xref: /freebsd/sys/netinet/cc/cc_dctcp.c (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 /*-
2  * Copyright (c) 2007-2008
3  *	Swinburne University of Technology, Melbourne, Australia
4  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
6  * Copyright (c) 2014 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * An implementation of the DCTCP algorithm for FreeBSD, based on
33  * "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
34  * J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
35  * in ACM Conference on SIGCOMM 2010, New York, USA,
36  * Originally released as the contribution of Microsoft Research project.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sysctl.h>
46 #include <sys/systm.h>
47 
48 #include <net/vnet.h>
49 
50 #include <net/route.h>
51 #include <net/route/nhop.h>
52 
53 #include <netinet/in_pcb.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_seq.h>
56 #include <netinet/tcp_var.h>
57 #include <netinet/cc/cc.h>
58 #include <netinet/cc/cc_module.h>
59 
60 #define DCTCP_SHIFT 10
61 #define MAX_ALPHA_VALUE (1<<DCTCP_SHIFT)
62 VNET_DEFINE_STATIC(uint32_t, dctcp_alpha) = MAX_ALPHA_VALUE;
63 #define V_dctcp_alpha	    VNET(dctcp_alpha)
64 VNET_DEFINE_STATIC(uint32_t, dctcp_shift_g) = 4;
65 #define	V_dctcp_shift_g	    VNET(dctcp_shift_g)
66 VNET_DEFINE_STATIC(uint32_t, dctcp_slowstart) = 0;
67 #define	V_dctcp_slowstart   VNET(dctcp_slowstart)
68 VNET_DEFINE_STATIC(uint32_t, dctcp_ect1) = 0;
69 #define	V_dctcp_ect1	    VNET(dctcp_ect1)
70 
71 struct dctcp {
72 	uint32_t bytes_ecn;	  /* # of marked bytes during a RTT */
73 	uint32_t bytes_total;	  /* # of acked bytes during a RTT */
74 	int      alpha;		  /* the fraction of marked bytes */
75 	int      ce_prev;	  /* CE state of the last segment */
76 	tcp_seq  save_sndnxt;	  /* end sequence number of the current window */
77 	int      ece_curr;	  /* ECE flag in this segment */
78 	int      ece_prev;	  /* ECE flag in the last segment */
79 	uint32_t num_cong_events; /* # of congestion events */
80 };
81 
82 static void	dctcp_ack_received(struct cc_var *ccv, uint16_t type);
83 static void	dctcp_after_idle(struct cc_var *ccv);
84 static void	dctcp_cb_destroy(struct cc_var *ccv);
85 static int	dctcp_cb_init(struct cc_var *ccv, void *ptr);
86 static void	dctcp_cong_signal(struct cc_var *ccv, uint32_t type);
87 static void	dctcp_conn_init(struct cc_var *ccv);
88 static void	dctcp_post_recovery(struct cc_var *ccv);
89 static void	dctcp_ecnpkt_handler(struct cc_var *ccv);
90 static void	dctcp_update_alpha(struct cc_var *ccv);
91 static size_t	dctcp_data_sz(void);
92 
93 struct cc_algo dctcp_cc_algo = {
94 	.name = "dctcp",
95 	.ack_received = dctcp_ack_received,
96 	.cb_destroy = dctcp_cb_destroy,
97 	.cb_init = dctcp_cb_init,
98 	.cong_signal = dctcp_cong_signal,
99 	.conn_init = dctcp_conn_init,
100 	.post_recovery = dctcp_post_recovery,
101 	.ecnpkt_handler = dctcp_ecnpkt_handler,
102 	.after_idle = dctcp_after_idle,
103 	.cc_data_sz = dctcp_data_sz,
104 };
105 
106 static void
107 dctcp_ack_received(struct cc_var *ccv, uint16_t type)
108 {
109 	struct dctcp *dctcp_data;
110 	int bytes_acked = 0;
111 
112 	dctcp_data = ccv->cc_data;
113 
114 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
115 		/*
116 		 * DCTCP doesn't treat receipt of ECN marked packet as a
117 		 * congestion event. Thus, DCTCP always executes the ACK
118 		 * processing out of congestion recovery.
