xref: /freebsd/sys/netinet/in_mcast.c (revision 0183e0151669735d62584fbba9125ed90716af5e)
1 /*-
2  * Copyright (c) 2007-2009 Bruce Simpson.
3  * Copyright (c) 2005 Robert N. M. Watson.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote
15  *    products derived from this software without specific prior written
16  *    permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * IPv4 multicast socket, group, and socket option processing module.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/rmlock.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/protosw.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/taskqueue.h>
52 #include <sys/tree.h>
53 
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/if_dl.h>
57 #include <net/route.h>
58 #include <net/vnet.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_fib.h>
63 #include <netinet/in_pcb.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip_var.h>
66 #include <netinet/igmp_var.h>
67 
68 #ifndef KTR_IGMPV3
69 #define KTR_IGMPV3 KTR_INET
70 #endif
71 
72 #ifndef __SOCKUNION_DECLARED
73 union sockunion {
74 	struct sockaddr_storage	ss;
75 	struct sockaddr		sa;
76 	struct sockaddr_dl	sdl;
77 	struct sockaddr_in	sin;
78 };
79 typedef union sockunion sockunion_t;
80 #define __SOCKUNION_DECLARED
81 #endif /* __SOCKUNION_DECLARED */
82 
83 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
84     "IPv4 multicast PCB-layer source filter");
85 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
86 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
87 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
88     "IPv4 multicast IGMP-layer source filter");
89 
90 /*
91  * Locking:
92  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
93  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
94  *   it can be taken by code in net/if.c also.
95  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
96  *
97  * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
98  * any need for in_multi itself to be virtualized -- it is bound to an ifp
99  * anyway no matter what happens.
100  */
101 struct mtx in_multi_mtx;
102 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
103 
104 /*
105  * Functions with non-static linkage defined in this file should be
106  * declared in in_var.h:
107  *  imo_multi_filter()
108  *  in_addmulti()
109  *  in_delmulti()
110  *  in_joingroup()
111  *  in_joingroup_locked()
112  *  in_leavegroup()
113  *  in_leavegroup_locked()
114  * and ip_var.h:
115  *  inp_freemoptions()
116  *  inp_getmoptions()
117  *  inp_setmoptions()
118  *
119  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
120  * and in_delmulti().
121  */
122 static void	imf_commit(struct in_mfilter *);
123 static int	imf_get_source(struct in_mfilter *imf,
124 		    const struct sockaddr_in *psin,
125 		    struct in_msource **);
126 static struct in_msource *
127 		imf_graft(struct in_mfilter *, const uint8_t,
128 		    const struct sockaddr_in *);
129 static void	imf_leave(struct in_mfilter *);
130 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
131 static void	imf_purge(struct in_mfilter *);
132 static void	imf_rollback(struct in_mfilter *);
133 static void	imf_reap(struct in_mfilter *);
134 static int	imo_grow(struct ip_moptions *);
135 static size_t	imo_match_group(const struct ip_moptions *,
136 		    const struct ifnet *, const struct sockaddr *);
137 static struct in_msource *
138 		imo_match_source(const struct ip_moptions *, const size_t,
139 		    const struct sockaddr *);
140 static void	ims_merge(struct ip_msource *ims,
141 		    const struct in_msource *lims, const int rollback);
142 static int	in_getmulti(struct ifnet *, const struct in_addr *,
143 		    struct in_multi **);
144 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
145 		    const int noalloc, struct ip_msource **pims);
146 #ifdef KTR
147 static int	inm_is_ifp_detached(const struct in_multi *);
148 #endif
149 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
150 static void	inm_purge(struct in_multi *);
151 static void	inm_reap(struct in_multi *);
152 static struct ip_moptions *
153 		inp_findmoptions(struct inpcb *);
154 static void	inp_freemoptions_internal(struct ip_moptions *);
155 static void	inp_gcmoptions(void *, int);
156 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
157 static int	inp_join_group(struct inpcb *, struct sockopt *);
158 static int	inp_leave_group(struct inpcb *, struct sockopt *);
159 static struct ifnet *
160 		inp_lookup_mcast_ifp(const struct inpcb *,
161 		    const struct sockaddr_in *, const struct in_addr);
162 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
163 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
164 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
165 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
166 
167 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
168     "IPv4 multicast");
169 
170 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
171 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
172     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
173     "Max source filters per group");
174 
175 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
176 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
177     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
178     "Max source filters per socket");
179 
180 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
181 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
182     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
183 
184 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
185     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
186     "Per-interface stack-wide source filters");
187 
188 static STAILQ_HEAD(, ip_moptions) imo_gc_list =
189     STAILQ_HEAD_INITIALIZER(imo_gc_list);
190 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL);
191 
192 #ifdef KTR
193 /*
194  * Inline function which wraps assertions for a valid ifp.
195  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
196  * is detached.
197  */
198 static int __inline
199 inm_is_ifp_detached(const struct in_multi *inm)
200 {
201 	struct ifnet *ifp;
202 
203 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
204 	ifp = inm->inm_ifma->ifma_ifp;
205 	if (ifp != NULL) {
206 		/*
207 		 * Sanity check that netinet's notion of ifp is the
208 		 * same as net's.
209 		 */
210 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
211 	}
212 
213 	return (ifp == NULL);
214 }
215 #endif
216 
217 /*
218  * Initialize an in_mfilter structure to a known state at t0, t1
219  * with an empty source filter list.
220  */
221 static __inline void
222 imf_init(struct in_mfilter *imf, const int st0, const int st1)
223 {
224 	memset(imf, 0, sizeof(struct in_mfilter));
225 	RB_INIT(&imf->imf_sources);
226 	imf->imf_st[0] = st0;
227 	imf->imf_st[1] = st1;
228 }
229 
230 /*
231  * Function for looking up an in_multi record for an IPv4 multicast address
232  * on a given interface. ifp must be valid. If no record found, return NULL.
233  * The IN_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held.
234  */
235 struct in_multi *
236 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
237 {
238 	struct ifmultiaddr *ifma;
239 	struct in_multi *inm;
240 
241 	IN_MULTI_LOCK_ASSERT();
242 	IF_ADDR_LOCK_ASSERT(ifp);
243 
244 	inm = NULL;
245 	TAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
246 		if (ifma->ifma_addr->sa_family == AF_INET) {
247 			inm = (struct in_multi *)ifma->ifma_protospec;
248 			if (inm->inm_addr.s_addr == ina.s_addr)
249 				break;
250 			inm = NULL;
251 		}
252 	}
253 	return (inm);
254 }
255 
256 /*
257  * Wrapper for inm_lookup_locked().
258  * The IF_ADDR_LOCK will be taken on ifp and released on return.
259  */
260 struct in_multi *
261 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
262 {
263 	struct in_multi *inm;
264 
265 	IN_MULTI_LOCK_ASSERT();
266 	IF_ADDR_RLOCK(ifp);
267 	inm = inm_lookup_locked(ifp, ina);
268 	IF_ADDR_RUNLOCK(ifp);
269 
270 	return (inm);
271 }
272 
273 /*
274  * Resize the ip_moptions vector to the next power-of-two minus 1.
275  * May be called with locks held; do not sleep.
276  */
277 static int
278 imo_grow(struct ip_moptions *imo)
279 {
280 	struct in_multi		**nmships;
281 	struct in_multi		**omships;
282 	struct in_mfilter	 *nmfilters;
283 	struct in_mfilter	 *omfilters;
284 	size_t			  idx;
285 	size_t			  newmax;
286 	size_t			  oldmax;
287 
288 	nmships = NULL;
289 	nmfilters = NULL;
290 	omships = imo->imo_membership;
291 	omfilters = imo->imo_mfilters;
292 	oldmax = imo->imo_max_memberships;
293 	newmax = ((oldmax + 1) * 2) - 1;
294 
295 	if (newmax <= IP_MAX_MEMBERSHIPS) {
296 		nmships = (struct in_multi **)realloc(omships,
297 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
298 		nmfilters = (struct in_mfilter *)realloc(omfilters,
299 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
300 		if (nmships != NULL && nmfilters != NULL) {
301 			/* Initialize newly allocated source filter heads. */
302 			for (idx = oldmax; idx < newmax; idx++) {
303 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
304 				    MCAST_EXCLUDE);
305 			}
306 			imo->imo_max_memberships = newmax;
307 			imo->imo_membership = nmships;
308 			imo->imo_mfilters = nmfilters;
309 		}
310 	}
311 
312 	if (nmships == NULL || nmfilters == NULL) {
313 		if (nmships != NULL)
314 			free(nmships, M_IPMOPTS);
315 		if (nmfilters != NULL)
316 			free(nmfilters, M_INMFILTER);
317 		return (ETOOMANYREFS);
318 	}
319 
320 	return (0);
321 }
322 
323 /*
324  * Find an IPv4 multicast group entry for this ip_moptions instance
325  * which matches the specified group, and optionally an interface.
326  * Return its index into the array, or -1 if not found.
327  */
328 static size_t
329 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
330     const struct sockaddr *group)
331 {
332 	const struct sockaddr_in *gsin;
333 	struct in_multi	**pinm;
334 	int		  idx;
335 	int		  nmships;
336 
337 	gsin = (const struct sockaddr_in *)group;
338 
339 	/* The imo_membership array may be lazy allocated. */
340 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
341 		return (-1);
342 
343 	nmships = imo->imo_num_memberships;
344 	pinm = &imo->imo_membership[0];
345 	for (idx = 0; idx < nmships; idx++, pinm++) {
346 		if (*pinm == NULL)
347 			continue;
348 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
349 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
350 			break;
351 		}
352 	}
353 	if (idx >= nmships)
354 		idx = -1;
355 
356 	return (idx);
357 }
358 
359 /*
360  * Find an IPv4 multicast source entry for this imo which matches
361  * the given group index for this socket, and source address.
362  *
363  * NOTE: This does not check if the entry is in-mode, merely if
364  * it exists, which may not be the desired behaviour.
365  */
366 static struct in_msource *
367 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
368     const struct sockaddr *src)
369 {
370 	struct ip_msource	 find;
371 	struct in_mfilter	*imf;
372 	struct ip_msource	*ims;
373 	const sockunion_t	*psa;
374 
375 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
376 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
377 	    ("%s: invalid index %d\n", __func__, (int)gidx));
378 
379 	/* The imo_mfilters array may be lazy allocated. */
380 	if (imo->imo_mfilters == NULL)
381 		return (NULL);
382 	imf = &imo->imo_mfilters[gidx];
383 
384 	/* Source trees are keyed in host byte order. */
385 	psa = (const sockunion_t *)src;
386 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
387 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
388 
389 	return ((struct in_msource *)ims);
390 }
391 
392 /*
393  * Perform filtering for multicast datagrams on a socket by group and source.
394  *
395  * Returns 0 if a datagram should be allowed through, or various error codes
396  * if the socket was not a member of the group, or the source was muted, etc.
