1 /*- 2 * Copyright (c) 2007-2009 Bruce Simpson. 3 * Copyright (c) 2005 Robert N. M. Watson. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * IPv4 multicast socket, group, and socket option processing module. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/protosw.h> 45 #include <sys/rmlock.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/ktr.h> 51 #include <sys/taskqueue.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_systm.h> 62 #include <netinet/in_fib.h> 63 #include <netinet/in_pcb.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip_var.h> 66 #include <netinet/igmp_var.h> 67 68 #ifndef KTR_IGMPV3 69 #define KTR_IGMPV3 KTR_INET 70 #endif 71 72 #ifndef __SOCKUNION_DECLARED 73 union sockunion { 74 struct sockaddr_storage ss; 75 struct sockaddr sa; 76 struct sockaddr_dl sdl; 77 struct sockaddr_in sin; 78 }; 79 typedef union sockunion sockunion_t; 80 #define __SOCKUNION_DECLARED 81 #endif /* __SOCKUNION_DECLARED */ 82 83 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 84 "IPv4 multicast PCB-layer source filter"); 85 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 86 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 87 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 88 "IPv4 multicast IGMP-layer source filter"); 89 90 /* 91 * Locking: 92 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 93 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 94 * it can be taken by code in net/if.c also. 95 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 96 * 97 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly 98 * any need for in_multi itself to be virtualized -- it is bound to an ifp 99 * anyway no matter what happens. 100 */ 101 struct mtx in_multi_mtx; 102 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF); 103 104 /* 105 * Functions with non-static linkage defined in this file should be 106 * declared in in_var.h: 107 * imo_multi_filter() 108 * in_addmulti() 109 * in_delmulti() 110 * in_joingroup() 111 * in_joingroup_locked() 112 * in_leavegroup() 113 * in_leavegroup_locked() 114 * and ip_var.h: 115 * inp_freemoptions() 116 * inp_getmoptions() 117 * inp_setmoptions() 118 * 119 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 120 * and in_delmulti(). 121 */ 122 static void imf_commit(struct in_mfilter *); 123 static int imf_get_source(struct in_mfilter *imf, 124 const struct sockaddr_in *psin, 125 struct in_msource **); 126 static struct in_msource * 127 imf_graft(struct in_mfilter *, const uint8_t, 128 const struct sockaddr_in *); 129 static void imf_leave(struct in_mfilter *); 130 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 131 static void imf_purge(struct in_mfilter *); 132 static void imf_rollback(struct in_mfilter *); 133 static void imf_reap(struct in_mfilter *); 134 static int imo_grow(struct ip_moptions *); 135 static size_t imo_match_group(const struct ip_moptions *, 136 const struct ifnet *, const struct sockaddr *); 137 static struct in_msource * 138 imo_match_source(const struct ip_moptions *, const size_t, 139 const struct sockaddr *); 140 static void ims_merge(struct ip_msource *ims, 141 const struct in_msource *lims, const int rollback); 142 static int in_getmulti(struct ifnet *, const struct in_addr *, 143 struct in_multi **); 144 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 145 const int noalloc, struct ip_msource **pims); 146 #ifdef KTR 147 static int inm_is_ifp_detached(const struct in_multi *); 148 #endif 149 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 150 static void inm_purge(struct in_multi *); 151 static void inm_reap(struct in_multi *); 152 static struct ip_moptions * 153 inp_findmoptions(struct inpcb *); 154 static void inp_freemoptions_internal(struct ip_moptions *); 155 static void inp_gcmoptions(void *, int); 156 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 157 static int inp_join_group(struct inpcb *, struct sockopt *); 158 static int inp_leave_group(struct inpcb *, struct sockopt *); 159 static struct ifnet * 160 inp_lookup_mcast_ifp(const struct inpcb *, 161 const struct sockaddr_in *, const struct in_addr); 162 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 163 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 164 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 165 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 166 167 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, 168 "IPv4 multicast"); 169 170 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 171 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 172 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, 173 "Max source filters per group"); 174 175 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 176 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 177 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, 178 "Max source filters per socket"); 179 180 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 181 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 182 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 183 184 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 185 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 186 "Per-interface stack-wide source filters"); 187 188 static STAILQ_HEAD(, ip_moptions) imo_gc_list = 189 STAILQ_HEAD_INITIALIZER(imo_gc_list); 190 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL); 191 192 #ifdef KTR 193 /* 194 * Inline function which wraps assertions for a valid ifp. 195 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 196 * is detached. 197 */ 198 static int __inline 199 inm_is_ifp_detached(const struct in_multi *inm) 200 { 201 struct ifnet *ifp; 202 203 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 204 ifp = inm->inm_ifma->ifma_ifp; 205 if (ifp != NULL) { 206 /* 207 * Sanity check that netinet's notion of ifp is the 208 * same as net's. 209 */ 210 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 211 } 212 213 return (ifp == NULL); 214 } 215 #endif 216 217 /* 218 * Initialize an in_mfilter structure to a known state at t0, t1 219 * with an empty source filter list. 220 */ 221 static __inline void 222 imf_init(struct in_mfilter *imf, const int st0, const int st1) 223 { 224 memset(imf, 0, sizeof(struct in_mfilter)); 225 RB_INIT(&imf->imf_sources); 226 imf->imf_st[0] = st0; 227 imf->imf_st[1] = st1; 228 } 229 230 /* 231 * Function for looking up an in_multi record for an IPv4 multicast address 232 * on a given interface. ifp must be valid. If no record found, return NULL. 233 * The IN_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held. 234 */ 235 struct in_multi * 236 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 237 { 238 struct ifmultiaddr *ifma; 239 struct in_multi *inm; 240 241 IN_MULTI_LOCK_ASSERT(); 242 IF_ADDR_LOCK_ASSERT(ifp); 243 244 inm = NULL; 245 TAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 246 if (ifma->ifma_addr->sa_family == AF_INET) { 247 inm = (struct in_multi *)ifma->ifma_protospec; 248 if (inm->inm_addr.s_addr == ina.s_addr) 249 break; 250 inm = NULL; 251 } 252 } 253 return (inm); 254 } 255 256 /* 257 * Wrapper for inm_lookup_locked(). 258 * The IF_ADDR_LOCK will be taken on ifp and released on return. 259 */ 260 struct in_multi * 261 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 262 { 263 struct in_multi *inm; 264 265 IN_MULTI_LOCK_ASSERT(); 266 IF_ADDR_RLOCK(ifp); 267 inm = inm_lookup_locked(ifp, ina); 268 IF_ADDR_RUNLOCK(ifp); 269 270 return (inm); 271 } 272 273 /* 274 * Resize the ip_moptions vector to the next power-of-two minus 1. 275 * May be called with locks held; do not sleep. 276 */ 277 static int 278 imo_grow(struct ip_moptions *imo) 279 { 280 struct in_multi **nmships; 281 struct in_multi **omships; 282 struct in_mfilter *nmfilters; 283 struct in_mfilter *omfilters; 284 size_t idx; 285 size_t newmax; 286 size_t oldmax; 287 288 nmships = NULL; 289 nmfilters = NULL; 290 omships = imo->imo_membership; 291 omfilters = imo->imo_mfilters; 292 oldmax = imo->imo_max_memberships; 293 newmax = ((oldmax + 1) * 2) - 1; 294 295 if (newmax <= IP_MAX_MEMBERSHIPS) { 296 nmships = (struct in_multi **)realloc(omships, 297 sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT); 298 nmfilters = (struct in_mfilter *)realloc(omfilters, 299 sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT); 300 if (nmships != NULL && nmfilters != NULL) { 301 /* Initialize newly allocated source filter heads. */ 302 for (idx = oldmax; idx < newmax; idx++) { 303 imf_init(&nmfilters[idx], MCAST_UNDEFINED, 304 MCAST_EXCLUDE); 305 } 306 imo->imo_max_memberships = newmax; 307 imo->imo_membership = nmships; 308 imo->imo_mfilters = nmfilters; 309 } 310 } 311 312 if (nmships == NULL || nmfilters == NULL) { 313 if (nmships != NULL) 314 free(nmships, M_IPMOPTS); 315 if (nmfilters != NULL) 316 free(nmfilters, M_INMFILTER); 317 return (ETOOMANYREFS); 318 } 319 320 return (0); 321 } 322 323 /* 324 * Find an IPv4 multicast group entry for this ip_moptions instance 325 * which matches the specified group, and optionally an interface. 326 * Return its index into the array, or -1 if not found. 327 */ 328 static size_t 329 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 330 const struct sockaddr *group) 331 { 332 const struct sockaddr_in *gsin; 333 struct in_multi **pinm; 334 int idx; 335 int nmships; 336 337 gsin = (const struct sockaddr_in *)group; 338 339 /* The imo_membership array may be lazy allocated. */ 340 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) 341 return (-1); 342 343 nmships = imo->imo_num_memberships; 344 pinm = &imo->imo_membership[0]; 345 for (idx = 0; idx < nmships; idx++, pinm++) { 346 if (*pinm == NULL) 347 continue; 348 if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) && 349 in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) { 350 break; 351 } 352 } 353 if (idx >= nmships) 354 idx = -1; 355 356 return (idx); 357 } 358 359 /* 360 * Find an IPv4 multicast source entry for this imo which matches 361 * the given group index for this socket, and source address. 362 * 363 * NOTE: This does not check if the entry is in-mode, merely if 364 * it exists, which may not be the desired behaviour. 365 */ 366 static struct in_msource * 367 imo_match_source(const struct ip_moptions *imo, const size_t gidx, 368 const struct sockaddr *src) 369 { 370 struct ip_msource find; 371 struct in_mfilter *imf; 372 struct ip_msource *ims; 373 const sockunion_t *psa; 374 375 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 376 KASSERT(gidx != -1 && gidx < imo->imo_num_memberships, 377 ("%s: invalid index %d\n", __func__, (int)gidx)); 378 379 /* The imo_mfilters array may be lazy allocated. */ 380 if (imo->imo_mfilters == NULL) 381 return (NULL); 382 imf = &imo->imo_mfilters[gidx]; 383 384 /* Source trees are keyed in host byte order. */ 385 psa = (const sockunion_t *)src; 386 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 387 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 388 389 return ((struct in_msource *)ims); 390 } 391 392 /* 393 * Perform filtering for multicast datagrams on a socket by group and source. 