xref: /freebsd/sys/netinet/cc/cc_cubic.c (revision 5dcd9c10612684d1c823670cbb5b4715028784e7)
1 /*-
2  * Copyright (c) 2008-2010 Lawrence Stewart <lstewart@freebsd.org>
3  * Copyright (c) 2010 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * This software was developed by Lawrence Stewart while studying at the Centre
7  * for Advanced Internet Architectures, Swinburne University, made possible in
8  * part by a grant from the Cisco University Research Program Fund at Community
9  * Foundation Silicon Valley.
10  *
11  * Portions of this software were developed at the Centre for Advanced
12  * Internet Architectures, Swinburne University of Technology, Melbourne,
13  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * An implementation of the CUBIC congestion control algorithm for FreeBSD,
39  * based on the Internet Draft "draft-rhee-tcpm-cubic-02" by Rhee, Xu and Ha.
40  * Originally released as part of the NewTCP research project at Swinburne
41  * University's Centre for Advanced Internet Architectures, Melbourne,
42  * Australia, which was made possible in part by a grant from the Cisco
43  * University Research Program Fund at Community Foundation Silicon Valley. More
44  * details are available at:
45  *   http://caia.swin.edu.au/urp/newtcp/
46  */
47 
48 #include <sys/cdefs.h>
49 __FBSDID("$FreeBSD$");
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/module.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 
60 #include <net/vnet.h>
61 
62 #include <netinet/cc.h>
63 #include <netinet/tcp_seq.h>
64 #include <netinet/tcp_timer.h>
65 #include <netinet/tcp_var.h>
66 
67 #include <netinet/cc/cc_cubic.h>
68 #include <netinet/cc/cc_module.h>
69 
70 static void	cubic_ack_received(struct cc_var *ccv, uint16_t type);
71 static void	cubic_cb_destroy(struct cc_var *ccv);
72 static int	cubic_cb_init(struct cc_var *ccv);
73 static void	cubic_cong_signal(struct cc_var *ccv, uint32_t type);
74 static void	cubic_conn_init(struct cc_var *ccv);
75 static int	cubic_mod_init(void);
76 static void	cubic_post_recovery(struct cc_var *ccv);
77 static void	cubic_record_rtt(struct cc_var *ccv);
78 static void	cubic_ssthresh_update(struct cc_var *ccv);
79 
80 struct cubic {
81 	/* Cubic K in fixed point form with CUBIC_SHIFT worth of precision. */
82 	int64_t		K;
83 	/* Sum of RTT samples across an epoch in ticks. */
84 	int64_t		sum_rtt_ticks;
85 	/* cwnd at the most recent congestion event. */
86 	unsigned long	max_cwnd;
87 	/* cwnd at the previous congestion event. */
88 	unsigned long	prev_max_cwnd;
89 	/* Number of congestion events. */
90 	uint32_t	num_cong_events;
91 	/* Minimum observed rtt in ticks. */
92 	int		min_rtt_ticks;
93 	/* Mean observed rtt between congestion epochs. */
94 	int		mean_rtt_ticks;
95 	/* ACKs since last congestion event. */
96 	int		epoch_ack_count;
97 	/* Time of last congestion event in ticks. */
98 	int		t_last_cong;
99 };
100 
101 MALLOC_DECLARE(M_CUBIC);
102 MALLOC_DEFINE(M_CUBIC, "cubic data",
103     "Per connection data required for the CUBIC congestion control algorithm");
104 
105 struct cc_algo cubic_cc_algo = {
106 	.name = "cubic",
107 	.ack_received = cubic_ack_received,
108 	.cb_destroy = cubic_cb_destroy,
109 	.cb_init = cubic_cb_init,
110 	.cong_signal = cubic_cong_signal,
111 	.conn_init = cubic_conn_init,
112 	.mod_init = cubic_mod_init,
113 	.post_recovery = cubic_post_recovery,
114 };
115 
116 static void
117 cubic_ack_received(struct cc_var *ccv, uint16_t type)
118 {
119 	struct cubic *cubic_data;
120 	unsigned long w_tf, w_cubic_next;
121 	int ticks_since_cong;
122 
123 	cubic_data = ccv->cc_data;
124 	cubic_record_rtt(ccv);
125 
126 	/*
127 	 * Regular ACK and we're not in cong/fast recovery and we're cwnd
128 	 * limited and we're either not doing ABC or are slow starting or are
129 	 * doing ABC and we've sent a cwnd's worth of bytes.
130 	 */
131 	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
132 	    (ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
133 	    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
134 	    (V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
135 		 /* Use the logic in NewReno ack_received() for slow start. */
136 		if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
137 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)
138 			newreno_cc_algo.ack_received(ccv, type);
139 		else {
140 			ticks_since_cong = ticks - cubic_data->t_last_cong;
141 
142 			/*
143 			 * The mean RTT is used to best reflect the equations in
144 			 * the I-D. Using min_rtt in the tf_cwnd calculation
145 			 * causes w_tf to grow much faster than it should if the
146 			 * RTT is dominated by network buffering rather than
147 			 * propogation delay.
