1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (C) 2001 WIDE Project. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 4. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * @(#)in.c 8.4 (Berkeley) 1/9/95 31 * $FreeBSD$ 32 */ 33 34 #include "opt_carp.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/sockio.h> 39 #include <sys/malloc.h> 40 #include <sys/priv.h> 41 #include <sys/socket.h> 42 #include <sys/kernel.h> 43 #include <sys/sysctl.h> 44 45 #include <net/if.h> 46 #include <net/if_types.h> 47 #include <net/route.h> 48 49 #include <netinet/in.h> 50 #include <netinet/in_var.h> 51 #include <netinet/in_pcb.h> 52 53 #include <netinet/igmp_var.h> 54 55 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address"); 56 57 static int in_mask2len(struct in_addr *); 58 static void in_len2mask(struct in_addr *, int); 59 static int in_lifaddr_ioctl(struct socket *, u_long, caddr_t, 60 struct ifnet *, struct thread *); 61 62 static int in_addprefix(struct in_ifaddr *, int); 63 static int in_scrubprefix(struct in_ifaddr *); 64 static void in_socktrim(struct sockaddr_in *); 65 static int in_ifinit(struct ifnet *, 66 struct in_ifaddr *, struct sockaddr_in *, int); 67 68 static int subnetsarelocal = 0; 69 SYSCTL_INT(_net_inet_ip, OID_AUTO, subnets_are_local, CTLFLAG_RW, 70 &subnetsarelocal, 0, "Treat all subnets as directly connected"); 71 static int sameprefixcarponly = 0; 72 SYSCTL_INT(_net_inet_ip, OID_AUTO, same_prefix_carp_only, CTLFLAG_RW, 73 &sameprefixcarponly, 0, 74 "Refuse to create same prefixes on different interfaces"); 75 76 /* 77 * The IPv4 multicast list (in_multihead and associated structures) are 78 * protected by the global in_multi_mtx. See in_var.h for more details. For 79 * now, in_multi_mtx is marked as recursible due to IGMP's calling back into 80 * ip_output() to send IGMP packets while holding the lock; this probably is 81 * not quite desirable. 82 */ 83 struct in_multihead in_multihead; /* XXX BSS initialization */ 84 struct mtx in_multi_mtx; 85 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF | MTX_RECURSE); 86 87 extern struct inpcbinfo ripcbinfo; 88 extern struct inpcbinfo udbinfo; 89 90 /* 91 * Return 1 if an internet address is for a ``local'' host 92 * (one to which we have a connection). If subnetsarelocal 93 * is true, this includes other subnets of the local net. 94 * Otherwise, it includes only the directly-connected (sub)nets. 95 */ 96 int 97 in_localaddr(in) 98 struct in_addr in; 99 { 100 register u_long i = ntohl(in.s_addr); 101 register struct in_ifaddr *ia; 102 103 if (subnetsarelocal) { 104 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) 105 if ((i & ia->ia_netmask) == ia->ia_net) 106 return (1); 107 } else { 108 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) 109 if ((i & ia->ia_subnetmask) == ia->ia_subnet) 110 return (1); 111 } 112 return (0); 113 } 114 115 /* 116 * Return 1 if an internet address is for the local host and configured 117 * on one of its interfaces. 118 */ 119 int 120 in_localip(in) 121 struct in_addr in; 122 { 123 struct in_ifaddr *ia; 124 125 LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) { 126 if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) 127 return 1; 128 } 129 return 0; 130 } 131 132 /* 133 * Determine whether an IP address is in a reserved set of addresses 134 * that may not be forwarded, or whether datagrams to that destination 135 * may be forwarded. 