xref: /freebsd/sys/netinet/cc/cc_htcp.c (revision f2b7bf8afcfd630e0fbd8417f1ce974de79feaf0)
1 /*-
2  * Copyright (c) 2007-2008
3  * 	Swinburne University of Technology, Melbourne, Australia
4  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2010 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * This software was developed at the Centre for Advanced Internet
9  * Architectures, Swinburne University of Technology, by Lawrence Stewart and
10  * James Healy, made possible in part by a grant from the Cisco University
11  * Research Program Fund at Community Foundation Silicon Valley.
12  *
13  * Portions of this software were developed at the Centre for Advanced
14  * Internet Architectures, Swinburne University of Technology, Melbourne,
15  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * An implementation of the H-TCP congestion control algorithm for FreeBSD,
41  * based on the Internet Draft "draft-leith-tcp-htcp-06.txt" by Leith and
42  * Shorten. Originally released as part of the NewTCP research project at
43  * Swinburne University of Technology's Centre for Advanced Internet
44  * Architectures, Melbourne, Australia, which was made possible in part by a
45  * grant from the Cisco University Research Program Fund at Community Foundation
46  * Silicon Valley. More details are available at:
47  *   http://caia.swin.edu.au/urp/newtcp/
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/limits.h>
56 #include <sys/malloc.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 
63 #include <net/vnet.h>
64 
65 #include <netinet/tcp.h>
66 #include <netinet/tcp_seq.h>
67 #include <netinet/tcp_timer.h>
68 #include <netinet/tcp_var.h>
69 #include <netinet/cc/cc.h>
70 #include <netinet/cc/cc_module.h>
71 
72 /* Fixed point math shifts. */
73 #define HTCP_SHIFT 8
74 #define HTCP_ALPHA_INC_SHIFT 4
75 
76 #define HTCP_INIT_ALPHA 1
77 #define HTCP_DELTA_L hz		/* 1 sec in ticks. */
78 #define HTCP_MINBETA 128	/* 0.5 << HTCP_SHIFT. */
79 #define HTCP_MAXBETA 204	/* ~0.8 << HTCP_SHIFT. */
80 #define HTCP_MINROWE 26		/* ~0.1 << HTCP_SHIFT. */
81 #define HTCP_MAXROWE 512	/* 2 << HTCP_SHIFT. */
82 
83 /* RTT_ref (ms) used in the calculation of alpha if RTT scaling is enabled. */
84 #define HTCP_RTT_REF 100
85 
86 /* Don't trust SRTT until this many samples have been taken. */
87 #define HTCP_MIN_RTT_SAMPLES 8
88 
89 /*
90  * HTCP_CALC_ALPHA performs a fixed point math calculation to determine the
91  * value of alpha, based on the function defined in the HTCP spec.
92  *
93  * i.e. 1 + 10(delta - delta_l) + ((delta - delta_l) / 2) ^ 2
94  *
95  * "diff" is passed in to the macro as "delta - delta_l" and is expected to be
96  * in units of ticks.
97  *
98  * The joyousnous of fixed point maths means our function implementation looks a
99  * little funky...
100  *
101  * In order to maintain some precision in the calculations, a fixed point shift
102  * HTCP_ALPHA_INC_SHIFT is used to ensure the integer divisions don't
103  * truncate the results too badly.
104  *
105  * The "16" value is the "1" term in the alpha function shifted up by
106  * HTCP_ALPHA_INC_SHIFT
107  *
108  * The "160" value is the "10" multiplier in the alpha function multiplied by
109  * 2^HTCP_ALPHA_INC_SHIFT
110  *
111  * Specifying these as constants reduces the computations required. After
112  * up-shifting all the terms in the function and performing the required
113  * calculations, we down-shift the final result by HTCP_ALPHA_INC_SHIFT to
114  * ensure it is back in the correct range.
115  *
116  * The "hz" terms are required as kernels can be configured to run with
117  * different tick timers, which we have to adjust for in the alpha calculation
118  * (which originally was defined in terms of seconds).
119  *
120  * We also have to be careful to constrain the value of diff such that it won't
121  * overflow whilst performing the calculation. The middle term i.e. (160 * diff)
122  * / hz is the limiting factor in the calculation. We must constrain diff to be
123  * less than the max size of an int divided by the constant 160 figure
124  * i.e. diff < INT_MAX / 160
125  *
126  * NB: Changing HTCP_ALPHA_INC_SHIFT will require you to MANUALLY update the
127  * constants used in this function!