394 * 395 * Returns 0 if a datagram should be allowed through, or various error codes 396 * if the socket was not a member of the group, or the source was muted, etc. 397 */ 398 int 399 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 400 const struct sockaddr *group, const struct sockaddr *src) 401 { 402 size_t gidx; 403 struct in_msource *ims; 404 int mode; 405 406 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 407 408 gidx = imo_match_group(imo, ifp, group); 409 if (gidx == -1) 410 return (MCAST_NOTGMEMBER); 411 412 /* 413 * Check if the source was included in an (S,G) join. 414 * Allow reception on exclusive memberships by default, 415 * reject reception on inclusive memberships by default. 416 * Exclude source only if an in-mode exclude filter exists. 417 * Include source only if an in-mode include filter exists. 418 * NOTE: We are comparing group state here at IGMP t1 (now) 419 * with socket-layer t0 (since last downcall). 420 */ 421 mode = imo->imo_mfilters[gidx].imf_st[1]; 422 ims = imo_match_source(imo, gidx, src); 423 424 if ((ims == NULL && mode == MCAST_INCLUDE) || 425 (ims != NULL && ims->imsl_st[0] != mode)) 426 return (MCAST_NOTSMEMBER); 427 428 return (MCAST_PASS); 429 } 430 431 /* 432 * Find and return a reference to an in_multi record for (ifp, group), 433 * and bump its reference count. 434 * If one does not exist, try to allocate it, and update link-layer multicast 435 * filters on ifp to listen for group. 436 * Assumes the IN_MULTI lock is held across the call. 437 * Return 0 if successful, otherwise return an appropriate error code. 438 */ 439 static int 440 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 441 struct in_multi **pinm) 442 { 443 struct sockaddr_in gsin; 444 struct ifmultiaddr *ifma; 445 struct in_ifinfo *ii; 446 struct in_multi *inm; 447 int error; 448 449 IN_MULTI_LOCK_ASSERT(); 450 451 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 452 453 inm = inm_lookup(ifp, *group); 454 if (inm != NULL) { 455 /* 456 * If we already joined this group, just bump the 457 * refcount and return it. 458 */ 459 KASSERT(inm->inm_refcount >= 1, 460 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 461 ++inm->inm_refcount; 462 *pinm = inm; 463 return (0); 464 } 465 466 memset(&gsin, 0, sizeof(gsin)); 467 gsin.sin_family = AF_INET; 468 gsin.sin_len = sizeof(struct sockaddr_in); 469 gsin.sin_addr = *group; 470 471 /* 472 * Check if a link-layer group is already associated 473 * with this network-layer group on the given ifnet. 474 */ 475 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 476 if (error != 0) 477 return (error); 478 479 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 480 IF_ADDR_WLOCK(ifp); 481 482 /* 483 * If something other than netinet is occupying the link-layer 484 * group, print a meaningful error message and back out of 485 * the allocation. 486 * Otherwise, bump the refcount on the existing network-layer 487 * group association and return it. 488 */ 489 if (ifma->ifma_protospec != NULL) { 490 inm = (struct in_multi *)ifma->ifma_protospec; 491 #ifdef INVARIANTS 492 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 493 __func__)); 494 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 495 ("%s: ifma not AF_INET", __func__)); 496 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 497 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 498 !in_hosteq(inm->inm_addr, *group)) { 499 char addrbuf[INET_ADDRSTRLEN]; 500 501 panic("%s: ifma %p is inconsistent with %p (%s)", 502 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); 503 } 504 #endif 505 ++inm->inm_refcount; 506 *pinm = inm; 507 IF_ADDR_WUNLOCK(ifp); 508 return (0); 509 } 510 511 IF_ADDR_WLOCK_ASSERT(ifp); 512 513 /* 514 * A new in_multi record is needed; allocate and initialize it. 515 * We DO NOT perform an IGMP join as the in_ layer may need to 516 * push an initial source list down to IGMP to support SSM. 517 * 518 * The initial source filter state is INCLUDE, {} as per the RFC. 519 */ 520 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 521 if (inm == NULL) { 522 IF_ADDR_WUNLOCK(ifp); 523 if_delmulti_ifma(ifma); 524 return (ENOMEM); 525 } 526 inm->inm_addr = *group; 527 inm->inm_ifp = ifp; 528 inm->inm_igi = ii->ii_igmp; 529 inm->inm_ifma = ifma; 530 inm->inm_refcount = 1; 531 inm->inm_state = IGMP_NOT_MEMBER; 532 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 533 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 534 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 535 RB_INIT(&inm->inm_srcs); 536 537 ifma->ifma_protospec = inm; 538 539 *pinm = inm; 540 541 IF_ADDR_WUNLOCK(ifp); 542 return (0); 543 } 544 545 /* 546 * Drop a reference to an in_multi record. 547 * 548 * If the refcount drops to 0, free the in_multi record and 549 * delete the underlying link-layer membership. 550 */ 551 void 552 inm_release_locked(struct in_multi *inm) 553 { 554 struct ifmultiaddr *ifma; 555 556 IN_MULTI_LOCK_ASSERT(); 557 558 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 559 560 if (--inm->inm_refcount > 0) { 561 CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__, 562 inm->inm_refcount); 563 return; 564 } 565 566 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 567 568 ifma = inm->inm_ifma; 569 570 /* XXX this access is not covered by IF_ADDR_LOCK */ 571 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 572 KASSERT(ifma->ifma_protospec == inm, 573 ("%s: ifma_protospec != inm", __func__)); 574 ifma->ifma_protospec = NULL; 575 576 inm_purge(inm); 577 578 free(inm, M_IPMADDR); 579 580 if_delmulti_ifma(ifma); 581 } 582 583 /* 584 * Clear recorded source entries for a group. 585 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 586 * FIXME: Should reap. 587 */ 588 void 589 inm_clear_recorded(struct in_multi *inm) 590 { 591 struct ip_msource *ims; 592 593 IN_MULTI_LOCK_ASSERT(); 594 595 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 596 if (ims->ims_stp) { 597 ims->ims_stp = 0; 598 --inm->inm_st[1].iss_rec; 599 } 600 } 601 KASSERT(inm->inm_st[1].iss_rec == 0, 602 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 603 } 604 605 /* 606 * Record a source as pending for a Source-Group IGMPv3 query. 607 * This lives here as it modifies the shared tree. 608 * 609 * inm is the group descriptor. 610 * naddr is the address of the source to record in network-byte order. 611 * 612 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 613 * lazy-allocate a source node in response to an SG query. 614 * Otherwise, no allocation is performed. This saves some memory 615 * with the trade-off that the source will not be reported to the 616 * router if joined in the window between the query response and 617 * the group actually being joined on the local host. 618 * 619 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 620 * This turns off the allocation of a recorded source entry if 621 * the group has not been joined. 622 * 623 * Return 0 if the source didn't exist or was already marked as recorded. 624 * Return 1 if the source was marked as recorded by this function. 625 * Return <0 if any error occurred (negated errno code). 626 */ 627 int 628 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 629 { 630 struct ip_msource find; 631 struct ip_msource *ims, *nims; 632 633 IN_MULTI_LOCK_ASSERT(); 634 635 find.ims_haddr = ntohl(naddr); 636 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 637 if (ims && ims->ims_stp) 638 return (0); 639 if (ims == NULL) { 640 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 641 return (-ENOSPC); 642 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 643 M_NOWAIT | M_ZERO); 644 if (nims == NULL) 645 return (-ENOMEM); 646 nims->ims_haddr = find.ims_haddr; 647 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 648 ++inm->inm_nsrc; 649 ims = nims; 650 } 651 652 /* 653 * Mark the source as recorded and update the recorded 654 * source count. 655 */ 656 ++ims->ims_stp; 657 ++inm->inm_st[1].iss_rec; 658 659 return (1); 660 } 661 662 /* 663 * Return a pointer to an in_msource owned by an in_mfilter, 664 * given its source address. 665 * Lazy-allocate if needed. If this is a new entry its filter state is 666 * undefined at t0. 667 * 668 * imf is the filter set being modified. 669 * haddr is the source address in *host* byte-order. 670 * 671 * SMPng: May be called with locks held; malloc must not block. 672 */ 673 static int 674 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 675 struct in_msource **plims) 676 { 677 struct ip_msource find; 678 struct ip_msource *ims, *nims; 679 struct in_msource *lims; 680 int error; 681 682 error = 0; 683 ims = NULL; 684 lims = NULL; 685 686 /* key is host byte order */ 687 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 688 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 689 lims = (struct in_msource *)ims; 690 if (lims == NULL) { 691 if (imf->imf_nsrc == in_mcast_maxsocksrc) 692 return (ENOSPC); 693 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 694 M_NOWAIT | M_ZERO); 695 if (nims == NULL) 696 return (ENOMEM); 697 lims = (struct in_msource *)nims; 698 lims->ims_haddr = find.ims_haddr; 699 lims->imsl_st[0] = MCAST_UNDEFINED; 700 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 701 ++imf->imf_nsrc; 702 } 703 704 *plims = lims; 705 706 return (error); 707 } 708 709 /* 710 * Graft a source entry into an existing socket-layer filter set, 711 * maintaining any required invariants and checking allocations. 712 * 713 * The source is marked as being in the new filter mode at t1. 714 * 715 * Return the pointer to the new node, otherwise return NULL. 716 */ 717 static struct in_msource * 718 imf_graft(struct in_mfilter *imf, const uint8_t st1, 719 const struct sockaddr_in *psin) 720 { 721 struct ip_msource *nims; 722 struct in_msource *lims; 723 724 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 725 M_NOWAIT | M_ZERO); 726 if (nims == NULL) 727 return (NULL); 728 lims = (struct in_msource *)nims; 729 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 730 lims->imsl_st[0] = MCAST_UNDEFINED; 731 lims->imsl_st[1] = st1; 732 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 733 ++imf->imf_nsrc; 734 735 return (lims); 736 } 737 738 /* 739 * Prune a source entry from an existing socket-layer filter set, 740 * maintaining any required invariants and checking allocations. 