397  */
398 int
399 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
400     const struct sockaddr *group, const struct sockaddr *src)
401 {
402 	size_t gidx;
403 	struct in_msource *ims;
404 	int mode;
405 
406 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
407 
408 	gidx = imo_match_group(imo, ifp, group);
409 	if (gidx == -1)
410 		return (MCAST_NOTGMEMBER);
411 
412 	/*
413 	 * Check if the source was included in an (S,G) join.
414 	 * Allow reception on exclusive memberships by default,
415 	 * reject reception on inclusive memberships by default.
416 	 * Exclude source only if an in-mode exclude filter exists.
417 	 * Include source only if an in-mode include filter exists.
418 	 * NOTE: We are comparing group state here at IGMP t1 (now)
419 	 * with socket-layer t0 (since last downcall).
420 	 */
421 	mode = imo->imo_mfilters[gidx].imf_st[1];
422 	ims = imo_match_source(imo, gidx, src);
423 
424 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
425 	    (ims != NULL && ims->imsl_st[0] != mode))
426 		return (MCAST_NOTSMEMBER);
427 
428 	return (MCAST_PASS);
429 }
430 
431 /*
432  * Find and return a reference to an in_multi record for (ifp, group),
433  * and bump its reference count.
434  * If one does not exist, try to allocate it, and update link-layer multicast
435  * filters on ifp to listen for group.
436  * Assumes the IN_MULTI lock is held across the call.
437  * Return 0 if successful, otherwise return an appropriate error code.
438  */
439 static int
440 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
441     struct in_multi **pinm)
442 {
443 	struct sockaddr_in	 gsin;
444 	struct ifmultiaddr	*ifma;
445 	struct in_ifinfo	*ii;
446 	struct in_multi		*inm;
447 	int error;
448 
449 	IN_MULTI_LOCK_ASSERT();
450 
451 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
452 
453 	inm = inm_lookup(ifp, *group);
454 	if (inm != NULL) {
455 		/*
456 		 * If we already joined this group, just bump the
457 		 * refcount and return it.
458 		 */
459 		KASSERT(inm->inm_refcount >= 1,
460 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
461 		++inm->inm_refcount;
462 		*pinm = inm;
463 		return (0);
464 	}
465 
466 	memset(&gsin, 0, sizeof(gsin));
467 	gsin.sin_family = AF_INET;
468 	gsin.sin_len = sizeof(struct sockaddr_in);
469 	gsin.sin_addr = *group;
470 
471 	/*
472 	 * Check if a link-layer group is already associated
473 	 * with this network-layer group on the given ifnet.
474 	 */
475 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
476 	if (error != 0)
477 		return (error);
478 
479 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
480 	IF_ADDR_WLOCK(ifp);
481 
482 	/*
483 	 * If something other than netinet is occupying the link-layer
484 	 * group, print a meaningful error message and back out of
485 	 * the allocation.
486 	 * Otherwise, bump the refcount on the existing network-layer
487 	 * group association and return it.
488 	 */
489 	if (ifma->ifma_protospec != NULL) {
490 		inm = (struct in_multi *)ifma->ifma_protospec;
491 #ifdef INVARIANTS
492 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
493 		    __func__));
494 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
495 		    ("%s: ifma not AF_INET", __func__));
496 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
497 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
498 		    !in_hosteq(inm->inm_addr, *group)) {
499 			char addrbuf[INET_ADDRSTRLEN];
500 
501 			panic("%s: ifma %p is inconsistent with %p (%s)",
502 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
503 		}
504 #endif
505 		++inm->inm_refcount;
506 		*pinm = inm;
507 		IF_ADDR_WUNLOCK(ifp);
508 		return (0);
509 	}
510 
511 	IF_ADDR_WLOCK_ASSERT(ifp);
512 
513 	/*
514 	 * A new in_multi record is needed; allocate and initialize it.
515 	 * We DO NOT perform an IGMP join as the in_ layer may need to
516 	 * push an initial source list down to IGMP to support SSM.
517 	 *
518 	 * The initial source filter state is INCLUDE, {} as per the RFC.
519 	 */
520 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
521 	if (inm == NULL) {
522 		IF_ADDR_WUNLOCK(ifp);
523 		if_delmulti_ifma(ifma);
524 		return (ENOMEM);
525 	}
526 	inm->inm_addr = *group;
527 	inm->inm_ifp = ifp;
528 	inm->inm_igi = ii->ii_igmp;
529 	inm->inm_ifma = ifma;
530 	inm->inm_refcount = 1;
531 	inm->inm_state = IGMP_NOT_MEMBER;
532 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
533 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
534 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
535 	RB_INIT(&inm->inm_srcs);
536 
537 	ifma->ifma_protospec = inm;
538 
539 	*pinm = inm;
540 
541 	IF_ADDR_WUNLOCK(ifp);
542 	return (0);
543 }
544 
545 /*
546  * Drop a reference to an in_multi record.
547  *
548  * If the refcount drops to 0, free the in_multi record and
549  * delete the underlying link-layer membership.
550  */
551 void
552 inm_release_locked(struct in_multi *inm)
553 {
554 	struct ifmultiaddr *ifma;
555 
556 	IN_MULTI_LOCK_ASSERT();
557 
558 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
559 
560 	if (--inm->inm_refcount > 0) {
561 		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
562 		    inm->inm_refcount);
563 		return;
564 	}
565 
566 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
567 
568 	ifma = inm->inm_ifma;
569 
570 	/* XXX this access is not covered by IF_ADDR_LOCK */
571 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
572 	KASSERT(ifma->ifma_protospec == inm,
573 	    ("%s: ifma_protospec != inm", __func__));
574 	ifma->ifma_protospec = NULL;
575 
576 	inm_purge(inm);
577 
578 	free(inm, M_IPMADDR);
579 
580 	if_delmulti_ifma(ifma);
581 }
582 
583 /*
584  * Clear recorded source entries for a group.
585  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
586  * FIXME: Should reap.
587  */
588 void
589 inm_clear_recorded(struct in_multi *inm)
590 {
591 	struct ip_msource	*ims;
592 
593 	IN_MULTI_LOCK_ASSERT();
594 
595 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
596 		if (ims->ims_stp) {
597 			ims->ims_stp = 0;
598 			--inm->inm_st[1].iss_rec;
599 		}
600 	}
601 	KASSERT(inm->inm_st[1].iss_rec == 0,
602 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
603 }
604 
605 /*
606  * Record a source as pending for a Source-Group IGMPv3 query.
607  * This lives here as it modifies the shared tree.
608  *
609  * inm is the group descriptor.
610  * naddr is the address of the source to record in network-byte order.
611  *
612  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
613  * lazy-allocate a source node in response to an SG query.
614  * Otherwise, no allocation is performed. This saves some memory
615  * with the trade-off that the source will not be reported to the
616  * router if joined in the window between the query response and
617  * the group actually being joined on the local host.
618  *
619  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
620  * This turns off the allocation of a recorded source entry if
621  * the group has not been joined.
622  *
623  * Return 0 if the source didn't exist or was already marked as recorded.
624  * Return 1 if the source was marked as recorded by this function.
625  * Return <0 if any error occurred (negated errno code).
626  */
627 int
628 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
629 {
630 	struct ip_msource	 find;
631 	struct ip_msource	*ims, *nims;
632 
633 	IN_MULTI_LOCK_ASSERT();
634 
635 	find.ims_haddr = ntohl(naddr);
636 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
637 	if (ims && ims->ims_stp)
638 		return (0);
639 	if (ims == NULL) {
640 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
641 			return (-ENOSPC);
642 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
643 		    M_NOWAIT | M_ZERO);
644 		if (nims == NULL)
645 			return (-ENOMEM);
646 		nims->ims_haddr = find.ims_haddr;
647 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
648 		++inm->inm_nsrc;
649 		ims = nims;
650 	}
651 
652 	/*
653 	 * Mark the source as recorded and update the recorded
654 	 * source count.
655 	 */
656 	++ims->ims_stp;
657 	++inm->inm_st[1].iss_rec;
658 
659 	return (1);
660 }
661 
662 /*
663  * Return a pointer to an in_msource owned by an in_mfilter,
664  * given its source address.
665  * Lazy-allocate if needed. If this is a new entry its filter state is
666  * undefined at t0.
667  *
668  * imf is the filter set being modified.
669  * haddr is the source address in *host* byte-order.
670  *
671  * SMPng: May be called with locks held; malloc must not block.
672  */
673 static int
674 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
675     struct in_msource **plims)
676 {
677 	struct ip_msource	 find;
678 	struct ip_msource	*ims, *nims;
679 	struct in_msource	*lims;
680 	int			 error;
681 
682 	error = 0;
683 	ims = NULL;
684 	lims = NULL;
685 
686 	/* key is host byte order */
687 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
688 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
689 	lims = (struct in_msource *)ims;
690 	if (lims == NULL) {
691 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
692 			return (ENOSPC);
693 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
694 		    M_NOWAIT | M_ZERO);
695 		if (nims == NULL)
696 			return (ENOMEM);
697 		lims = (struct in_msource *)nims;
698 		lims->ims_haddr = find.ims_haddr;
699 		lims->imsl_st[0] = MCAST_UNDEFINED;
700 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
701 		++imf->imf_nsrc;
702 	}
703 
704 	*plims = lims;
705 
706 	return (error);
707 }
708 
709 /*
710  * Graft a source entry into an existing socket-layer filter set,
711  * maintaining any required invariants and checking allocations.
712  *
713  * The source is marked as being in the new filter mode at t1.
714  *
715  * Return the pointer to the new node, otherwise return NULL.
716  */
717 static struct in_msource *
718 imf_graft(struct in_mfilter *imf, const uint8_t st1,
719     const struct sockaddr_in *psin)
720 {
721 	struct ip_msource	*nims;
722 	struct in_msource	*lims;
723 
724 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
725 	    M_NOWAIT | M_ZERO);
726 	if (nims == NULL)
727 		return (NULL);
728 	lims = (struct in_msource *)nims;
729 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
730 	lims->imsl_st[0] = MCAST_UNDEFINED;
731 	lims->imsl_st[1] = st1;
732 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
733 	++imf->imf_nsrc;
734 
735 	return (lims);
736 }
737 
738 /*
739  * Prune a source entry from an existing socket-layer filter set,
740  * maintaining any required invariants and checking allocations.
741  *
742  * The source is marked as being left at t1, it is not freed.
743  *
744  * Return 0 if no error occurred, otherwise return an errno value.
745  */
746 static int
747 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
748 {
749 	struct ip_msource	 find;
750 	struct ip_msource	*ims;
751 	struct in_msource	*lims;
752 
753 	/* key is host byte order */
754 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
755 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
756 	if (ims == NULL)
757 		return (ENOENT);
758 	lims = (struct in_msource *)ims;
759 	lims->imsl_st[1] = MCAST_UNDEFINED;
760 	return (0);
761 }
762 
763 /*
764  * Revert socket-layer filter set deltas at t1 to t0 state.