128  */
129 #define HTCP_CALC_ALPHA(diff) \
130 ((\
131 	(16) + \
132 	((160 * (diff)) / hz) + \
133 	(((diff) / hz) * (((diff) << HTCP_ALPHA_INC_SHIFT) / (4 * hz))) \
134 ) >> HTCP_ALPHA_INC_SHIFT)
135 
136 static void	htcp_ack_received(struct cc_var *ccv, uint16_t type);
137 static void	htcp_cb_destroy(struct cc_var *ccv);
138 static int	htcp_cb_init(struct cc_var *ccv);
139 static void	htcp_cong_signal(struct cc_var *ccv, uint32_t type);
140 static int	htcp_mod_init(void);
141 static void	htcp_post_recovery(struct cc_var *ccv);
142 static void	htcp_recalc_alpha(struct cc_var *ccv);
143 static void	htcp_recalc_beta(struct cc_var *ccv);
144 static void	htcp_record_rtt(struct cc_var *ccv);
145 static void	htcp_ssthresh_update(struct cc_var *ccv);
146 
147 struct htcp {
148 	/* cwnd before entering cong recovery. */
149 	unsigned long	prev_cwnd;
150 	/* cwnd additive increase parameter. */
151 	int		alpha;
152 	/* cwnd multiplicative decrease parameter. */
153 	int		beta;
154 	/* Largest rtt seen for the flow. */
155 	int		maxrtt;
156 	/* Shortest rtt seen for the flow. */
157 	int		minrtt;
158 	/* Time of last congestion event in ticks. */
159 	int		t_last_cong;
160 };
161 
162 static int htcp_rtt_ref;
163 /*
164  * The maximum number of ticks the value of diff can reach in
165  * htcp_recalc_alpha() before alpha will stop increasing due to overflow.
166  * See comment above HTCP_CALC_ALPHA for more info.
167  */
168 static int htcp_max_diff = INT_MAX / ((1 << HTCP_ALPHA_INC_SHIFT) * 10);
169 
170 /* Per-netstack vars. */
171 static VNET_DEFINE(u_int, htcp_adaptive_backoff) = 0;
172 static VNET_DEFINE(u_int, htcp_rtt_scaling) = 0;
173 #define	V_htcp_adaptive_backoff    VNET(htcp_adaptive_backoff)
174 #define	V_htcp_rtt_scaling    VNET(htcp_rtt_scaling)
175 
176 static MALLOC_DEFINE(M_HTCP, "htcp data",
177     "Per connection data required for the HTCP congestion control algorithm");
178 
179 struct cc_algo htcp_cc_algo = {
180 	.name = "htcp",
181 	.ack_received = htcp_ack_received,
182 	.cb_destroy = htcp_cb_destroy,
183 	.cb_init = htcp_cb_init,
184 	.cong_signal = htcp_cong_signal,
185 	.mod_init = htcp_mod_init,
186 	.post_recovery = htcp_post_recovery,
187 };
188 
189 static void
190 htcp_ack_received(struct cc_var *ccv, uint16_t type)
191 {
192 	struct htcp *htcp_data;
193 
194 	htcp_data = ccv->cc_data;
195 	htcp_record_rtt(ccv);
196 
197 	/*
198 	 * Regular ACK and we're not in cong/fast recovery and we're cwnd
199 	 * limited and we're either not doing ABC or are slow starting or are
200 	 * doing ABC and we've sent a cwnd's worth of bytes.
201 	 */
202 	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
203 	    (ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
204 	    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
205 	    (V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
206 		htcp_recalc_beta(ccv);
207 		htcp_recalc_alpha(ccv);
208 		/*
209 		 * Use the logic in NewReno ack_received() for slow start and
210 		 * for the first HTCP_DELTA_L ticks after either the flow starts
211 		 * or a congestion event (when alpha equals 1).
212 		 */
213 		if (htcp_data->alpha == 1 ||
214 		    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh))
215 			newreno_cc_algo.ack_received(ccv, type);
216 		else {
217 			if (V_tcp_do_rfc3465) {
218 				/* Increment cwnd by alpha segments. */
219 				CCV(ccv, snd_cwnd) += htcp_data->alpha *
220 				    CCV(ccv, t_maxseg);
221 				ccv->flags &= ~CCF_ABC_SENTAWND;
222 			} else
223 				/*
224 				 * Increment cwnd by alpha/cwnd segments to
225 				 * approximate an increase of alpha segments
226 				 * per RTT.