741 * 742 * The source is marked as being left at t1, it is not freed. 743 * 744 * Return 0 if no error occurred, otherwise return an errno value. 745 */ 746 static int 747 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 748 { 749 struct ip_msource find; 750 struct ip_msource *ims; 751 struct in_msource *lims; 752 753 /* key is host byte order */ 754 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 755 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 756 if (ims == NULL) 757 return (ENOENT); 758 lims = (struct in_msource *)ims; 759 lims->imsl_st[1] = MCAST_UNDEFINED; 760 return (0); 761 } 762 763 /* 764 * Revert socket-layer filter set deltas at t1 to t0 state. 765 */ 766 static void 767 imf_rollback(struct in_mfilter *imf) 768 { 769 struct ip_msource *ims, *tims; 770 struct in_msource *lims; 771 772 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 773 lims = (struct in_msource *)ims; 774 if (lims->imsl_st[0] == lims->imsl_st[1]) { 775 /* no change at t1 */ 776 continue; 777 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 778 /* revert change to existing source at t1 */ 779 lims->imsl_st[1] = lims->imsl_st[0]; 780 } else { 781 /* revert source added t1 */ 782 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 783 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 784 free(ims, M_INMFILTER); 785 imf->imf_nsrc--; 786 } 787 } 788 imf->imf_st[1] = imf->imf_st[0]; 789 } 790 791 /* 792 * Mark socket-layer filter set as INCLUDE {} at t1. 793 */ 794 static void 795 imf_leave(struct in_mfilter *imf) 796 { 797 struct ip_msource *ims; 798 struct in_msource *lims; 799 800 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 801 lims = (struct in_msource *)ims; 802 lims->imsl_st[1] = MCAST_UNDEFINED; 803 } 804 imf->imf_st[1] = MCAST_INCLUDE; 805 } 806 807 /* 808 * Mark socket-layer filter set deltas as committed. 809 */ 810 static void 811 imf_commit(struct in_mfilter *imf) 812 { 813 struct ip_msource *ims; 814 struct in_msource *lims; 815 816 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 817 lims = (struct in_msource *)ims; 818 lims->imsl_st[0] = lims->imsl_st[1]; 819 } 820 imf->imf_st[0] = imf->imf_st[1]; 821 } 822 823 /* 824 * Reap unreferenced sources from socket-layer filter set. 825 */ 826 static void 827 imf_reap(struct in_mfilter *imf) 828 { 829 struct ip_msource *ims, *tims; 830 struct in_msource *lims; 831 832 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 833 lims = (struct in_msource *)ims; 834 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 835 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 836 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 837 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 838 free(ims, M_INMFILTER); 839 imf->imf_nsrc--; 840 } 841 } 842 } 843 844 /* 845 * Purge socket-layer filter set. 846 */ 847 static void 848 imf_purge(struct in_mfilter *imf) 849 { 850 struct ip_msource *ims, *tims; 851 852 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 853 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 854 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 855 free(ims, M_INMFILTER); 856 imf->imf_nsrc--; 857 } 858 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 859 KASSERT(RB_EMPTY(&imf->imf_sources), 860 ("%s: imf_sources not empty", __func__)); 861 } 862 863 /* 864 * Look up a source filter entry for a multicast group. 865 * 866 * inm is the group descriptor to work with. 867 * haddr is the host-byte-order IPv4 address to look up. 868 * noalloc may be non-zero to suppress allocation of sources. 869 * *pims will be set to the address of the retrieved or allocated source. 870 * 871 * SMPng: NOTE: may be called with locks held. 872 * Return 0 if successful, otherwise return a non-zero error code. 873 */ 874 static int 875 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 876 const int noalloc, struct ip_msource **pims) 877 { 878 struct ip_msource find; 879 struct ip_msource *ims, *nims; 880 881 find.ims_haddr = haddr; 882 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 883 if (ims == NULL && !noalloc) { 884 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 885 return (ENOSPC); 886 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 887 M_NOWAIT | M_ZERO); 888 if (nims == NULL) 889 return (ENOMEM); 890 nims->ims_haddr = haddr; 891 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 892 ++inm->inm_nsrc; 893 ims = nims; 894 #ifdef KTR 895 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, 896 haddr, ims); 897 #endif 898 } 899 900 *pims = ims; 901 return (0); 902 } 903 904 /* 905 * Merge socket-layer source into IGMP-layer source. 906 * If rollback is non-zero, perform the inverse of the merge. 907 */ 908 static void 909 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 910 const int rollback) 911 { 912 int n = rollback ? -1 : 1; 913 914 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 915 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", 916 __func__, n, ims->ims_haddr); 917 ims->ims_st[1].ex -= n; 918 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 919 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", 920 __func__, n, ims->ims_haddr); 921 ims->ims_st[1].in -= n; 922 } 923 924 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 925 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", 926 __func__, n, ims->ims_haddr); 927 ims->ims_st[1].ex += n; 928 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 929 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", 930 __func__, n, ims->ims_haddr); 931 ims->ims_st[1].in += n; 932 } 933 } 934 935 /* 936 * Atomically update the global in_multi state, when a membership's 937 * filter list is being updated in any way. 938 * 939 * imf is the per-inpcb-membership group filter pointer. 940 * A fake imf may be passed for in-kernel consumers. 941 * 942 * XXX This is a candidate for a set-symmetric-difference style loop 943 * which would eliminate the repeated lookup from root of ims nodes, 944 * as they share the same key space. 945 * 946 * If any error occurred this function will back out of refcounts 947 * and return a non-zero value. 948 */ 949 static int 950 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 951 { 952 struct ip_msource *ims, *nims; 953 struct in_msource *lims; 954 int schanged, error; 955 int nsrc0, nsrc1; 956 957 schanged = 0; 958 error = 0; 959 nsrc1 = nsrc0 = 0; 960 961 /* 962 * Update the source filters first, as this may fail. 963 * Maintain count of in-mode filters at t0, t1. These are 964 * used to work out if we transition into ASM mode or not. 965 * Maintain a count of source filters whose state was 966 * actually modified by this operation. 967 */ 968 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 969 lims = (struct in_msource *)ims; 970 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 971 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 972 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 973 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 974 ++schanged; 975 if (error) 976 break; 977 ims_merge(nims, lims, 0); 978 } 979 if (error) { 980 struct ip_msource *bims; 981 982 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 983 lims = (struct in_msource *)ims; 984 if (lims->imsl_st[0] == lims->imsl_st[1]) 985 continue; 986 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 987 if (bims == NULL) 988 continue; 989 ims_merge(bims, lims, 1); 990 } 991 goto out_reap; 992 } 993 994 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 995 __func__, nsrc0, nsrc1); 996 997 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 998 if (imf->imf_st[0] == imf->imf_st[1] && 999 imf->imf_st[1] == MCAST_INCLUDE) { 1000 if (nsrc1 == 0) { 1001 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1002 --inm->inm_st[1].iss_in; 1003 } 1004 } 1005 1006 /* Handle filter mode transition on socket. */ 1007 if (imf->imf_st[0] != imf->imf_st[1]) { 1008 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1009 __func__, imf->imf_st[0], imf->imf_st[1]); 1010 1011 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1012 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1013 --inm->inm_st[1].iss_ex; 1014 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1015 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1016 --inm->inm_st[1].iss_in; 1017 } 1018 1019 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1020 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1021 inm->inm_st[1].iss_ex++; 1022 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1023 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1024 inm->inm_st[1].iss_in++; 1025 } 1026 } 1027 1028 /* 1029 * Track inm filter state in terms of listener counts. 1030 * If there are any exclusive listeners, stack-wide 1031 * membership is exclusive. 1032 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1033 * If no listeners remain, state is undefined at t1, 1034 * and the IGMP lifecycle for this group should finish. 1035 */ 1036 if (inm->inm_st[1].iss_ex > 0) { 1037 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1038 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1039 } else if (inm->inm_st[1].iss_in > 0) { 1040 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1041 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1042 } else { 1043 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1044 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1045 } 1046 1047 /* Decrement ASM listener count on transition out of ASM mode. */ 1048 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1049 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1050 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1051 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1052 --inm->inm_st[1].iss_asm; 1053 } 1054 1055 /* Increment ASM listener count on transition to ASM mode. */ 1056 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1057 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1058 inm->inm_st[1].iss_asm++; 1059 } 1060 1061 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1062 inm_print(inm); 1063 1064 out_reap: 1065 if (schanged > 0) { 1066 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1067 inm_reap(inm); 1068 } 1069 return (error); 1070 } 1071 1072 /* 1073 * Mark an in_multi's filter set deltas as committed. 1074 * Called by IGMP after a state change has been enqueued. 