136 */ 137 int 138 in_canforward(in) 139 struct in_addr in; 140 { 141 register u_long i = ntohl(in.s_addr); 142 register u_long net; 143 144 if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i)) 145 return (0); 146 if (IN_CLASSA(i)) { 147 net = i & IN_CLASSA_NET; 148 if (net == 0 || net == (IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) 149 return (0); 150 } 151 return (1); 152 } 153 154 /* 155 * Trim a mask in a sockaddr 156 */ 157 static void 158 in_socktrim(ap) 159 struct sockaddr_in *ap; 160 { 161 register char *cplim = (char *) &ap->sin_addr; 162 register char *cp = (char *) (&ap->sin_addr + 1); 163 164 ap->sin_len = 0; 165 while (--cp >= cplim) 166 if (*cp) { 167 (ap)->sin_len = cp - (char *) (ap) + 1; 168 break; 169 } 170 } 171 172 static int 173 in_mask2len(mask) 174 struct in_addr *mask; 175 { 176 int x, y; 177 u_char *p; 178 179 p = (u_char *)mask; 180 for (x = 0; x < sizeof(*mask); x++) { 181 if (p[x] != 0xff) 182 break; 183 } 184 y = 0; 185 if (x < sizeof(*mask)) { 186 for (y = 0; y < 8; y++) { 187 if ((p[x] & (0x80 >> y)) == 0) 188 break; 189 } 190 } 191 return x * 8 + y; 192 } 193 194 static void 195 in_len2mask(mask, len) 196 struct in_addr *mask; 197 int len; 198 { 199 int i; 200 u_char *p; 201 202 p = (u_char *)mask; 203 bzero(mask, sizeof(*mask)); 204 for (i = 0; i < len / 8; i++) 205 p[i] = 0xff; 206 if (len % 8) 207 p[i] = (0xff00 >> (len % 8)) & 0xff; 208 } 209 210 /* 211 * Generic internet control operations (ioctl's). 212 * Ifp is 0 if not an interface-specific ioctl. 213 */ 214 /* ARGSUSED */ 215 int 216 in_control(so, cmd, data, ifp, td) 217 struct socket *so; 218 u_long cmd; 219 caddr_t data; 220 register struct ifnet *ifp; 221 struct thread *td; 222 { 223 register struct ifreq *ifr = (struct ifreq *)data; 224 register struct in_ifaddr *ia = 0, *iap; 225 register struct ifaddr *ifa; 226 struct in_addr dst; 227 struct in_ifaddr *oia; 228 struct in_aliasreq *ifra = (struct in_aliasreq *)data; 229 struct sockaddr_in oldaddr; 230 int error, hostIsNew, iaIsNew, maskIsNew, s; 231 232 iaIsNew = 0; 233 234 switch (cmd) { 235 case SIOCALIFADDR: 236 if (td != NULL) { 237 error = priv_check(td, PRIV_NET_ADDIFADDR); 238 if (error) 239 return (error); 240 } 241 if (!ifp) 242 return EINVAL; 243 return in_lifaddr_ioctl(so, cmd, data, ifp, td); 244 245 case SIOCDLIFADDR: 246 if (td != NULL) { 247 error = priv_check(td, PRIV_NET_DELIFADDR); 248 if (error) 249 return (error); 250 } 251 if (!ifp) 252 return EINVAL; 253 return in_lifaddr_ioctl(so, cmd, data, ifp, td); 254 255 case SIOCGLIFADDR: 256 if (!ifp) 257 return EINVAL; 258 return in_lifaddr_ioctl(so, cmd, data, ifp, td); 259 } 260 261 /* 262 * Find address for this interface, if it exists. 263 * 264 * If an alias address was specified, find that one instead of 265 * the first one on the interface, if possible. 266 */ 267 if (ifp) { 268 dst = ((struct sockaddr_in *)&ifr->ifr_addr)->sin_addr; 269 LIST_FOREACH(iap, INADDR_HASH(dst.s_addr), ia_hash) 270 if (iap->ia_ifp == ifp && 271 iap->ia_addr.sin_addr.s_addr == dst.s_addr) { 272 ia = iap; 273 break; 274 } 275 if (ia == NULL) 276 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 277 iap = ifatoia(ifa); 278 if (iap->ia_addr.sin_family == AF_INET) { 279 ia = iap; 280 break; 281 } 282 } 283 } 284 285 switch (cmd) { 286 287 case SIOCAIFADDR: 288 case SIOCDIFADDR: 289 if (ifp == 0) 290 return (EADDRNOTAVAIL); 291 if (ifra->ifra_addr.sin_family == AF_INET) { 292 for (oia = ia; ia; ia = TAILQ_NEXT(ia, ia_link)) { 293 if (ia->ia_ifp == ifp && 294 ia->ia_addr.sin_addr.s_addr == 295 ifra->ifra_addr.sin_addr.s_addr) 296 break; 297 } 298 if ((ifp->if_flags & IFF_POINTOPOINT) 299 && (cmd == SIOCAIFADDR) 300 && (ifra->ifra_dstaddr.sin_addr.s_addr 301 == INADDR_ANY)) { 302 return EDESTADDRREQ; 303 } 304 } 305 if (cmd == SIOCDIFADDR && ia == 0) 306 return (EADDRNOTAVAIL); 307 /* FALLTHROUGH */ 308 