119 		 */
120 		if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
121 			EXIT_CONGRECOVERY(CCV(ccv, t_flags));
122 			newreno_cc_ack_received(ccv, type);
123 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
124 		} else
125 			newreno_cc_ack_received(ccv, type);
126 
127 		if (type == CC_DUPACK)
128 			bytes_acked = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg));
129 
130 		if (type == CC_ACK)
131 			bytes_acked = ccv->bytes_this_ack;
132 
133 		/* Update total bytes. */
134 		dctcp_data->bytes_total += bytes_acked;
135 
136 		/* Update total marked bytes. */
137 		if (dctcp_data->ece_curr) {
138 			//XXRMS: For fluid-model DCTCP, update
139 			//cwnd here during for RTT fairness
140 			if (!dctcp_data->ece_prev
141 			    && bytes_acked > CCV(ccv, t_maxseg)) {
142 				dctcp_data->bytes_ecn +=
143 				    (bytes_acked - CCV(ccv, t_maxseg));
144 			} else
145 				dctcp_data->bytes_ecn += bytes_acked;
146 			dctcp_data->ece_prev = 1;
147 		} else {
148 			if (dctcp_data->ece_prev
149 			    && bytes_acked > CCV(ccv, t_maxseg))
150 				dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
151 			dctcp_data->ece_prev = 0;
152 		}
153 		dctcp_data->ece_curr = 0;
154 
155 		/*
156 		 * Update the fraction of marked bytes at the end of
157 		 * current window size.
158 		 */
159 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
160 		    SEQ_GT(ccv->curack, dctcp_data->save_sndnxt))
161 			dctcp_update_alpha(ccv);
162 	} else
163 		newreno_cc_ack_received(ccv, type);
164 }
165 
166 static size_t
167 dctcp_data_sz(void)
168 {
169 	return (sizeof(struct dctcp));
170 }
171 
172 static void
173 dctcp_after_idle(struct cc_var *ccv)
174 {
175 	struct dctcp *dctcp_data;
176 
177 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
178 		dctcp_data = ccv->cc_data;
179 
180 		/* Initialize internal parameters after idle time */
181 		dctcp_data->bytes_ecn = 0;
182 		dctcp_data->bytes_total = 0;
183 		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
184 		dctcp_data->alpha = V_dctcp_alpha;
185 		dctcp_data->ece_curr = 0;
186 		dctcp_data->ece_prev = 0;
187 		dctcp_data->num_cong_events = 0;
188 	}
189 
190 	newreno_cc_after_idle(ccv);
191 }
192 
193 static void
194 dctcp_cb_destroy(struct cc_var *ccv)
195 {
196 	free(ccv->cc_data, M_CC_MEM);
197 }
198 
199 static int
200 dctcp_cb_init(struct cc_var *ccv, void *ptr)
201 {
202 	struct dctcp *dctcp_data;
203 
204 	INP_WLOCK_ASSERT(tptoinpcb(ccv->ccvc.tcp));
205 	if (ptr == NULL) {
206 		dctcp_data = malloc(sizeof(struct dctcp), M_CC_MEM, M_NOWAIT|M_ZERO);
207 		if (dctcp_data == NULL)
208 			return (ENOMEM);
209 	} else
210 		dctcp_data = ptr;
211 	/* Initialize some key variables with sensible defaults. */
212 	dctcp_data->bytes_ecn = 0;
213 	dctcp_data->bytes_total = 0;
214 	/*
215 	 * When alpha is set to 0 in the beginning, DCTCP sender transfers as
216 	 * much data as possible until the value converges which may expand the
217 	 * queueing delay at the switch. When alpha is set to 1, queueing delay
218 	 * is kept small.
219 	 * Throughput-sensitive applications should have alpha = 0
220 	 * Latency-sensitive applications should have alpha = 1
221 	 *
222 	 * Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
223 	 * keep it 0 as default.
224 	 */
225 	dctcp_data->alpha = V_dctcp_alpha;
226 	dctcp_data->save_sndnxt = 0;
227 	dctcp_data->ce_prev = 0;
228 	dctcp_data->ece_curr = 0;
229 	dctcp_data->ece_prev = 0;
230 	dctcp_data->num_cong_events = 0;
231 
232 	ccv->cc_data = dctcp_data;
233 	return (0);
234 }
235 
236 /*
237  * Perform any necessary tasks before we enter congestion recovery.