1075 */ 1076 void 1077 inm_commit(struct in_multi *inm) 1078 { 1079 struct ip_msource *ims; 1080 1081 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1082 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1083 inm_print(inm); 1084 1085 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1086 ims->ims_st[0] = ims->ims_st[1]; 1087 } 1088 inm->inm_st[0] = inm->inm_st[1]; 1089 } 1090 1091 /* 1092 * Reap unreferenced nodes from an in_multi's filter set. 1093 */ 1094 static void 1095 inm_reap(struct in_multi *inm) 1096 { 1097 struct ip_msource *ims, *tims; 1098 1099 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1100 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1101 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1102 ims->ims_stp != 0) 1103 continue; 1104 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1105 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1106 free(ims, M_IPMSOURCE); 1107 inm->inm_nsrc--; 1108 } 1109 } 1110 1111 /* 1112 * Purge all source nodes from an in_multi's filter set. 1113 */ 1114 static void 1115 inm_purge(struct in_multi *inm) 1116 { 1117 struct ip_msource *ims, *tims; 1118 1119 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1120 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1121 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1122 free(ims, M_IPMSOURCE); 1123 inm->inm_nsrc--; 1124 } 1125 } 1126 1127 /* 1128 * Join a multicast group; unlocked entry point. 1129 * 1130 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1131 * is not held. Fortunately, ifp is unlikely to have been detached 1132 * at this point, so we assume it's OK to recurse. 1133 */ 1134 int 1135 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1136 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1137 { 1138 int error; 1139 1140 IN_MULTI_LOCK(); 1141 error = in_joingroup_locked(ifp, gina, imf, pinm); 1142 IN_MULTI_UNLOCK(); 1143 1144 return (error); 1145 } 1146 1147 /* 1148 * Join a multicast group; real entry point. 1149 * 1150 * Only preserves atomicity at inm level. 1151 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1152 * 1153 * If the IGMP downcall fails, the group is not joined, and an error 1154 * code is returned. 1155 */ 1156 int 1157 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1158 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1159 { 1160 struct in_mfilter timf; 1161 struct in_multi *inm; 1162 int error; 1163 1164 IN_MULTI_LOCK_ASSERT(); 1165 1166 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, 1167 ntohl(gina->s_addr), ifp, ifp->if_xname); 1168 1169 error = 0; 1170 inm = NULL; 1171 1172 /* 1173 * If no imf was specified (i.e. kernel consumer), 1174 * fake one up and assume it is an ASM join. 1175 */ 1176 if (imf == NULL) { 1177 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1178 imf = &timf; 1179 } 1180 1181 error = in_getmulti(ifp, gina, &inm); 1182 if (error) { 1183 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1184 return (error); 1185 } 1186 1187 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1188 error = inm_merge(inm, imf); 1189 if (error) { 1190 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1191 goto out_inm_release; 1192 } 1193 1194 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1195 error = igmp_change_state(inm); 1196 if (error) { 1197 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1198 goto out_inm_release; 1199 } 1200 1201 out_inm_release: 1202 if (error) { 1203 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1204 inm_release_locked(inm); 1205 } else { 1206 *pinm = inm; 1207 } 1208 1209 return (error); 1210 } 1211 1212 /* 1213 * Leave a multicast group; unlocked entry point. 1214 */ 1215 int 1216 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1217 { 1218 int error; 1219 1220 IN_MULTI_LOCK(); 1221 error = in_leavegroup_locked(inm, imf); 1222 IN_MULTI_UNLOCK(); 1223 1224 return (error); 1225 } 1226 1227 /* 1228 * Leave a multicast group; real entry point. 1229 * All source filters will be expunged. 1230 * 1231 * Only preserves atomicity at inm level. 1232 * 1233 * Holding the write lock for the INP which contains imf 1234 * is highly advisable. We can't assert for it as imf does not 1235 * contain a back-pointer to the owning inp. 1236 * 1237 * Note: This is not the same as inm_release(*) as this function also 1238 * makes a state change downcall into IGMP. 1239 */ 1240 int 1241 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1242 { 1243 struct in_mfilter timf; 1244 int error; 1245 1246 error = 0; 1247 1248 IN_MULTI_LOCK_ASSERT(); 1249 1250 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, 1251 inm, ntohl(inm->inm_addr.s_addr), 1252 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1253 imf); 1254 1255 /* 1256 * If no imf was specified (i.e. kernel consumer), 1257 * fake one up and assume it is an ASM join. 1258 */ 1259 if (imf == NULL) { 1260 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1261 imf = &timf; 1262 } 1263 1264 /* 1265 * Begin state merge transaction at IGMP layer. 1266 * 1267 * As this particular invocation should not cause any memory 1268 * to be allocated, and there is no opportunity to roll back 1269 * the transaction, it MUST NOT fail. 1270 */ 1271 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1272 error = inm_merge(inm, imf); 1273 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1274 1275 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1276 CURVNET_SET(inm->inm_ifp->if_vnet); 1277 error = igmp_change_state(inm); 1278 CURVNET_RESTORE(); 1279 if (error) 1280 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1281 1282 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1283 inm_release_locked(inm); 1284 1285 return (error); 1286 } 1287 1288 /*#ifndef BURN_BRIDGES*/ 1289 /* 1290 * Join an IPv4 multicast group in (*,G) exclusive mode. 1291 * The group must be a 224.0.0.0/24 link-scope group. 1292 * This KPI is for legacy kernel consumers only. 1293 */ 1294 struct in_multi * 1295 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1296 { 1297 struct in_multi *pinm; 1298 int error; 1299 #ifdef INVARIANTS 1300 char addrbuf[INET_ADDRSTRLEN]; 1301 #endif 1302 1303 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1304 ("%s: %s not in 224.0.0.0/24", __func__, 1305 inet_ntoa_r(*ap, addrbuf))); 1306 1307 error = in_joingroup(ifp, ap, NULL, &pinm); 1308 if (error != 0) 1309 pinm = NULL; 1310 1311 return (pinm); 1312 } 1313 1314 /* 1315 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. 1316 * This KPI is for legacy kernel consumers only. 1317 */ 1318 void 1319 in_delmulti(struct in_multi *inm) 1320 { 1321 1322 (void)in_leavegroup(inm, NULL); 1323 } 1324 /*#endif*/ 1325 1326 /* 1327 * Block or unblock an ASM multicast source on an inpcb. 1328 * This implements the delta-based API described in RFC 3678. 1329 * 1330 * The delta-based API applies only to exclusive-mode memberships. 1331 * An IGMP downcall will be performed. 1332 * 1333 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1334 * 1335 * Return 0 if successful, otherwise return an appropriate error code. 1336 */ 1337 static int 1338 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1339 { 1340 struct group_source_req gsr; 1341 sockunion_t *gsa, *ssa; 1342 struct ifnet *ifp; 1343 struct in_mfilter *imf; 1344 struct ip_moptions *imo; 1345 struct in_msource *ims; 1346 struct in_multi *inm; 1347 size_t idx; 1348 uint16_t fmode; 1349 int error, doblock; 1350 1351 ifp = NULL; 1352 error = 0; 1353 doblock = 0; 1354 1355 memset(&gsr, 0, sizeof(struct group_source_req)); 1356 gsa = (sockunion_t *)&gsr.gsr_group; 1357 ssa = (sockunion_t *)&gsr.gsr_source; 1358 1359 switch (sopt->sopt_name) { 1360 case IP_BLOCK_SOURCE: 1361 case IP_UNBLOCK_SOURCE: { 1362 struct ip_mreq_source mreqs; 1363 1364 error = sooptcopyin(sopt, &mreqs, 1365 sizeof(struct ip_mreq_source), 1366 sizeof(struct ip_mreq_source)); 1367 if (error) 1368 return (error); 1369 1370 gsa->sin.sin_family = AF_INET; 1371 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1372 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1373 1374 ssa->sin.sin_family = AF_INET; 1375 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1376 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1377 1378 if (!in_nullhost(mreqs.imr_interface)) 1379 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1380 1381 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1382 doblock = 1; 1383 1384 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1385 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1386 break; 1387 } 1388 1389 case MCAST_BLOCK_SOURCE: 1390 case MCAST_UNBLOCK_SOURCE: 1391 error = sooptcopyin(sopt, &gsr, 1392 sizeof(struct group_source_req), 1393 sizeof(struct group_source_req)); 1394 if (error) 1395 return (error); 1396 1397 if (gsa->sin.sin_family != AF_INET || 1398 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1399 return (EINVAL); 1400 1401 if (ssa->sin.sin_family != AF_INET || 1402 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1403 return (EINVAL); 1404 1405 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1406 return (EADDRNOTAVAIL); 1407 1408 ifp = ifnet_byindex(gsr.gsr_interface); 1409 1410 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1411 doblock = 1; 1412 break; 1413 1414 default: 1415 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1416 __func__, sopt->sopt_name); 1417 return (EOPNOTSUPP); 1418 break; 1419 } 1420 1421 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1422 return (EINVAL); 1423 1424 /* 1425 * Check if we are actually a member of this group. 1426 */ 1427 imo = inp_findmoptions(inp); 1428 idx = imo_match_group(imo, ifp, &gsa->sa); 1429 if (idx == -1 || imo->imo_mfilters == NULL) { 1430 error = EADDRNOTAVAIL; 1431 goto out_inp_locked; 1432 } 1433 1434 KASSERT(imo->imo_mfilters != NULL, 1435 ("%s: imo_mfilters not allocated", __func__)); 1436 imf = &imo->imo_mfilters[idx]; 1437 inm = imo->imo_membership[idx]; 1438 1439 /* 1440 * Attempting to use the delta-based API on an 1441 * non exclusive-mode membership is an error. 1442 */ 1443 fmode = imf->imf_st[0]; 1444 if (fmode != MCAST_EXCLUDE) { 1445 error = EINVAL; 1446 goto out_inp_locked; 1447 } 1448 1449 /* 1450 * Deal with error cases up-front: 1451 * Asked to block, but already blocked; or 1452 * Asked to unblock, but nothing to unblock. 1453 * If adding a new block entry, allocate it. 1454 */ 1455 ims = imo_match_source(imo, idx, &ssa->sa); 1456 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1457 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, 1458 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); 1459 error = EADDRNOTAVAIL; 1460 goto out_inp_locked; 1461 } 1462 1463 INP_WLOCK_ASSERT(inp); 1464 1465 /* 1466 * Begin state merge transaction at socket layer. 1467 */ 1468 if (doblock) { 1469 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1470 ims = imf_graft(imf, fmode, &ssa->sin); 1471 if (ims == NULL) 1472 error = ENOMEM; 1473 } else { 1474 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1475 error = imf_prune(imf, &ssa->sin); 1476 } 1477 1478 if (error) { 1479 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1480 goto out_imf_rollback; 1481 } 1482 1483 /* 1484 * Begin state merge transaction at IGMP layer. 