xref: /freebsd/sys/netinet/cc/cc_cubic.c (revision b3512b30dbec579da28028e29d8b33ec7242af68)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2010 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * This software was developed by Lawrence Stewart while studying at the Centre
9  * for Advanced Internet Architectures, Swinburne University of Technology, made
10  * possible in part by a grant from the Cisco University Research Program Fund
11  * at Community Foundation Silicon Valley.
12  *
13  * Portions of this software were developed at the Centre for Advanced
14  * Internet Architectures, Swinburne University of Technology, Melbourne,
15  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * An implementation of the CUBIC congestion control algorithm for FreeBSD,
41  * based on the Internet Draft "draft-rhee-tcpm-cubic-02" by Rhee, Xu and Ha.
42  * Originally released as part of the NewTCP research project at Swinburne
43  * University of Technology's Centre for Advanced Internet Architectures,
44  * Melbourne, Australia, which was made possible in part by a grant from the
45  * Cisco University Research Program Fund at Community Foundation Silicon
46  * Valley. More details are available at:
47  *   http://caia.swin.edu.au/urp/newtcp/
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/limits.h>
56 #include <sys/malloc.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 
63 #include <net/vnet.h>
64 
65 #include <netinet/tcp.h>
66 #include <netinet/tcp_seq.h>
67 #include <netinet/tcp_timer.h>
68 #include <netinet/tcp_var.h>
69 #include <netinet/cc/cc.h>
70 #include <netinet/cc/cc_cubic.h>
71 #include <netinet/cc/cc_module.h>
72 
73 static void	cubic_ack_received(struct cc_var *ccv, uint16_t type);
74 static void	cubic_cb_destroy(struct cc_var *ccv);
75 static int	cubic_cb_init(struct cc_var *ccv);
76 static void	cubic_cong_signal(struct cc_var *ccv, uint32_t type);
77 static void	cubic_conn_init(struct cc_var *ccv);
78 static int	cubic_mod_init(void);
79 static void	cubic_post_recovery(struct cc_var *ccv);
80 static void	cubic_record_rtt(struct cc_var *ccv);
81 static void	cubic_ssthresh_update(struct cc_var *ccv);
82 static void	cubic_after_idle(struct cc_var *ccv);
83 
84 struct cubic {
85 	/* Cubic K in fixed point form with CUBIC_SHIFT worth of precision. */
86 	int64_t		K;
87 	/* Sum of RTT samples across an epoch in ticks. */
88 	int64_t		sum_rtt_ticks;
89 	/* cwnd at the most recent congestion event. */
90 	unsigned long	max_cwnd;
91 	/* cwnd at the previous congestion event. */
92 	unsigned long	prev_max_cwnd;
93 	/* various flags */
94 	uint32_t	flags;
95 #define CUBICFLAG_CONG_EVENT	0x00000001	/* congestion experienced */
96 #define CUBICFLAG_IN_SLOWSTART	0x00000002	/* in slow start */
97 #define CUBICFLAG_IN_APPLIMIT	0x00000004	/* application limited */
98 	/* Minimum observed rtt in ticks. */
99 	int		min_rtt_ticks;
100 	/* Mean observed rtt between congestion epochs. */
101 	int		mean_rtt_ticks;
102 	/* ACKs since last congestion event. */
103 	int		epoch_ack_count;
104 	/* Time of last congestion event in ticks. */
105 	int		t_last_cong;
106 };
107 
108 static MALLOC_DEFINE(M_CUBIC, "cubic data",
109     "Per connection data required for the CUBIC congestion control algorithm");
110 
111 struct cc_algo cubic_cc_algo = {
112 	.name = "cubic",
113 	.ack_received = cubic_ack_received,
114 	.cb_destroy = cubic_cb_destroy,
115 	.cb_init = cubic_cb_init,
116 	.cong_signal = cubic_cong_signal,
117 	.conn_init = cubic_conn_init,
118 	.mod_init = cubic_mod_init,
119 	.post_recovery = cubic_post_recovery,
120 	.after_idle = cubic_after_idle,
121 };
122 
123 static void
124 cubic_ack_received(struct cc_var *ccv, uint16_t type)
125 {
126 	struct cubic *cubic_data;
127 	unsigned long w_tf, w_cubic_next;
128 	int ticks_since_cong;
129 
130 	cubic_data = ccv->cc_data;
131 	cubic_record_rtt(ccv);
132 
133 	/*
134 	 * For a regular ACK and we're not in cong/fast recovery and
135 	 * we're cwnd limited, always recalculate cwnd.
