xref: /freebsd/sys/netinet/cc/cc_dctcp.c (revision d3d381b2b194b4d24853e92eecef55f262688d1a)
1 /*-
2  * Copyright (c) 2007-2008
3  *	Swinburne University of Technology, Melbourne, Australia
4  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
6  * Copyright (c) 2014 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * An implementation of the DCTCP algorithm for FreeBSD, based on
33  * "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
34  * J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
35  * in ACM Conference on SIGCOMM 2010, New York, USA,
36  * Originally released as the contribution of Microsoft Research project.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/vnet.h>
52 
53 #include <netinet/tcp.h>
54 #include <netinet/tcp_seq.h>
55 #include <netinet/tcp_var.h>
56 #include <netinet/cc/cc.h>
57 #include <netinet/cc/cc_module.h>
58 
59 #define	CAST_PTR_INT(X)	(*((int*)(X)))
60 
61 #define MAX_ALPHA_VALUE 1024
62 VNET_DEFINE_STATIC(uint32_t, dctcp_alpha) = 0;
63 #define V_dctcp_alpha	    VNET(dctcp_alpha)
64 VNET_DEFINE_STATIC(uint32_t, dctcp_shift_g) = 4;
65 #define	V_dctcp_shift_g	    VNET(dctcp_shift_g)
66 VNET_DEFINE_STATIC(uint32_t, dctcp_slowstart) = 0;
67 #define	V_dctcp_slowstart   VNET(dctcp_slowstart)
68 
69 struct dctcp {
70 	int     bytes_ecn;	/* # of marked bytes during a RTT */
71 	int     bytes_total;	/* # of acked bytes during a RTT */
72 	int     alpha;		/* the fraction of marked bytes */
73 	int     ce_prev;	/* CE state of the last segment */
74 	int     save_sndnxt;	/* end sequence number of the current window */
75 	int	ece_curr;	/* ECE flag in this segment */
76 	int	ece_prev;	/* ECE flag in the last segment */
77 	uint32_t    num_cong_events; /* # of congestion events */
78 };
79 
80 static MALLOC_DEFINE(M_dctcp, "dctcp data",
81     "Per connection data required for the dctcp algorithm");
82 
83 static void	dctcp_ack_received(struct cc_var *ccv, uint16_t type);
84 static void	dctcp_after_idle(struct cc_var *ccv);
85 static void	dctcp_cb_destroy(struct cc_var *ccv);
86 static int	dctcp_cb_init(struct cc_var *ccv);
87 static void	dctcp_cong_signal(struct cc_var *ccv, uint32_t type);
88 static void	dctcp_conn_init(struct cc_var *ccv);
89 static void	dctcp_post_recovery(struct cc_var *ccv);
90 static void	dctcp_ecnpkt_handler(struct cc_var *ccv);
91 static void	dctcp_update_alpha(struct cc_var *ccv);
92 
93 struct cc_algo dctcp_cc_algo = {
94 	.name = "dctcp",
95 	.ack_received = dctcp_ack_received,
96 	.cb_destroy = dctcp_cb_destroy,
97 	.cb_init = dctcp_cb_init,
98 	.cong_signal = dctcp_cong_signal,
99 	.conn_init = dctcp_conn_init,
100 	.post_recovery = dctcp_post_recovery,
101 	.ecnpkt_handler = dctcp_ecnpkt_handler,
102 	.after_idle = dctcp_after_idle,
103 };
104 
105 static void
106 dctcp_ack_received(struct cc_var *ccv, uint16_t type)
107 {
108 	struct dctcp *dctcp_data;
109 	int bytes_acked = 0;
110 
111 	dctcp_data = ccv->cc_data;
112 
113 	if (CCV(ccv, t_flags) & TF_ECN_PERMIT) {
114 		/*
115 		 * DCTCP doesn't treat receipt of ECN marked packet as a
116 		 * congestion event. Thus, DCTCP always executes the ACK
117 		 * processing out of congestion recovery.
