char)) 1785 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1786 else 1787 error = sooptcopyout(sopt, &optval, sizeof(int)); 1788 break; 1789 1790 case IP_MSFILTER: 1791 if (imo == NULL) { 1792 error = EADDRNOTAVAIL; 1793 INP_WUNLOCK(inp); 1794 } else { 1795 error = inp_get_source_filters(inp, sopt); 1796 } 1797 break; 1798 1799 default: 1800 INP_WUNLOCK(inp); 1801 error = ENOPROTOOPT; 1802 break; 1803 } 1804 1805 INP_UNLOCK_ASSERT(inp); 1806 1807 return (error); 1808 } 1809 1810 /* 1811 * Look up the ifnet to use for a multicast group membership, 1812 * given the IPv4 address of an interface, and the IPv4 group address. 1813 * 1814 * This routine exists to support legacy multicast applications 1815 * which do not understand that multicast memberships are scoped to 1816 * specific physical links in the networking stack, or which need 1817 * to join link-scope groups before IPv4 addresses are configured. 1818 * 1819 * If inp is non-NULL, use this socket's current FIB number for any 1820 * required FIB lookup. 1821 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1822 * and use its ifp; usually, this points to the default next-hop. 1823 * 1824 * If the FIB lookup fails, attempt to use the first non-loopback 1825 * interface with multicast capability in the system as a 1826 * last resort. The legacy IPv4 ASM API requires that we do 1827 * this in order to allow groups to be joined when the routing 1828 * table has not yet been populated during boot. 1829 * 1830 * Returns NULL if no ifp could be found. 1831 * 1832 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP. 1833 * FUTURE: Implement IPv4 source-address selection. 1834 */ 1835 static struct ifnet * 1836 inp_lookup_mcast_ifp(const struct inpcb *inp, 1837 const struct sockaddr_in *gsin, const struct in_addr ina) 1838 { 1839 struct ifnet *ifp; 1840 1841 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1842 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1843 ("%s: not multicast", __func__)); 1844 1845 ifp = NULL; 1846 if (!in_nullhost(ina)) { 1847 INADDR_TO_IFP(ina, ifp); 1848 } else { 1849 struct route ro; 1850 1851 ro.ro_rt = NULL; 1852 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); 1853 in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0); 1854 if (ro.ro_rt != NULL) { 1855 ifp = ro.ro_rt->rt_ifp; 1856 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1857 RTFREE(ro.ro_rt); 1858 } else { 1859 struct in_ifaddr *ia; 1860 struct ifnet *mifp; 1861 1862 mifp = NULL; 1863 IN_IFADDR_RLOCK(); 1864 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1865 mifp = ia->ia_ifp; 1866 if (!(mifp->if_flags & IFF_LOOPBACK) && 1867 (mifp->if_flags & IFF_MULTICAST)) { 1868 ifp = mifp; 1869 break; 1870 } 1871 } 1872 IN_IFADDR_RUNLOCK(); 1873 } 1874 } 1875 1876 return (ifp); 1877 } 1878 1879 /* 1880 * Join an IPv4 multicast group, possibly with a source. 1881 */ 1882 static int 1883 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1884 { 1885 struct group_source_req gsr; 1886 sockunion_t *gsa, *ssa; 1887 struct ifnet *ifp; 1888 struct in_mfilter *imf; 1889 struct ip_moptions *imo; 1890 struct in_multi *inm; 1891 struct in_msource *lims; 1892 size_t idx; 1893 int error, is_new; 1894 1895 ifp = NULL; 1896 imf = NULL; 1897 lims = NULL; 1898 error = 0; 1899 is_new = 0; 1900 1901 memset(&gsr, 0, sizeof(struct group_source_req)); 1902 gsa = (sockunion_t *)&gsr.gsr_group; 1903 gsa->ss.ss_family = AF_UNSPEC; 1904 ssa = (sockunion_t *)&gsr.gsr_source; 1905 ssa->ss.ss_family = AF_UNSPEC; 1906 1907 switch (sopt->sopt_name) { 1908 case IP_ADD_MEMBERSHIP: 1909 case IP_ADD_SOURCE_MEMBERSHIP: { 1910 struct ip_mreq_source mreqs; 1911 1912 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { 1913 error = sooptcopyin(sopt, &mreqs, 1914 sizeof(struct ip_mreq), 1915 sizeof(struct ip_mreq)); 1916 /* 1917 * Do argument switcharoo from ip_mreq into 1918 * ip_mreq_source to avoid using two instances. 