765  */
766 static void
767 imf_rollback(struct in_mfilter *imf)
768 {
769 	struct ip_msource	*ims, *tims;
770 	struct in_msource	*lims;
771 
772 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
773 		lims = (struct in_msource *)ims;
774 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
775 			/* no change at t1 */
776 			continue;
777 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
778 			/* revert change to existing source at t1 */
779 			lims->imsl_st[1] = lims->imsl_st[0];
780 		} else {
781 			/* revert source added t1 */
782 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
783 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
784 			free(ims, M_INMFILTER);
785 			imf->imf_nsrc--;
786 		}
787 	}
788 	imf->imf_st[1] = imf->imf_st[0];
789 }
790 
791 /*
792  * Mark socket-layer filter set as INCLUDE {} at t1.
793  */
794 static void
795 imf_leave(struct in_mfilter *imf)
796 {
797 	struct ip_msource	*ims;
798 	struct in_msource	*lims;
799 
800 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
801 		lims = (struct in_msource *)ims;
802 		lims->imsl_st[1] = MCAST_UNDEFINED;
803 	}
804 	imf->imf_st[1] = MCAST_INCLUDE;
805 }
806 
807 /*
808  * Mark socket-layer filter set deltas as committed.
809  */
810 static void
811 imf_commit(struct in_mfilter *imf)
812 {
813 	struct ip_msource	*ims;
814 	struct in_msource	*lims;
815 
816 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
817 		lims = (struct in_msource *)ims;
818 		lims->imsl_st[0] = lims->imsl_st[1];
819 	}
820 	imf->imf_st[0] = imf->imf_st[1];
821 }
822 
823 /*
824  * Reap unreferenced sources from socket-layer filter set.
825  */
826 static void
827 imf_reap(struct in_mfilter *imf)
828 {
829 	struct ip_msource	*ims, *tims;
830 	struct in_msource	*lims;
831 
832 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
833 		lims = (struct in_msource *)ims;
834 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
835 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
836 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
837 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
838 			free(ims, M_INMFILTER);
839 			imf->imf_nsrc--;
840 		}
841 	}
842 }
843 
844 /*
845  * Purge socket-layer filter set.
846  */
847 static void
848 imf_purge(struct in_mfilter *imf)
849 {
850 	struct ip_msource	*ims, *tims;
851 
852 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
853 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
854 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
855 		free(ims, M_INMFILTER);
856 		imf->imf_nsrc--;
857 	}
858 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
859 	KASSERT(RB_EMPTY(&imf->imf_sources),
860 	    ("%s: imf_sources not empty", __func__));
861 }
862 
863 /*
864  * Look up a source filter entry for a multicast group.
865  *
866  * inm is the group descriptor to work with.
867  * haddr is the host-byte-order IPv4 address to look up.
868  * noalloc may be non-zero to suppress allocation of sources.
869  * *pims will be set to the address of the retrieved or allocated source.
870  *
871  * SMPng: NOTE: may be called with locks held.
872  * Return 0 if successful, otherwise return a non-zero error code.
873  */
874 static int
875 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
876     const int noalloc, struct ip_msource **pims)
877 {
878 	struct ip_msource	 find;
879 	struct ip_msource	*ims, *nims;
880 
881 	find.ims_haddr = haddr;
882 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
883 	if (ims == NULL && !noalloc) {
884 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
885 			return (ENOSPC);
886 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
887 		    M_NOWAIT | M_ZERO);
888 		if (nims == NULL)
889 			return (ENOMEM);
890 		nims->ims_haddr = haddr;
891 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
892 		++inm->inm_nsrc;
893 		ims = nims;
894 #ifdef KTR
895 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
896 		    haddr, ims);
897 #endif
898 	}
899 
900 	*pims = ims;
901 	return (0);
902 }
903 
904 /*
905  * Merge socket-layer source into IGMP-layer source.
906  * If rollback is non-zero, perform the inverse of the merge.
907  */
908 static void
909 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
910     const int rollback)
911 {
912 	int n = rollback ? -1 : 1;
913 
914 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
915 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
916 		    __func__, n, ims->ims_haddr);
917 		ims->ims_st[1].ex -= n;
918 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
919 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
920 		    __func__, n, ims->ims_haddr);
921 		ims->ims_st[1].in -= n;
922 	}
923 
924 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
925 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
926 		    __func__, n, ims->ims_haddr);
927 		ims->ims_st[1].ex += n;
928 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
929 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
930 		    __func__, n, ims->ims_haddr);
931 		ims->ims_st[1].in += n;
932 	}
933 }
934 
935 /*
936  * Atomically update the global in_multi state, when a membership's
937  * filter list is being updated in any way.
938  *
939  * imf is the per-inpcb-membership group filter pointer.
940  * A fake imf may be passed for in-kernel consumers.
941  *
942  * XXX This is a candidate for a set-symmetric-difference style loop
943  * which would eliminate the repeated lookup from root of ims nodes,
944  * as they share the same key space.
945  *
946  * If any error occurred this function will back out of refcounts
947  * and return a non-zero value.
948  */
949 static int
950 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
951 {
952 	struct ip_msource	*ims, *nims;
953 	struct in_msource	*lims;
954 	int			 schanged, error;
955 	int			 nsrc0, nsrc1;
956 
957 	schanged = 0;
958 	error = 0;
959 	nsrc1 = nsrc0 = 0;
960 
961 	/*
962 	 * Update the source filters first, as this may fail.
963 	 * Maintain count of in-mode filters at t0, t1. These are
964 	 * used to work out if we transition into ASM mode or not.
965 	 * Maintain a count of source filters whose state was
966 	 * actually modified by this operation.
967 	 */
968 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
969 		lims = (struct in_msource *)ims;
970 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
971 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
972 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
973 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
974 		++schanged;
975 		if (error)
976 			break;
977 		ims_merge(nims, lims, 0);
978 	}
979 	if (error) {
980 		struct ip_msource *bims;
981 
982 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
983 			lims = (struct in_msource *)ims;
984 			if (lims->imsl_st[0] == lims->imsl_st[1])
985 				continue;
986 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
987 			if (bims == NULL)
988 				continue;
989 			ims_merge(bims, lims, 1);
990 		}
991 		goto out_reap;
992 	}
993 
994 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
995 	    __func__, nsrc0, nsrc1);
996 
997 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
998 	if (imf->imf_st[0] == imf->imf_st[1] &&
999 	    imf->imf_st[1] == MCAST_INCLUDE) {
1000 		if (nsrc1 == 0) {
1001 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1002 			--inm->inm_st[1].iss_in;
1003 		}
1004 	}
1005 
1006 	/* Handle filter mode transition on socket. */
1007 	if (imf->imf_st[0] != imf->imf_st[1]) {
1008 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1009 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1010 
1011 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1012 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1013 			--inm->inm_st[1].iss_ex;
1014 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1015 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1016 			--inm->inm_st[1].iss_in;
1017 		}
1018 
1019 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1020 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1021 			inm->inm_st[1].iss_ex++;
1022 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1023 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1024 			inm->inm_st[1].iss_in++;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * Track inm filter state in terms of listener counts.
1030 	 * If there are any exclusive listeners, stack-wide
1031 	 * membership is exclusive.
1032 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1033 	 * If no listeners remain, state is undefined at t1,
1034 	 * and the IGMP lifecycle for this group should finish.
1035 	 */
1036 	if (inm->inm_st[1].iss_ex > 0) {
1037 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1038 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1039 	} else if (inm->inm_st[1].iss_in > 0) {
1040 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1041 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1042 	} else {
1043 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1044 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1045 	}
1046 
1047 	/* Decrement ASM listener count on transition out of ASM mode. */
1048 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1049 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1050 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1051 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1052 			--inm->inm_st[1].iss_asm;
1053 	}
1054 
1055 	/* Increment ASM listener count on transition to ASM mode. */
1056 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1057 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1058 		inm->inm_st[1].iss_asm++;
1059 	}
1060 
1061 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1062 	inm_print(inm);
1063 
1064 out_reap:
1065 	if (schanged > 0) {
1066 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1067 		inm_reap(inm);
1068 	}
1069 	return (error);
1070 }
1071 
1072 /*
1073  * Mark an in_multi's filter set deltas as committed.
1074  * Called by IGMP after a state change has been enqueued.
1075  */
1076 void
1077 inm_commit(struct in_multi *inm)
1078 {
1079 	struct ip_msource	*ims;
1080 
1081 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1082 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1083 	inm_print(inm);
1084 
1085 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1086 		ims->ims_st[0] = ims->ims_st[1];
1087 	}
1088 	inm->inm_st[0] = inm->inm_st[1];
1089 }
1090 
1091 /*
1092  * Reap unreferenced nodes from an in_multi's filter set.
1093  */
1094 static void
1095 inm_reap(struct in_multi *inm)
1096 {
1097 	struct ip_msource	*ims, *tims;
1098 
1099 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1100 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1101 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1102 		    ims->ims_stp != 0)
1103 			continue;
1104 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1105 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1106 		free(ims, M_IPMSOURCE);
1107 		inm->inm_nsrc--;
1108 	}
1109 }
1110 
1111 /*
1112  * Purge all source nodes from an in_multi's filter set.
1113  */
1114 static void
1115 inm_purge(struct in_multi *inm)
1116 {
1117 	struct ip_msource	*ims, *tims;
1118 
1119 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1120 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1121 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1122 		free(ims, M_IPMSOURCE);
1123 		inm->inm_nsrc--;
1124 	}
1125 }
1126 
1127 /*
1128  * Join a multicast group; unlocked entry point.
1129  *
1130  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1131  * is not held. Fortunately, ifp is unlikely to have been detached
1132  * at this point, so we assume it's OK to recurse.
1133  */
1134 int
1135 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1136     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1137 {
1138 	int error;
1139 
1140 	IN_MULTI_LOCK();
1141 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1142 	IN_MULTI_UNLOCK();
1143 
1144 	return (error);
1145 }
1146 
1147 /*
1148  * Join a multicast group; real entry point.
1149  *
1150  * Only preserves atomicity at inm level.
1151  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1152  *
1153  * If the IGMP downcall fails, the group is not joined, and an error
1154  * code is returned.
1155  */
1156 int
1157 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1158     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1159 {
1160 	struct in_mfilter	 timf;
1161 	struct in_multi		*inm;
1162 	int			 error;
1163 
1164 	IN_MULTI_LOCK_ASSERT();
1165 
1166 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1167 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1168 
1169 	error = 0;
1170 	inm = NULL;
1171 
1172 	/*
1173 	 * If no imf was specified (i.e. kernel consumer),
1174 	 * fake one up and assume it is an ASM join.
1175 	 */
1176 	if (imf == NULL) {
1177 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1178 		imf = &timf;
1179 	}
1180 
1181 	error = in_getmulti(ifp, gina, &inm);
1182 	if (error) {
1183 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1184 		return (error);
1185 	}
1186 
1187 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1188 	error = inm_merge(inm, imf);
1189 	if (error) {
1190 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1191 		goto out_inm_release;
1192 	}
1193 
1194 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1195 	error = igmp_change_state(inm);
1196 	if (error) {
1197 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1198 		goto out_inm_release;
1199 	}
1200 
1201 out_inm_release:
1202 	if (error) {
1203 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1204 		inm_release_locked(inm);
1205 	} else {
1206 		*pinm = inm;
1207 	}
1208 
1209 	return (error);
1210 }
1211 
1212 /*
1213  * Leave a multicast group; unlocked entry point.