118 		 */
119 		if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
120 			EXIT_CONGRECOVERY(CCV(ccv, t_flags));
121 			newreno_cc_algo.ack_received(ccv, type);
122 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
123 		} else
124 			newreno_cc_algo.ack_received(ccv, type);
125 
126 		if (type == CC_DUPACK)
127 			bytes_acked = CCV(ccv, t_maxseg);
128 
129 		if (type == CC_ACK)
130 			bytes_acked = ccv->bytes_this_ack;
131 
132 		/* Update total bytes. */
133 		dctcp_data->bytes_total += bytes_acked;
134 
135 		/* Update total marked bytes. */
136 		if (dctcp_data->ece_curr) {
137 			if (!dctcp_data->ece_prev
138 			    && bytes_acked > CCV(ccv, t_maxseg)) {
139 				dctcp_data->bytes_ecn +=
140 				    (bytes_acked - CCV(ccv, t_maxseg));
141 			} else
142 				dctcp_data->bytes_ecn += bytes_acked;
143 			dctcp_data->ece_prev = 1;
144 		} else {
145 			if (dctcp_data->ece_prev
146 			    && bytes_acked > CCV(ccv, t_maxseg))
147 				dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
148 			dctcp_data->ece_prev = 0;
149 		}
150 		dctcp_data->ece_curr = 0;
151 
152 		/*
153 		 * Update the fraction of marked bytes at the end of
154 		 * current window size.
155 		 */
156 		if ((IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
157 		    SEQ_GEQ(ccv->curack, CCV(ccv, snd_recover))) ||
158 		    (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
159 		    SEQ_GT(ccv->curack, dctcp_data->save_sndnxt)))
160 			dctcp_update_alpha(ccv);
161 	} else
162 		newreno_cc_algo.ack_received(ccv, type);
163 }
164 
165 static void
166 dctcp_after_idle(struct cc_var *ccv)
167 {
168 	struct dctcp *dctcp_data;
169 
170 	dctcp_data = ccv->cc_data;
171 
172 	/* Initialize internal parameters after idle time */
173 	dctcp_data->bytes_ecn = 0;
174 	dctcp_data->bytes_total = 0;
175 	dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
176 	dctcp_data->alpha = V_dctcp_alpha;
177 	dctcp_data->ece_curr = 0;
178 	dctcp_data->ece_prev = 0;
179 	dctcp_data->num_cong_events = 0;
180 
181 	dctcp_cc_algo.after_idle = newreno_cc_algo.after_idle;
182 }
183 
184 static void
185 dctcp_cb_destroy(struct cc_var *ccv)
186 {
187 	free(ccv->cc_data, M_dctcp);
188 }
189 
190 static int
191 dctcp_cb_init(struct cc_var *ccv)
192 {
193 	struct dctcp *dctcp_data;
194 
195 	dctcp_data = malloc(sizeof(struct dctcp), M_dctcp, M_NOWAIT|M_ZERO);
196 
197 	if (dctcp_data == NULL)
198 		return (ENOMEM);
199 
200 	/* Initialize some key variables with sensible defaults. */
201 	dctcp_data->bytes_ecn = 0;
202 	dctcp_data->bytes_total = 0;
203 	/*
204 	 * When alpha is set to 0 in the beginning, DCTCP sender transfers as
205 	 * much data as possible until the value converges which may expand the
206 	 * queueing delay at the switch. When alpha is set to 1, queueing delay
207 	 * is kept small.
208 	 * Throughput-sensitive applications should have alpha = 0
209 	 * Latency-sensitive applications should have alpha = 1
210 	 *
211 	 * Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
212 	 * keep it 0 as default.
213 	 */
214 	dctcp_data->alpha = V_dctcp_alpha;
215 	dctcp_data->save_sndnxt = 0;
216 	dctcp_data->ce_prev = 0;
217 	dctcp_data->ece_curr = 0;
218 	dctcp_data->ece_prev = 0;
219 	dctcp_data->num_cong_events = 0;
220 
221 	ccv->cc_data = dctcp_data;
222 	return (0);
223 }
224 
225 /*
226  * Perform any necessary tasks before we enter congestion recovery.