136 	 */
137 	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
138 	    (ccv->flags & CCF_CWND_LIMITED)) {
139 		 /* Use the logic in NewReno ack_received() for slow start. */
140 		if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
141 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE) {
142 			cubic_data->flags |= CUBICFLAG_IN_SLOWSTART;
143 			newreno_cc_algo.ack_received(ccv, type);
144 		} else {
145 			if (cubic_data->flags & (CUBICFLAG_IN_SLOWSTART |
146 						 CUBICFLAG_IN_APPLIMIT)) {
147 				cubic_data->flags &= ~(CUBICFLAG_IN_SLOWSTART |
148 						       CUBICFLAG_IN_APPLIMIT);
149 				cubic_data->t_last_cong = ticks;
150 				cubic_data->K = cubic_k(cubic_data->max_cwnd /
151 							CCV(ccv, t_maxseg));
152 			}
153 			if ((ticks_since_cong =
154 			    ticks - cubic_data->t_last_cong) < 0) {
155 				/*
156 				 * dragging t_last_cong along
157 				 */
158 				ticks_since_cong = INT_MAX;
159 				cubic_data->t_last_cong = ticks - INT_MAX;
160 			}
161 			/*
162 			 * The mean RTT is used to best reflect the equations in
163 			 * the I-D. Using min_rtt in the tf_cwnd calculation
164 			 * causes w_tf to grow much faster than it should if the
165 			 * RTT is dominated by network buffering rather than
166 			 * propagation delay.
167 			 */
168 			w_tf = tf_cwnd(ticks_since_cong,
169 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
170 			    CCV(ccv, t_maxseg));
171 
172 			w_cubic_next = cubic_cwnd(ticks_since_cong +
173 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
174 			    CCV(ccv, t_maxseg), cubic_data->K);
175 
176 			ccv->flags &= ~CCF_ABC_SENTAWND;
177 
178 			if (w_cubic_next < w_tf) {
179 				/*
180 				 * TCP-friendly region, follow tf
181 				 * cwnd growth.
182 				 */
183 				if (CCV(ccv, snd_cwnd) < w_tf)
184 					CCV(ccv, snd_cwnd) = ulmin(w_tf, INT_MAX);
185 			} else if (CCV(ccv, snd_cwnd) < w_cubic_next) {
186 				/*
187 				 * Concave or convex region, follow CUBIC
188 				 * cwnd growth.
189 				 * Only update snd_cwnd, if it doesn't shrink.
190 				 */
191 				CCV(ccv, snd_cwnd) = ulmin(w_cubic_next,
192 				    INT_MAX);
193 			}
194 
195 			/*
196 			 * If we're not in slow start and we're probing for a
197 			 * new cwnd limit at the start of a connection
198 			 * (happens when hostcache has a relevant entry),
199 			 * keep updating our current estimate of the
200 			 * max_cwnd.
201 			 */
202 			if (((cubic_data->flags & CUBICFLAG_CONG_EVENT) == 0) &&
203 			    cubic_data->max_cwnd < CCV(ccv, snd_cwnd)) {
204 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
205 				cubic_data->K = cubic_k(cubic_data->max_cwnd /
206 				    CCV(ccv, t_maxseg));
207 			}
208 		}
209 	} else if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
210 	    !(ccv->flags & CCF_CWND_LIMITED)) {
211 		cubic_data->flags |= CUBICFLAG_IN_APPLIMIT;
212 	}
213 }
214 
215 /*
216  * This is a Cubic specific implementation of after_idle.
217  *   - Reset cwnd by calling New Reno implementation of after_idle.
218  *   - Reset t_last_cong.