238  */
239 static void
240 dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
241 {
242 	struct dctcp *dctcp_data;
243 	u_int cwin, mss;
244 
245 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
246 		dctcp_data = ccv->cc_data;
247 		cwin = CCV(ccv, snd_cwnd);
248 		mss = tcp_maxseg(ccv->ccvc.tcp);
249 
250 		switch (type) {
251 		case CC_NDUPACK:
252 			if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
253 				if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
254 					CCV(ccv, snd_ssthresh) =
255 					    max(cwin / 2, 2 * mss);
256 					dctcp_data->num_cong_events++;
257 				} else {
258 					/* cwnd has already updated as congestion
259 					 * recovery. Reverse cwnd value using
260 					 * snd_cwnd_prev and recalculate snd_ssthresh
261 					 */
262 					cwin = CCV(ccv, snd_cwnd_prev);
263 					CCV(ccv, snd_ssthresh) =
264 					    max(cwin / 2, 2 * mss);
265 				}
266 				ENTER_RECOVERY(CCV(ccv, t_flags));
267 			}
268 			break;
269 		case CC_ECN:
270 			/*
271 			 * Save current snd_cwnd when the host encounters both
272 			 * congestion recovery and fast recovery.
273 			 */
274 			CCV(ccv, snd_cwnd_prev) = cwin;
275 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
276 				if (V_dctcp_slowstart &&
277 				    dctcp_data->num_cong_events++ == 0) {
278 					CCV(ccv, snd_ssthresh) =
279 					    max(cwin / 2, 2 * mss);
280 					dctcp_data->alpha = MAX_ALPHA_VALUE;
281 					dctcp_data->bytes_ecn = 0;
282 					dctcp_data->bytes_total = 0;
283 					dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
284 				} else
285 					CCV(ccv, snd_ssthresh) =
286 					    max((cwin - (((uint64_t)cwin *
287 					    dctcp_data->alpha) >> (DCTCP_SHIFT+1))),
288 					    2 * mss);
289 				CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
290 				ENTER_CONGRECOVERY(CCV(ccv, t_flags));
291 			}
292 			dctcp_data->ece_curr = 1;
293 			break;
294 		case CC_RTO:
295 			CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd),
296 							 CCV(ccv, snd_cwnd)) / 2 / mss,
297 						     2) * mss;
298 			CCV(ccv, snd_cwnd) = mss;
299 			dctcp_update_alpha(ccv);
300 			dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
301 			dctcp_data->num_cong_events++;
302 			break;
303 		}
304 	} else
305 		newreno_cc_cong_signal(ccv, type);
306 }
307 
308 static void
309 dctcp_conn_init(struct cc_var *ccv)
310 {
311 	struct dctcp *dctcp_data;
312 
313 	dctcp_data = ccv->cc_data;
314 
315 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
316 		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
317 		if (V_dctcp_ect1)
318 			CCV(ccv, t_flags2) |= TF2_ECN_USE_ECT1;
319 	}
320 }
321 
322 /*
323  * Perform any necessary tasks before we exit congestion recovery.
324  */
325 static void
326 dctcp_post_recovery(struct cc_var *ccv)
327 {
328 	newreno_cc_post_recovery(ccv);
329 
330 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT)
331 		dctcp_update_alpha(ccv);
332 }
333 
334 /*
335  * Execute an additional ECN processing using ECN field in IP header
336  * and the CWR bit in TCP header.
337  */
338 static void
339 dctcp_ecnpkt_handler(struct cc_var *ccv)
340 {
341 	struct dctcp *dctcp_data;
342 	uint32_t ccflag;
343 	int acknow;
344 
345 	dctcp_data = ccv->cc_data;
346 	ccflag = ccv->flags;
347 	acknow = 0;
348 
349 	/*
350 	 * DCTCP responds with an ACK immediately when the CE state
351 	 * in between this segment and the last segment has changed.
