xref: /freebsd/sys/netinet/cc/cc_cubic.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2008-2010 Lawrence Stewart <lstewart@freebsd.org>
3  * Copyright (c) 2010 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * This software was developed by Lawrence Stewart while studying at the Centre
7  * for Advanced Internet Architectures, Swinburne University of Technology, made
8  * possible in part by a grant from the Cisco University Research Program Fund
9  * at Community Foundation Silicon Valley.
10  *
11  * Portions of this software were developed at the Centre for Advanced
12  * Internet Architectures, Swinburne University of Technology, Melbourne,
13  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * An implementation of the CUBIC congestion control algorithm for FreeBSD,
39  * based on the Internet Draft "draft-rhee-tcpm-cubic-02" by Rhee, Xu and Ha.
40  * Originally released as part of the NewTCP research project at Swinburne
41  * University of Technology's Centre for Advanced Internet Architectures,
42  * Melbourne, Australia, which was made possible in part by a grant from the
43  * Cisco University Research Program Fund at Community Foundation Silicon
44  * Valley. More details are available at:
45  *   http://caia.swin.edu.au/urp/newtcp/
46  */
47 
48 #include <sys/cdefs.h>
49 __FBSDID("$FreeBSD$");
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/module.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 
60 #include <net/vnet.h>
61 
62 #include <netinet/cc.h>
63 #include <netinet/tcp_seq.h>
64 #include <netinet/tcp_timer.h>
65 #include <netinet/tcp_var.h>
66 
67 #include <netinet/cc/cc_cubic.h>
68 #include <netinet/cc/cc_module.h>
69 
70 static void	cubic_ack_received(struct cc_var *ccv, uint16_t type);
71 static void	cubic_cb_destroy(struct cc_var *ccv);
72 static int	cubic_cb_init(struct cc_var *ccv);
73 static void	cubic_cong_signal(struct cc_var *ccv, uint32_t type);
74 static void	cubic_conn_init(struct cc_var *ccv);
75 static int	cubic_mod_init(void);
76 static void	cubic_post_recovery(struct cc_var *ccv);
77 static void	cubic_record_rtt(struct cc_var *ccv);
78 static void	cubic_ssthresh_update(struct cc_var *ccv);
79 
80 struct cubic {
81 	/* Cubic K in fixed point form with CUBIC_SHIFT worth of precision. */
82 	int64_t		K;
83 	/* Sum of RTT samples across an epoch in ticks. */
84 	int64_t		sum_rtt_ticks;
85 	/* cwnd at the most recent congestion event. */
86 	unsigned long	max_cwnd;
87 	/* cwnd at the previous congestion event. */
88 	unsigned long	prev_max_cwnd;
89 	/* Number of congestion events. */
90 	uint32_t	num_cong_events;
91 	/* Minimum observed rtt in ticks. */
92 	int		min_rtt_ticks;
93 	/* Mean observed rtt between congestion epochs. */
94 	int		mean_rtt_ticks;
95 	/* ACKs since last congestion event. */
96 	int		epoch_ack_count;
97 	/* Time of last congestion event in ticks. */
98 	int		t_last_cong;
99 };
100 
101 static MALLOC_DEFINE(M_CUBIC, "cubic data",
102     "Per connection data required for the CUBIC congestion control algorithm");
103 
104 struct cc_algo cubic_cc_algo = {
105 	.name = "cubic",
106 	.ack_received = cubic_ack_received,
107 	.cb_destroy = cubic_cb_destroy,
108 	.cb_init = cubic_cb_init,
109 	.cong_signal = cubic_cong_signal,
110 	.conn_init = cubic_conn_init,
111 	.mod_init = cubic_mod_init,
112 	.post_recovery = cubic_post_recovery,
113 };
114 
115 static void
116 cubic_ack_received(struct cc_var *ccv, uint16_t type)
117 {
118 	struct cubic *cubic_data;
119 	unsigned long w_tf, w_cubic_next;
120 	int ticks_since_cong;
121 
122 	cubic_data = ccv->cc_data;
123 	cubic_record_rtt(ccv);
124 
125 	/*
126 	 * Regular ACK and we're not in cong/fast recovery and we're cwnd
127 	 * limited and we're either not doing ABC or are slow starting or are
128 	 * doing ABC and we've sent a cwnd's worth of bytes.
129 	 */
130 	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
131 	    (ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
132 	    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
133 	    (V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
134 		 /* Use the logic in NewReno ack_received() for slow start. */
135 		if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
136 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)
137 			newreno_cc_algo.ack_received(ccv, type);
138 		else {
139 			ticks_since_cong = ticks - cubic_data->t_last_cong;
140 
141 			/*
142 			 * The mean RTT is used to best reflect the equations in
143 			 * the I-D. Using min_rtt in the tf_cwnd calculation
144 			 * causes w_tf to grow much faster than it should if the
145 			 * RTT is dominated by network buffering rather than
146 			 * propogation delay.