1485 */ 1486 IN_MULTI_LOCK(); 1487 1488 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1489 error = inm_merge(inm, imf); 1490 if (error) { 1491 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1492 goto out_in_multi_locked; 1493 } 1494 1495 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1496 error = igmp_change_state(inm); 1497 if (error) 1498 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1499 1500 out_in_multi_locked: 1501 1502 IN_MULTI_UNLOCK(); 1503 1504 out_imf_rollback: 1505 if (error) 1506 imf_rollback(imf); 1507 else 1508 imf_commit(imf); 1509 1510 imf_reap(imf); 1511 1512 out_inp_locked: 1513 INP_WUNLOCK(inp); 1514 return (error); 1515 } 1516 1517 /* 1518 * Given an inpcb, return its multicast options structure pointer. Accepts 1519 * an unlocked inpcb pointer, but will return it locked. May sleep. 1520 * 1521 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1522 * SMPng: NOTE: Returns with the INP write lock held. 1523 */ 1524 static struct ip_moptions * 1525 inp_findmoptions(struct inpcb *inp) 1526 { 1527 struct ip_moptions *imo; 1528 struct in_multi **immp; 1529 struct in_mfilter *imfp; 1530 size_t idx; 1531 1532 INP_WLOCK(inp); 1533 if (inp->inp_moptions != NULL) 1534 return (inp->inp_moptions); 1535 1536 INP_WUNLOCK(inp); 1537 1538 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1539 immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, 1540 M_WAITOK | M_ZERO); 1541 imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, 1542 M_INMFILTER, M_WAITOK); 1543 1544 imo->imo_multicast_ifp = NULL; 1545 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1546 imo->imo_multicast_vif = -1; 1547 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1548 imo->imo_multicast_loop = in_mcast_loop; 1549 imo->imo_num_memberships = 0; 1550 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; 1551 imo->imo_membership = immp; 1552 1553 /* Initialize per-group source filters. */ 1554 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) 1555 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1556 imo->imo_mfilters = imfp; 1557 1558 INP_WLOCK(inp); 1559 if (inp->inp_moptions != NULL) { 1560 free(imfp, M_INMFILTER); 1561 free(immp, M_IPMOPTS); 1562 free(imo, M_IPMOPTS); 1563 return (inp->inp_moptions); 1564 } 1565 inp->inp_moptions = imo; 1566 return (imo); 1567 } 1568 1569 /* 1570 * Discard the IP multicast options (and source filters). To minimize 1571 * the amount of work done while holding locks such as the INP's 1572 * pcbinfo lock (which is used in the receive path), the free 1573 * operation is performed asynchronously in a separate task. 1574 * 1575 * SMPng: NOTE: assumes INP write lock is held. 1576 */ 1577 void 1578 inp_freemoptions(struct ip_moptions *imo) 1579 { 1580 1581 KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__)); 1582 IN_MULTI_LOCK(); 1583 STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link); 1584 IN_MULTI_UNLOCK(); 1585 taskqueue_enqueue(taskqueue_thread, &imo_gc_task); 1586 } 1587 1588 static void 1589 inp_freemoptions_internal(struct ip_moptions *imo) 1590 { 1591 struct in_mfilter *imf; 1592 size_t idx, nmships; 1593 1594 nmships = imo->imo_num_memberships; 1595 for (idx = 0; idx < nmships; ++idx) { 1596 imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL; 1597 if (imf) 1598 imf_leave(imf); 1599 (void)in_leavegroup(imo->imo_membership[idx], imf); 1600 if (imf) 1601 imf_purge(imf); 1602 } 1603 1604 if (imo->imo_mfilters) 1605 free(imo->imo_mfilters, M_INMFILTER); 1606 free(imo->imo_membership, M_IPMOPTS); 1607 free(imo, M_IPMOPTS); 1608 } 1609 1610 static void 1611 inp_gcmoptions(void *context, int pending) 1612 { 1613 struct ip_moptions *imo; 1614 1615 IN_MULTI_LOCK(); 1616 while (!STAILQ_EMPTY(&imo_gc_list)) { 1617 imo = STAILQ_FIRST(&imo_gc_list); 1618 STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link); 1619 IN_MULTI_UNLOCK(); 1620 inp_freemoptions_internal(imo); 1621 IN_MULTI_LOCK(); 1622 } 1623 IN_MULTI_UNLOCK(); 1624 } 1625 1626 /* 1627 * Atomically get source filters on a socket for an IPv4 multicast group. 1628 * Called with INP lock held; returns with lock released. 1629 */ 1630 static int 1631 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1632 { 1633 struct __msfilterreq msfr; 1634 sockunion_t *gsa; 1635 struct ifnet *ifp; 1636 struct ip_moptions *imo; 1637 struct in_mfilter *imf; 1638 struct ip_msource *ims; 1639 struct in_msource *lims; 1640 struct sockaddr_in *psin; 1641 struct sockaddr_storage *ptss; 1642 struct sockaddr_storage *tss; 1643 int error; 1644 size_t idx, nsrcs, ncsrcs; 1645 1646 INP_WLOCK_ASSERT(inp); 1647 1648 imo = inp->inp_moptions; 1649 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1650 1651 INP_WUNLOCK(inp); 1652 1653 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1654 sizeof(struct __msfilterreq)); 1655 if (error) 1656 return (error); 1657 1658 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1659 return (EINVAL); 1660 1661 ifp = ifnet_byindex(msfr.msfr_ifindex); 1662 if (ifp == NULL) 1663 return (EINVAL); 1664 1665 INP_WLOCK(inp); 1666 1667 /* 1668 * Lookup group on the socket. 1669 */ 1670 gsa = (sockunion_t *)&msfr.msfr_group; 1671 idx = imo_match_group(imo, ifp, &gsa->sa); 1672 if (idx == -1 || imo->imo_mfilters == NULL) { 1673 INP_WUNLOCK(inp); 1674 return (EADDRNOTAVAIL); 1675 } 1676 imf = &imo->imo_mfilters[idx]; 1677 1678 /* 1679 * Ignore memberships which are in limbo. 1680 */ 1681 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1682 INP_WUNLOCK(inp); 1683 return (EAGAIN); 1684 } 1685 msfr.msfr_fmode = imf->imf_st[1]; 1686 1687 /* 1688 * If the user specified a buffer, copy out the source filter 1689 * entries to userland gracefully. 1690 * We only copy out the number of entries which userland 1691 * has asked for, but we always tell userland how big the 1692 * buffer really needs to be. 1693 */ 1694 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1695 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1696 tss = NULL; 1697 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1698 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1699 M_TEMP, M_NOWAIT | M_ZERO); 1700 if (tss == NULL) { 1701 INP_WUNLOCK(inp); 1702 return (ENOBUFS); 1703 } 1704 } 1705 1706 /* 1707 * Count number of sources in-mode at t0. 1708 * If buffer space exists and remains, copy out source entries. 1709 */ 1710 nsrcs = msfr.msfr_nsrcs; 1711 ncsrcs = 0; 1712 ptss = tss; 1713 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1714 lims = (struct in_msource *)ims; 1715 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1716 lims->imsl_st[0] != imf->imf_st[0]) 1717 continue; 1718 ++ncsrcs; 1719 if (tss != NULL && nsrcs > 0) { 1720 psin = (struct sockaddr_in *)ptss; 1721 psin->sin_family = AF_INET; 1722 psin->sin_len = sizeof(struct sockaddr_in); 1723 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1724 psin->sin_port = 0; 1725 ++ptss; 1726 --nsrcs; 1727 } 1728 } 1729 1730 INP_WUNLOCK(inp); 1731 1732 if (tss != NULL) { 1733 error = copyout(tss, msfr.msfr_srcs, 1734 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1735 free(tss, M_TEMP); 1736 if (error) 1737 return (error); 1738 } 1739 1740 msfr.msfr_nsrcs = ncsrcs; 1741 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1742 1743 return (error); 1744 } 1745 1746 /* 1747 * Return the IP multicast options in response to user getsockopt(). 1748 */ 1749 int 1750 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1751 { 1752 struct rm_priotracker in_ifa_tracker; 1753 struct ip_mreqn mreqn; 1754 struct ip_moptions *imo; 1755 struct ifnet *ifp; 1756 struct in_ifaddr *ia; 1757 int error, optval; 1758 u_char coptval; 1759 1760 INP_WLOCK(inp); 1761 imo = inp->inp_moptions; 1762 /* 1763 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1764 * or is a divert socket, reject it. 1765 */ 1766 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1767 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1768 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1769 INP_WUNLOCK(inp); 1770 return (EOPNOTSUPP); 1771 } 1772 1773 error = 0; 1774 switch (sopt->sopt_name) { 1775 case IP_MULTICAST_VIF: 1776 if (imo != NULL) 1777 optval = imo->imo_multicast_vif; 1778 else 1779 optval = -1; 1780 INP_WUNLOCK(inp); 1781 error = sooptcopyout(sopt, &optval, sizeof(int)); 1782 break; 1783 1784 case IP_MULTICAST_IF: 1785 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1786 if (imo != NULL) { 1787 ifp = imo->imo_multicast_ifp; 1788 if (!in_nullhost(imo->imo_multicast_addr)) { 1789 mreqn.imr_address = imo->imo_multicast_addr; 1790 } else if (ifp != NULL) { 1791 mreqn.imr_ifindex = ifp->if_index; 1792 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 1793 if (ia != NULL) { 1794 mreqn.imr_address = 1795 IA_SIN(ia)->sin_addr; 1796 ifa_free(&ia->ia_ifa); 1797 } 1798 } 1799 } 1800 INP_WUNLOCK(inp); 1801 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1802 error = sooptcopyout(sopt, &mreqn, 1803 sizeof(struct ip_mreqn)); 1804 } else { 1805 error = sooptcopyout(sopt, &mreqn.imr_address, 1806 sizeof(struct in_addr)); 1807 } 1808 break; 1809 1810 case IP_MULTICAST_TTL: 1811 if (imo == NULL) 1812 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1813 else 1814 optval = coptval = imo->imo_multicast_ttl; 1815 INP_WUNLOCK(inp); 1816 if (sopt->sopt_valsize == sizeof(u_char)) 1817 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1818 else 1819 error = sooptcopyout(sopt, &optval, sizeof(int)); 1820 break; 1821 1822 case IP_MULTICAST_LOOP: 1823 if (imo == NULL) 1824 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1825 else 1826 optval = coptval = imo->imo_multicast_loop; 1827 INP_WUNLOCK(inp); 1828 if (sopt->sopt_valsize == sizeof(u_char)) 1829 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1830 else 1831 error = sooptcopyout(sopt, &optval, sizeof(int)); 1832 break; 1833 1834 case IP_MSFILTER: 1835 if (imo == NULL) { 1836 error = EADDRNOTAVAIL; 1837 INP_WUNLOCK(inp); 1838 } else { 1839 error = inp_get_source_filters(inp, sopt); 1840 } 1841 break; 1842 1843 default: 1844 INP_WUNLOCK(inp); 1845 error = ENOPROTOOPT; 1846 break; 1847 } 1848 1849 INP_UNLOCK_ASSERT(inp); 1850 1851 return (error); 1852 } 1853 1854 /* 1855 * Look up the ifnet to use for a multicast group membership, 1856 * given the IPv4 address of an interface, and the IPv4 group address. 1857 * 1858 * This routine exists to support legacy multicast applications 1859 * which do not understand that multicast memberships are scoped to 1860 * specific physical links in the networking stack, or which need 1861 * to join link-scope groups before IPv4 addresses are configured. 