352 	 */
353 	if (ccflag & CCF_IPHDR_CE) {
354 		if (!dctcp_data->ce_prev) {
355 			acknow = 1;
356 			dctcp_data->ce_prev = 1;
357 			CCV(ccv, t_flags2) |= TF2_ECN_SND_ECE;
358 		}
359 	} else {
360 		if (dctcp_data->ce_prev) {
361 			acknow = 1;
362 			dctcp_data->ce_prev = 0;
363 			CCV(ccv, t_flags2) &= ~TF2_ECN_SND_ECE;
364 		}
365 	}
366 
367 	if ((acknow) || (ccflag & CCF_TCPHDR_CWR)) {
368 		ccv->flags |= CCF_ACKNOW;
369 	} else {
370 		ccv->flags &= ~CCF_ACKNOW;
371 	}
372 }
373 
374 /*
375  * Update the fraction of marked bytes represented as 'alpha'.
376  * Also initialize several internal parameters at the end of this function.
377  */
378 static void
379 dctcp_update_alpha(struct cc_var *ccv)
380 {
381 	struct dctcp *dctcp_data;
382 	int alpha_prev;
383 
384 	dctcp_data = ccv->cc_data;
385 	alpha_prev = dctcp_data->alpha;
386 	dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);
387 
388 	/*
389 	 * Update alpha: alpha = (1 - g) * alpha + g * M.
390 	 * Here:
391 	 * g is weight factor
392 	 *	recommaded to be set to 1/16
393 	 *	small g = slow convergence between competitive DCTCP flows
394 	 *	large g = impacts low utilization of bandwidth at switches
395 	 * M is fraction of marked segments in last RTT
396 	 *	updated every RTT
397 	 * Alpha must be round to 0 - MAX_ALPHA_VALUE.
398 	 */
399 	dctcp_data->alpha = ulmin(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
400 	    ((uint64_t)dctcp_data->bytes_ecn << (DCTCP_SHIFT - V_dctcp_shift_g)) /
401 	    dctcp_data->bytes_total, MAX_ALPHA_VALUE);
402 
403 	/* Initialize internal parameters for next alpha calculation */
404 	dctcp_data->bytes_ecn = 0;
405 	dctcp_data->bytes_total = 0;
406 	dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
407 }
408 
409 static int
410 dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
411 {
412 	uint32_t new;
413 	int error;
414 
415 	new = V_dctcp_alpha;
416 	error = sysctl_handle_int(oidp, &new, 0, req);
417 	if (error == 0 && req->newptr != NULL) {
418 		if (new > MAX_ALPHA_VALUE)
419 			error = EINVAL;
420 		else
421 			V_dctcp_alpha = new;
422 	}
423 
424 	return (error);
425 }
426 
427 static int
428 dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
429 {
430 	uint32_t new;
431 	int error;
432 
433 	new = V_dctcp_shift_g;
434 	error = sysctl_handle_int(oidp, &new, 0, req);
435 	if (error == 0 && req->newptr != NULL) {
436 		if (new > DCTCP_SHIFT)
437 			error = EINVAL;
438 		else
439 			V_dctcp_shift_g = new;
440 	}
441 
442 	return (error);
443 }
444 
445 static int
446 dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
447 {
448 	uint32_t new;
449 	int error;
450 
451 	new = V_dctcp_slowstart;
452 	error = sysctl_handle_int(oidp, &new, 0, req);
453 	if (error == 0 && req->newptr != NULL) {
454 		if (new > 1)
455 			error = EINVAL;
456 		else
457 			V_dctcp_slowstart = new;
458 	}
459 
460 	return (error);
461 }
462 
463 SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
464 SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp,
465     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
466     "dctcp congestion control related settings");
467 
468 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
469     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
470     &VNET_NAME(dctcp_alpha), 0, &dctcp_alpha_handler, "IU",
471     "dctcp alpha parameter at start of session");
472 
473 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
474     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
475     &VNET_NAME(dctcp_shift_g), 4, &dctcp_shift_g_handler, "IU",
476     "dctcp shift parameter");
477 
478 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
479     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
480     &VNET_NAME(dctcp_slowstart), 0, &dctcp_slowstart_handler, "IU",
481     "half CWND reduction after the first slow start");
482 
483 SYSCTL_UINT(_net_inet_tcp_cc_dctcp, OID_AUTO, ect1,
484     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
485     &VNET_NAME(dctcp_ect1), 0,
486     "Send DCTCP segments with ÍP ECT(0) or ECT(1)");
487 
488 DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
489 MODULE_VERSION(dctcp, 2);
490