1214  */
1215 int
1216 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1217 {
1218 	int error;
1219 
1220 	IN_MULTI_LOCK();
1221 	error = in_leavegroup_locked(inm, imf);
1222 	IN_MULTI_UNLOCK();
1223 
1224 	return (error);
1225 }
1226 
1227 /*
1228  * Leave a multicast group; real entry point.
1229  * All source filters will be expunged.
1230  *
1231  * Only preserves atomicity at inm level.
1232  *
1233  * Holding the write lock for the INP which contains imf
1234  * is highly advisable. We can't assert for it as imf does not
1235  * contain a back-pointer to the owning inp.
1236  *
1237  * Note: This is not the same as inm_release(*) as this function also
1238  * makes a state change downcall into IGMP.
1239  */
1240 int
1241 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1242 {
1243 	struct in_mfilter	 timf;
1244 	int			 error;
1245 
1246 	error = 0;
1247 
1248 	IN_MULTI_LOCK_ASSERT();
1249 
1250 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1251 	    inm, ntohl(inm->inm_addr.s_addr),
1252 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1253 	    imf);
1254 
1255 	/*
1256 	 * If no imf was specified (i.e. kernel consumer),
1257 	 * fake one up and assume it is an ASM join.
1258 	 */
1259 	if (imf == NULL) {
1260 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1261 		imf = &timf;
1262 	}
1263 
1264 	/*
1265 	 * Begin state merge transaction at IGMP layer.
1266 	 *
1267 	 * As this particular invocation should not cause any memory
1268 	 * to be allocated, and there is no opportunity to roll back
1269 	 * the transaction, it MUST NOT fail.
1270 	 */
1271 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1272 	error = inm_merge(inm, imf);
1273 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1274 
1275 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1276 	CURVNET_SET(inm->inm_ifp->if_vnet);
1277 	error = igmp_change_state(inm);
1278 	CURVNET_RESTORE();
1279 	if (error)
1280 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1281 
1282 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1283 	inm_release_locked(inm);
1284 
1285 	return (error);
1286 }
1287 
1288 /*#ifndef BURN_BRIDGES*/
1289 /*
1290  * Join an IPv4 multicast group in (*,G) exclusive mode.
1291  * The group must be a 224.0.0.0/24 link-scope group.
1292  * This KPI is for legacy kernel consumers only.
1293  */
1294 struct in_multi *
1295 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1296 {
1297 	struct in_multi *pinm;
1298 	int error;
1299 #ifdef INVARIANTS
1300 	char addrbuf[INET_ADDRSTRLEN];
1301 #endif
1302 
1303 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1304 	    ("%s: %s not in 224.0.0.0/24", __func__,
1305 	    inet_ntoa_r(*ap, addrbuf)));
1306 
1307 	error = in_joingroup(ifp, ap, NULL, &pinm);
1308 	if (error != 0)
1309 		pinm = NULL;
1310 
1311 	return (pinm);
1312 }
1313 
1314 /*
1315  * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1316  * This KPI is for legacy kernel consumers only.
1317  */
1318 void
1319 in_delmulti(struct in_multi *inm)
1320 {
1321 
1322 	(void)in_leavegroup(inm, NULL);
1323 }
1324 /*#endif*/
1325 
1326 /*
1327  * Block or unblock an ASM multicast source on an inpcb.
1328  * This implements the delta-based API described in RFC 3678.
1329  *
1330  * The delta-based API applies only to exclusive-mode memberships.
1331  * An IGMP downcall will be performed.
1332  *
1333  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1334  *
1335  * Return 0 if successful, otherwise return an appropriate error code.
1336  */
1337 static int
1338 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1339 {
1340 	struct group_source_req		 gsr;
1341 	sockunion_t			*gsa, *ssa;
1342 	struct ifnet			*ifp;
1343 	struct in_mfilter		*imf;
1344 	struct ip_moptions		*imo;
1345 	struct in_msource		*ims;
1346 	struct in_multi			*inm;
1347 	size_t				 idx;
1348 	uint16_t			 fmode;
1349 	int				 error, doblock;
1350 
1351 	ifp = NULL;
1352 	error = 0;
1353 	doblock = 0;
1354 
1355 	memset(&gsr, 0, sizeof(struct group_source_req));
1356 	gsa = (sockunion_t *)&gsr.gsr_group;
1357 	ssa = (sockunion_t *)&gsr.gsr_source;
1358 
1359 	switch (sopt->sopt_name) {
1360 	case IP_BLOCK_SOURCE:
1361 	case IP_UNBLOCK_SOURCE: {
1362 		struct ip_mreq_source	 mreqs;
1363 
1364 		error = sooptcopyin(sopt, &mreqs,
1365 		    sizeof(struct ip_mreq_source),
1366 		    sizeof(struct ip_mreq_source));
1367 		if (error)
1368 			return (error);
1369 
1370 		gsa->sin.sin_family = AF_INET;
1371 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1372 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1373 
1374 		ssa->sin.sin_family = AF_INET;
1375 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1376 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1377 
1378 		if (!in_nullhost(mreqs.imr_interface))
1379 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1380 
1381 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1382 			doblock = 1;
1383 
1384 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1385 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1386 		break;
1387 	    }
1388 
1389 	case MCAST_BLOCK_SOURCE:
1390 	case MCAST_UNBLOCK_SOURCE:
1391 		error = sooptcopyin(sopt, &gsr,
1392 		    sizeof(struct group_source_req),
1393 		    sizeof(struct group_source_req));
1394 		if (error)
1395 			return (error);
1396 
1397 		if (gsa->sin.sin_family != AF_INET ||
1398 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1399 			return (EINVAL);
1400 
1401 		if (ssa->sin.sin_family != AF_INET ||
1402 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1403 			return (EINVAL);
1404 
1405 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1406 			return (EADDRNOTAVAIL);
1407 
1408 		ifp = ifnet_byindex(gsr.gsr_interface);
1409 
1410 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1411 			doblock = 1;
1412 		break;
1413 
1414 	default:
1415 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1416 		    __func__, sopt->sopt_name);
1417 		return (EOPNOTSUPP);
1418 		break;
1419 	}
1420 
1421 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1422 		return (EINVAL);
1423 
1424 	/*
1425 	 * Check if we are actually a member of this group.
1426 	 */
1427 	imo = inp_findmoptions(inp);
1428 	idx = imo_match_group(imo, ifp, &gsa->sa);
1429 	if (idx == -1 || imo->imo_mfilters == NULL) {
1430 		error = EADDRNOTAVAIL;
1431 		goto out_inp_locked;
1432 	}
1433 
1434 	KASSERT(imo->imo_mfilters != NULL,
1435 	    ("%s: imo_mfilters not allocated", __func__));
1436 	imf = &imo->imo_mfilters[idx];
1437 	inm = imo->imo_membership[idx];
1438 
1439 	/*
1440 	 * Attempting to use the delta-based API on an
1441 	 * non exclusive-mode membership is an error.
1442 	 */
1443 	fmode = imf->imf_st[0];
1444 	if (fmode != MCAST_EXCLUDE) {
1445 		error = EINVAL;
1446 		goto out_inp_locked;
1447 	}
1448 
1449 	/*
1450 	 * Deal with error cases up-front:
1451 	 *  Asked to block, but already blocked; or
1452 	 *  Asked to unblock, but nothing to unblock.
1453 	 * If adding a new block entry, allocate it.
1454 	 */
1455 	ims = imo_match_source(imo, idx, &ssa->sa);
1456 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1457 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1458 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1459 		error = EADDRNOTAVAIL;
1460 		goto out_inp_locked;
1461 	}
1462 
1463 	INP_WLOCK_ASSERT(inp);
1464 
1465 	/*
1466 	 * Begin state merge transaction at socket layer.
1467 	 */
1468 	if (doblock) {
1469 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1470 		ims = imf_graft(imf, fmode, &ssa->sin);
1471 		if (ims == NULL)
1472 			error = ENOMEM;
1473 	} else {
1474 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1475 		error = imf_prune(imf, &ssa->sin);
1476 	}
1477 
1478 	if (error) {
1479 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1480 		goto out_imf_rollback;
1481 	}
1482 
1483 	/*
1484 	 * Begin state merge transaction at IGMP layer.
1485 	 */
1486 	IN_MULTI_LOCK();
1487 
1488 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1489 	error = inm_merge(inm, imf);
1490 	if (error) {
1491 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1492 		goto out_in_multi_locked;
1493 	}
1494 
1495 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1496 	error = igmp_change_state(inm);
1497 	if (error)
1498 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1499 
1500 out_in_multi_locked:
1501 
1502 	IN_MULTI_UNLOCK();
1503 
1504 out_imf_rollback:
1505 	if (error)
1506 		imf_rollback(imf);
1507 	else
1508 		imf_commit(imf);
1509 
1510 	imf_reap(imf);
1511 
1512 out_inp_locked:
1513 	INP_WUNLOCK(inp);
1514 	return (error);
1515 }
1516 
1517 /*
1518  * Given an inpcb, return its multicast options structure pointer.  Accepts
1519  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1520  *
1521  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1522  * SMPng: NOTE: Returns with the INP write lock held.
1523  */
1524 static struct ip_moptions *
1525 inp_findmoptions(struct inpcb *inp)
1526 {
1527 	struct ip_moptions	 *imo;
1528 	struct in_multi		**immp;
1529 	struct in_mfilter	 *imfp;
1530 	size_t			  idx;
1531 
1532 	INP_WLOCK(inp);
1533 	if (inp->inp_moptions != NULL)
1534 		return (inp->inp_moptions);
1535 
1536 	INP_WUNLOCK(inp);
1537 
1538 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1539 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1540 	    M_WAITOK | M_ZERO);
1541 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1542 	    M_INMFILTER, M_WAITOK);
1543 
1544 	imo->imo_multicast_ifp = NULL;
1545 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1546 	imo->imo_multicast_vif = -1;
1547 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1548 	imo->imo_multicast_loop = in_mcast_loop;
1549 	imo->imo_num_memberships = 0;
1550 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1551 	imo->imo_membership = immp;
1552 
1553 	/* Initialize per-group source filters. */
1554 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1555 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1556 	imo->imo_mfilters = imfp;
1557 
1558 	INP_WLOCK(inp);
1559 	if (inp->inp_moptions != NULL) {
1560 		free(imfp, M_INMFILTER);
1561 		free(immp, M_IPMOPTS);
1562 		free(imo, M_IPMOPTS);
1563 		return (inp->inp_moptions);
1564 	}
1565 	inp->inp_moptions = imo;
1566 	return (imo);
1567 }
1568 
1569 /*
1570  * Discard the IP multicast options (and source filters).  To minimize
1571  * the amount of work done while holding locks such as the INP's
1572  * pcbinfo lock (which is used in the receive path), the free
1573  * operation is performed asynchronously in a separate task.
1574  *
1575  * SMPng: NOTE: assumes INP write lock is held.