1919 */ 1920 mreqs.imr_interface = mreqs.imr_sourceaddr; 1921 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 1922 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1923 error = sooptcopyin(sopt, &mreqs, 1924 sizeof(struct ip_mreq_source), 1925 sizeof(struct ip_mreq_source)); 1926 } 1927 if (error) 1928 return (error); 1929 1930 gsa->sin.sin_family = AF_INET; 1931 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1932 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1933 1934 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1935 ssa->sin.sin_family = AF_INET; 1936 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1937 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1938 } 1939 1940 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1941 return (EINVAL); 1942 1943 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1944 mreqs.imr_interface); 1945 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 1946 __func__, inet_ntoa(mreqs.imr_interface), ifp); 1947 break; 1948 } 1949 1950 case MCAST_JOIN_GROUP: 1951 case MCAST_JOIN_SOURCE_GROUP: 1952 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1953 error = sooptcopyin(sopt, &gsr, 1954 sizeof(struct group_req), 1955 sizeof(struct group_req)); 1956 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1957 error = sooptcopyin(sopt, &gsr, 1958 sizeof(struct group_source_req), 1959 sizeof(struct group_source_req)); 1960 } 1961 if (error) 1962 return (error); 1963 1964 if (gsa->sin.sin_family != AF_INET || 1965 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1966 return (EINVAL); 1967 1968 /* 1969 * Overwrite the port field if present, as the sockaddr 1970 * being copied in may be matched with a binary comparison. 1971 */ 1972 gsa->sin.sin_port = 0; 1973 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1974 if (ssa->sin.sin_family != AF_INET || 1975 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1976 return (EINVAL); 1977 ssa->sin.sin_port = 0; 1978 } 1979 1980 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1981 return (EINVAL); 1982 1983 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1984 return (EADDRNOTAVAIL); 1985 ifp = ifnet_byindex(gsr.gsr_interface); 1986 break; 1987 1988 default: 1989 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1990 __func__, sopt->sopt_name); 1991 return (EOPNOTSUPP); 1992 break; 1993 } 1994 1995 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1996 return (EADDRNOTAVAIL); 1997 1998 imo = inp_findmoptions(inp); 1999 idx = imo_match_group(imo, ifp, &gsa->sa); 2000 if (idx == -1) { 2001 is_new = 1; 2002 } else { 2003 inm = imo->imo_membership[idx]; 2004 imf = &imo->imo_mfilters[idx]; 2005 if (ssa->ss.ss_family != AF_UNSPEC) { 2006 /* 2007 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2008 * is an error. On an existing inclusive membership, 2009 * it just adds the source to the filter list. 2010 */ 2011 if (imf->imf_st[1] != MCAST_INCLUDE) { 2012 error = EINVAL; 2013 goto out_inp_locked; 2014 } 2015 /* 2016 * Throw out duplicates. 2017 * 2018 * XXX FIXME: This makes a naive assumption that 2019 * even if entries exist for *ssa in this imf, 2020 * they will be rejected as dupes, even if they 2021 * are not valid in the current mode (in-mode). 2022 * 2023 * in_msource is transactioned just as for anything 2024 * else in SSM -- but note naive use of inm_graft() 2025 * below for allocating new filter entries. 2026 * 2027 * This is only an issue if someone mixes the 2028 * full-state SSM API with the delta-based API, 2029 * which is discouraged in the relevant RFCs. 2030 */ 2031 lims = imo_match_source(imo, idx, &ssa->sa); 2032 if (lims != NULL /*&& 2033 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2034 error = EADDRNOTAVAIL; 2035 goto out_inp_locked; 2036 } 2037 } else { 2038 /* 2039 * MCAST_JOIN_GROUP on an existing exclusive 2040 * membership is an error; return EADDRINUSE 2041 * to preserve 4.4BSD API idempotence, and 2042 * avoid tedious detour to code below. 2043 * NOTE: This is bending RFC 3678 a bit. 2044 * 2045 * On an existing inclusive membership, this is also 2046 * an error; if you want to change filter mode, 2047 * you must use the userland API setsourcefilter(). 