1862 * 1863 * If inp is non-NULL, use this socket's current FIB number for any 1864 * required FIB lookup. 1865 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1866 * and use its ifp; usually, this points to the default next-hop. 1867 * 1868 * If the FIB lookup fails, attempt to use the first non-loopback 1869 * interface with multicast capability in the system as a 1870 * last resort. The legacy IPv4 ASM API requires that we do 1871 * this in order to allow groups to be joined when the routing 1872 * table has not yet been populated during boot. 1873 * 1874 * Returns NULL if no ifp could be found. 1875 * 1876 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP. 1877 * FUTURE: Implement IPv4 source-address selection. 1878 */ 1879 static struct ifnet * 1880 inp_lookup_mcast_ifp(const struct inpcb *inp, 1881 const struct sockaddr_in *gsin, const struct in_addr ina) 1882 { 1883 struct rm_priotracker in_ifa_tracker; 1884 struct ifnet *ifp; 1885 struct nhop4_basic nh4; 1886 uint32_t fibnum; 1887 1888 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1889 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1890 ("%s: not multicast", __func__)); 1891 1892 ifp = NULL; 1893 if (!in_nullhost(ina)) { 1894 INADDR_TO_IFP(ina, ifp); 1895 } else { 1896 fibnum = inp ? inp->inp_inc.inc_fibnum : 0; 1897 if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0) 1898 ifp = nh4.nh_ifp; 1899 else { 1900 struct in_ifaddr *ia; 1901 struct ifnet *mifp; 1902 1903 mifp = NULL; 1904 IN_IFADDR_RLOCK(&in_ifa_tracker); 1905 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1906 mifp = ia->ia_ifp; 1907 if (!(mifp->if_flags & IFF_LOOPBACK) && 1908 (mifp->if_flags & IFF_MULTICAST)) { 1909 ifp = mifp; 1910 break; 1911 } 1912 } 1913 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1914 } 1915 } 1916 1917 return (ifp); 1918 } 1919 1920 /* 1921 * Join an IPv4 multicast group, possibly with a source. 1922 */ 1923 static int 1924 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1925 { 1926 struct group_source_req gsr; 1927 sockunion_t *gsa, *ssa; 1928 struct ifnet *ifp; 1929 struct in_mfilter *imf; 1930 struct ip_moptions *imo; 1931 struct in_multi *inm; 1932 struct in_msource *lims; 1933 size_t idx; 1934 int error, is_new; 1935 1936 ifp = NULL; 1937 imf = NULL; 1938 lims = NULL; 1939 error = 0; 1940 is_new = 0; 1941 1942 memset(&gsr, 0, sizeof(struct group_source_req)); 1943 gsa = (sockunion_t *)&gsr.gsr_group; 1944 gsa->ss.ss_family = AF_UNSPEC; 1945 ssa = (sockunion_t *)&gsr.gsr_source; 1946 ssa->ss.ss_family = AF_UNSPEC; 1947 1948 switch (sopt->sopt_name) { 1949 case IP_ADD_MEMBERSHIP: 1950 case IP_ADD_SOURCE_MEMBERSHIP: { 1951 struct ip_mreq_source mreqs; 1952 1953 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { 1954 error = sooptcopyin(sopt, &mreqs, 1955 sizeof(struct ip_mreq), 1956 sizeof(struct ip_mreq)); 1957 /* 1958 * Do argument switcharoo from ip_mreq into 1959 * ip_mreq_source to avoid using two instances. 1960 */ 1961 mreqs.imr_interface = mreqs.imr_sourceaddr; 1962 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 1963 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1964 error = sooptcopyin(sopt, &mreqs, 1965 sizeof(struct ip_mreq_source), 1966 sizeof(struct ip_mreq_source)); 1967 } 1968 if (error) 1969 return (error); 1970 1971 gsa->sin.sin_family = AF_INET; 1972 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1973 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1974 1975 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { 1976 ssa->sin.sin_family = AF_INET; 1977 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1978 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1979 } 1980 1981 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1982 return (EINVAL); 1983 1984 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1985 mreqs.imr_interface); 1986 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1987 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1988 break; 1989 } 1990 1991 case MCAST_JOIN_GROUP: 1992 case MCAST_JOIN_SOURCE_GROUP: 1993 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1994 error = sooptcopyin(sopt, &gsr, 1995 sizeof(struct group_req), 1996 sizeof(struct group_req)); 1997 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1998 error = sooptcopyin(sopt, &gsr, 1999 sizeof(struct group_source_req), 2000 sizeof(struct group_source_req)); 2001 } 2002 if (error) 2003 return (error); 2004 2005 if (gsa->sin.sin_family != AF_INET || 2006 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2007 return (EINVAL); 2008 2009 /* 2010 * Overwrite the port field if present, as the sockaddr 2011 * being copied in may be matched with a binary comparison. 2012 */ 2013 gsa->sin.sin_port = 0; 2014 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2015 if (ssa->sin.sin_family != AF_INET || 2016 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2017 return (EINVAL); 2018 ssa->sin.sin_port = 0; 2019 } 2020 2021 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2022 return (EINVAL); 2023 2024 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2025 return (EADDRNOTAVAIL); 2026 ifp = ifnet_byindex(gsr.gsr_interface); 2027 break; 2028 2029 default: 2030 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2031 __func__, sopt->sopt_name); 2032 return (EOPNOTSUPP); 2033 break; 2034 } 2035 2036 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2037 return (EADDRNOTAVAIL); 2038 2039 imo = inp_findmoptions(inp); 2040 idx = imo_match_group(imo, ifp, &gsa->sa); 2041 if (idx == -1) { 2042 is_new = 1; 2043 } else { 2044 inm = imo->imo_membership[idx]; 2045 imf = &imo->imo_mfilters[idx]; 2046 if (ssa->ss.ss_family != AF_UNSPEC) { 2047 /* 2048 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2049 * is an error. On an existing inclusive membership, 2050 * it just adds the source to the filter list. 2051 */ 2052 if (imf->imf_st[1] != MCAST_INCLUDE) { 2053 error = EINVAL; 2054 goto out_inp_locked; 2055 } 2056 /* 2057 * Throw out duplicates. 2058 * 2059 * XXX FIXME: This makes a naive assumption that 2060 * even if entries exist for *ssa in this imf, 2061 * they will be rejected as dupes, even if they 2062 * are not valid in the current mode (in-mode). 2063 * 2064 * in_msource is transactioned just as for anything 2065 * else in SSM -- but note naive use of inm_graft() 2066 * below for allocating new filter entries. 2067 * 2068 * This is only an issue if someone mixes the 2069 * full-state SSM API with the delta-based API, 2070 * which is discouraged in the relevant RFCs. 2071 */ 2072 lims = imo_match_source(imo, idx, &ssa->sa); 2073 if (lims != NULL /*&& 2074 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2075 error = EADDRNOTAVAIL; 2076 goto out_inp_locked; 2077 } 2078 } else { 2079 /* 2080 * MCAST_JOIN_GROUP on an existing exclusive 2081 * membership is an error; return EADDRINUSE 2082 * to preserve 4.4BSD API idempotence, and 2083 * avoid tedious detour to code below. 2084 * NOTE: This is bending RFC 3678 a bit. 2085 * 2086 * On an existing inclusive membership, this is also 2087 * an error; if you want to change filter mode, 2088 * you must use the userland API setsourcefilter(). 2089 * XXX We don't reject this for imf in UNDEFINED 2090 * state at t1, because allocation of a filter 2091 * is atomic with allocation of a membership. 2092 */ 2093 error = EINVAL; 2094 if (imf->imf_st[1] == MCAST_EXCLUDE) 2095 error = EADDRINUSE; 2096 goto out_inp_locked; 2097 } 2098 } 2099 2100 /* 2101 * Begin state merge transaction at socket layer. 2102 */ 2103 INP_WLOCK_ASSERT(inp); 2104 2105 if (is_new) { 2106 if (imo->imo_num_memberships == imo->imo_max_memberships) { 2107 error = imo_grow(imo); 2108 if (error) 2109 goto out_inp_locked; 2110 } 2111 /* 2112 * Allocate the new slot upfront so we can deal with 2113 * grafting the new source filter in same code path 2114 * as for join-source on existing membership. 2115 */ 2116 idx = imo->imo_num_memberships; 2117 imo->imo_membership[idx] = NULL; 2118 imo->imo_num_memberships++; 2119 KASSERT(imo->imo_mfilters != NULL, 2120 ("%s: imf_mfilters vector was not allocated", __func__)); 2121 imf = &imo->imo_mfilters[idx]; 2122 KASSERT(RB_EMPTY(&imf->imf_sources), 2123 ("%s: imf_sources not empty", __func__)); 2124 } 2125 2126 /* 2127 * Graft new source into filter list for this inpcb's 2128 * membership of the group. The in_multi may not have 2129 * been allocated yet if this is a new membership, however, 2130 * the in_mfilter slot will be allocated and must be initialized. 2131 * 2132 * Note: Grafting of exclusive mode filters doesn't happen 2133 * in this path. 2134 * XXX: Should check for non-NULL lims (node exists but may 2135 * not be in-mode) for interop with full-state API. 2136 */ 2137 if (ssa->ss.ss_family != AF_UNSPEC) { 2138 /* Membership starts in IN mode */ 2139 if (is_new) { 2140 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2141 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2142 } else { 2143 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2144 } 2145 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2146 if (lims == NULL) { 2147 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2148 __func__); 2149 error = ENOMEM; 2150 goto out_imo_free; 2151 } 2152 } else { 2153 /* No address specified; Membership starts in EX mode */ 2154 if (is_new) { 2155 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2156 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2157 } 2158 } 2159 2160 /* 2161 * Begin state merge transaction at IGMP layer. 