147 			 */
148 			w_tf = tf_cwnd(ticks_since_cong,
149 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
150 			    CCV(ccv, t_maxseg));
151 
152 			w_cubic_next = cubic_cwnd(ticks_since_cong +
153 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
154 			    CCV(ccv, t_maxseg), cubic_data->K);
155 
156 			ccv->flags &= ~CCF_ABC_SENTAWND;
157 
158 			if (w_cubic_next < w_tf)
159 				/*
160 				 * TCP-friendly region, follow tf
161 				 * cwnd growth.
162 				 */
163 				CCV(ccv, snd_cwnd) = w_tf;
164 
165 			else if (CCV(ccv, snd_cwnd) < w_cubic_next) {
166 				/*
167 				 * Concave or convex region, follow CUBIC
168 				 * cwnd growth.
169 				 */
170 				if (V_tcp_do_rfc3465)
171 					CCV(ccv, snd_cwnd) = w_cubic_next;
172 				else
173 					CCV(ccv, snd_cwnd) += ((w_cubic_next -
174 					    CCV(ccv, snd_cwnd)) *
175 					    CCV(ccv, t_maxseg)) /
176 					    CCV(ccv, snd_cwnd);
177 			}
178 
179 			/*
180 			 * If we're not in slow start and we're probing for a
181 			 * new cwnd limit at the start of a connection
182 			 * (happens when hostcache has a relevant entry),
183 			 * keep updating our current estimate of the
184 			 * max_cwnd.
185 			 */
186 			if (cubic_data->num_cong_events == 0 &&
187 			    cubic_data->max_cwnd < CCV(ccv, snd_cwnd))
188 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
189 		}
190 	}
191 }
192 
193 static void
194 cubic_cb_destroy(struct cc_var *ccv)
195 {
196 
197 	if (ccv->cc_data != NULL)
198 		free(ccv->cc_data, M_CUBIC);
199 }
200 
201 static int
202 cubic_cb_init(struct cc_var *ccv)
203 {
204 	struct cubic *cubic_data;
205 
206 	cubic_data = malloc(sizeof(struct cubic), M_CUBIC, M_NOWAIT|M_ZERO);
207 
208 	if (cubic_data == NULL)
209 		return (ENOMEM);
210 
211 	/* Init some key variables with sensible defaults. */
212 	cubic_data->t_last_cong = ticks;
213 	cubic_data->min_rtt_ticks = TCPTV_SRTTBASE;
214 	cubic_data->mean_rtt_ticks = 1;
215 
216 	ccv->cc_data = cubic_data;
217 
218 	return (0);
219 }
220 
221 /*
222  * Perform any necessary tasks before we enter congestion recovery.
223  */
224 static void
225 cubic_cong_signal(struct cc_var *ccv, uint32_t type)
226 {
227 	struct cubic *cubic_data;
228 
229 	cubic_data = ccv->cc_data;
230 
231 	switch (type) {
232 	case CC_NDUPACK:
233 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
234 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
235 				cubic_ssthresh_update(ccv);
236 				cubic_data->num_cong_events++;
237 				cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
238 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
239 			}
240 			ENTER_RECOVERY(CCV(ccv, t_flags));
241 		}
242 		break;
243 
244 	case CC_ECN:
245 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
246 			cubic_ssthresh_update(ccv);
247 			cubic_data->num_cong_events++;
248 			cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
249 			cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
250 			cubic_data->t_last_cong = ticks;
251 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
252 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
253 		}
254 		break;
255 
256 	case CC_RTO:
257 		/*
258 		 * Grab the current time and record it so we know when the
259 		 * most recent congestion event was. Only record it when the
260 		 * timeout has fired more than once, as there is a reasonable
261 		 * chance the first one is a false alarm and may not indicate
262 		 * congestion.
263 		 */
264 		if (CCV(ccv, t_rxtshift) >= 2)
265 			cubic_data->num_cong_events++;
266 			cubic_data->t_last_cong = ticks;
267 		break;
268 	}
269 }
270 
271 static void
272 cubic_conn_init(struct cc_var *ccv)
273 {
274 	struct cubic *cubic_data;
275 
276 	cubic_data = ccv->cc_data;
277 
278 	/*
279 	 * Ensure we have a sane initial value for max_cwnd recorded. Without
280 	 * this here bad things happen when entries from the TCP hostcache
281 	 * get used.
282 	 */
283 	cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
284 }
285 
286 static int
287 cubic_mod_init(void)
288 {
289 
290 	cubic_cc_algo.after_idle = newreno_cc_algo.after_idle;
291 
292 	return (0);
293 }
294 
295 /*
296  * Perform any necessary tasks before we exit congestion recovery.