case SIOCSIFADDR: 309 case SIOCSIFNETMASK: 310 case SIOCSIFDSTADDR: 311 if (td != NULL) { 312 error = priv_check(td, PRIV_NET_ADDIFADDR); 313 if (error) 314 return (error); 315 } 316 317 if (ifp == 0) 318 return (EADDRNOTAVAIL); 319 if (ia == (struct in_ifaddr *)0) { 320 ia = (struct in_ifaddr *) 321 malloc(sizeof *ia, M_IFADDR, M_WAITOK | M_ZERO); 322 if (ia == (struct in_ifaddr *)NULL) 323 return (ENOBUFS); 324 /* 325 * Protect from ipintr() traversing address list 326 * while we're modifying it. 327 */ 328 s = splnet(); 329 ifa = &ia->ia_ifa; 330 IFA_LOCK_INIT(ifa); 331 ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; 332 ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; 333 ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; 334 ifa->ifa_refcnt = 1; 335 TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); 336 337 ia->ia_sockmask.sin_len = 8; 338 ia->ia_sockmask.sin_family = AF_INET; 339 if (ifp->if_flags & IFF_BROADCAST) { 340 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); 341 ia->ia_broadaddr.sin_family = AF_INET; 342 } 343 ia->ia_ifp = ifp; 344 345 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_link); 346 splx(s); 347 iaIsNew = 1; 348 } 349 break; 350 351 case SIOCSIFBRDADDR: 352 if (td != NULL) { 353 error = priv_check(td, PRIV_NET_ADDIFADDR); 354 if (error) 355 return (error); 356 } 357 /* FALLTHROUGH */ 358 359 case SIOCGIFADDR: 360 case SIOCGIFNETMASK: 361 case SIOCGIFDSTADDR: 362 case SIOCGIFBRDADDR: 363 if (ia == (struct in_ifaddr *)0) 364 return (EADDRNOTAVAIL); 365 break; 366 } 367 switch (cmd) { 368 369 case SIOCGIFADDR: 370 *((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_addr; 371 return (0); 372 373 case SIOCGIFBRDADDR: 374 if ((ifp->if_flags & IFF_BROADCAST) == 0) 375 return (EINVAL); 376 *((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_broadaddr; 377 return (0); 378 379 case SIOCGIFDSTADDR: 380 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 381 return (EINVAL); 382 *((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_dstaddr; 383 return (0); 384 385 case SIOCGIFNETMASK: 386 *((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_sockmask; 387 return (0); 388 389 case SIOCSIFDSTADDR: 390 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 391 return (EINVAL); 392 oldaddr = ia->ia_dstaddr; 393 ia->ia_dstaddr = *(struct sockaddr_in *)&ifr->ifr_dstaddr; 394 if (ifp->if_ioctl) { 395 IFF_LOCKGIANT(ifp); 396 error = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, 397 (caddr_t)ia); 398 IFF_UNLOCKGIANT(ifp); 399 if (error) { 400 ia->ia_dstaddr = oldaddr; 401 return (error); 402 } 403 } 404 if (ia->ia_flags & IFA_ROUTE) { 405 ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr; 406 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST); 407 ia->ia_ifa.ifa_dstaddr = 408 (struct sockaddr *)&ia->ia_dstaddr; 409 rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP); 410 } 411 return (0); 412 413 case SIOCSIFBRDADDR: 414 if ((ifp->if_flags & IFF_BROADCAST) == 0) 415 return (EINVAL); 416 ia->ia_broadaddr = *(struct sockaddr_in *)&ifr->ifr_broadaddr; 417 return (0); 418 419 case SIOCSIFADDR: 420 error = in_ifinit(ifp, ia, 421 (struct sockaddr_in *) &ifr->ifr_addr, 1); 422 if (error != 0 && iaIsNew) 423 break; 424 if (error == 0) 425 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 426 return (0); 427 428 case SIOCSIFNETMASK: 429 ia->ia_sockmask.sin_addr = ifra->ifra_addr.sin_addr; 430 ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); 431 return (0); 432 433 case SIOCAIFADDR: 434 maskIsNew = 0; 435 hostIsNew = 1; 436 error = 0; 437 if (ia->ia_addr.sin_family == AF_INET) { 438 if (ifra->ifra_addr.sin_len == 0) { 439 ifra->ifra_addr = ia->ia_addr; 440 hostIsNew = 0; 441 } else if (ifra->ifra_addr.sin_addr.s_addr == 442 ia->ia_addr.sin_addr.s_addr) 443 hostIsNew = 0; 444 } 445 if (ifra->ifra_mask.sin_len) { 446 in_ifscrub(ifp, ia); 447 ia->ia_sockmask = ifra->ifra_mask; 448 ia->ia_sockmask.sin_family = AF_INET; 449 ia->ia_subnetmask = 450 ntohl(ia->ia_sockmask.sin_addr.s_addr); 451 maskIsNew = 1; 452 } 453 if ((ifp->if_flags & IFF_POINTOPOINT) && 454 (ifra->ifra_dstaddr.sin_family == AF_INET)) { 455 in_ifscrub(ifp, ia); 456 ia->ia_dstaddr = ifra->ifra_dstaddr; 457 maskIsNew = 1; /* We lie; but the effect's the same */ 458 } 459 if (ifra->ifra_addr.sin_family == AF_INET && 460 (hostIsNew || maskIsNew)) 461 error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0); 462 if (error != 0 && iaIsNew) 463 break; 464 465 if ((ifp->if_flags & IFF_BROADCAST) && 466 (ifra->ifra_broadaddr.sin_family == AF_INET)) 467 ia->ia_broadaddr = ifra->ifra_broadaddr; 468 if (error == 0) 469 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 470 return (error); 471 472 case SIOCDIFADDR: 473 /* 474 * in_ifscrub kills the interface route. 475 */ 476 in_ifscrub(ifp, ia); 477 /* 478 * in_ifadown gets rid of all the rest of 479 * the routes. This is not quite the right 480 * thing to do, but at least if we are running 481 * a routing process they will come back. 482 */ 483 in_ifadown(&ia->ia_ifa, 1); 484 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 485 error = 0; 486 break; 487 488 default: 489 if (ifp == 0 || ifp->if_ioctl == 0) 490 return (EOPNOTSUPP); 491 IFF_LOCKGIANT(ifp); 492 error = (*ifp->if_ioctl)(ifp, cmd, data); 493 IFF_UNLOCKGIANT(ifp); 494 return (error); 495 } 496 497 /* 498 * Protect from ipintr() traversing address list while we're modifying 499 * it. 500 */ 501 s = splnet(); 502 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 503 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_link); 504 if (ia->ia_addr.sin_family == AF_INET) 505 LIST_REMOVE(ia, ia_hash); 506 IFAFREE(&ia->ia_ifa); 507 splx(s); 508 509 return (error); 510 } 511 512 /* 513 * SIOC[GAD]LIFADDR. 514 * SIOCGLIFADDR: get first address. (?!?) 515 * SIOCGLIFADDR with IFLR_PREFIX: 516 * get first address that matches the specified prefix. 517 * SIOCALIFADDR: add the specified address. 518 * SIOCALIFADDR with IFLR_PREFIX: 519 * EINVAL since we can't deduce hostid part of the address. 520 * SIOCDLIFADDR: delete the specified address. 521 * SIOCDLIFADDR with IFLR_PREFIX: 522 * delete the first address that matches the specified prefix. 523 * return values: 524 * EINVAL on invalid parameters 525 * EADDRNOTAVAIL on prefix match failed/specified address not found 526 * other values may be returned from in_ioctl() 527 */ 528 static int 529 in_lifaddr_ioctl(so, cmd, data, ifp, td) 530 struct socket *so; 531 u_long cmd; 532 caddr_t data; 533 struct ifnet *ifp; 534 struct thread *td; 535 { 536 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 537 struct ifaddr *ifa; 538 539 /* sanity checks */ 540 if (!data || !ifp) { 541 panic("invalid argument to in_lifaddr_ioctl"); 542 /*NOTRECHED*/ 543 } 544 545 switch (cmd) { 546 case SIOCGLIFADDR: 547 /* address must be specified on GET with IFLR_PREFIX */ 548 if ((iflr->flags & IFLR_PREFIX) == 0) 549 break; 550 /*FALLTHROUGH*/ 551 case SIOCALIFADDR: 552 case SIOCDLIFADDR: 553 /* address must be specified on ADD and DELETE */ 554 if (iflr->addr.ss_family != AF_INET) 555 return EINVAL; 556 if (iflr->addr.ss_len != sizeof(struct sockaddr_in)) 557 return EINVAL; 558 /* XXX need improvement */ 559 if (iflr->dstaddr.ss_family 560 && iflr->dstaddr.ss_family != AF_INET) 561 return EINVAL; 