2162 */ 2163 IN_MULTI_LOCK(); 2164 2165 if (is_new) { 2166 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2167 &inm); 2168 if (error) { 2169 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2170 __func__); 2171 IN_MULTI_UNLOCK(); 2172 goto out_imo_free; 2173 } 2174 imo->imo_membership[idx] = inm; 2175 } else { 2176 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2177 error = inm_merge(inm, imf); 2178 if (error) { 2179 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2180 __func__); 2181 goto out_in_multi_locked; 2182 } 2183 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2184 error = igmp_change_state(inm); 2185 if (error) { 2186 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2187 __func__); 2188 goto out_in_multi_locked; 2189 } 2190 } 2191 2192 out_in_multi_locked: 2193 2194 IN_MULTI_UNLOCK(); 2195 2196 INP_WLOCK_ASSERT(inp); 2197 if (error) { 2198 imf_rollback(imf); 2199 if (is_new) 2200 imf_purge(imf); 2201 else 2202 imf_reap(imf); 2203 } else { 2204 imf_commit(imf); 2205 } 2206 2207 out_imo_free: 2208 if (error && is_new) { 2209 imo->imo_membership[idx] = NULL; 2210 --imo->imo_num_memberships; 2211 } 2212 2213 out_inp_locked: 2214 INP_WUNLOCK(inp); 2215 return (error); 2216 } 2217 2218 /* 2219 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2220 */ 2221 static int 2222 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2223 { 2224 struct group_source_req gsr; 2225 struct ip_mreq_source mreqs; 2226 sockunion_t *gsa, *ssa; 2227 struct ifnet *ifp; 2228 struct in_mfilter *imf; 2229 struct ip_moptions *imo; 2230 struct in_msource *ims; 2231 struct in_multi *inm; 2232 size_t idx; 2233 int error, is_final; 2234 2235 ifp = NULL; 2236 error = 0; 2237 is_final = 1; 2238 2239 memset(&gsr, 0, sizeof(struct group_source_req)); 2240 gsa = (sockunion_t *)&gsr.gsr_group; 2241 gsa->ss.ss_family = AF_UNSPEC; 2242 ssa = (sockunion_t *)&gsr.gsr_source; 2243 ssa->ss.ss_family = AF_UNSPEC; 2244 2245 switch (sopt->sopt_name) { 2246 case IP_DROP_MEMBERSHIP: 2247 case IP_DROP_SOURCE_MEMBERSHIP: 2248 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2249 error = sooptcopyin(sopt, &mreqs, 2250 sizeof(struct ip_mreq), 2251 sizeof(struct ip_mreq)); 2252 /* 2253 * Swap interface and sourceaddr arguments, 2254 * as ip_mreq and ip_mreq_source are laid 2255 * out differently. 2256 */ 2257 mreqs.imr_interface = mreqs.imr_sourceaddr; 2258 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2259 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2260 error = sooptcopyin(sopt, &mreqs, 2261 sizeof(struct ip_mreq_source), 2262 sizeof(struct ip_mreq_source)); 2263 } 2264 if (error) 2265 return (error); 2266 2267 gsa->sin.sin_family = AF_INET; 2268 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2269 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2270 2271 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2272 ssa->sin.sin_family = AF_INET; 2273 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2274 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2275 } 2276 2277 /* 2278 * Attempt to look up hinted ifp from interface address. 2279 * Fallthrough with null ifp iff lookup fails, to 2280 * preserve 4.4BSD mcast API idempotence. 2281 * XXX NOTE WELL: The RFC 3678 API is preferred because 2282 * using an IPv4 address as a key is racy. 2283 */ 2284 if (!in_nullhost(mreqs.imr_interface)) 2285 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2286 2287 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2288 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2289 2290 break; 2291 2292 case MCAST_LEAVE_GROUP: 2293 case MCAST_LEAVE_SOURCE_GROUP: 2294 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2295 error = sooptcopyin(sopt, &gsr, 2296 sizeof(struct group_req), 2297 sizeof(struct group_req)); 2298 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2299 error = sooptcopyin(sopt, &gsr, 2300 sizeof(struct group_source_req), 2301 sizeof(struct group_source_req)); 2302 } 2303 if (error) 2304 return (error); 2305 2306 if (gsa->sin.sin_family != AF_INET || 2307 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2308 return (EINVAL); 2309 2310 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2311 if (ssa->sin.sin_family != AF_INET || 2312 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2313 return (EINVAL); 2314 } 2315 2316 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2317 return (EADDRNOTAVAIL); 2318 2319 ifp = ifnet_byindex(gsr.gsr_interface); 2320 2321 if (ifp == NULL) 2322 return (EADDRNOTAVAIL); 2323 break; 2324 2325 default: 2326 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2327 __func__, sopt->sopt_name); 2328 return (EOPNOTSUPP); 2329 break; 2330 } 2331 2332 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2333 return (EINVAL); 2334 2335 /* 2336 * Find the membership in the membership array. 2337 */ 2338 imo = inp_findmoptions(inp); 2339 idx = imo_match_group(imo, ifp, &gsa->sa); 2340 if (idx == -1) { 2341 error = EADDRNOTAVAIL; 2342 goto out_inp_locked; 2343 } 2344 inm = imo->imo_membership[idx]; 2345 imf = &imo->imo_mfilters[idx]; 2346 2347 if (ssa->ss.ss_family != AF_UNSPEC) 2348 is_final = 0; 2349 2350 /* 2351 * Begin state merge transaction at socket layer. 2352 */ 2353 INP_WLOCK_ASSERT(inp); 2354 2355 /* 2356 * If we were instructed only to leave a given source, do so. 2357 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2358 */ 2359 if (is_final) { 2360 imf_leave(imf); 2361 } else { 2362 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2363 error = EADDRNOTAVAIL; 2364 goto out_inp_locked; 2365 } 2366 ims = imo_match_source(imo, idx, &ssa->sa); 2367 if (ims == NULL) { 2368 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", 2369 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); 2370 error = EADDRNOTAVAIL; 2371 goto out_inp_locked; 2372 } 2373 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2374 error = imf_prune(imf, &ssa->sin); 2375 if (error) { 2376 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2377 __func__); 2378 goto out_inp_locked; 2379 } 2380 } 2381 2382 /* 2383 * Begin state merge transaction at IGMP layer. 2384 */ 2385 IN_MULTI_LOCK(); 2386 2387 if (is_final) { 2388 /* 2389 * Give up the multicast address record to which 2390 * the membership points. 2391 */ 2392 (void)in_leavegroup_locked(inm, imf); 2393 } else { 2394 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2395 error = inm_merge(inm, imf); 2396 if (error) { 2397 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2398 __func__); 2399 goto out_in_multi_locked; 2400 } 2401 2402 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2403 error = igmp_change_state(inm); 2404 if (error) { 2405 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2406 __func__); 2407 } 2408 } 2409 2410 out_in_multi_locked: 2411 2412 IN_MULTI_UNLOCK(); 2413 2414 if (error) 2415 imf_rollback(imf); 2416 else 2417 imf_commit(imf); 2418 2419 imf_reap(imf); 2420 2421 if (is_final) { 2422 /* Remove the gap in the membership and filter array. */ 2423 for (++idx; idx < imo->imo_num_memberships; ++idx) { 2424 imo->imo_membership[idx-1] = imo->imo_membership[idx]; 2425 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx]; 2426 } 2427 imo->imo_num_memberships--; 2428 } 2429 2430 out_inp_locked: 2431 INP_WUNLOCK(inp); 2432 return (error); 2433 } 2434 2435 /* 2436 * Select the interface for transmitting IPv4 multicast datagrams. 2437 * 2438 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2439 * may be passed to this socket option. An address of INADDR_ANY or an 2440 * interface index of 0 is used to remove a previous selection. 2441 * When no interface is selected, one is chosen for every send. 2442 */ 2443 static int 2444 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2445 { 2446 struct in_addr addr; 2447 struct ip_mreqn mreqn; 2448 struct ifnet *ifp; 2449 struct ip_moptions *imo; 2450 int error; 2451 2452 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2453 /* 2454 * An interface index was specified using the 2455 * Linux-derived ip_mreqn structure. 2456 */ 2457 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2458 sizeof(struct ip_mreqn)); 2459 if (error) 2460 return (error); 2461 2462 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2463 return (EINVAL); 2464 2465 if (mreqn.imr_ifindex == 0) { 2466 ifp = NULL; 2467 } else { 2468 ifp = ifnet_byindex(mreqn.imr_ifindex); 2469 if (ifp == NULL) 2470 return (EADDRNOTAVAIL); 2471 } 2472 } else { 2473 /* 2474 * An interface was specified by IPv4 address. 2475 * This is the traditional BSD usage. 2476 */ 2477 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2478 sizeof(struct in_addr)); 2479 if (error) 2480 return (error); 2481 if (in_nullhost(addr)) { 2482 ifp = NULL; 2483 } else { 2484 INADDR_TO_IFP(addr, ifp); 2485 if (ifp == NULL) 2486 return (EADDRNOTAVAIL); 2487 } 2488 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, 2489 ntohl(addr.s_addr)); 2490 } 2491 2492 /* Reject interfaces which do not support multicast. */ 2493 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2494 return (EOPNOTSUPP); 2495 2496 imo = inp_findmoptions(inp); 2497 imo->imo_multicast_ifp = ifp; 2498 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2499 INP_WUNLOCK(inp); 2500 2501 return (0); 2502 } 2503 2504 /* 2505 * Atomically set source filters on a socket for an IPv4 multicast group. 2506 * 2507 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2508 */ 2509 static int 2510 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2511 { 2512 struct __msfilterreq msfr; 2513 sockunion_t *gsa; 2514 struct ifnet *ifp; 2515 struct in_mfilter *imf; 2516 struct ip_moptions *imo; 2517 struct in_multi *inm; 2518 size_t idx; 2519 int error; 2520 2521 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2522 sizeof(struct __msfilterreq)); 2523 if (error) 2524 return (error); 2525 2526 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2527 return (ENOBUFS); 2528 2529 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2530 msfr.msfr_fmode != MCAST_INCLUDE)) 2531 return (EINVAL); 2532 2533 if (msfr.msfr_group.ss_family != AF_INET || 2534 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2535 return (EINVAL); 2536 2537 gsa = (sockunion_t *)&msfr.msfr_group; 2538 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2539 return (EINVAL); 2540 2541 gsa->sin.sin_port = 0; /* ignore port */ 2542 2543 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2544 return (EADDRNOTAVAIL); 2545 2546 ifp = ifnet_byindex(msfr.msfr_ifindex); 2547 if (ifp == NULL) 2548 return (EADDRNOTAVAIL); 2549 2550 /* 2551 * Take the INP write lock. 2552 * Check if this socket is a member of this group. 2553 */ 2554 imo = inp_findmoptions(inp); 2555 idx = imo_match_group(imo, ifp, &gsa->sa); 2556 if (idx == -1 || imo->imo_mfilters == NULL) { 2557 error = EADDRNOTAVAIL; 2558 goto out_inp_locked; 2559 } 2560 inm = imo->imo_membership[idx]; 2561 imf = &imo->imo_mfilters[idx]; 2562 2563 /* 2564 * Begin state merge transaction at socket layer. 2565 */ 2566 INP_WLOCK_ASSERT(inp); 2567 2568 imf->imf_st[1] = msfr.msfr_fmode; 2569 2570 /* 2571 * Apply any new source filters, if present. 2572 * Make a copy of the user-space source vector so 2573 * that we may copy them with a single copyin. This 2574 * allows us to deal with page faults up-front. 2575 */ 2576 if (msfr.msfr_nsrcs > 0) { 2577 struct in_msource *lims; 2578 struct sockaddr_in *psin; 2579 struct sockaddr_storage *kss, *pkss; 2580 int i; 2581 2582 INP_WUNLOCK(inp); 2583 2584 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2585 __func__, (unsigned long)msfr.msfr_nsrcs); 2586 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2587 M_TEMP, M_WAITOK); 2588 error = copyin(msfr.msfr_srcs, kss, 2589 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2590 if (error) { 2591 free(kss, M_TEMP); 2592 return (error); 2593 } 2594 2595 INP_WLOCK(inp); 2596 2597 /* 2598 * Mark all source filters as UNDEFINED at t1. 