219  */
220 static void
221 cubic_after_idle(struct cc_var *ccv)
222 {
223 	struct cubic *cubic_data;
224 
225 	cubic_data = ccv->cc_data;
226 
227 	cubic_data->max_cwnd = ulmax(cubic_data->max_cwnd, CCV(ccv, snd_cwnd));
228 	cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
229 
230 	newreno_cc_algo.after_idle(ccv);
231 	cubic_data->t_last_cong = ticks;
232 }
233 
234 static void
235 cubic_cb_destroy(struct cc_var *ccv)
236 {
237 	free(ccv->cc_data, M_CUBIC);
238 }
239 
240 static int
241 cubic_cb_init(struct cc_var *ccv)
242 {
243 	struct cubic *cubic_data;
244 
245 	cubic_data = malloc(sizeof(struct cubic), M_CUBIC, M_NOWAIT|M_ZERO);
246 
247 	if (cubic_data == NULL)
248 		return (ENOMEM);
249 
250 	/* Init some key variables with sensible defaults. */
251 	cubic_data->t_last_cong = ticks;
252 	cubic_data->min_rtt_ticks = TCPTV_SRTTBASE;
253 	cubic_data->mean_rtt_ticks = 1;
254 
255 	ccv->cc_data = cubic_data;
256 
257 	return (0);
258 }
259 
260 /*
261  * Perform any necessary tasks before we enter congestion recovery.
262  */
263 static void
264 cubic_cong_signal(struct cc_var *ccv, uint32_t type)
265 {
266 	struct cubic *cubic_data;
267 
268 	cubic_data = ccv->cc_data;
269 
270 	switch (type) {
271 	case CC_NDUPACK:
272 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
273 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
274 				cubic_ssthresh_update(ccv);
275 				cubic_data->flags |= CUBICFLAG_CONG_EVENT;
276 				cubic_data->t_last_cong = ticks;
277 				cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
278 			}
279 			ENTER_RECOVERY(CCV(ccv, t_flags));
280 		}
281 		break;
282 
283 	case CC_ECN:
284 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
285 			cubic_ssthresh_update(ccv);
286 			cubic_data->flags |= CUBICFLAG_CONG_EVENT;
287 			cubic_data->t_last_cong = ticks;
288 			cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
289 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
290 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
291 		}
292 		break;
293 
294 	case CC_RTO:
295 		/*
296 		 * Grab the current time and record it so we know when the
297 		 * most recent congestion event was. Only record it when the
298 		 * timeout has fired more than once, as there is a reasonable
299 		 * chance the first one is a false alarm and may not indicate
300 		 * congestion.
301 		 * This will put Cubic firmly into the concave / TCP friendly
302 		 * region, for a slower ramp-up after two consecutive RTOs.
303 		 */
304 		if (CCV(ccv, t_rxtshift) >= 2) {
305 			cubic_data->flags |= CUBICFLAG_CONG_EVENT;
306 			cubic_data->t_last_cong = ticks;
307 			cubic_data->max_cwnd = CCV(ccv, snd_cwnd_prev);
308 			cubic_data->K = cubic_k(cubic_data->max_cwnd /
309 						CCV(ccv, t_maxseg));
310 		}
311 		break;
312 	}
313 }
314 
315 static void
316 cubic_conn_init(struct cc_var *ccv)
317 {
318 	struct cubic *cubic_data;
319 
320 	cubic_data = ccv->cc_data;
321 
322 	/*
323 	 * Ensure we have a sane initial value for max_cwnd recorded. Without
324 	 * this here bad things happen when entries from the TCP hostcache
325 	 * get used.
326 	 */
327 	cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
328 }
329 
330 static int
331 cubic_mod_init(void)
332 {
333 	return (0);
334 }
335 
336 /*
337  * Perform any necessary tasks before we exit congestion recovery.
338  */
339 static void
340 cubic_post_recovery(struct cc_var *ccv)
341 {
342 	struct cubic *cubic_data;
343 	int pipe;
344 
345 	cubic_data = ccv->cc_data;
346 	pipe = 0;
347 
348 	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
349 		/*
350 		 * If inflight data is less than ssthresh, set cwnd
351 		 * conservatively to avoid a burst of data, as suggested in
352 		 * the NewReno RFC. Otherwise, use the CUBIC method.