2048 * XXX We don't reject this for imf in UNDEFINED 2049 * state at t1, because allocation of a filter 2050 * is atomic with allocation of a membership. 2051 */ 2052 error = EINVAL; 2053 if (imf->imf_st[1] == MCAST_EXCLUDE) 2054 error = EADDRINUSE; 2055 goto out_inp_locked; 2056 } 2057 } 2058 2059 /* 2060 * Begin state merge transaction at socket layer. 2061 */ 2062 INP_WLOCK_ASSERT(inp); 2063 2064 if (is_new) { 2065 if (imo->imo_num_memberships == imo->imo_max_memberships) { 2066 error = imo_grow(imo); 2067 if (error) 2068 goto out_inp_locked; 2069 } 2070 /* 2071 * Allocate the new slot upfront so we can deal with 2072 * grafting the new source filter in same code path 2073 * as for join-source on existing membership. 2074 */ 2075 idx = imo->imo_num_memberships; 2076 imo->imo_membership[idx] = NULL; 2077 imo->imo_num_memberships++; 2078 KASSERT(imo->imo_mfilters != NULL, 2079 ("%s: imf_mfilters vector was not allocated", __func__)); 2080 imf = &imo->imo_mfilters[idx]; 2081 KASSERT(RB_EMPTY(&imf->imf_sources), 2082 ("%s: imf_sources not empty", __func__)); 2083 } 2084 2085 /* 2086 * Graft new source into filter list for this inpcb's 2087 * membership of the group. The in_multi may not have 2088 * been allocated yet if this is a new membership, however, 2089 * the in_mfilter slot will be allocated and must be initialized. 2090 * 2091 * Note: Grafting of exclusive mode filters doesn't happen 2092 * in this path. 2093 * XXX: Should check for non-NULL lims (node exists but may 2094 * not be in-mode) for interop with full-state API. 2095 */ 2096 if (ssa->ss.ss_family != AF_UNSPEC) { 2097 /* Membership starts in IN mode */ 2098 if (is_new) { 2099 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2100 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2101 } else { 2102 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2103 } 2104 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2105 if (lims == NULL) { 2106 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2107 __func__); 2108 error = ENOMEM; 2109 goto out_imo_free; 2110 } 2111 } else { 2112 /* No address specified; Membership starts in EX mode */ 2113 if (is_new) { 2114 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2115 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2116 } 2117 } 2118 2119 /* 2120 * Begin state merge transaction at IGMP layer. 2121 */ 2122 IN_MULTI_LOCK(); 2123 2124 if (is_new) { 2125 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2126 &inm); 2127 if (error) 2128 goto out_imo_free; 2129 imo->imo_membership[idx] = inm; 2130 } else { 2131 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2132 error = inm_merge(inm, imf); 2133 if (error) { 2134 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2135 __func__); 2136 goto out_imf_rollback; 2137 } 2138 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2139 error = igmp_change_state(inm); 2140 if (error) { 2141 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2142 __func__); 2143 goto out_imf_rollback; 2144 } 2145 } 2146 2147 IN_MULTI_UNLOCK(); 2148 2149 out_imf_rollback: 2150 INP_WLOCK_ASSERT(inp); 2151 if (error) { 2152 imf_rollback(imf); 2153 if (is_new) 2154 imf_purge(imf); 2155 else 2156 imf_reap(imf); 2157 } else { 2158 imf_commit(imf); 2159 } 2160 2161 out_imo_free: 2162 if (error && is_new) { 2163 imo->imo_membership[idx] = NULL; 2164 --imo->imo_num_memberships; 2165 } 2166 2167 out_inp_locked: 2168 INP_WUNLOCK(inp); 2169 return (error); 2170 } 2171 2172 /* 2173 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2174 */ 2175 static int 2176 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2177 { 2178 struct group_source_req gsr; 2179 struct ip_mreq_source mreqs; 2180 sockunion_t *gsa, *ssa; 2181 struct ifnet *ifp; 2182 struct in_mfilter *imf; 2183 struct ip_moptions *imo; 2184 struct in_msource *ims; 2185 struct in_multi *inm; 2186 size_t idx; 2187 int error, is_final; 2188 2189 ifp = NULL; 2190 error = 0; 2191 is_final = 1; 2192 2193 memset(&gsr, 0, sizeof(struct group_source_req)); 2194 gsa = (sockunion_t *)&gsr.gsr_group; 2195 gsa->ss.ss_family = AF_UNSPEC; 2196 ssa = (sockunion_t *)&gsr.gsr_source; 2197 ssa->ss.ss_family = AF_UNSPEC; 2198 2199 switch (sopt->sopt_name) { 2200 case IP_DROP_MEMBERSHIP: 2201 case IP_DROP_SOURCE_MEMBERSHIP: 2202 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2203 error = sooptcopyin(sopt, &mreqs, 2204 sizeof(struct ip_mreq), 2205 sizeof(struct ip_mreq)); 2206 /* 2207 * Swap interface and sourceaddr arguments, 2208 * as ip_mreq and ip_mreq_source are laid 2209 * out differently. 