562 if (iflr->dstaddr.ss_family 563 && iflr->dstaddr.ss_len != sizeof(struct sockaddr_in)) 564 return EINVAL; 565 break; 566 default: /*shouldn't happen*/ 567 return EOPNOTSUPP; 568 } 569 if (sizeof(struct in_addr) * 8 < iflr->prefixlen) 570 return EINVAL; 571 572 switch (cmd) { 573 case SIOCALIFADDR: 574 { 575 struct in_aliasreq ifra; 576 577 if (iflr->flags & IFLR_PREFIX) 578 return EINVAL; 579 580 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 581 bzero(&ifra, sizeof(ifra)); 582 bcopy(iflr->iflr_name, ifra.ifra_name, 583 sizeof(ifra.ifra_name)); 584 585 bcopy(&iflr->addr, &ifra.ifra_addr, iflr->addr.ss_len); 586 587 if (iflr->dstaddr.ss_family) { /*XXX*/ 588 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 589 iflr->dstaddr.ss_len); 590 } 591 592 ifra.ifra_mask.sin_family = AF_INET; 593 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in); 594 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen); 595 596 return in_control(so, SIOCAIFADDR, (caddr_t)&ifra, ifp, td); 597 } 598 case SIOCGLIFADDR: 599 case SIOCDLIFADDR: 600 { 601 struct in_ifaddr *ia; 602 struct in_addr mask, candidate, match; 603 struct sockaddr_in *sin; 604 int cmp; 605 606 bzero(&mask, sizeof(mask)); 607 if (iflr->flags & IFLR_PREFIX) { 608 /* lookup a prefix rather than address. */ 609 in_len2mask(&mask, iflr->prefixlen); 610 611 sin = (struct sockaddr_in *)&iflr->addr; 612 match.s_addr = sin->sin_addr.s_addr; 613 match.s_addr &= mask.s_addr; 614 615 /* if you set extra bits, that's wrong */ 616 if (match.s_addr != sin->sin_addr.s_addr) 617 return EINVAL; 618 619 cmp = 1; 620 } else { 621 if (cmd == SIOCGLIFADDR) { 622 /* on getting an address, take the 1st match */ 623 cmp = 0; /*XXX*/ 624 } else { 625 /* on deleting an address, do exact match */ 626 in_len2mask(&mask, 32); 627 sin = (struct sockaddr_in *)&iflr->addr; 628 match.s_addr = sin->sin_addr.s_addr; 629 630 cmp = 1; 631 } 632 } 633 634 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 635 if (ifa->ifa_addr->sa_family != AF_INET6) 636 continue; 637 if (!cmp) 638 break; 639 candidate.s_addr = ((struct sockaddr_in *)&ifa->ifa_addr)->sin_addr.s_addr; 640 candidate.s_addr &= mask.s_addr; 641 if (candidate.s_addr == match.s_addr) 642 break; 643 } 644 if (!ifa) 645 return EADDRNOTAVAIL; 646 ia = (struct in_ifaddr *)ifa; 647 648 if (cmd == SIOCGLIFADDR) { 649 /* fill in the if_laddrreq structure */ 650 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin_len); 651 652 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 653 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 654 ia->ia_dstaddr.sin_len); 655 } else 656 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 657 658 iflr->prefixlen = 659 in_mask2len(&ia->ia_sockmask.sin_addr); 660 661 iflr->flags = 0; /*XXX*/ 662 663 return 0; 664 } else { 665 struct in_aliasreq ifra; 666 667 /* fill in_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 668 bzero(&ifra, sizeof(ifra)); 669 bcopy(iflr->iflr_name, ifra.ifra_name, 670 sizeof(ifra.ifra_name)); 671 672 bcopy(&ia->ia_addr, &ifra.ifra_addr, 673 ia->ia_addr.sin_len); 674 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 675 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 676 ia->ia_dstaddr.sin_len); 677 } 678 bcopy(&ia->ia_sockmask, &ifra.ifra_dstaddr, 679 ia->ia_sockmask.sin_len); 680 681 return in_control(so, SIOCDIFADDR, (caddr_t)&ifra, 682 ifp, td); 683 } 684 } 685 } 686 687 return EOPNOTSUPP; /*just for safety*/ 688 } 689 690 /* 691 * Delete any existing route for an interface. 692 */ 693 void 694 in_ifscrub(ifp, ia) 695 register struct ifnet *ifp; 696 register struct in_ifaddr *ia; 697 { 698 in_scrubprefix(ia); 699 } 700 701 /* 702 * Initialize an interface's internet address 703 * and routing table entry. 