2599 * Restore new group filter mode, as imf_leave() 2600 * will set it to INCLUDE. 2601 */ 2602 imf_leave(imf); 2603 imf->imf_st[1] = msfr.msfr_fmode; 2604 2605 /* 2606 * Update socket layer filters at t1, lazy-allocating 2607 * new entries. This saves a bunch of memory at the 2608 * cost of one RB_FIND() per source entry; duplicate 2609 * entries in the msfr_nsrcs vector are ignored. 2610 * If we encounter an error, rollback transaction. 2611 * 2612 * XXX This too could be replaced with a set-symmetric 2613 * difference like loop to avoid walking from root 2614 * every time, as the key space is common. 2615 */ 2616 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2617 psin = (struct sockaddr_in *)pkss; 2618 if (psin->sin_family != AF_INET) { 2619 error = EAFNOSUPPORT; 2620 break; 2621 } 2622 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2623 error = EINVAL; 2624 break; 2625 } 2626 error = imf_get_source(imf, psin, &lims); 2627 if (error) 2628 break; 2629 lims->imsl_st[1] = imf->imf_st[1]; 2630 } 2631 free(kss, M_TEMP); 2632 } 2633 2634 if (error) 2635 goto out_imf_rollback; 2636 2637 INP_WLOCK_ASSERT(inp); 2638 IN_MULTI_LOCK(); 2639 2640 /* 2641 * Begin state merge transaction at IGMP layer. 2642 */ 2643 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2644 error = inm_merge(inm, imf); 2645 if (error) { 2646 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2647 goto out_in_multi_locked; 2648 } 2649 2650 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2651 error = igmp_change_state(inm); 2652 if (error) 2653 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2654 2655 out_in_multi_locked: 2656 2657 IN_MULTI_UNLOCK(); 2658 2659 out_imf_rollback: 2660 if (error) 2661 imf_rollback(imf); 2662 else 2663 imf_commit(imf); 2664 2665 imf_reap(imf); 2666 2667 out_inp_locked: 2668 INP_WUNLOCK(inp); 2669 return (error); 2670 } 2671 2672 /* 2673 * Set the IP multicast options in response to user setsockopt(). 2674 * 2675 * Many of the socket options handled in this function duplicate the 2676 * functionality of socket options in the regular unicast API. However, 2677 * it is not possible to merge the duplicate code, because the idempotence 2678 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2679 * the effects of these options must be treated as separate and distinct. 2680 * 2681 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2682 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2683 * is refactored to no longer use vifs. 2684 */ 2685 int 2686 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2687 { 2688 struct ip_moptions *imo; 2689 int error; 2690 2691 error = 0; 2692 2693 /* 2694 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2695 * or is a divert socket, reject it. 2696 */ 2697 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2698 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2699 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2700 return (EOPNOTSUPP); 2701 2702 switch (sopt->sopt_name) { 2703 case IP_MULTICAST_VIF: { 2704 int vifi; 2705 /* 2706 * Select a multicast VIF for transmission. 2707 * Only useful if multicast forwarding is active. 2708 */ 2709 if (legal_vif_num == NULL) { 2710 error = EOPNOTSUPP; 2711 break; 2712 } 2713 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2714 if (error) 2715 break; 2716 if (!legal_vif_num(vifi) && (vifi != -1)) { 2717 error = EINVAL; 2718 break; 2719 } 2720 imo = inp_findmoptions(inp); 2721 imo->imo_multicast_vif = vifi; 2722 INP_WUNLOCK(inp); 2723 break; 2724 } 2725 2726 case IP_MULTICAST_IF: 2727 error = inp_set_multicast_if(inp, sopt); 2728 break; 2729 2730 case IP_MULTICAST_TTL: { 2731 u_char ttl; 2732 2733 /* 2734 * Set the IP time-to-live for outgoing multicast packets. 2735 * The original multicast API required a char argument, 2736 * which is inconsistent with the rest of the socket API. 2737 * We allow either a char or an int. 2738 */ 2739 if (sopt->sopt_valsize == sizeof(u_char)) { 2740 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2741 sizeof(u_char)); 2742 if (error) 2743 break; 2744 } else { 2745 u_int ittl; 2746 2747 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2748 sizeof(u_int)); 2749 if (error) 2750 break; 2751 if (ittl > 255) { 2752 error = EINVAL; 2753 break; 2754 } 2755 ttl = (u_char)ittl; 2756 } 2757 imo = inp_findmoptions(inp); 2758 imo->imo_multicast_ttl = ttl; 2759 INP_WUNLOCK(inp); 2760 break; 2761 } 2762 2763 case IP_MULTICAST_LOOP: { 2764 u_char loop; 2765 2766 /* 2767 * Set the loopback flag for outgoing multicast packets. 2768 * Must be zero or one. The original multicast API required a 2769 * char argument, which is inconsistent with the rest 2770 * of the socket API. We allow either a char or an int. 2771 */ 2772 if (sopt->sopt_valsize == sizeof(u_char)) { 2773 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2774 sizeof(u_char)); 2775 if (error) 2776 break; 2777 } else { 2778 u_int iloop; 2779 2780 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2781 sizeof(u_int)); 2782 if (error) 2783 break; 2784 loop = (u_char)iloop; 2785 } 2786 imo = inp_findmoptions(inp); 2787 imo->imo_multicast_loop = !!loop; 2788 INP_WUNLOCK(inp); 2789 break; 2790 } 2791 2792 case IP_ADD_MEMBERSHIP: 2793 case IP_ADD_SOURCE_MEMBERSHIP: 2794 case MCAST_JOIN_GROUP: 2795 case MCAST_JOIN_SOURCE_GROUP: 2796 error = inp_join_group(inp, sopt); 2797 break; 2798 2799 case IP_DROP_MEMBERSHIP: 2800 case IP_DROP_SOURCE_MEMBERSHIP: 2801 case MCAST_LEAVE_GROUP: 2802 case MCAST_LEAVE_SOURCE_GROUP: 2803 error = inp_leave_group(inp, sopt); 2804 break; 2805 2806 case IP_BLOCK_SOURCE: 2807 case IP_UNBLOCK_SOURCE: 2808 case MCAST_BLOCK_SOURCE: 2809 case MCAST_UNBLOCK_SOURCE: 2810 error = inp_block_unblock_source(inp, sopt); 2811 break; 2812 2813 case IP_MSFILTER: 2814 error = inp_set_source_filters(inp, sopt); 2815 break; 2816 2817 default: 2818 error = EOPNOTSUPP; 2819 break; 2820 } 2821 2822 INP_UNLOCK_ASSERT(inp); 2823 2824 return (error); 2825 } 2826 2827 /* 2828 * Expose IGMP's multicast filter mode and source list(s) to userland, 2829 * keyed by (ifindex, group). 2830 * The filter mode is written out as a uint32_t, followed by 2831 * 0..n of struct in_addr. 2832 * For use by ifmcstat(8). 2833 * SMPng: NOTE: unlocked read of ifindex space. 2834 */ 2835 static int 2836 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2837 { 2838 struct in_addr src, group; 2839 struct ifnet *ifp; 2840 struct ifmultiaddr *ifma; 2841 struct in_multi *inm; 2842 struct ip_msource *ims; 2843 int *name; 2844 int retval; 2845 u_int namelen; 2846 uint32_t fmode, ifindex; 2847 2848 name = (int *)arg1; 2849 namelen = arg2; 2850 2851 if (req->newptr != NULL) 2852 return (EPERM); 2853 2854 if (namelen != 2) 2855 return (EINVAL); 2856 2857 ifindex = name[0]; 2858 if (ifindex <= 0 || ifindex > V_if_index) { 2859 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2860 __func__, ifindex); 2861 return (ENOENT); 2862 } 2863 2864 group.s_addr = name[1]; 2865 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2866 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", 2867 __func__, ntohl(group.s_addr)); 2868 return (EINVAL); 2869 } 2870 2871 ifp = ifnet_byindex(ifindex); 2872 if (ifp == NULL) { 2873 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2874 __func__, ifindex); 2875 return (ENOENT); 2876 } 2877 2878 retval = sysctl_wire_old_buffer(req, 2879 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2880 if (retval) 2881 return (retval); 2882 2883 IN_MULTI_LOCK(); 2884 2885 IF_ADDR_RLOCK(ifp); 2886 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2887 if (ifma->ifma_addr->sa_family != AF_INET || 2888 ifma->ifma_protospec == NULL) 2889 continue; 2890 inm = (struct in_multi *)ifma->ifma_protospec; 2891 if (!in_hosteq(inm->inm_addr, group)) 2892 continue; 2893 fmode = inm->inm_st[1].iss_fmode; 2894 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2895 if (retval != 0) 2896 break; 2897 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2898 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, 2899 ims->ims_haddr); 2900 /* 2901 * Only copy-out sources which are in-mode. 2902 */ 2903 if (fmode != ims_get_mode(inm, ims, 1)) { 2904 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2905 __func__); 2906 continue; 2907 } 2908 src.s_addr = htonl(ims->ims_haddr); 2909 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2910 if (retval != 0) 2911 break; 2912 } 2913 } 2914 IF_ADDR_RUNLOCK(ifp); 2915 2916 IN_MULTI_UNLOCK(); 2917 2918 return (retval); 2919 } 2920 2921 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) 2922 2923 static const char *inm_modestrs[] = { "un", "in", "ex" }; 2924 2925 static const char * 2926 inm_mode_str(const int mode) 2927 { 2928 2929 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2930 return (inm_modestrs[mode]); 2931 return ("??"); 2932 } 2933 2934 static const char *inm_statestrs[] = { 2935 "not-member", 2936 "silent", 2937 "idle", 2938 "lazy", 2939 "sleeping", 2940 "awakening", 2941 "query-pending", 2942 "sg-query-pending", 2943 "leaving" 2944 }; 2945 2946 static const char * 2947 inm_state_str(const int state) 2948 { 2949 2950 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 2951 return (inm_statestrs[state]); 2952 return ("??"); 2953 } 2954 2955 /* 2956 * Dump an in_multi structure to the console. 2957 */ 2958 void 2959 inm_print(const struct in_multi *inm) 2960 { 2961 int t; 2962 char addrbuf[INET_ADDRSTRLEN]; 2963 2964 if ((ktr_mask & KTR_IGMPV3) == 0) 2965 return; 2966 2967 printf("%s: --- begin inm %p ---\n", __func__, inm); 2968 printf("addr %s ifp %p(%s) ifma %p\n", 2969 inet_ntoa_r(inm->inm_addr, addrbuf), 2970 inm->inm_ifp, 2971 inm->inm_ifp->if_xname, 2972 inm->inm_ifma); 2973 printf("timer %u state %s refcount %u scq.len %u\n", 2974 inm->inm_timer, 2975 inm_state_str(inm->inm_state), 2976 inm->inm_refcount, 2977 inm->inm_scq.mq_len); 2978 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 2979 inm->inm_igi, 2980 inm->inm_nsrc, 2981 inm->inm_sctimer, 2982 inm->inm_scrv); 2983 for (t = 0; t < 2; t++) { 2984 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2985 inm_mode_str(inm->inm_st[t].iss_fmode), 2986 inm->inm_st[t].iss_asm, 2987 inm->inm_st[t].iss_ex, 2988 inm->inm_st[t].iss_in, 2989 inm->inm_st[t].iss_rec); 2990 } 2991 printf("%s: --- end inm %p ---\n", __func__, inm); 2992 } 2993 2994 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ 2995 2996 void 2997 inm_print(const struct in_multi *inm) 2998 { 2999 3000 } 3001 3002 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ 3003 3004 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3005