2210 */ 2211 mreqs.imr_interface = mreqs.imr_sourceaddr; 2212 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2213 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2214 error = sooptcopyin(sopt, &mreqs, 2215 sizeof(struct ip_mreq_source), 2216 sizeof(struct ip_mreq_source)); 2217 } 2218 if (error) 2219 return (error); 2220 2221 gsa->sin.sin_family = AF_INET; 2222 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2223 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2224 2225 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2226 ssa->sin.sin_family = AF_INET; 2227 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2228 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2229 } 2230 2231 /* 2232 * Attempt to look up hinted ifp from interface address. 2233 * Fallthrough with null ifp iff lookup fails, to 2234 * preserve 4.4BSD mcast API idempotence. 2235 * XXX NOTE WELL: The RFC 3678 API is preferred because 2236 * using an IPv4 address as a key is racy. 2237 */ 2238 if (!in_nullhost(mreqs.imr_interface)) 2239 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2240 2241 CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p", 2242 __func__, inet_ntoa(mreqs.imr_interface), ifp); 2243 2244 break; 2245 2246 case MCAST_LEAVE_GROUP: 2247 case MCAST_LEAVE_SOURCE_GROUP: 2248 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2249 error = sooptcopyin(sopt, &gsr, 2250 sizeof(struct group_req), 2251 sizeof(struct group_req)); 2252 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2253 error = sooptcopyin(sopt, &gsr, 2254 sizeof(struct group_source_req), 2255 sizeof(struct group_source_req)); 2256 } 2257 if (error) 2258 return (error); 2259 2260 if (gsa->sin.sin_family != AF_INET || 2261 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2262 return (EINVAL); 2263 2264 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2265 if (ssa->sin.sin_family != AF_INET || 2266 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2267 return (EINVAL); 2268 } 2269 2270 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2271 return (EADDRNOTAVAIL); 2272 2273 ifp = ifnet_byindex(gsr.gsr_interface); 2274 2275 if (ifp == NULL) 2276 return (EADDRNOTAVAIL); 2277 break; 2278 2279 default: 2280 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2281 __func__, sopt->sopt_name); 2282 return (EOPNOTSUPP); 2283 break; 2284 } 2285 2286 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2287 return (EINVAL); 2288 2289 /* 2290 * Find the membership in the membership array. 2291 */ 2292 imo = inp_findmoptions(inp); 2293 idx = imo_match_group(imo, ifp, &gsa->sa); 2294 if (idx == -1) { 2295 error = EADDRNOTAVAIL; 2296 goto out_inp_locked; 2297 } 2298 inm = imo->imo_membership[idx]; 2299 imf = &imo->imo_mfilters[idx]; 2300 2301 if (ssa->ss.ss_family != AF_UNSPEC) 2302 is_final = 0; 2303 2304 /* 2305 * Begin state merge transaction at socket layer. 2306 */ 2307 INP_WLOCK_ASSERT(inp); 2308 2309 /* 2310 * If we were instructed only to leave a given source, do so. 2311 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2312 */ 2313 if (is_final) { 2314 imf_leave(imf); 2315 } else { 2316 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2317 error = EADDRNOTAVAIL; 2318 goto out_inp_locked; 2319 } 2320 ims = imo_match_source(imo, idx, &ssa->sa); 2321 if (ims == NULL) { 2322 CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__, 2323 inet_ntoa(ssa->sin.sin_addr), "not "); 2324 error = EADDRNOTAVAIL; 2325 goto out_inp_locked; 2326 } 2327 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2328 error = imf_prune(imf, &ssa->sin); 2329 if (error) { 2330 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2331 __func__); 2332 goto out_inp_locked; 2333 } 2334 } 2335 2336 /* 2337 * Begin state merge transaction at IGMP layer. 