704 */ 705 static int 706 in_ifinit(ifp, ia, sin, scrub) 707 register struct ifnet *ifp; 708 register struct in_ifaddr *ia; 709 struct sockaddr_in *sin; 710 int scrub; 711 { 712 register u_long i = ntohl(sin->sin_addr.s_addr); 713 struct sockaddr_in oldaddr; 714 int s = splimp(), flags = RTF_UP, error = 0; 715 716 oldaddr = ia->ia_addr; 717 if (oldaddr.sin_family == AF_INET) 718 LIST_REMOVE(ia, ia_hash); 719 ia->ia_addr = *sin; 720 if (ia->ia_addr.sin_family == AF_INET) 721 LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), 722 ia, ia_hash); 723 /* 724 * Give the interface a chance to initialize 725 * if this is its first address, 726 * and to validate the address if necessary. 727 */ 728 if (ifp->if_ioctl) { 729 IFF_LOCKGIANT(ifp); 730 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 731 IFF_UNLOCKGIANT(ifp); 732 if (error) { 733 splx(s); 734 /* LIST_REMOVE(ia, ia_hash) is done in in_control */ 735 ia->ia_addr = oldaddr; 736 if (ia->ia_addr.sin_family == AF_INET) 737 LIST_INSERT_HEAD(INADDR_HASH( 738 ia->ia_addr.sin_addr.s_addr), ia, ia_hash); 739 return (error); 740 } 741 } 742 splx(s); 743 if (scrub) { 744 ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr; 745 in_ifscrub(ifp, ia); 746 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 747 } 748 if (IN_CLASSA(i)) 749 ia->ia_netmask = IN_CLASSA_NET; 750 else if (IN_CLASSB(i)) 751 ia->ia_netmask = IN_CLASSB_NET; 752 else 753 ia->ia_netmask = IN_CLASSC_NET; 754 /* 755 * The subnet mask usually includes at least the standard network part, 756 * but may may be smaller in the case of supernetting. 757 * If it is set, we believe it. 758 */ 759 if (ia->ia_subnetmask == 0) { 760 ia->ia_subnetmask = ia->ia_netmask; 761 ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); 762 } else 763 ia->ia_netmask &= ia->ia_subnetmask; 764 ia->ia_net = i & ia->ia_netmask; 765 ia->ia_subnet = i & ia->ia_subnetmask; 766 in_socktrim(&ia->ia_sockmask); 767 #ifdef DEV_CARP 768 /* 769 * XXX: carp(4) does not have interface route 770 */ 771 if (ifp->if_type == IFT_CARP) 772 return (0); 773 #endif 774 /* 775 * Add route for the network. 776 */ 777 ia->ia_ifa.ifa_metric = ifp->if_metric; 778 if (ifp->if_flags & IFF_BROADCAST) { 779 ia->ia_broadaddr.sin_addr.s_addr = 780 htonl(ia->ia_subnet | ~ia->ia_subnetmask); 781 ia->ia_netbroadcast.s_addr = 782 htonl(ia->ia_net | ~ ia->ia_netmask); 783 } else if (ifp->if_flags & IFF_LOOPBACK) { 784 ia->ia_dstaddr = ia->ia_addr; 785 flags |= RTF_HOST; 786 } else if (ifp->if_flags & IFF_POINTOPOINT) { 787 if (ia->ia_dstaddr.sin_family != AF_INET) 788 return (0); 789 flags |= RTF_HOST; 790 } 791 if ((error = in_addprefix(ia, flags)) != 0) 792 return (error); 793 794 /* 795 * If the interface supports multicast, join the "all hosts" 796 * multicast group on that interface. 797 */ 798 if (ifp->if_flags & IFF_MULTICAST) { 799 struct in_addr addr; 800 801 addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); 802 in_addmulti(&addr, ifp); 803 } 804 return (error); 805 } 806 807 #define rtinitflags(x) \ 808 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ 809 ? RTF_HOST : 0) 810 /* 811 * Check if we have a route for the given prefix already or add a one 812 * accordingly. 