1576  */
1577 void
1578 inp_freemoptions(struct ip_moptions *imo)
1579 {
1580 
1581 	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1582 	IN_MULTI_LOCK();
1583 	STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link);
1584 	IN_MULTI_UNLOCK();
1585 	taskqueue_enqueue(taskqueue_thread, &imo_gc_task);
1586 }
1587 
1588 static void
1589 inp_freemoptions_internal(struct ip_moptions *imo)
1590 {
1591 	struct in_mfilter	*imf;
1592 	size_t			 idx, nmships;
1593 
1594 	nmships = imo->imo_num_memberships;
1595 	for (idx = 0; idx < nmships; ++idx) {
1596 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1597 		if (imf)
1598 			imf_leave(imf);
1599 		(void)in_leavegroup(imo->imo_membership[idx], imf);
1600 		if (imf)
1601 			imf_purge(imf);
1602 	}
1603 
1604 	if (imo->imo_mfilters)
1605 		free(imo->imo_mfilters, M_INMFILTER);
1606 	free(imo->imo_membership, M_IPMOPTS);
1607 	free(imo, M_IPMOPTS);
1608 }
1609 
1610 static void
1611 inp_gcmoptions(void *context, int pending)
1612 {
1613 	struct ip_moptions *imo;
1614 
1615 	IN_MULTI_LOCK();
1616 	while (!STAILQ_EMPTY(&imo_gc_list)) {
1617 		imo = STAILQ_FIRST(&imo_gc_list);
1618 		STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link);
1619 		IN_MULTI_UNLOCK();
1620 		inp_freemoptions_internal(imo);
1621 		IN_MULTI_LOCK();
1622 	}
1623 	IN_MULTI_UNLOCK();
1624 }
1625 
1626 /*
1627  * Atomically get source filters on a socket for an IPv4 multicast group.
1628  * Called with INP lock held; returns with lock released.
1629  */
1630 static int
1631 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1632 {
1633 	struct __msfilterreq	 msfr;
1634 	sockunion_t		*gsa;
1635 	struct ifnet		*ifp;
1636 	struct ip_moptions	*imo;
1637 	struct in_mfilter	*imf;
1638 	struct ip_msource	*ims;
1639 	struct in_msource	*lims;
1640 	struct sockaddr_in	*psin;
1641 	struct sockaddr_storage	*ptss;
1642 	struct sockaddr_storage	*tss;
1643 	int			 error;
1644 	size_t			 idx, nsrcs, ncsrcs;
1645 
1646 	INP_WLOCK_ASSERT(inp);
1647 
1648 	imo = inp->inp_moptions;
1649 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1650 
1651 	INP_WUNLOCK(inp);
1652 
1653 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1654 	    sizeof(struct __msfilterreq));
1655 	if (error)
1656 		return (error);
1657 
1658 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1659 		return (EINVAL);
1660 
1661 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1662 	if (ifp == NULL)
1663 		return (EINVAL);
1664 
1665 	INP_WLOCK(inp);
1666 
1667 	/*
1668 	 * Lookup group on the socket.
1669 	 */
1670 	gsa = (sockunion_t *)&msfr.msfr_group;
1671 	idx = imo_match_group(imo, ifp, &gsa->sa);
1672 	if (idx == -1 || imo->imo_mfilters == NULL) {
1673 		INP_WUNLOCK(inp);
1674 		return (EADDRNOTAVAIL);
1675 	}
1676 	imf = &imo->imo_mfilters[idx];
1677 
1678 	/*
1679 	 * Ignore memberships which are in limbo.
1680 	 */
1681 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1682 		INP_WUNLOCK(inp);
1683 		return (EAGAIN);
1684 	}
1685 	msfr.msfr_fmode = imf->imf_st[1];
1686 
1687 	/*
1688 	 * If the user specified a buffer, copy out the source filter
1689 	 * entries to userland gracefully.
1690 	 * We only copy out the number of entries which userland
1691 	 * has asked for, but we always tell userland how big the
1692 	 * buffer really needs to be.
1693 	 */
1694 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1695 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1696 	tss = NULL;
1697 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1698 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1699 		    M_TEMP, M_NOWAIT | M_ZERO);
1700 		if (tss == NULL) {
1701 			INP_WUNLOCK(inp);
1702 			return (ENOBUFS);
1703 		}
1704 	}
1705 
1706 	/*
1707 	 * Count number of sources in-mode at t0.
1708 	 * If buffer space exists and remains, copy out source entries.
1709 	 */
1710 	nsrcs = msfr.msfr_nsrcs;
1711 	ncsrcs = 0;
1712 	ptss = tss;
1713 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1714 		lims = (struct in_msource *)ims;
1715 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1716 		    lims->imsl_st[0] != imf->imf_st[0])
1717 			continue;
1718 		++ncsrcs;
1719 		if (tss != NULL && nsrcs > 0) {
1720 			psin = (struct sockaddr_in *)ptss;
1721 			psin->sin_family = AF_INET;
1722 			psin->sin_len = sizeof(struct sockaddr_in);
1723 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1724 			psin->sin_port = 0;
1725 			++ptss;
1726 			--nsrcs;
1727 		}
1728 	}
1729 
1730 	INP_WUNLOCK(inp);
1731 
1732 	if (tss != NULL) {
1733 		error = copyout(tss, msfr.msfr_srcs,
1734 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1735 		free(tss, M_TEMP);
1736 		if (error)
1737 			return (error);
1738 	}
1739 
1740 	msfr.msfr_nsrcs = ncsrcs;
1741 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1742 
1743 	return (error);
1744 }
1745 
1746 /*
1747  * Return the IP multicast options in response to user getsockopt().
1748  */
1749 int
1750 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1751 {
1752 	struct rm_priotracker	 in_ifa_tracker;
1753 	struct ip_mreqn		 mreqn;
1754 	struct ip_moptions	*imo;
1755 	struct ifnet		*ifp;
1756 	struct in_ifaddr	*ia;
1757 	int			 error, optval;
1758 	u_char			 coptval;
1759 
1760 	INP_WLOCK(inp);
1761 	imo = inp->inp_moptions;
1762 	/*
1763 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1764 	 * or is a divert socket, reject it.
1765 	 */
1766 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1767 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1768 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1769 		INP_WUNLOCK(inp);
1770 		return (EOPNOTSUPP);
1771 	}
1772 
1773 	error = 0;
1774 	switch (sopt->sopt_name) {
1775 	case IP_MULTICAST_VIF:
1776 		if (imo != NULL)
1777 			optval = imo->imo_multicast_vif;
1778 		else
1779 			optval = -1;
1780 		INP_WUNLOCK(inp);
1781 		error = sooptcopyout(sopt, &optval, sizeof(int));
1782 		break;
1783 
1784 	case IP_MULTICAST_IF:
1785 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1786 		if (imo != NULL) {
1787 			ifp = imo->imo_multicast_ifp;
1788 			if (!in_nullhost(imo->imo_multicast_addr)) {
1789 				mreqn.imr_address = imo->imo_multicast_addr;
1790 			} else if (ifp != NULL) {
1791 				mreqn.imr_ifindex = ifp->if_index;
1792 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1793 				if (ia != NULL) {
1794 					mreqn.imr_address =
1795 					    IA_SIN(ia)->sin_addr;
1796 					ifa_free(&ia->ia_ifa);
1797 				}
1798 			}
1799 		}
1800 		INP_WUNLOCK(inp);
1801 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1802 			error = sooptcopyout(sopt, &mreqn,
1803 			    sizeof(struct ip_mreqn));
1804 		} else {
1805 			error = sooptcopyout(sopt, &mreqn.imr_address,
1806 			    sizeof(struct in_addr));
1807 		}
1808 		break;
1809 
1810 	case IP_MULTICAST_TTL:
1811 		if (imo == NULL)
1812 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1813 		else
1814 			optval = coptval = imo->imo_multicast_ttl;
1815 		INP_WUNLOCK(inp);
1816 		if (sopt->sopt_valsize == sizeof(u_char))
1817 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1818 		else
1819 			error = sooptcopyout(sopt, &optval, sizeof(int));
1820 		break;
1821 
1822 	case IP_MULTICAST_LOOP:
1823 		if (imo == NULL)
1824 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1825 		else
1826 			optval = coptval = imo->imo_multicast_loop;
1827 		INP_WUNLOCK(inp);
1828 		if (sopt->sopt_valsize == sizeof(u_char))
1829 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1830 		else
1831 			error = sooptcopyout(sopt, &optval, sizeof(int));
1832 		break;
1833 
1834 	case IP_MSFILTER:
1835 		if (imo == NULL) {
1836 			error = EADDRNOTAVAIL;
1837 			INP_WUNLOCK(inp);
1838 		} else {
1839 			error = inp_get_source_filters(inp, sopt);
1840 		}
1841 		break;
1842 
1843 	default:
1844 		INP_WUNLOCK(inp);
1845 		error = ENOPROTOOPT;
1846 		break;
1847 	}
1848 
1849 	INP_UNLOCK_ASSERT(inp);
1850 
1851 	return (error);
1852 }
1853 
1854 /*
1855  * Look up the ifnet to use for a multicast group membership,
1856  * given the IPv4 address of an interface, and the IPv4 group address.
1857  *
1858  * This routine exists to support legacy multicast applications
1859  * which do not understand that multicast memberships are scoped to
1860  * specific physical links in the networking stack, or which need
1861  * to join link-scope groups before IPv4 addresses are configured.
1862  *
1863  * If inp is non-NULL, use this socket's current FIB number for any
1864  * required FIB lookup.
1865  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1866  * and use its ifp; usually, this points to the default next-hop.
1867  *
1868  * If the FIB lookup fails, attempt to use the first non-loopback
1869  * interface with multicast capability in the system as a
1870  * last resort. The legacy IPv4 ASM API requires that we do
1871  * this in order to allow groups to be joined when the routing
1872  * table has not yet been populated during boot.
1873  *
1874  * Returns NULL if no ifp could be found.
1875  *
1876  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1877  * FUTURE: Implement IPv4 source-address selection.
1878  */
1879 static struct ifnet *
1880 inp_lookup_mcast_ifp(const struct inpcb *inp,
1881     const struct sockaddr_in *gsin, const struct in_addr ina)
1882 {
1883 	struct rm_priotracker in_ifa_tracker;
1884 	struct ifnet *ifp;
1885 	struct nhop4_basic nh4;
1886 	uint32_t fibnum;
1887 
1888 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1889 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1890 	    ("%s: not multicast", __func__));
1891 
1892 	ifp = NULL;
1893 	if (!in_nullhost(ina)) {
1894 		INADDR_TO_IFP(ina, ifp);
1895 	} else {
1896 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1897 		if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0)
1898 			ifp = nh4.nh_ifp;
1899 		else {
1900 			struct in_ifaddr *ia;
1901 			struct ifnet *mifp;
1902 
1903 			mifp = NULL;
1904 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1905 			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1906 				mifp = ia->ia_ifp;
1907 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1908 				     (mifp->if_flags & IFF_MULTICAST)) {
1909 					ifp = mifp;
1910 					break;
1911 				}
1912 			}
1913 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1914 		}
1915 	}
1916 
1917 	return (ifp);
1918 }
1919 
1920 /*
1921  * Join an IPv4 multicast group, possibly with a source.