2338 */ 2339 IN_MULTI_LOCK(); 2340 2341 if (is_final) { 2342 /* 2343 * Give up the multicast address record to which 2344 * the membership points. 2345 */ 2346 (void)in_leavegroup_locked(inm, imf); 2347 } else { 2348 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2349 error = inm_merge(inm, imf); 2350 if (error) { 2351 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2352 __func__); 2353 goto out_imf_rollback; 2354 } 2355 2356 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2357 error = igmp_change_state(inm); 2358 if (error) { 2359 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2360 __func__); 2361 } 2362 } 2363 2364 IN_MULTI_UNLOCK(); 2365 2366 out_imf_rollback: 2367 if (error) 2368 imf_rollback(imf); 2369 else 2370 imf_commit(imf); 2371 2372 imf_reap(imf); 2373 2374 if (is_final) { 2375 /* Remove the gap in the membership and filter array. */ 2376 for (++idx; idx < imo->imo_num_memberships; ++idx) { 2377 imo->imo_membership[idx-1] = imo->imo_membership[idx]; 2378 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx]; 2379 } 2380 imo->imo_num_memberships--; 2381 } 2382 2383 out_inp_locked: 2384 INP_WUNLOCK(inp); 2385 return (error); 2386 } 2387 2388 /* 2389 * Select the interface for transmitting IPv4 multicast datagrams. 2390 * 2391 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2392 * may be passed to this socket option. An address of INADDR_ANY or an 2393 * interface index of 0 is used to remove a previous selection. 2394 * When no interface is selected, one is chosen for every send. 2395 */ 2396 static int 2397 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2398 { 2399 struct in_addr addr; 2400 struct ip_mreqn mreqn; 2401 struct ifnet *ifp; 2402 struct ip_moptions *imo; 2403 int error; 2404 2405 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2406 /* 2407 * An interface index was specified using the 2408 * Linux-derived ip_mreqn structure. 2409 */ 2410 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2411 sizeof(struct ip_mreqn)); 2412 if (error) 2413 return (error); 2414 2415 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2416 return (EINVAL); 2417 2418 if (mreqn.imr_ifindex == 0) { 2419 ifp = NULL; 2420 } else { 2421 ifp = ifnet_byindex(mreqn.imr_ifindex); 2422 if (ifp == NULL) 2423 return (EADDRNOTAVAIL); 2424 } 2425 } else { 2426 /* 2427 * An interface was specified by IPv4 address. 2428 * This is the traditional BSD usage. 2429 */ 2430 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2431 sizeof(struct in_addr)); 2432 if (error) 2433 return (error); 2434 if (in_nullhost(addr)) { 2435 ifp = NULL; 2436 } else { 2437 INADDR_TO_IFP(addr, ifp); 2438 if (ifp == NULL) 2439 return (EADDRNOTAVAIL); 2440 } 2441 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp, 2442 inet_ntoa(addr)); 2443 } 2444 2445 /* Reject interfaces which do not support multicast. */ 2446 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2447 return (EOPNOTSUPP); 2448 2449 imo = inp_findmoptions(inp); 2450 imo->imo_multicast_ifp = ifp; 2451 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2452 INP_WUNLOCK(inp); 2453 2454 return (0); 2455 } 2456 2457 /* 2458 * Atomically set source filters on a socket for an IPv4 multicast group. 2459 * 2460 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2461 */ 2462 static int 2463 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2464 { 2465 struct __msfilterreq msfr; 2466 sockunion_t *gsa; 2467 struct ifnet *ifp; 2468 struct in_mfilter *imf; 2469 struct ip_moptions *imo; 2470 struct in_multi *inm; 2471 size_t idx; 2472 int error; 2473 2474 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2475 sizeof(struct __msfilterreq)); 2476 if (error) 2477 return (error); 2478 2479 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2480 return (ENOBUFS); 2481 2482 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2483 msfr.msfr_fmode != MCAST_INCLUDE)) 2484 return (EINVAL); 2485 2486 if (msfr.msfr_group.ss_family != AF_INET || 2487 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2488 return (EINVAL); 2489 2490 gsa = (sockunion_t *)&msfr.msfr_group; 2491 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2492 return (EINVAL); 2493 2494 gsa->sin.sin_port = 0; /* ignore port */ 2495 2496 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2497 return (EADDRNOTAVAIL); 2498 2499 ifp = ifnet_byindex(msfr.msfr_ifindex); 2500 if (ifp == NULL) 2501 return (EADDRNOTAVAIL); 2502 2503 /* 2504 * Take the INP write lock. 2505 * Check if this socket is a member of this group. 