813 */ 814 static int 815 in_addprefix(target, flags) 816 struct in_ifaddr *target; 817 int flags; 818 { 819 struct in_ifaddr *ia; 820 struct in_addr prefix, mask, p, m; 821 int error; 822 823 if ((flags & RTF_HOST) != 0) 824 prefix = target->ia_dstaddr.sin_addr; 825 else { 826 prefix = target->ia_addr.sin_addr; 827 mask = target->ia_sockmask.sin_addr; 828 prefix.s_addr &= mask.s_addr; 829 } 830 831 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { 832 if (rtinitflags(ia)) { 833 p = ia->ia_addr.sin_addr; 834 835 if (prefix.s_addr != p.s_addr) 836 continue; 837 } else { 838 p = ia->ia_addr.sin_addr; 839 m = ia->ia_sockmask.sin_addr; 840 p.s_addr &= m.s_addr; 841 842 if (prefix.s_addr != p.s_addr || 843 mask.s_addr != m.s_addr) 844 continue; 845 } 846 847 /* 848 * If we got a matching prefix route inserted by other 849 * interface address, we are done here. 850 */ 851 if (ia->ia_flags & IFA_ROUTE) { 852 if (sameprefixcarponly && 853 target->ia_ifp->if_type != IFT_CARP && 854 ia->ia_ifp->if_type != IFT_CARP) 855 return (EEXIST); 856 else 857 return (0); 858 } 859 } 860 861 /* 862 * No-one seem to have this prefix route, so we try to insert it. 863 */ 864 error = rtinit(&target->ia_ifa, (int)RTM_ADD, flags); 865 if (!error) 866 target->ia_flags |= IFA_ROUTE; 867 return error; 868 } 869 870 /* 871 * If there is no other address in the system that can serve a route to the 872 * same prefix, remove the route. Hand over the route to the new address 873 * otherwise. 874 */ 875 static int 876 in_scrubprefix(target) 877 struct in_ifaddr *target; 878 { 879 struct in_ifaddr *ia; 880 struct in_addr prefix, mask, p; 881 int error; 882 883 if ((target->ia_flags & IFA_ROUTE) == 0) 884 return 0; 885 886 if (rtinitflags(target)) 887 prefix = target->ia_dstaddr.sin_addr; 888 else { 889 prefix = target->ia_addr.sin_addr; 890 mask = target->ia_sockmask.sin_addr; 891 prefix.s_addr &= mask.s_addr; 892 } 893 894 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { 895 if (rtinitflags(ia)) 896 p = ia->ia_dstaddr.sin_addr; 897 else { 898 p = ia->ia_addr.sin_addr; 899 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; 900 } 901 902 if (prefix.s_addr != p.s_addr) 903 continue; 904 905 /* 906 * If we got a matching prefix address, move IFA_ROUTE and 907 * the route itself to it. Make sure that routing daemons 908 * get a heads-up. 909 * 910 * XXX: a special case for carp(4) interface 911 */ 912 if ((ia->ia_flags & IFA_ROUTE) == 0 913 #ifdef DEV_CARP 914 && (ia->ia_ifp->if_type != IFT_CARP) 915 #endif 916 ) { 917 rtinit(&(target->ia_ifa), (int)RTM_DELETE, 918 rtinitflags(target)); 919 target->ia_flags &= ~IFA_ROUTE; 920 921 error = rtinit(&ia->ia_ifa, (int)RTM_ADD, 922 rtinitflags(ia) | RTF_UP); 923 if (error == 0) 924 ia->ia_flags |= IFA_ROUTE; 925 return error; 926 } 927 } 928 929 /* 930 * As no-one seem to have this prefix, we can remove the route. 931 */ 932 rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target)); 933 target->ia_flags &= ~IFA_ROUTE; 934 return 0; 935 } 936 937 #undef rtinitflags 938 939 /* 940 * Return 1 if the address might be a local broadcast address. 941 */ 942 int 943 in_broadcast(in, ifp) 944 struct in_addr in; 945 struct ifnet *ifp; 946 { 947 register struct ifaddr *ifa; 948 u_long t; 949 950 if (in.s_addr == INADDR_BROADCAST || 951 in.s_addr == INADDR_ANY) 952 return 1; 953 if ((ifp->if_flags & IFF_BROADCAST) == 0) 954 return 0; 955 t = ntohl(in.s_addr); 956 /* 957 * Look through the list of addresses for a match 958 * with a broadcast address. 959 */ 960 #define ia ((struct in_ifaddr *)ifa) 961 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 962 if (ifa->ifa_addr->sa_family == AF_INET && 963 (in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || 964 in.s_addr == ia->ia_netbroadcast.s_addr || 965 /* 966 * Check for old-style (host 0) broadcast. 967 */ 968 t == ia->ia_subnet || t == ia->ia_net) && 969 /* 970 * Check for an all one subnetmask. These 971 * only exist when an interface gets a secondary 972 * address. 