297  */
298 static void
299 cubic_post_recovery(struct cc_var *ccv)
300 {
301 	struct cubic *cubic_data;
302 
303 	cubic_data = ccv->cc_data;
304 
305 	/* Fast convergence heuristic. */
306 	if (cubic_data->max_cwnd < cubic_data->prev_max_cwnd)
307 		cubic_data->max_cwnd = (cubic_data->max_cwnd * CUBIC_FC_FACTOR)
308 		    >> CUBIC_SHIFT;
309 
310 	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
311 		/*
312 		 * If inflight data is less than ssthresh, set cwnd
313 		 * conservatively to avoid a burst of data, as suggested in
314 		 * the NewReno RFC. Otherwise, use the CUBIC method.
315 		 *
316 		 * XXXLAS: Find a way to do this without needing curack
317 		 */
318 		if (SEQ_GT(ccv->curack + CCV(ccv, snd_ssthresh),
319 		    CCV(ccv, snd_max)))
320 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_max) - ccv->curack +
321 			    CCV(ccv, t_maxseg);
322 		else
323 			/* Update cwnd based on beta and adjusted max_cwnd. */
324 			CCV(ccv, snd_cwnd) = max(1, ((CUBIC_BETA *
325 			    cubic_data->max_cwnd) >> CUBIC_SHIFT));
326 	}
327 	cubic_data->t_last_cong = ticks;
328 
329 	/* Calculate the average RTT between congestion epochs. */
330 	if (cubic_data->epoch_ack_count > 0 &&
331 	    cubic_data->sum_rtt_ticks >= cubic_data->epoch_ack_count) {
332 		cubic_data->mean_rtt_ticks = (int)(cubic_data->sum_rtt_ticks /
333 		    cubic_data->epoch_ack_count);
334 	}
335 
336 	cubic_data->epoch_ack_count = 0;
337 	cubic_data->sum_rtt_ticks = 0;
338 	cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
339 }
340 
341 /*
342  * Record the min RTT and sum samples for the epoch average RTT calculation.
343  */
344 static void
345 cubic_record_rtt(struct cc_var *ccv)
346 {
347 	struct cubic *cubic_data;
348 	int t_srtt_ticks;
349 
350 	/* Ignore srtt until a min number of samples have been taken. */
351 	if (CCV(ccv, t_rttupdated) >= CUBIC_MIN_RTT_SAMPLES) {
352 		cubic_data = ccv->cc_data;
353 		t_srtt_ticks = CCV(ccv, t_srtt) / TCP_RTT_SCALE;
354 
355 		/*
356 		 * Record the current SRTT as our minrtt if it's the smallest
357 		 * we've seen or minrtt is currently equal to its initialised
358 		 * value.
359 		 *
360 		 * XXXLAS: Should there be some hysteresis for minrtt?
361 		 */
362 		if ((t_srtt_ticks < cubic_data->min_rtt_ticks ||
363 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)) {
364 			cubic_data->min_rtt_ticks = max(1, t_srtt_ticks);
365 
366 			/*
367 			 * If the connection is within its first congestion
368 			 * epoch, ensure we prime mean_rtt_ticks with a
369 			 * reasonable value until the epoch average RTT is
370 			 * calculated in cubic_post_recovery().
371 			 */
372 			if (cubic_data->min_rtt_ticks >
373 			    cubic_data->mean_rtt_ticks)
374 				cubic_data->mean_rtt_ticks =
375 				    cubic_data->min_rtt_ticks;
376 		}
377 
378 		/* Sum samples for epoch average RTT calculation. */
379 		cubic_data->sum_rtt_ticks += t_srtt_ticks;
380 		cubic_data->epoch_ack_count++;
381 	}
382 }
383 
384 /*
385  * Update the ssthresh in the event of congestion.
386  */
387 static void
388 cubic_ssthresh_update(struct cc_var *ccv)
389 {
390 	struct cubic *cubic_data;
391 
392 	cubic_data = ccv->cc_data;
393 
394 	/*
395 	 * On the first congestion event, set ssthresh to cwnd * 0.5, on
396 	 * subsequent congestion events, set it to cwnd * beta.
397 	 */
398 	if (cubic_data->num_cong_events == 0)
399 		CCV(ccv, snd_ssthresh) = CCV(ccv, snd_cwnd) >> 1;
400 	else
401 		CCV(ccv, snd_ssthresh) = (CCV(ccv, snd_cwnd) * CUBIC_BETA)
402 		    >> CUBIC_SHIFT;
403 }
404 
405 
406 DECLARE_CC_MODULE(cubic, &cubic_cc_algo);
407