2506 */ 2507 imo = inp_findmoptions(inp); 2508 idx = imo_match_group(imo, ifp, &gsa->sa); 2509 if (idx == -1 || imo->imo_mfilters == NULL) { 2510 error = EADDRNOTAVAIL; 2511 goto out_inp_locked; 2512 } 2513 inm = imo->imo_membership[idx]; 2514 imf = &imo->imo_mfilters[idx]; 2515 2516 /* 2517 * Begin state merge transaction at socket layer. 2518 */ 2519 INP_WLOCK_ASSERT(inp); 2520 2521 imf->imf_st[1] = msfr.msfr_fmode; 2522 2523 /* 2524 * Apply any new source filters, if present. 2525 * Make a copy of the user-space source vector so 2526 * that we may copy them with a single copyin. This 2527 * allows us to deal with page faults up-front. 2528 */ 2529 if (msfr.msfr_nsrcs > 0) { 2530 struct in_msource *lims; 2531 struct sockaddr_in *psin; 2532 struct sockaddr_storage *kss, *pkss; 2533 int i; 2534 2535 INP_WUNLOCK(inp); 2536 2537 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2538 __func__, (unsigned long)msfr.msfr_nsrcs); 2539 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2540 M_TEMP, M_WAITOK); 2541 error = copyin(msfr.msfr_srcs, kss, 2542 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2543 if (error) { 2544 free(kss, M_TEMP); 2545 return (error); 2546 } 2547 2548 INP_WLOCK(inp); 2549 2550 /* 2551 * Mark all source filters as UNDEFINED at t1. 2552 * Restore new group filter mode, as imf_leave() 2553 * will set it to INCLUDE. 2554 */ 2555 imf_leave(imf); 2556 imf->imf_st[1] = msfr.msfr_fmode; 2557 2558 /* 2559 * Update socket layer filters at t1, lazy-allocating 2560 * new entries. This saves a bunch of memory at the 2561 * cost of one RB_FIND() per source entry; duplicate 2562 * entries in the msfr_nsrcs vector are ignored. 2563 * If we encounter an error, rollback transaction. 2564 * 2565 * XXX This too could be replaced with a set-symmetric 2566 * difference like loop to avoid walking from root 2567 * every time, as the key space is common. 2568 */ 2569 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2570 psin = (struct sockaddr_in *)pkss; 2571 if (psin->sin_family != AF_INET) { 2572 error = EAFNOSUPPORT; 2573 break; 2574 } 2575 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2576 error = EINVAL; 2577 break; 2578 } 2579 error = imf_get_source(imf, psin, &lims); 2580 if (error) 2581 break; 2582 lims->imsl_st[1] = imf->imf_st[1]; 2583 } 2584 free(kss, M_TEMP); 2585 } 2586 2587 if (error) 2588 goto out_imf_rollback; 2589 2590 INP_WLOCK_ASSERT(inp); 2591 IN_MULTI_LOCK(); 2592 2593 /* 2594 * Begin state merge transaction at IGMP layer. 2595 */ 2596 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2597 error = inm_merge(inm, imf); 2598 if (error) { 2599 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2600 goto out_imf_rollback; 2601 } 2602 2603 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2604 error = igmp_change_state(inm); 2605 if (error) 2606 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2607 2608 IN_MULTI_UNLOCK(); 2609 2610 out_imf_rollback: 2611 if (error) 2612 imf_rollback(imf); 2613 else 2614 imf_commit(imf); 2615 2616 imf_reap(imf); 2617 2618 out_inp_locked: 2619 INP_WUNLOCK(inp); 2620 return (error); 2621 } 2622 2623 /* 2624 * Set the IP multicast options in response to user setsockopt(). 2625 * 2626 * Many of the socket options handled in this function duplicate the 2627 * functionality of socket options in the regular unicast API. However, 2628 * it is not possible to merge the duplicate code, because the idempotence 2629 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2630 * the effects of these options must be treated as separate and distinct. 