973 */ 974 ia->ia_subnetmask != (u_long)0xffffffff) 975 return 1; 976 return (0); 977 #undef ia 978 } 979 /* 980 * Add an address to the list of IP multicast addresses for a given interface. 981 */ 982 struct in_multi * 983 in_addmulti(ap, ifp) 984 register struct in_addr *ap; 985 register struct ifnet *ifp; 986 { 987 register struct in_multi *inm; 988 int error; 989 struct sockaddr_in sin; 990 struct ifmultiaddr *ifma; 991 992 IFF_LOCKGIANT(ifp); 993 IN_MULTI_LOCK(); 994 /* 995 * Call generic routine to add membership or increment 996 * refcount. It wants addresses in the form of a sockaddr, 997 * so we build one here (being careful to zero the unused bytes). 998 */ 999 bzero(&sin, sizeof sin); 1000 sin.sin_family = AF_INET; 1001 sin.sin_len = sizeof sin; 1002 sin.sin_addr = *ap; 1003 error = if_addmulti(ifp, (struct sockaddr *)&sin, &ifma); 1004 if (error) { 1005 IN_MULTI_UNLOCK(); 1006 IFF_UNLOCKGIANT(ifp); 1007 return 0; 1008 } 1009 1010 /* 1011 * If ifma->ifma_protospec is null, then if_addmulti() created 1012 * a new record. Otherwise, we are done. 1013 */ 1014 if (ifma->ifma_protospec != NULL) { 1015 IN_MULTI_UNLOCK(); 1016 IFF_UNLOCKGIANT(ifp); 1017 return ifma->ifma_protospec; 1018 } 1019 1020 inm = (struct in_multi *)malloc(sizeof(*inm), M_IPMADDR, 1021 M_NOWAIT | M_ZERO); 1022 if (inm == NULL) { 1023 IN_MULTI_UNLOCK(); 1024 IFF_UNLOCKGIANT(ifp); 1025 return (NULL); 1026 } 1027 1028 inm->inm_addr = *ap; 1029 inm->inm_ifp = ifp; 1030 inm->inm_ifma = ifma; 1031 ifma->ifma_protospec = inm; 1032 LIST_INSERT_HEAD(&in_multihead, inm, inm_link); 1033 1034 /* 1035 * Let IGMP know that we have joined a new IP multicast group. 1036 */ 1037 igmp_joingroup(inm); 1038 IN_MULTI_UNLOCK(); 1039 IFF_UNLOCKGIANT(ifp); 1040 return (inm); 1041 } 1042 1043 /* 1044 * Delete a multicast address record. 1045 */ 1046 void 1047 in_delmulti(inm) 1048 register struct in_multi *inm; 1049 { 1050 struct ifnet *ifp; 1051 1052 ifp = inm->inm_ifp; 1053 IFF_LOCKGIANT(ifp); 1054 IN_MULTI_LOCK(); 1055 in_delmulti_locked(inm); 1056 IN_MULTI_UNLOCK(); 1057 IFF_UNLOCKGIANT(ifp); 1058 } 1059 1060 void 1061 in_delmulti_locked(inm) 1062 register struct in_multi *inm; 1063 { 1064 struct ifmultiaddr *ifma; 1065 struct in_multi my_inm; 1066 1067 ifma = inm->inm_ifma; 1068 my_inm.inm_ifp = NULL ; /* don't send the leave msg */ 1069 if (ifma->ifma_refcount == 1) { 1070 /* 1071 * No remaining claims to this record; let IGMP know that 1072 * we are leaving the multicast group. 1073 * But do it after the if_delmulti() which might reset 1074 * the interface and nuke the packet. 1075 */ 1076 my_inm = *inm ; 1077 ifma->ifma_protospec = NULL; 1078 LIST_REMOVE(inm, inm_link); 1079 free(inm, M_IPMADDR); 1080 } 1081 /* XXX - should be separate API for when we have an ifma? */ 1082 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1083 if (my_inm.inm_ifp != NULL) 1084 igmp_leavegroup(&my_inm); 1085 } 1086 1087 /* 1088 * Delete all multicast address records associated with the ifp. 1089 */ 1090 void 1091 in_delmulti_ifp(ifp) 1092 register struct ifnet *ifp; 1093 { 1094 struct in_multi *inm; 1095 struct in_multi *oinm; 1096 1097 IFF_LOCKGIANT(ifp); 1098 IN_MULTI_LOCK(); 1099 LIST_FOREACH_SAFE(inm, &in_multihead, inm_link, oinm) { 1100 if (inm->inm_ifp == ifp) 1101 in_delmulti_locked(inm); 1102 } 1103 IN_MULTI_UNLOCK(); 1104 IFF_UNLOCKGIANT(ifp); 1105 } 1106 1107 /* 1108 * On interface removal, clean up IPv4 data structures hung off of the ifnet. 1109 */ 1110 void 1111 in_ifdetach(ifp) 1112 struct ifnet *ifp; 1113 { 1114 1115 in_pcbpurgeif0(&ripcbinfo, ifp); 1116 in_pcbpurgeif0(&udbinfo, ifp); 1117 in_delmulti_ifp(ifp); 1118 } 1119