148 			 */
149 			w_tf = tf_cwnd(ticks_since_cong,
150 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
151 			    CCV(ccv, t_maxseg));
152 
153 			w_cubic_next = cubic_cwnd(ticks_since_cong +
154 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
155 			    CCV(ccv, t_maxseg), cubic_data->K);
156 
157 			ccv->flags &= ~CCF_ABC_SENTAWND;
158 
159 			if (w_cubic_next < w_tf)
160 				/*
161 				 * TCP-friendly region, follow tf
162 				 * cwnd growth.
163 				 */
164 				CCV(ccv, snd_cwnd) = w_tf;
165 
166 			else if (CCV(ccv, snd_cwnd) < w_cubic_next) {
167 				/*
168 				 * Concave or convex region, follow CUBIC
169 				 * cwnd growth.
170 				 */
171 				if (V_tcp_do_rfc3465)
172 					CCV(ccv, snd_cwnd) = w_cubic_next;
173 				else
174 					CCV(ccv, snd_cwnd) += ((w_cubic_next -
175 					    CCV(ccv, snd_cwnd)) *
176 					    CCV(ccv, t_maxseg)) /
177 					    CCV(ccv, snd_cwnd);
178 			}
179 
180 			/*
181 			 * If we're not in slow start and we're probing for a
182 			 * new cwnd limit at the start of a connection
183 			 * (happens when hostcache has a relevant entry),
184 			 * keep updating our current estimate of the
185 			 * max_cwnd.
186 			 */
187 			if (cubic_data->num_cong_events == 0 &&
188 			    cubic_data->max_cwnd < CCV(ccv, snd_cwnd))
189 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
190 		}
191 	}
192 }
193 
194 static void
195 cubic_cb_destroy(struct cc_var *ccv)
196 {
197 
198 	if (ccv->cc_data != NULL)
199 		free(ccv->cc_data, M_CUBIC);
200 }
201 
202 static int
203 cubic_cb_init(struct cc_var *ccv)
204 {
205 	struct cubic *cubic_data;
206 
207 	cubic_data = malloc(sizeof(struct cubic), M_CUBIC, M_NOWAIT|M_ZERO);
208 
209 	if (cubic_data == NULL)
210 		return (ENOMEM);
211 
212 	/* Init some key variables with sensible defaults. */
213 	cubic_data->t_last_cong = ticks;
214 	cubic_data->min_rtt_ticks = TCPTV_SRTTBASE;
215 	cubic_data->mean_rtt_ticks = 1;
216 
217 	ccv->cc_data = cubic_data;
218 
219 	return (0);
220 }
221 
222 /*
223  * Perform any necessary tasks before we enter congestion recovery.
224  */
225 static void
226 cubic_cong_signal(struct cc_var *ccv, uint32_t type)
227 {
228 	struct cubic *cubic_data;
229 
230 	cubic_data = ccv->cc_data;
231 
232 	switch (type) {
233 	case CC_NDUPACK:
234 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
235 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
236 				cubic_ssthresh_update(ccv);
237 				cubic_data->num_cong_events++;
238 				cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
239 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
240 			}
241 			ENTER_RECOVERY(CCV(ccv, t_flags));
242 		}
243 		break;
244 
245 	case CC_ECN:
246 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
247 			cubic_ssthresh_update(ccv);
248 			cubic_data->num_cong_events++;
249 			cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
250 			cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
251 			cubic_data->t_last_cong = ticks;
252 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
253 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
254 		}
255 		break;
256 
257 	case CC_RTO:
258 		/*
259 		 * Grab the current time and record it so we know when the
260 		 * most recent congestion event was. Only record it when the
261 		 * timeout has fired more than once, as there is a reasonable
262 		 * chance the first one is a false alarm and may not indicate
263 		 * congestion.
264 		 */
265 		if (CCV(ccv, t_rxtshift) >= 2)
266 			cubic_data->num_cong_events++;
267 			cubic_data->t_last_cong = ticks;
268 		break;
269 	}
270 }
271 
272 static void
273 cubic_conn_init(struct cc_var *ccv)
274 {
275 	struct cubic *cubic_data;
276 
277 	cubic_data = ccv->cc_data;
278 
279 	/*
280 	 * Ensure we have a sane initial value for max_cwnd recorded. Without
281 	 * this here bad things happen when entries from the TCP hostcache
282 	 * get used.