227  */
228 static void
229 dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
230 {
231 	struct dctcp *dctcp_data;
232 	u_int win, mss;
233 
234 	dctcp_data = ccv->cc_data;
235 	win = CCV(ccv, snd_cwnd);
236 	mss = CCV(ccv, t_maxseg);
237 
238 	switch (type) {
239 	case CC_NDUPACK:
240 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
241 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
242 				CCV(ccv, snd_ssthresh) = mss *
243 				    max(win / 2 / mss, 2);
244 				dctcp_data->num_cong_events++;
245 			} else {
246 				/* cwnd has already updated as congestion
247 				 * recovery. Reverse cwnd value using
248 				 * snd_cwnd_prev and recalculate snd_ssthresh
249 				 */
250 				win = CCV(ccv, snd_cwnd_prev);
251 				CCV(ccv, snd_ssthresh) =
252 				    max(win / 2 / mss, 2) * mss;
253 			}
254 			ENTER_RECOVERY(CCV(ccv, t_flags));
255 		}
256 		break;
257 	case CC_ECN:
258 		/*
259 		 * Save current snd_cwnd when the host encounters both
260 		 * congestion recovery and fast recovery.
261 		 */
262 		CCV(ccv, snd_cwnd_prev) = win;
263 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
264 			if (V_dctcp_slowstart &&
265 			    dctcp_data->num_cong_events++ == 0) {
266 				CCV(ccv, snd_ssthresh) =
267 				    mss * max(win / 2 / mss, 2);
268 				dctcp_data->alpha = MAX_ALPHA_VALUE;
269 				dctcp_data->bytes_ecn = 0;
270 				dctcp_data->bytes_total = 0;
271 				dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
272 			} else
273 				CCV(ccv, snd_ssthresh) = max((win - ((win *
274 				    dctcp_data->alpha) >> 11)) / mss, 2) * mss;
275 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
276 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
277 		}
278 		dctcp_data->ece_curr = 1;
279 		break;
280 	case CC_RTO:
281 		if (CCV(ccv, t_flags) & TF_ECN_PERMIT) {
282 			CCV(ccv, t_flags) |= TF_ECN_SND_CWR;
283 			dctcp_update_alpha(ccv);
284 			dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
285 			dctcp_data->num_cong_events++;
286 		}
287 		break;
288 	}
289 }
290 
291 static void
292 dctcp_conn_init(struct cc_var *ccv)
293 {
294 	struct dctcp *dctcp_data;
295 
296 	dctcp_data = ccv->cc_data;
297 
298 	if (CCV(ccv, t_flags) & TF_ECN_PERMIT)
299 		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
300 }
301 
302 /*
303  * Perform any necessary tasks before we exit congestion recovery.
304  */
305 static void
306 dctcp_post_recovery(struct cc_var *ccv)
307 {
308 	dctcp_cc_algo.post_recovery = newreno_cc_algo.post_recovery;
309 
310 	if (CCV(ccv, t_flags) & TF_ECN_PERMIT)
311 		dctcp_update_alpha(ccv);
312 }
313 
314 /*
315  * Execute an additional ECN processing using ECN field in IP header and the CWR
316  * bit in TCP header.
317  *
318  * delay_ack == 0 - Delayed ACK disabled
319  * delay_ack == 1 - Delayed ACK enabled
320  */
321 
322 static void
323 dctcp_ecnpkt_handler(struct cc_var *ccv)
324 {
325 	struct dctcp *dctcp_data;
326 	uint32_t ccflag;
327 	int delay_ack;
328 
329 	dctcp_data = ccv->cc_data;
330 	ccflag = ccv->flags;
331 	delay_ack = 1;
332 
333 	/*
334 	 * DCTCP responses an ACK immediately when the CE state
335 	 * in between this segment and the last segment is not same.