227 				 */
228 				CCV(ccv, snd_cwnd) += (((htcp_data->alpha <<
229 				    HTCP_SHIFT) / (CCV(ccv, snd_cwnd) /
230 				    CCV(ccv, t_maxseg))) * CCV(ccv, t_maxseg))
231 				    >> HTCP_SHIFT;
232 		}
233 	}
234 }
235 
236 static void
237 htcp_cb_destroy(struct cc_var *ccv)
238 {
239 
240 	if (ccv->cc_data != NULL)
241 		free(ccv->cc_data, M_HTCP);
242 }
243 
244 static int
245 htcp_cb_init(struct cc_var *ccv)
246 {
247 	struct htcp *htcp_data;
248 
249 	htcp_data = malloc(sizeof(struct htcp), M_HTCP, M_NOWAIT);
250 
251 	if (htcp_data == NULL)
252 		return (ENOMEM);
253 
254 	/* Init some key variables with sensible defaults. */
255 	htcp_data->alpha = HTCP_INIT_ALPHA;
256 	htcp_data->beta = HTCP_MINBETA;
257 	htcp_data->maxrtt = TCPTV_SRTTBASE;
258 	htcp_data->minrtt = TCPTV_SRTTBASE;
259 	htcp_data->prev_cwnd = 0;
260 	htcp_data->t_last_cong = ticks;
261 
262 	ccv->cc_data = htcp_data;
263 
264 	return (0);
265 }
266 
267 /*
268  * Perform any necessary tasks before we enter congestion recovery.
269  */
270 static void
271 htcp_cong_signal(struct cc_var *ccv, uint32_t type)
272 {
273 	struct htcp *htcp_data;
274 	uint32_t cwin;
275 	u_int mss;
276 
277 	htcp_data = ccv->cc_data;
278 	cwin = CCV(ccv, snd_cwnd);
279 	mss = CCV(ccv, t_maxseg);
280 
281 	switch (type) {
282 	case CC_NDUPACK:
283 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
284 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
285 				/*
286 				 * Apply hysteresis to maxrtt to ensure
287 				 * reductions in the RTT are reflected in our
288 				 * measurements.
289 				 */
290 				htcp_data->maxrtt = (htcp_data->minrtt +
291 				    (htcp_data->maxrtt - htcp_data->minrtt) *
292 				    95) / 100;
293 				htcp_ssthresh_update(ccv);
294 				CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
295 				htcp_data->t_last_cong = ticks;
296 				htcp_data->prev_cwnd = cwin;
297 			}
298 			ENTER_RECOVERY(CCV(ccv, t_flags));
299 		}
300 		break;
301 
302 	case CC_ECN:
303 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
304 			/*
305 			 * Apply hysteresis to maxrtt to ensure reductions in
306 			 * the RTT are reflected in our measurements.
307 			 */
308 			htcp_data->maxrtt = (htcp_data->minrtt + (htcp_data->maxrtt -
309 			    htcp_data->minrtt) * 95) / 100;
310 			htcp_ssthresh_update(ccv);
311 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
312 			htcp_data->t_last_cong = ticks;
313 			htcp_data->prev_cwnd = cwin;
314 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
315 		}
316 		break;
317 
318 	case CC_RTO:
319 		/*
320 		 * Grab the current time and record it so we know when the
321 		 * most recent congestion event was. Only record it when the
322 		 * timeout has fired more than once, as there is a reasonable
323 		 * chance the first one is a false alarm and may not indicate
324 		 * congestion.
325 		 */
326 		if (CCV(ccv, t_rxtshift) >= 2)
327 			htcp_data->t_last_cong = ticks;
328 		CCV(ccv, snd_ssthresh) =
329 		    max((CCV(ccv, snd_max) - CCV(ccv, snd_una)) / 2 / mss, 2)
330 			* mss;
331 		CCV(ccv, snd_cwnd) = mss;
332 		break;
333 	}
334 }
335 
336 static int
337 htcp_mod_init(void)
338 {
339 
340 	htcp_cc_algo.after_idle = newreno_cc_algo.after_idle;
341 
342 	/*
343 	 * HTCP_RTT_REF is defined in ms, and t_srtt in the tcpcb is stored in
344 	 * units of TCP_RTT_SCALE*hz. Scale HTCP_RTT_REF to be in the same units
345 	 * as t_srtt.