1922  */
1923 static int
1924 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1925 {
1926 	struct group_source_req		 gsr;
1927 	sockunion_t			*gsa, *ssa;
1928 	struct ifnet			*ifp;
1929 	struct in_mfilter		*imf;
1930 	struct ip_moptions		*imo;
1931 	struct in_multi			*inm;
1932 	struct in_msource		*lims;
1933 	size_t				 idx;
1934 	int				 error, is_new;
1935 
1936 	ifp = NULL;
1937 	imf = NULL;
1938 	lims = NULL;
1939 	error = 0;
1940 	is_new = 0;
1941 
1942 	memset(&gsr, 0, sizeof(struct group_source_req));
1943 	gsa = (sockunion_t *)&gsr.gsr_group;
1944 	gsa->ss.ss_family = AF_UNSPEC;
1945 	ssa = (sockunion_t *)&gsr.gsr_source;
1946 	ssa->ss.ss_family = AF_UNSPEC;
1947 
1948 	switch (sopt->sopt_name) {
1949 	case IP_ADD_MEMBERSHIP:
1950 	case IP_ADD_SOURCE_MEMBERSHIP: {
1951 		struct ip_mreq_source	 mreqs;
1952 
1953 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1954 			error = sooptcopyin(sopt, &mreqs,
1955 			    sizeof(struct ip_mreq),
1956 			    sizeof(struct ip_mreq));
1957 			/*
1958 			 * Do argument switcharoo from ip_mreq into
1959 			 * ip_mreq_source to avoid using two instances.
1960 			 */
1961 			mreqs.imr_interface = mreqs.imr_sourceaddr;
1962 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1963 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1964 			error = sooptcopyin(sopt, &mreqs,
1965 			    sizeof(struct ip_mreq_source),
1966 			    sizeof(struct ip_mreq_source));
1967 		}
1968 		if (error)
1969 			return (error);
1970 
1971 		gsa->sin.sin_family = AF_INET;
1972 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1973 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1974 
1975 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1976 			ssa->sin.sin_family = AF_INET;
1977 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1978 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1979 		}
1980 
1981 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1982 			return (EINVAL);
1983 
1984 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1985 		    mreqs.imr_interface);
1986 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1987 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1988 		break;
1989 	}
1990 
1991 	case MCAST_JOIN_GROUP:
1992 	case MCAST_JOIN_SOURCE_GROUP:
1993 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1994 			error = sooptcopyin(sopt, &gsr,
1995 			    sizeof(struct group_req),
1996 			    sizeof(struct group_req));
1997 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1998 			error = sooptcopyin(sopt, &gsr,
1999 			    sizeof(struct group_source_req),
2000 			    sizeof(struct group_source_req));
2001 		}
2002 		if (error)
2003 			return (error);
2004 
2005 		if (gsa->sin.sin_family != AF_INET ||
2006 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2007 			return (EINVAL);
2008 
2009 		/*
2010 		 * Overwrite the port field if present, as the sockaddr
2011 		 * being copied in may be matched with a binary comparison.
2012 		 */
2013 		gsa->sin.sin_port = 0;
2014 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2015 			if (ssa->sin.sin_family != AF_INET ||
2016 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2017 				return (EINVAL);
2018 			ssa->sin.sin_port = 0;
2019 		}
2020 
2021 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2022 			return (EINVAL);
2023 
2024 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2025 			return (EADDRNOTAVAIL);
2026 		ifp = ifnet_byindex(gsr.gsr_interface);
2027 		break;
2028 
2029 	default:
2030 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2031 		    __func__, sopt->sopt_name);
2032 		return (EOPNOTSUPP);
2033 		break;
2034 	}
2035 
2036 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2037 		return (EADDRNOTAVAIL);
2038 
2039 	imo = inp_findmoptions(inp);
2040 	idx = imo_match_group(imo, ifp, &gsa->sa);
2041 	if (idx == -1) {
2042 		is_new = 1;
2043 	} else {
2044 		inm = imo->imo_membership[idx];
2045 		imf = &imo->imo_mfilters[idx];
2046 		if (ssa->ss.ss_family != AF_UNSPEC) {
2047 			/*
2048 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2049 			 * is an error. On an existing inclusive membership,
2050 			 * it just adds the source to the filter list.
2051 			 */
2052 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2053 				error = EINVAL;
2054 				goto out_inp_locked;
2055 			}
2056 			/*
2057 			 * Throw out duplicates.
2058 			 *
2059 			 * XXX FIXME: This makes a naive assumption that
2060 			 * even if entries exist for *ssa in this imf,
2061 			 * they will be rejected as dupes, even if they
2062 			 * are not valid in the current mode (in-mode).
2063 			 *
2064 			 * in_msource is transactioned just as for anything
2065 			 * else in SSM -- but note naive use of inm_graft()
2066 			 * below for allocating new filter entries.
2067 			 *
2068 			 * This is only an issue if someone mixes the
2069 			 * full-state SSM API with the delta-based API,
2070 			 * which is discouraged in the relevant RFCs.
2071 			 */
2072 			lims = imo_match_source(imo, idx, &ssa->sa);
2073 			if (lims != NULL /*&&
2074 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2075 				error = EADDRNOTAVAIL;
2076 				goto out_inp_locked;
2077 			}
2078 		} else {
2079 			/*
2080 			 * MCAST_JOIN_GROUP on an existing exclusive
2081 			 * membership is an error; return EADDRINUSE
2082 			 * to preserve 4.4BSD API idempotence, and
2083 			 * avoid tedious detour to code below.
2084 			 * NOTE: This is bending RFC 3678 a bit.
2085 			 *
2086 			 * On an existing inclusive membership, this is also
2087 			 * an error; if you want to change filter mode,
2088 			 * you must use the userland API setsourcefilter().
2089 			 * XXX We don't reject this for imf in UNDEFINED
2090 			 * state at t1, because allocation of a filter
2091 			 * is atomic with allocation of a membership.
2092 			 */
2093 			error = EINVAL;
2094 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2095 				error = EADDRINUSE;
2096 			goto out_inp_locked;
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * Begin state merge transaction at socket layer.
2102 	 */
2103 	INP_WLOCK_ASSERT(inp);
2104 
2105 	if (is_new) {
2106 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2107 			error = imo_grow(imo);
2108 			if (error)
2109 				goto out_inp_locked;
2110 		}
2111 		/*
2112 		 * Allocate the new slot upfront so we can deal with
2113 		 * grafting the new source filter in same code path
2114 		 * as for join-source on existing membership.
2115 		 */
2116 		idx = imo->imo_num_memberships;
2117 		imo->imo_membership[idx] = NULL;
2118 		imo->imo_num_memberships++;
2119 		KASSERT(imo->imo_mfilters != NULL,
2120 		    ("%s: imf_mfilters vector was not allocated", __func__));
2121 		imf = &imo->imo_mfilters[idx];
2122 		KASSERT(RB_EMPTY(&imf->imf_sources),
2123 		    ("%s: imf_sources not empty", __func__));
2124 	}
2125 
2126 	/*
2127 	 * Graft new source into filter list for this inpcb's
2128 	 * membership of the group. The in_multi may not have
2129 	 * been allocated yet if this is a new membership, however,
2130 	 * the in_mfilter slot will be allocated and must be initialized.
2131 	 *
2132 	 * Note: Grafting of exclusive mode filters doesn't happen
2133 	 * in this path.
2134 	 * XXX: Should check for non-NULL lims (node exists but may
2135 	 * not be in-mode) for interop with full-state API.
2136 	 */
2137 	if (ssa->ss.ss_family != AF_UNSPEC) {
2138 		/* Membership starts in IN mode */
2139 		if (is_new) {
2140 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2141 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2142 		} else {
2143 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2144 		}
2145 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2146 		if (lims == NULL) {
2147 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2148 			    __func__);
2149 			error = ENOMEM;
2150 			goto out_imo_free;
2151 		}
2152 	} else {
2153 		/* No address specified; Membership starts in EX mode */
2154 		if (is_new) {
2155 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2156 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2157 		}
2158 	}
2159 
2160 	/*
2161 	 * Begin state merge transaction at IGMP layer.
2162 	 */
2163 	IN_MULTI_LOCK();
2164 
2165 	if (is_new) {
2166 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2167 		    &inm);
2168 		if (error) {
2169                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2170                             __func__);
2171                         IN_MULTI_UNLOCK();
2172 			goto out_imo_free;
2173                 }
2174 		imo->imo_membership[idx] = inm;
2175 	} else {
2176 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2177 		error = inm_merge(inm, imf);
2178 		if (error) {
2179 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2180 			    __func__);
2181 			goto out_in_multi_locked;
2182 		}
2183 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2184 		error = igmp_change_state(inm);
2185 		if (error) {
2186 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2187 			    __func__);
2188 			goto out_in_multi_locked;
2189 		}
2190 	}
2191 
2192 out_in_multi_locked:
2193 
2194 	IN_MULTI_UNLOCK();
2195 
2196 	INP_WLOCK_ASSERT(inp);
2197 	if (error) {
2198 		imf_rollback(imf);
2199 		if (is_new)
2200 			imf_purge(imf);
2201 		else
2202 			imf_reap(imf);
2203 	} else {
2204 		imf_commit(imf);
2205 	}
2206 
2207 out_imo_free:
2208 	if (error && is_new) {
2209 		imo->imo_membership[idx] = NULL;
2210 		--imo->imo_num_memberships;
2211 	}
2212 
2213 out_inp_locked:
2214 	INP_WUNLOCK(inp);
2215 	return (error);
2216 }
2217 
2218 /*
2219  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2220  */
2221 static int
2222 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2223 {
2224 	struct group_source_req		 gsr;
2225 	struct ip_mreq_source		 mreqs;
2226 	sockunion_t			*gsa, *ssa;
2227 	struct ifnet			*ifp;
2228 	struct in_mfilter		*imf;
2229 	struct ip_moptions		*imo;
2230 	struct in_msource		*ims;
2231 	struct in_multi			*inm;
2232 	size_t				 idx;
2233 	int				 error, is_final;
2234 
2235 	ifp = NULL;
2236 	error = 0;
2237 	is_final = 1;
2238 
2239 	memset(&gsr, 0, sizeof(struct group_source_req));
2240 	gsa = (sockunion_t *)&gsr.gsr_group;
2241 	gsa->ss.ss_family = AF_UNSPEC;
2242 	ssa = (sockunion_t *)&gsr.gsr_source;
2243 	ssa->ss.ss_family = AF_UNSPEC;
2244 
2245 	switch (sopt->sopt_name) {
2246 	case IP_DROP_MEMBERSHIP:
2247 	case IP_DROP_SOURCE_MEMBERSHIP:
2248 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2249 			error = sooptcopyin(sopt, &mreqs,
2250 			    sizeof(struct ip_mreq),
2251 			    sizeof(struct ip_mreq));
2252 			/*
2253 			 * Swap interface and sourceaddr arguments,
2254 			 * as ip_mreq and ip_mreq_source are laid
2255 			 * out differently.