2631 * 2632 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2633 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2634 * is refactored to no longer use vifs. 2635 */ 2636 int 2637 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2638 { 2639 struct ip_moptions *imo; 2640 int error; 2641 2642 error = 0; 2643 2644 /* 2645 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2646 * or is a divert socket, reject it. 2647 */ 2648 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2649 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2650 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2651 return (EOPNOTSUPP); 2652 2653 switch (sopt->sopt_name) { 2654 case IP_MULTICAST_VIF: { 2655 int vifi; 2656 /* 2657 * Select a multicast VIF for transmission. 2658 * Only useful if multicast forwarding is active. 2659 */ 2660 if (legal_vif_num == NULL) { 2661 error = EOPNOTSUPP; 2662 break; 2663 } 2664 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2665 if (error) 2666 break; 2667 if (!legal_vif_num(vifi) && (vifi != -1)) { 2668 error = EINVAL; 2669 break; 2670 } 2671 imo = inp_findmoptions(inp); 2672 imo->imo_multicast_vif = vifi; 2673 INP_WUNLOCK(inp); 2674 break; 2675 } 2676 2677 case IP_MULTICAST_IF: 2678 error = inp_set_multicast_if(inp, sopt); 2679 break; 2680 2681 case IP_MULTICAST_TTL: { 2682 u_char ttl; 2683 2684 /* 2685 * Set the IP time-to-live for outgoing multicast packets. 2686 * The original multicast API required a char argument, 2687 * which is inconsistent with the rest of the socket API. 2688 * We allow either a char or an int. 2689 */ 2690 if (sopt->sopt_valsize == sizeof(u_char)) { 2691 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2692 sizeof(u_char)); 2693 if (error) 2694 break; 2695 } else { 2696 u_int ittl; 2697 2698 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2699 sizeof(u_int)); 2700 if (error) 2701 break; 2702 if (ittl > 255) { 2703 error = EINVAL; 2704 break; 2705 } 2706 ttl = (u_char)ittl; 2707 } 2708 imo = inp_findmoptions(inp); 2709 imo->imo_multicast_ttl = ttl; 2710 INP_WUNLOCK(inp); 2711 break; 2712 } 2713 2714 case IP_MULTICAST_LOOP: { 2715 u_char loop; 2716 2717 /* 2718 * Set the loopback flag for outgoing multicast packets. 2719 * Must be zero or one. The original multicast API required a 2720 * char argument, which is inconsistent with the rest 2721 * of the socket API. We allow either a char or an int. 2722 */ 2723 if (sopt->sopt_valsize == sizeof(u_char)) { 2724 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2725 sizeof(u_char)); 2726 if (error) 2727 break; 2728 } else { 2729 u_int iloop; 2730 2731 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2732 sizeof(u_int)); 2733 if (error) 2734 break; 2735 loop = (u_char)iloop; 2736 } 2737 imo = inp_findmoptions(inp); 2738 imo->imo_multicast_loop = !!loop; 2739 INP_WUNLOCK(inp); 2740 break; 2741 } 2742 2743 case IP_ADD_MEMBERSHIP: 2744 case IP_ADD_SOURCE_MEMBERSHIP: 2745 case MCAST_JOIN_GROUP: 2746 case MCAST_JOIN_SOURCE_GROUP: 2747 error = inp_join_group(inp, sopt); 2748 break; 2749 2750 case IP_DROP_MEMBERSHIP: 2751 case IP_DROP_SOURCE_MEMBERSHIP: 2752 case MCAST_LEAVE_GROUP: 2753 case MCAST_LEAVE_SOURCE_GROUP: 2754 error = inp_leave_group(inp, sopt); 2755 break; 2756 2757 case IP_BLOCK_SOURCE: 2758 case IP_UNBLOCK_SOURCE: 2759 case MCAST_BLOCK_SOURCE: 2760 case MCAST_UNBLOCK_SOURCE: 2761 error = inp_block_unblock_source(inp, sopt); 2762 break; 2763 2764 case IP_MSFILTER: 2765 error = inp_set_source_filters(inp, sopt); 2766 break; 2767 2768 default: 2769 error = EOPNOTSUPP; 2770 break; 2771 } 2772 2773 INP_UNLOCK_ASSERT(inp); 2774 2775 return (error); 2776 } 2777 2778 /* 2779 * Expose IGMP's multicast filter mode and source list(s) to userland, 2780 * keyed by (ifindex, group). 2781 * The filter mode is written out as a uint32_t, followed by 2782 * 0..n of struct in_addr. 2783 * For use by ifmcstat(8). 2784 * SMPng: NOTE: unlocked read of ifindex space. 