336 	 */
337 	if (ccflag & CCF_IPHDR_CE) {
338 		if (!dctcp_data->ce_prev && (ccflag & CCF_DELACK))
339 			delay_ack = 0;
340 		dctcp_data->ce_prev = 1;
341 		CCV(ccv, t_flags) |= TF_ECN_SND_ECE;
342 	} else {
343 		if (dctcp_data->ce_prev && (ccflag & CCF_DELACK))
344 			delay_ack = 0;
345 		dctcp_data->ce_prev = 0;
346 		CCV(ccv, t_flags) &= ~TF_ECN_SND_ECE;
347 	}
348 
349 	/* DCTCP sets delayed ack when this segment sets the CWR flag. */
350 	if ((ccflag & CCF_DELACK) && (ccflag & CCF_TCPHDR_CWR))
351 		delay_ack = 1;
352 
353 	if (delay_ack == 0)
354 		ccv->flags |= CCF_ACKNOW;
355 	else
356 		ccv->flags &= ~CCF_ACKNOW;
357 }
358 
359 /*
360  * Update the fraction of marked bytes represented as 'alpha'.
361  * Also initialize several internal parameters at the end of this function.
362  */
363 static void
364 dctcp_update_alpha(struct cc_var *ccv)
365 {
366 	struct dctcp *dctcp_data;
367 	int alpha_prev;
368 
369 	dctcp_data = ccv->cc_data;
370 	alpha_prev = dctcp_data->alpha;
371 	dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);
372 
373 	/*
374 	 * Update alpha: alpha = (1 - g) * alpha + g * F.
375 	 * Here:
376 	 * g is weight factor
377 	 *	recommaded to be set to 1/16
378 	 *	small g = slow convergence between competitive DCTCP flows
379 	 *	large g = impacts low utilization of bandwidth at switches
380 	 * F is fraction of marked segments in last RTT
381 	 *	updated every RTT
382 	 * Alpha must be round to 0 - MAX_ALPHA_VALUE.
383 	 */
384 	dctcp_data->alpha = min(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
385 	    (dctcp_data->bytes_ecn << (10 - V_dctcp_shift_g)) /
386 	    dctcp_data->bytes_total, MAX_ALPHA_VALUE);
387 
388 	/* Initialize internal parameters for next alpha calculation */
389 	dctcp_data->bytes_ecn = 0;
390 	dctcp_data->bytes_total = 0;
391 	dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
392 }
393 
394 static int
395 dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
396 {
397 	uint32_t new;
398 	int error;
399 
400 	new = V_dctcp_alpha;
401 	error = sysctl_handle_int(oidp, &new, 0, req);
402 	if (error == 0 && req->newptr != NULL) {
403 		if (CAST_PTR_INT(req->newptr) > 1)
404 			error = EINVAL;
405 		else {
406 			if (new > MAX_ALPHA_VALUE)
407 				V_dctcp_alpha = MAX_ALPHA_VALUE;
408 			else
409 				V_dctcp_alpha = new;
410 		}
411 	}
412 
413 	return (error);
414 }
415 
416 static int
417 dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
418 {
419 	uint32_t new;
420 	int error;
421 
422 	new = V_dctcp_shift_g;
423 	error = sysctl_handle_int(oidp, &new, 0, req);
424 	if (error == 0 && req->newptr != NULL) {
425 		if (CAST_PTR_INT(req->newptr) > 1)
426 			error = EINVAL;
427 		else
428 			V_dctcp_shift_g = new;
429 	}
430 
431 	return (error);
432 }
433 
434 static int
435 dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
436 {
437 	uint32_t new;
438 	int error;
439 
440 	new = V_dctcp_slowstart;
441 	error = sysctl_handle_int(oidp, &new, 0, req);
442 	if (error == 0 && req->newptr != NULL) {
443 		if (CAST_PTR_INT(req->newptr) > 1)
444 			error = EINVAL;
445 		else
446 			V_dctcp_slowstart = new;
447 	}
448 
449 	return (error);
450 }
451 
452 SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
453 SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp, CTLFLAG_RW, NULL,
454     "dctcp congestion control related settings");
455 
456 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
457     CTLFLAG_VNET|CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(dctcp_alpha), 0,
458     &dctcp_alpha_handler,
459     "IU", "dctcp alpha parameter");
460 
461 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
462     CTLFLAG_VNET|CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(dctcp_shift_g), 4,
463     &dctcp_shift_g_handler,
464     "IU", "dctcp shift parameter");
465 
466 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
467     CTLFLAG_VNET|CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(dctcp_slowstart), 0,
468     &dctcp_slowstart_handler,
469     "IU", "half CWND reduction after the first slow start");
470 
471 DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
472