346 	 */
347 	htcp_rtt_ref = (HTCP_RTT_REF * TCP_RTT_SCALE * hz) / 1000;
348 
349 	return (0);
350 }
351 
352 /*
353  * Perform any necessary tasks before we exit congestion recovery.
354  */
355 static void
356 htcp_post_recovery(struct cc_var *ccv)
357 {
358 	int pipe;
359 	struct htcp *htcp_data;
360 
361 	pipe = 0;
362 	htcp_data = ccv->cc_data;
363 
364 	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
365 		/*
366 		 * If inflight data is less than ssthresh, set cwnd
367 		 * conservatively to avoid a burst of data, as suggested in the
368 		 * NewReno RFC. Otherwise, use the HTCP method.
369 		 *
370 		 * XXXLAS: Find a way to do this without needing curack
371 		 */
372 		if (V_tcp_do_rfc6675_pipe)
373 			pipe = tcp_compute_pipe(ccv->ccvc.tcp);
374 		else
375 			pipe = CCV(ccv, snd_max) - ccv->curack;
376 
377 		if (pipe < CCV(ccv, snd_ssthresh))
378 			CCV(ccv, snd_cwnd) = pipe + CCV(ccv, t_maxseg);
379 		else
380 			CCV(ccv, snd_cwnd) = max(1, ((htcp_data->beta *
381 			    htcp_data->prev_cwnd / CCV(ccv, t_maxseg))
382 			    >> HTCP_SHIFT)) * CCV(ccv, t_maxseg);
383 	}
384 }
385 
386 static void
387 htcp_recalc_alpha(struct cc_var *ccv)
388 {
389 	struct htcp *htcp_data;
390 	int alpha, diff, now;
391 
392 	htcp_data = ccv->cc_data;
393 	now = ticks;
394 
395 	/*
396 	 * If ticks has wrapped around (will happen approximately once every 49
397 	 * days on a machine with the default kern.hz=1000) and a flow straddles
398 	 * the wrap point, our alpha calcs will be completely wrong. We cut our
399 	 * losses and restart alpha from scratch by setting t_last_cong = now -
400 	 * HTCP_DELTA_L.
401 	 *
402 	 * This does not deflate our cwnd at all. It simply slows the rate cwnd
403 	 * is growing by until alpha regains the value it held prior to taking
404 	 * this drastic measure.
405 	 */
406 	if (now < htcp_data->t_last_cong)
407 		htcp_data->t_last_cong = now - HTCP_DELTA_L;
408 
409 	diff = now - htcp_data->t_last_cong - HTCP_DELTA_L;
410 
411 	/* Cap alpha if the value of diff would overflow HTCP_CALC_ALPHA(). */
412 	if (diff < htcp_max_diff) {
413 		/*
414 		 * If it has been more than HTCP_DELTA_L ticks since congestion,
415 		 * increase alpha according to the function defined in the spec.
416 		 */
417 		if (diff > 0) {
418 			alpha = HTCP_CALC_ALPHA(diff);
419 
420 			/*
421 			 * Adaptive backoff fairness adjustment:
422 			 * 2 * (1 - beta) * alpha_raw
423 			 */
424 			if (V_htcp_adaptive_backoff)
425 				alpha = max(1, (2 * ((1 << HTCP_SHIFT) -
426 				    htcp_data->beta) * alpha) >> HTCP_SHIFT);
427 
428 			/*
429 			 * RTT scaling: (RTT / RTT_ref) * alpha
430 			 * alpha will be the raw value from HTCP_CALC_ALPHA() if
431 			 * adaptive backoff is off, or the adjusted value if
432 			 * adaptive backoff is on.
433 			 */
434 			if (V_htcp_rtt_scaling)
435 				alpha = max(1, (min(max(HTCP_MINROWE,
436 				    (CCV(ccv, t_srtt) << HTCP_SHIFT) /
437 				    htcp_rtt_ref), HTCP_MAXROWE) * alpha)
438 				    >> HTCP_SHIFT);
439 
440 		} else
441 			alpha = 1;
442 
443 		htcp_data->alpha = alpha;
444 	}
445 }
446 
447 static void
448 htcp_recalc_beta(struct cc_var *ccv)
449 {
450 	struct htcp *htcp_data;
451 
452 	htcp_data = ccv->cc_data;
453 
454 	/*
455 	 * TCPTV_SRTTBASE is the initialised value of each connection's SRTT, so
456 	 * we only calc beta if the connection's SRTT has been changed from its
457 	 * initial value. beta is bounded to ensure it is always between
458 	 * HTCP_MINBETA and HTCP_MAXBETA.