283 	 */
284 	cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
285 }
286 
287 static int
288 cubic_mod_init(void)
289 {
290 
291 	cubic_cc_algo.after_idle = newreno_cc_algo.after_idle;
292 
293 	return (0);
294 }
295 
296 /*
297  * Perform any necessary tasks before we exit congestion recovery.
298  */
299 static void
300 cubic_post_recovery(struct cc_var *ccv)
301 {
302 	struct cubic *cubic_data;
303 
304 	cubic_data = ccv->cc_data;
305 
306 	/* Fast convergence heuristic. */
307 	if (cubic_data->max_cwnd < cubic_data->prev_max_cwnd)
308 		cubic_data->max_cwnd = (cubic_data->max_cwnd * CUBIC_FC_FACTOR)
309 		    >> CUBIC_SHIFT;
310 
311 	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
312 		/*
313 		 * If inflight data is less than ssthresh, set cwnd
314 		 * conservatively to avoid a burst of data, as suggested in
315 		 * the NewReno RFC. Otherwise, use the CUBIC method.
316 		 *
317 		 * XXXLAS: Find a way to do this without needing curack
318 		 */
319 		if (SEQ_GT(ccv->curack + CCV(ccv, snd_ssthresh),
320 		    CCV(ccv, snd_max)))
321 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_max) - ccv->curack +
322 			    CCV(ccv, t_maxseg);
323 		else
324 			/* Update cwnd based on beta and adjusted max_cwnd. */
325 			CCV(ccv, snd_cwnd) = max(1, ((CUBIC_BETA *
326 			    cubic_data->max_cwnd) >> CUBIC_SHIFT));
327 	}
328 	cubic_data->t_last_cong = ticks;
329 
330 	/* Calculate the average RTT between congestion epochs. */
331 	if (cubic_data->epoch_ack_count > 0 &&
332 	    cubic_data->sum_rtt_ticks >= cubic_data->epoch_ack_count) {
333 		cubic_data->mean_rtt_ticks = (int)(cubic_data->sum_rtt_ticks /
334 		    cubic_data->epoch_ack_count);
335 	}
336 
337 	cubic_data->epoch_ack_count = 0;
338 	cubic_data->sum_rtt_ticks = 0;
339 	cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
340 }
341 
342 /*
343  * Record the min RTT and sum samples for the epoch average RTT calculation.
344  */
345 static void
346 cubic_record_rtt(struct cc_var *ccv)
347 {
348 	struct cubic *cubic_data;
349 	int t_srtt_ticks;
350 
351 	/* Ignore srtt until a min number of samples have been taken. */
352 	if (CCV(ccv, t_rttupdated) >= CUBIC_MIN_RTT_SAMPLES) {
353 		cubic_data = ccv->cc_data;
354 		t_srtt_ticks = CCV(ccv, t_srtt) / TCP_RTT_SCALE;
355 
356 		/*
357 		 * Record the current SRTT as our minrtt if it's the smallest
358 		 * we've seen or minrtt is currently equal to its initialised
359 		 * value.
360 		 *
361 		 * XXXLAS: Should there be some hysteresis for minrtt?
362 		 */
363 		if ((t_srtt_ticks < cubic_data->min_rtt_ticks ||
364 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)) {
365 			cubic_data->min_rtt_ticks = max(1, t_srtt_ticks);
366 
367 			/*
368 			 * If the connection is within its first congestion
369 			 * epoch, ensure we prime mean_rtt_ticks with a
370 			 * reasonable value until the epoch average RTT is
371 			 * calculated in cubic_post_recovery().
372 			 */
373 			if (cubic_data->min_rtt_ticks >
374 			    cubic_data->mean_rtt_ticks)
375 				cubic_data->mean_rtt_ticks =
376 				    cubic_data->min_rtt_ticks;
377 		}
378 
379 		/* Sum samples for epoch average RTT calculation. */
380 		cubic_data->sum_rtt_ticks += t_srtt_ticks;
381 		cubic_data->epoch_ack_count++;
382 	}
383 }
384 
385 /*
386  * Update the ssthresh in the event of congestion.
387  */
388 static void
389 cubic_ssthresh_update(struct cc_var *ccv)
390 {
391 	struct cubic *cubic_data;
392 
393 	cubic_data = ccv->cc_data;
394 
395 	/*
396 	 * On the first congestion event, set ssthresh to cwnd * 0.5, on
397 	 * subsequent congestion events, set it to cwnd * beta.
398 	 */
399 	if (cubic_data->num_cong_events == 0)
400 		CCV(ccv, snd_ssthresh) = CCV(ccv, snd_cwnd) >> 1;
401 	else
402 		CCV(ccv, snd_ssthresh) = (CCV(ccv, snd_cwnd) * CUBIC_BETA)
403 		    >> CUBIC_SHIFT;
404 }
405 
406 
407 DECLARE_CC_MODULE(cubic, &cubic_cc_algo);
408