2256 			 */
2257 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2258 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2259 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2260 			error = sooptcopyin(sopt, &mreqs,
2261 			    sizeof(struct ip_mreq_source),
2262 			    sizeof(struct ip_mreq_source));
2263 		}
2264 		if (error)
2265 			return (error);
2266 
2267 		gsa->sin.sin_family = AF_INET;
2268 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2269 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2270 
2271 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2272 			ssa->sin.sin_family = AF_INET;
2273 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2274 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2275 		}
2276 
2277 		/*
2278 		 * Attempt to look up hinted ifp from interface address.
2279 		 * Fallthrough with null ifp iff lookup fails, to
2280 		 * preserve 4.4BSD mcast API idempotence.
2281 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2282 		 * using an IPv4 address as a key is racy.
2283 		 */
2284 		if (!in_nullhost(mreqs.imr_interface))
2285 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2286 
2287 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2288 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2289 
2290 		break;
2291 
2292 	case MCAST_LEAVE_GROUP:
2293 	case MCAST_LEAVE_SOURCE_GROUP:
2294 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2295 			error = sooptcopyin(sopt, &gsr,
2296 			    sizeof(struct group_req),
2297 			    sizeof(struct group_req));
2298 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2299 			error = sooptcopyin(sopt, &gsr,
2300 			    sizeof(struct group_source_req),
2301 			    sizeof(struct group_source_req));
2302 		}
2303 		if (error)
2304 			return (error);
2305 
2306 		if (gsa->sin.sin_family != AF_INET ||
2307 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2308 			return (EINVAL);
2309 
2310 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2311 			if (ssa->sin.sin_family != AF_INET ||
2312 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2313 				return (EINVAL);
2314 		}
2315 
2316 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2317 			return (EADDRNOTAVAIL);
2318 
2319 		ifp = ifnet_byindex(gsr.gsr_interface);
2320 
2321 		if (ifp == NULL)
2322 			return (EADDRNOTAVAIL);
2323 		break;
2324 
2325 	default:
2326 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2327 		    __func__, sopt->sopt_name);
2328 		return (EOPNOTSUPP);
2329 		break;
2330 	}
2331 
2332 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2333 		return (EINVAL);
2334 
2335 	/*
2336 	 * Find the membership in the membership array.
2337 	 */
2338 	imo = inp_findmoptions(inp);
2339 	idx = imo_match_group(imo, ifp, &gsa->sa);
2340 	if (idx == -1) {
2341 		error = EADDRNOTAVAIL;
2342 		goto out_inp_locked;
2343 	}
2344 	inm = imo->imo_membership[idx];
2345 	imf = &imo->imo_mfilters[idx];
2346 
2347 	if (ssa->ss.ss_family != AF_UNSPEC)
2348 		is_final = 0;
2349 
2350 	/*
2351 	 * Begin state merge transaction at socket layer.
2352 	 */
2353 	INP_WLOCK_ASSERT(inp);
2354 
2355 	/*
2356 	 * If we were instructed only to leave a given source, do so.
2357 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2358 	 */
2359 	if (is_final) {
2360 		imf_leave(imf);
2361 	} else {
2362 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2363 			error = EADDRNOTAVAIL;
2364 			goto out_inp_locked;
2365 		}
2366 		ims = imo_match_source(imo, idx, &ssa->sa);
2367 		if (ims == NULL) {
2368 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2369 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2370 			error = EADDRNOTAVAIL;
2371 			goto out_inp_locked;
2372 		}
2373 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2374 		error = imf_prune(imf, &ssa->sin);
2375 		if (error) {
2376 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2377 			    __func__);
2378 			goto out_inp_locked;
2379 		}
2380 	}
2381 
2382 	/*
2383 	 * Begin state merge transaction at IGMP layer.
2384 	 */
2385 	IN_MULTI_LOCK();
2386 
2387 	if (is_final) {
2388 		/*
2389 		 * Give up the multicast address record to which
2390 		 * the membership points.
2391 		 */
2392 		(void)in_leavegroup_locked(inm, imf);
2393 	} else {
2394 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2395 		error = inm_merge(inm, imf);
2396 		if (error) {
2397 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2398 			    __func__);
2399 			goto out_in_multi_locked;
2400 		}
2401 
2402 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2403 		error = igmp_change_state(inm);
2404 		if (error) {
2405 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2406 			    __func__);
2407 		}
2408 	}
2409 
2410 out_in_multi_locked:
2411 
2412 	IN_MULTI_UNLOCK();
2413 
2414 	if (error)
2415 		imf_rollback(imf);
2416 	else
2417 		imf_commit(imf);
2418 
2419 	imf_reap(imf);
2420 
2421 	if (is_final) {
2422 		/* Remove the gap in the membership and filter array. */
2423 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2424 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2425 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2426 		}
2427 		imo->imo_num_memberships--;
2428 	}
2429 
2430 out_inp_locked:
2431 	INP_WUNLOCK(inp);
2432 	return (error);
2433 }
2434 
2435 /*
2436  * Select the interface for transmitting IPv4 multicast datagrams.
2437  *
2438  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2439  * may be passed to this socket option. An address of INADDR_ANY or an
2440  * interface index of 0 is used to remove a previous selection.
2441  * When no interface is selected, one is chosen for every send.
2442  */
2443 static int
2444 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2445 {
2446 	struct in_addr		 addr;
2447 	struct ip_mreqn		 mreqn;
2448 	struct ifnet		*ifp;
2449 	struct ip_moptions	*imo;
2450 	int			 error;
2451 
2452 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2453 		/*
2454 		 * An interface index was specified using the
2455 		 * Linux-derived ip_mreqn structure.
2456 		 */
2457 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2458 		    sizeof(struct ip_mreqn));
2459 		if (error)
2460 			return (error);
2461 
2462 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2463 			return (EINVAL);
2464 
2465 		if (mreqn.imr_ifindex == 0) {
2466 			ifp = NULL;
2467 		} else {
2468 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2469 			if (ifp == NULL)
2470 				return (EADDRNOTAVAIL);
2471 		}
2472 	} else {
2473 		/*
2474 		 * An interface was specified by IPv4 address.
2475 		 * This is the traditional BSD usage.
2476 		 */
2477 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2478 		    sizeof(struct in_addr));
2479 		if (error)
2480 			return (error);
2481 		if (in_nullhost(addr)) {
2482 			ifp = NULL;
2483 		} else {
2484 			INADDR_TO_IFP(addr, ifp);
2485 			if (ifp == NULL)
2486 				return (EADDRNOTAVAIL);
2487 		}
2488 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2489 		    ntohl(addr.s_addr));
2490 	}
2491 
2492 	/* Reject interfaces which do not support multicast. */
2493 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2494 		return (EOPNOTSUPP);
2495 
2496 	imo = inp_findmoptions(inp);
2497 	imo->imo_multicast_ifp = ifp;
2498 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2499 	INP_WUNLOCK(inp);
2500 
2501 	return (0);
2502 }
2503 
2504 /*
2505  * Atomically set source filters on a socket for an IPv4 multicast group.
2506  *
2507  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2508  */
2509 static int
2510 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2511 {
2512 	struct __msfilterreq	 msfr;
2513 	sockunion_t		*gsa;
2514 	struct ifnet		*ifp;
2515 	struct in_mfilter	*imf;
2516 	struct ip_moptions	*imo;
2517 	struct in_multi		*inm;
2518 	size_t			 idx;
2519 	int			 error;
2520 
2521 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2522 	    sizeof(struct __msfilterreq));
2523 	if (error)
2524 		return (error);
2525 
2526 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2527 		return (ENOBUFS);
2528 
2529 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2530 	     msfr.msfr_fmode != MCAST_INCLUDE))
2531 		return (EINVAL);
2532 
2533 	if (msfr.msfr_group.ss_family != AF_INET ||
2534 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2535 		return (EINVAL);
2536 
2537 	gsa = (sockunion_t *)&msfr.msfr_group;
2538 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2539 		return (EINVAL);
2540 
2541 	gsa->sin.sin_port = 0;	/* ignore port */
2542 
2543 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2544 		return (EADDRNOTAVAIL);
2545 
2546 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2547 	if (ifp == NULL)
2548 		return (EADDRNOTAVAIL);
2549 
2550 	/*
2551 	 * Take the INP write lock.
2552 	 * Check if this socket is a member of this group.
2553 	 */
2554 	imo = inp_findmoptions(inp);
2555 	idx = imo_match_group(imo, ifp, &gsa->sa);
2556 	if (idx == -1 || imo->imo_mfilters == NULL) {
2557 		error = EADDRNOTAVAIL;
2558 		goto out_inp_locked;
2559 	}
2560 	inm = imo->imo_membership[idx];
2561 	imf = &imo->imo_mfilters[idx];
2562 
2563 	/*
2564 	 * Begin state merge transaction at socket layer.
2565 	 */
2566 	INP_WLOCK_ASSERT(inp);
2567 
2568 	imf->imf_st[1] = msfr.msfr_fmode;
2569 
2570 	/*
2571 	 * Apply any new source filters, if present.
2572 	 * Make a copy of the user-space source vector so
2573 	 * that we may copy them with a single copyin. This
2574 	 * allows us to deal with page faults up-front.
2575 	 */
2576 	if (msfr.msfr_nsrcs > 0) {
2577 		struct in_msource	*lims;
2578 		struct sockaddr_in	*psin;
2579 		struct sockaddr_storage	*kss, *pkss;
2580 		int			 i;
2581 
2582 		INP_WUNLOCK(inp);
2583 
2584 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2585 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2586 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2587 		    M_TEMP, M_WAITOK);
2588 		error = copyin(msfr.msfr_srcs, kss,
2589 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2590 		if (error) {
2591 			free(kss, M_TEMP);
2592 			return (error);
2593 		}
2594 
2595 		INP_WLOCK(inp);
2596 
2597 		/*
2598 		 * Mark all source filters as UNDEFINED at t1.
2599 		 * Restore new group filter mode, as imf_leave()
2600 		 * will set it to INCLUDE.
2601 		 */
2602 		imf_leave(imf);
2603 		imf->imf_st[1] = msfr.msfr_fmode;
2604 
2605 		/*
2606 		 * Update socket layer filters at t1, lazy-allocating
2607 		 * new entries. This saves a bunch of memory at the
2608 		 * cost of one RB_FIND() per source entry; duplicate
2609 		 * entries in the msfr_nsrcs vector are ignored.
2610 		 * If we encounter an error, rollback transaction.
2611 		 *
2612 		 * XXX This too could be replaced with a set-symmetric
2613 		 * difference like loop to avoid walking from root
2614 		 * every time, as the key space is common.
2615 		 */
2616 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2617 			psin = (struct sockaddr_in *)pkss;
2618 			if (psin->sin_family != AF_INET) {
2619 				error = EAFNOSUPPORT;
2620 				break;
2621 			}
2622 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2623 				error = EINVAL;
2624 				break;
2625 			}
2626 			error = imf_get_source(imf, psin, &lims);
2627 			if (error)
2628 				break;
2629 			lims->imsl_st[1] = imf->imf_st[1];
2630 		}
2631 		free(kss, M_TEMP);
2632 	}
2633 
2634 	if (error)
2635 		goto out_imf_rollback;
2636 
2637 	INP_WLOCK_ASSERT(inp);
2638 	IN_MULTI_LOCK();
2639 
2640 	/*
2641 	 * Begin state merge transaction at IGMP layer.