353 		 *
354 		 * XXXLAS: Find a way to do this without needing curack
355 		 */
356 		if (V_tcp_do_rfc6675_pipe)
357 			pipe = tcp_compute_pipe(ccv->ccvc.tcp);
358 		else
359 			pipe = CCV(ccv, snd_max) - ccv->curack;
360 
361 		if (pipe < CCV(ccv, snd_ssthresh))
362 			/*
363 			 * Ensure that cwnd does not collapse to 1 MSS under
364 			 * adverse conditions. Implements RFC6582
365 			 */
366 			CCV(ccv, snd_cwnd) = max(pipe, CCV(ccv, t_maxseg)) +
367 			    CCV(ccv, t_maxseg);
368 		else
369 			/* Update cwnd based on beta and adjusted max_cwnd. */
370 			CCV(ccv, snd_cwnd) = max(((uint64_t)cubic_data->max_cwnd *
371 			    CUBIC_BETA) >> CUBIC_SHIFT,
372 			    2 * CCV(ccv, t_maxseg));
373 	}
374 
375 	/* Calculate the average RTT between congestion epochs. */
376 	if (cubic_data->epoch_ack_count > 0 &&
377 	    cubic_data->sum_rtt_ticks >= cubic_data->epoch_ack_count) {
378 		cubic_data->mean_rtt_ticks = (int)(cubic_data->sum_rtt_ticks /
379 		    cubic_data->epoch_ack_count);
380 	}
381 
382 	cubic_data->epoch_ack_count = 0;
383 	cubic_data->sum_rtt_ticks = 0;
384 }
385 
386 /*
387  * Record the min RTT and sum samples for the epoch average RTT calculation.
388  */
389 static void
390 cubic_record_rtt(struct cc_var *ccv)
391 {
392 	struct cubic *cubic_data;
393 	int t_srtt_ticks;
394 
395 	/* Ignore srtt until a min number of samples have been taken. */
396 	if (CCV(ccv, t_rttupdated) >= CUBIC_MIN_RTT_SAMPLES) {
397 		cubic_data = ccv->cc_data;
398 		t_srtt_ticks = CCV(ccv, t_srtt) / TCP_RTT_SCALE;
399 
400 		/*
401 		 * Record the current SRTT as our minrtt if it's the smallest
402 		 * we've seen or minrtt is currently equal to its initialised
403 		 * value.
404 		 *
405 		 * XXXLAS: Should there be some hysteresis for minrtt?
406 		 */
407 		if ((t_srtt_ticks < cubic_data->min_rtt_ticks ||
408 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)) {
409 			cubic_data->min_rtt_ticks = max(1, t_srtt_ticks);
410 
411 			/*
412 			 * If the connection is within its first congestion
413 			 * epoch, ensure we prime mean_rtt_ticks with a
414 			 * reasonable value until the epoch average RTT is
415 			 * calculated in cubic_post_recovery().
416 			 */
417 			if (cubic_data->min_rtt_ticks >
418 			    cubic_data->mean_rtt_ticks)
419 				cubic_data->mean_rtt_ticks =
420 				    cubic_data->min_rtt_ticks;
421 		}
422 
423 		/* Sum samples for epoch average RTT calculation. */
424 		cubic_data->sum_rtt_ticks += t_srtt_ticks;
425 		cubic_data->epoch_ack_count++;
426 	}
427 }
428 
429 /*
430  * Update the ssthresh in the event of congestion.
431  */
432 static void
433 cubic_ssthresh_update(struct cc_var *ccv)
434 {
435 	struct cubic *cubic_data;
436 	uint32_t ssthresh;
437 	uint32_t cwnd;
438 
439 	cubic_data = ccv->cc_data;
440 	cwnd = CCV(ccv, snd_cwnd);
441 
442 	/* Fast convergence heuristic. */
443 	if (cwnd < cubic_data->max_cwnd) {
444 		cwnd = ((uint64_t)cwnd * CUBIC_FC_FACTOR) >> CUBIC_SHIFT;
445 	}
446 	cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
447 	cubic_data->max_cwnd = cwnd;
448 
449 	/*
450 	 * On the first congestion event, set ssthresh to cwnd * 0.5
451 	 * and reduce max_cwnd to cwnd * beta. This aligns the cubic concave
452 	 * region appropriately. On subsequent congestion events, set
453 	 * ssthresh to cwnd * beta.
454 	 */
455 	if ((cubic_data->flags & CUBICFLAG_CONG_EVENT) == 0) {
456 		ssthresh = cwnd >> 1;
457 		cubic_data->max_cwnd = ((uint64_t)cwnd *
458 		    CUBIC_BETA) >> CUBIC_SHIFT;
459 	} else {
460 		ssthresh = ((uint64_t)cwnd *
461 		    CUBIC_BETA) >> CUBIC_SHIFT;
462 	}
463 	CCV(ccv, snd_ssthresh) = max(ssthresh, 2 * CCV(ccv, t_maxseg));
464 }
465 
466 DECLARE_CC_MODULE(cubic, &cubic_cc_algo);
467 MODULE_VERSION(cubic, 1);
468