2785 */ 2786 static int 2787 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2788 { 2789 struct in_addr src, group; 2790 struct ifnet *ifp; 2791 struct ifmultiaddr *ifma; 2792 struct in_multi *inm; 2793 struct ip_msource *ims; 2794 int *name; 2795 int retval; 2796 u_int namelen; 2797 uint32_t fmode, ifindex; 2798 2799 name = (int *)arg1; 2800 namelen = arg2; 2801 2802 if (req->newptr != NULL) 2803 return (EPERM); 2804 2805 if (namelen != 2) 2806 return (EINVAL); 2807 2808 ifindex = name[0]; 2809 if (ifindex <= 0 || ifindex > V_if_index) { 2810 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2811 __func__, ifindex); 2812 return (ENOENT); 2813 } 2814 2815 group.s_addr = name[1]; 2816 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2817 CTR2(KTR_IGMPV3, "%s: group %s is not multicast", 2818 __func__, inet_ntoa(group)); 2819 return (EINVAL); 2820 } 2821 2822 ifp = ifnet_byindex(ifindex); 2823 if (ifp == NULL) { 2824 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2825 __func__, ifindex); 2826 return (ENOENT); 2827 } 2828 2829 retval = sysctl_wire_old_buffer(req, 2830 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2831 if (retval) 2832 return (retval); 2833 2834 IN_MULTI_LOCK(); 2835 2836 IF_ADDR_RLOCK(ifp); 2837 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2838 if (ifma->ifma_addr->sa_family != AF_INET || 2839 ifma->ifma_protospec == NULL) 2840 continue; 2841 inm = (struct in_multi *)ifma->ifma_protospec; 2842 if (!in_hosteq(inm->inm_addr, group)) 2843 continue; 2844 fmode = inm->inm_st[1].iss_fmode; 2845 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2846 if (retval != 0) 2847 break; 2848 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2849 #ifdef KTR 2850 struct in_addr ina; 2851 ina.s_addr = htonl(ims->ims_haddr); 2852 CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, 2853 inet_ntoa(ina)); 2854 #endif 2855 /* 2856 * Only copy-out sources which are in-mode. 2857 */ 2858 if (fmode != ims_get_mode(inm, ims, 1)) { 2859 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2860 __func__); 2861 continue; 2862 } 2863 src.s_addr = htonl(ims->ims_haddr); 2864 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2865 if (retval != 0) 2866 break; 2867 } 2868 } 2869 IF_ADDR_RUNLOCK(ifp); 2870 2871 IN_MULTI_UNLOCK(); 2872 2873 return (retval); 2874 } 2875 2876 #ifdef KTR 2877 2878 static const char *inm_modestrs[] = { "un", "in", "ex" }; 2879 2880 static const char * 2881 inm_mode_str(const int mode) 2882 { 2883 2884 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2885 return (inm_modestrs[mode]); 2886 return ("??"); 2887 } 2888 2889 static const char *inm_statestrs[] = { 2890 "not-member", 2891 "silent", 2892 "idle", 2893 "lazy", 2894 "sleeping", 2895 "awakening", 2896 "query-pending", 2897 "sg-query-pending", 2898 "leaving" 2899 }; 2900 2901 static const char * 2902 inm_state_str(const int state) 2903 { 2904 2905 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2906 return (inm_statestrs[state]); 2907 return ("??"); 2908 } 2909 2910 /* 2911 * Dump an in_multi structure to the console. 2912 */ 2913 void 2914 inm_print(const struct in_multi *inm) 2915 { 2916 int t; 2917 2918 if ((ktr_mask & KTR_IGMPV3) == 0) 2919 return; 2920 2921 printf("%s: --- begin inm %p ---\n", __func__, inm); 2922 printf("addr %s ifp %p(%s) ifma %p\n", 2923 inet_ntoa(inm->inm_addr), 2924 inm->inm_ifp, 2925 inm->inm_ifp->if_xname, 2926 inm->inm_ifma); 2927 printf("timer %u state %s refcount %u scq.len %u\n", 2928 inm->inm_timer, 2929 inm_state_str(inm->inm_state), 2930 inm->inm_refcount, 2931 inm->inm_scq.ifq_len); 2932 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 2933 inm->inm_igi, 2934 inm->inm_nsrc, 2935 inm->inm_sctimer, 2936 inm->inm_scrv); 2937 for (t = 0; t < 2; t++) { 2938 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2939 inm_mode_str(inm->inm_st[t].iss_fmode), 2940 inm->inm_st[t].iss_asm, 2941 inm->inm_st[t].iss_ex, 2942 inm->inm_st[t].iss_in, 2943 inm->inm_st[t].iss_rec); 2944 } 2945 printf("%s: --- end inm %p ---\n", __func__, inm); 2946 } 2947 2948 #else /* !KTR */ 2949 2950 void 2951 inm_print(const struct in_multi *inm) 2952 { 2953 2954 } 2955 2956 #endif /* KTR */ 2957 2958 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 2959