459 	 */
460 	if (V_htcp_adaptive_backoff && htcp_data->minrtt != TCPTV_SRTTBASE &&
461 	    htcp_data->maxrtt != TCPTV_SRTTBASE)
462 		htcp_data->beta = min(max(HTCP_MINBETA,
463 		    (htcp_data->minrtt << HTCP_SHIFT) / htcp_data->maxrtt),
464 		    HTCP_MAXBETA);
465 	else
466 		htcp_data->beta = HTCP_MINBETA;
467 }
468 
469 /*
470  * Record the minimum and maximum RTT seen for the connection. These are used in
471  * the calculation of beta if adaptive backoff is enabled.
472  */
473 static void
474 htcp_record_rtt(struct cc_var *ccv)
475 {
476 	struct htcp *htcp_data;
477 
478 	htcp_data = ccv->cc_data;
479 
480 	/* XXXLAS: Should there be some hysteresis for minrtt? */
481 
482 	/*
483 	 * Record the current SRTT as our minrtt if it's the smallest we've seen
484 	 * or minrtt is currently equal to its initialised value. Ignore SRTT
485 	 * until a min number of samples have been taken.
486 	 */
487 	if ((CCV(ccv, t_srtt) < htcp_data->minrtt ||
488 	    htcp_data->minrtt == TCPTV_SRTTBASE) &&
489 	    (CCV(ccv, t_rttupdated) >= HTCP_MIN_RTT_SAMPLES))
490 		htcp_data->minrtt = CCV(ccv, t_srtt);
491 
492 	/*
493 	 * Record the current SRTT as our maxrtt if it's the largest we've
494 	 * seen. Ignore SRTT until a min number of samples have been taken.
495 	 */
496 	if (CCV(ccv, t_srtt) > htcp_data->maxrtt
497 	    && CCV(ccv, t_rttupdated) >= HTCP_MIN_RTT_SAMPLES)
498 		htcp_data->maxrtt = CCV(ccv, t_srtt);
499 }
500 
501 /*
502  * Update the ssthresh in the event of congestion.
503  */
504 static void
505 htcp_ssthresh_update(struct cc_var *ccv)
506 {
507 	struct htcp *htcp_data;
508 
509 	htcp_data = ccv->cc_data;
510 
511 	/*
512 	 * On the first congestion event, set ssthresh to cwnd * 0.5, on
513 	 * subsequent congestion events, set it to cwnd * beta.
514 	 */
515 	if (CCV(ccv, snd_ssthresh) == TCP_MAXWIN << TCP_MAX_WINSHIFT)
516 		CCV(ccv, snd_ssthresh) = ((u_long)CCV(ccv, snd_cwnd) *
517 		    HTCP_MINBETA) >> HTCP_SHIFT;
518 	else {
519 		htcp_recalc_beta(ccv);
520 		CCV(ccv, snd_ssthresh) = ((u_long)CCV(ccv, snd_cwnd) *
521 		    htcp_data->beta) >> HTCP_SHIFT;
522 	}
523 
524 	/* Align ssthresh to MSS boundary */
525 	CCV(ccv, snd_ssthresh) = (CCV(ccv, snd_ssthresh) / CCV(ccv, t_maxseg))
526 	    * CCV(ccv, t_maxseg);
527 }
528 
529 
530 SYSCTL_DECL(_net_inet_tcp_cc_htcp);
531 SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, htcp, CTLFLAG_RW,
532     NULL, "H-TCP related settings");
533 SYSCTL_UINT(_net_inet_tcp_cc_htcp, OID_AUTO, adaptive_backoff,
534     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(htcp_adaptive_backoff), 0,
535     "enable H-TCP adaptive backoff");
536 SYSCTL_UINT(_net_inet_tcp_cc_htcp, OID_AUTO, rtt_scaling,
537     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(htcp_rtt_scaling), 0,
538     "enable H-TCP RTT scaling");
539 
540 DECLARE_CC_MODULE(htcp, &htcp_cc_algo);
541