2642 	 */
2643 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2644 	error = inm_merge(inm, imf);
2645 	if (error) {
2646 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2647 		goto out_in_multi_locked;
2648 	}
2649 
2650 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2651 	error = igmp_change_state(inm);
2652 	if (error)
2653 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2654 
2655 out_in_multi_locked:
2656 
2657 	IN_MULTI_UNLOCK();
2658 
2659 out_imf_rollback:
2660 	if (error)
2661 		imf_rollback(imf);
2662 	else
2663 		imf_commit(imf);
2664 
2665 	imf_reap(imf);
2666 
2667 out_inp_locked:
2668 	INP_WUNLOCK(inp);
2669 	return (error);
2670 }
2671 
2672 /*
2673  * Set the IP multicast options in response to user setsockopt().
2674  *
2675  * Many of the socket options handled in this function duplicate the
2676  * functionality of socket options in the regular unicast API. However,
2677  * it is not possible to merge the duplicate code, because the idempotence
2678  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2679  * the effects of these options must be treated as separate and distinct.
2680  *
2681  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2682  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2683  * is refactored to no longer use vifs.
2684  */
2685 int
2686 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2687 {
2688 	struct ip_moptions	*imo;
2689 	int			 error;
2690 
2691 	error = 0;
2692 
2693 	/*
2694 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2695 	 * or is a divert socket, reject it.
2696 	 */
2697 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2698 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2699 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2700 		return (EOPNOTSUPP);
2701 
2702 	switch (sopt->sopt_name) {
2703 	case IP_MULTICAST_VIF: {
2704 		int vifi;
2705 		/*
2706 		 * Select a multicast VIF for transmission.
2707 		 * Only useful if multicast forwarding is active.
2708 		 */
2709 		if (legal_vif_num == NULL) {
2710 			error = EOPNOTSUPP;
2711 			break;
2712 		}
2713 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2714 		if (error)
2715 			break;
2716 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2717 			error = EINVAL;
2718 			break;
2719 		}
2720 		imo = inp_findmoptions(inp);
2721 		imo->imo_multicast_vif = vifi;
2722 		INP_WUNLOCK(inp);
2723 		break;
2724 	}
2725 
2726 	case IP_MULTICAST_IF:
2727 		error = inp_set_multicast_if(inp, sopt);
2728 		break;
2729 
2730 	case IP_MULTICAST_TTL: {
2731 		u_char ttl;
2732 
2733 		/*
2734 		 * Set the IP time-to-live for outgoing multicast packets.
2735 		 * The original multicast API required a char argument,
2736 		 * which is inconsistent with the rest of the socket API.
2737 		 * We allow either a char or an int.
2738 		 */
2739 		if (sopt->sopt_valsize == sizeof(u_char)) {
2740 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2741 			    sizeof(u_char));
2742 			if (error)
2743 				break;
2744 		} else {
2745 			u_int ittl;
2746 
2747 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2748 			    sizeof(u_int));
2749 			if (error)
2750 				break;
2751 			if (ittl > 255) {
2752 				error = EINVAL;
2753 				break;
2754 			}
2755 			ttl = (u_char)ittl;
2756 		}
2757 		imo = inp_findmoptions(inp);
2758 		imo->imo_multicast_ttl = ttl;
2759 		INP_WUNLOCK(inp);
2760 		break;
2761 	}
2762 
2763 	case IP_MULTICAST_LOOP: {
2764 		u_char loop;
2765 
2766 		/*
2767 		 * Set the loopback flag for outgoing multicast packets.
2768 		 * Must be zero or one.  The original multicast API required a
2769 		 * char argument, which is inconsistent with the rest
2770 		 * of the socket API.  We allow either a char or an int.
2771 		 */
2772 		if (sopt->sopt_valsize == sizeof(u_char)) {
2773 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2774 			    sizeof(u_char));
2775 			if (error)
2776 				break;
2777 		} else {
2778 			u_int iloop;
2779 
2780 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2781 					    sizeof(u_int));
2782 			if (error)
2783 				break;
2784 			loop = (u_char)iloop;
2785 		}
2786 		imo = inp_findmoptions(inp);
2787 		imo->imo_multicast_loop = !!loop;
2788 		INP_WUNLOCK(inp);
2789 		break;
2790 	}
2791 
2792 	case IP_ADD_MEMBERSHIP:
2793 	case IP_ADD_SOURCE_MEMBERSHIP:
2794 	case MCAST_JOIN_GROUP:
2795 	case MCAST_JOIN_SOURCE_GROUP:
2796 		error = inp_join_group(inp, sopt);
2797 		break;
2798 
2799 	case IP_DROP_MEMBERSHIP:
2800 	case IP_DROP_SOURCE_MEMBERSHIP:
2801 	case MCAST_LEAVE_GROUP:
2802 	case MCAST_LEAVE_SOURCE_GROUP:
2803 		error = inp_leave_group(inp, sopt);
2804 		break;
2805 
2806 	case IP_BLOCK_SOURCE:
2807 	case IP_UNBLOCK_SOURCE:
2808 	case MCAST_BLOCK_SOURCE:
2809 	case MCAST_UNBLOCK_SOURCE:
2810 		error = inp_block_unblock_source(inp, sopt);
2811 		break;
2812 
2813 	case IP_MSFILTER:
2814 		error = inp_set_source_filters(inp, sopt);
2815 		break;
2816 
2817 	default:
2818 		error = EOPNOTSUPP;
2819 		break;
2820 	}
2821 
2822 	INP_UNLOCK_ASSERT(inp);
2823 
2824 	return (error);
2825 }
2826 
2827 /*
2828  * Expose IGMP's multicast filter mode and source list(s) to userland,
2829  * keyed by (ifindex, group).
2830  * The filter mode is written out as a uint32_t, followed by
2831  * 0..n of struct in_addr.
2832  * For use by ifmcstat(8).
2833  * SMPng: NOTE: unlocked read of ifindex space.
2834  */
2835 static int
2836 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2837 {
2838 	struct in_addr			 src, group;
2839 	struct ifnet			*ifp;
2840 	struct ifmultiaddr		*ifma;
2841 	struct in_multi			*inm;
2842 	struct ip_msource		*ims;
2843 	int				*name;
2844 	int				 retval;
2845 	u_int				 namelen;
2846 	uint32_t			 fmode, ifindex;
2847 
2848 	name = (int *)arg1;
2849 	namelen = arg2;
2850 
2851 	if (req->newptr != NULL)
2852 		return (EPERM);
2853 
2854 	if (namelen != 2)
2855 		return (EINVAL);
2856 
2857 	ifindex = name[0];
2858 	if (ifindex <= 0 || ifindex > V_if_index) {
2859 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2860 		    __func__, ifindex);
2861 		return (ENOENT);
2862 	}
2863 
2864 	group.s_addr = name[1];
2865 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2866 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2867 		    __func__, ntohl(group.s_addr));
2868 		return (EINVAL);
2869 	}
2870 
2871 	ifp = ifnet_byindex(ifindex);
2872 	if (ifp == NULL) {
2873 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2874 		    __func__, ifindex);
2875 		return (ENOENT);
2876 	}
2877 
2878 	retval = sysctl_wire_old_buffer(req,
2879 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2880 	if (retval)
2881 		return (retval);
2882 
2883 	IN_MULTI_LOCK();
2884 
2885 	IF_ADDR_RLOCK(ifp);
2886 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2887 		if (ifma->ifma_addr->sa_family != AF_INET ||
2888 		    ifma->ifma_protospec == NULL)
2889 			continue;
2890 		inm = (struct in_multi *)ifma->ifma_protospec;
2891 		if (!in_hosteq(inm->inm_addr, group))
2892 			continue;
2893 		fmode = inm->inm_st[1].iss_fmode;
2894 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2895 		if (retval != 0)
2896 			break;
2897 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2898 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2899 			    ims->ims_haddr);
2900 			/*
2901 			 * Only copy-out sources which are in-mode.
2902 			 */
2903 			if (fmode != ims_get_mode(inm, ims, 1)) {
2904 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2905 				    __func__);
2906 				continue;
2907 			}
2908 			src.s_addr = htonl(ims->ims_haddr);
2909 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2910 			if (retval != 0)
2911 				break;
2912 		}
2913 	}
2914 	IF_ADDR_RUNLOCK(ifp);
2915 
2916 	IN_MULTI_UNLOCK();
2917 
2918 	return (retval);
2919 }
2920 
2921 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2922 
2923 static const char *inm_modestrs[] = { "un", "in", "ex" };
2924 
2925 static const char *
2926 inm_mode_str(const int mode)
2927 {
2928 
2929 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2930 		return (inm_modestrs[mode]);
2931 	return ("??");
2932 }
2933 
2934 static const char *inm_statestrs[] = {
2935 	"not-member",
2936 	"silent",
2937 	"idle",
2938 	"lazy",
2939 	"sleeping",
2940 	"awakening",
2941 	"query-pending",
2942 	"sg-query-pending",
2943 	"leaving"
2944 };
2945 
2946 static const char *
2947 inm_state_str(const int state)
2948 {
2949 
2950 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2951 		return (inm_statestrs[state]);
2952 	return ("??");
2953 }
2954 
2955 /*
2956  * Dump an in_multi structure to the console.
2957  */
2958 void
2959 inm_print(const struct in_multi *inm)
2960 {
2961 	int t;
2962 	char addrbuf[INET_ADDRSTRLEN];
2963 
2964 	if ((ktr_mask & KTR_IGMPV3) == 0)
2965 		return;
2966 
2967 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2968 	printf("addr %s ifp %p(%s) ifma %p\n",
2969 	    inet_ntoa_r(inm->inm_addr, addrbuf),
2970 	    inm->inm_ifp,
2971 	    inm->inm_ifp->if_xname,
2972 	    inm->inm_ifma);
2973 	printf("timer %u state %s refcount %u scq.len %u\n",
2974 	    inm->inm_timer,
2975 	    inm_state_str(inm->inm_state),
2976 	    inm->inm_refcount,
2977 	    inm->inm_scq.mq_len);
2978 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2979 	    inm->inm_igi,
2980 	    inm->inm_nsrc,
2981 	    inm->inm_sctimer,
2982 	    inm->inm_scrv);
2983 	for (t = 0; t < 2; t++) {
2984 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2985 		    inm_mode_str(inm->inm_st[t].iss_fmode),
2986 		    inm->inm_st[t].iss_asm,
2987 		    inm->inm_st[t].iss_ex,
2988 		    inm->inm_st[t].iss_in,
2989 		    inm->inm_st[t].iss_rec);
2990 	}
2991 	printf("%s: --- end inm %p ---\n", __func__, inm);
2992 }
2993 
2994 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
2995 
2996 void
2997 inm_print(const struct in_multi *inm)
2998 {
2999 
3000 }
3001 
3002 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3003 
3004 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3005