xref: /freebsd/sys/netinet/cc/cc_cubic.c (revision 52c81be11a107cdedb865a274b5567b0c95c0308)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2010 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * This software was developed by Lawrence Stewart while studying at the Centre
9  * for Advanced Internet Architectures, Swinburne University of Technology, made
10  * possible in part by a grant from the Cisco University Research Program Fund
11  * at Community Foundation Silicon Valley.
12  *
13  * Portions of this software were developed at the Centre for Advanced
14  * Internet Architectures, Swinburne University of Technology, Melbourne,
15  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * An implementation of the CUBIC congestion control algorithm for FreeBSD,
41  * based on the Internet Draft "draft-rhee-tcpm-cubic-02" by Rhee, Xu and Ha.
42  * Originally released as part of the NewTCP research project at Swinburne
43  * University of Technology's Centre for Advanced Internet Architectures,
44  * Melbourne, Australia, which was made possible in part by a grant from the
45  * Cisco University Research Program Fund at Community Foundation Silicon
46  * Valley. More details are available at:
47  *   http://caia.swin.edu.au/urp/newtcp/
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/limits.h>
56 #include <sys/malloc.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 
63 #include <net/vnet.h>
64 
65 #include <netinet/tcp.h>
66 #include <netinet/tcp_seq.h>
67 #include <netinet/tcp_timer.h>
68 #include <netinet/tcp_var.h>
69 #include <netinet/cc/cc.h>
70 #include <netinet/cc/cc_cubic.h>
71 #include <netinet/cc/cc_module.h>
72 
73 static void	cubic_ack_received(struct cc_var *ccv, uint16_t type);
74 static void	cubic_cb_destroy(struct cc_var *ccv);
75 static int	cubic_cb_init(struct cc_var *ccv);
76 static void	cubic_cong_signal(struct cc_var *ccv, uint32_t type);
77 static void	cubic_conn_init(struct cc_var *ccv);
78 static int	cubic_mod_init(void);
79 static void	cubic_post_recovery(struct cc_var *ccv);
80 static void	cubic_record_rtt(struct cc_var *ccv);
81 static void	cubic_ssthresh_update(struct cc_var *ccv);
82 static void	cubic_after_idle(struct cc_var *ccv);
83 
84 struct cubic {
85 	/* Cubic K in fixed point form with CUBIC_SHIFT worth of precision. */
86 	int64_t		K;
87 	/* Sum of RTT samples across an epoch in ticks. */
88 	int64_t		sum_rtt_ticks;
89 	/* cwnd at the most recent congestion event. */
90 	unsigned long	max_cwnd;
91 	/* cwnd at the previous congestion event. */
92 	unsigned long	prev_max_cwnd;
93 	/* various flags */
94 	uint32_t	flags;
95 #define CUBICFLAG_CONG_EVENT	0x00000001	/* congestion experienced */
96 #define CUBICFLAG_IN_SLOWSTART	0x00000002	/* in slow start */
97 #define CUBICFLAG_IN_APPLIMIT	0x00000004	/* application limited */
98 	/* Minimum observed rtt in ticks. */
99 	int		min_rtt_ticks;
100 	/* Mean observed rtt between congestion epochs. */
101 	int		mean_rtt_ticks;
102 	/* ACKs since last congestion event. */
103 	int		epoch_ack_count;
104 	/* Time of last congestion event in ticks. */
105 	int		t_last_cong;
106 };
107 
108 static MALLOC_DEFINE(M_CUBIC, "cubic data",
109     "Per connection data required for the CUBIC congestion control algorithm");
110 
111 struct cc_algo cubic_cc_algo = {
112 	.name = "cubic",
113 	.ack_received = cubic_ack_received,
114 	.cb_destroy = cubic_cb_destroy,
115 	.cb_init = cubic_cb_init,
116 	.cong_signal = cubic_cong_signal,
117 	.conn_init = cubic_conn_init,
118 	.mod_init = cubic_mod_init,
119 	.post_recovery = cubic_post_recovery,
120 	.after_idle = cubic_after_idle,
121 };
122 
123 static void
124 cubic_ack_received(struct cc_var *ccv, uint16_t type)
125 {
126 	struct cubic *cubic_data;
127 	unsigned long w_tf, w_cubic_next;
128 	int ticks_since_cong;
129 
130 	cubic_data = ccv->cc_data;
131 	cubic_record_rtt(ccv);
132 
133 	/*
134 	 * Regular ACK and we're not in cong/fast recovery and we're cwnd
135 	 * limited and we're either not doing ABC or are slow starting or are
136 	 * doing ABC and we've sent a cwnd's worth of bytes.
137 	 */
138 	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
139 	    (ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
140 	    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
141 	    (V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
142 		 /* Use the logic in NewReno ack_received() for slow start. */
143 		if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
144 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE) {
145 			cubic_data->flags |= CUBICFLAG_IN_SLOWSTART;
146 			newreno_cc_algo.ack_received(ccv, type);
147 		} else {
148 			if ((ticks_since_cong =
149 			    ticks - cubic_data->t_last_cong) < 0) {
150 				/*
151 				 * dragging t_last_cong along
152 				 */
153 				ticks_since_cong = INT_MAX;
154 				cubic_data->t_last_cong = ticks - INT_MAX;
155 			}
156 
157 			if (cubic_data->flags & (CUBICFLAG_IN_SLOWSTART |
158 						 CUBICFLAG_IN_APPLIMIT)) {
159 				cubic_data->flags &= ~(CUBICFLAG_IN_SLOWSTART |
160 						       CUBICFLAG_IN_APPLIMIT);
161 				cubic_data->t_last_cong = ticks;
162 				cubic_data->K = 0;
163 			}
164 			/*
165 			 * The mean RTT is used to best reflect the equations in
166 			 * the I-D. Using min_rtt in the tf_cwnd calculation
167 			 * causes w_tf to grow much faster than it should if the
168 			 * RTT is dominated by network buffering rather than
169 			 * propagation delay.
170 			 */
171 			w_tf = tf_cwnd(ticks_since_cong,
172 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
173 			    CCV(ccv, t_maxseg));
174 
175 			w_cubic_next = cubic_cwnd(ticks_since_cong +
176 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
177 			    CCV(ccv, t_maxseg), cubic_data->K);
178 
179 			ccv->flags &= ~CCF_ABC_SENTAWND;
180 
181 			if (w_cubic_next < w_tf) {
182 				/*
183 				 * TCP-friendly region, follow tf
184 				 * cwnd growth.
185 				 */
186 				if (CCV(ccv, snd_cwnd) < w_tf)
187 					CCV(ccv, snd_cwnd) = ulmin(w_tf, INT_MAX);
188 			}
189 
190 			else if (CCV(ccv, snd_cwnd) < w_cubic_next) {
191 				/*
192 				 * Concave or convex region, follow CUBIC
193 				 * cwnd growth.
194 				 */
195 				if (V_tcp_do_rfc3465)
196 					CCV(ccv, snd_cwnd) = ulmin(w_cubic_next,
197 					    INT_MAX);
198 				else
199 					CCV(ccv, snd_cwnd) += ulmax(1,
200 					    ((ulmin(w_cubic_next, INT_MAX) -
201 					    CCV(ccv, snd_cwnd)) *
202 					    CCV(ccv, t_maxseg)) /
203 					    CCV(ccv, snd_cwnd));
204 			}
205 
206 			/*
207 			 * If we're not in slow start and we're probing for a
208 			 * new cwnd limit at the start of a connection
209 			 * (happens when hostcache has a relevant entry),
210 			 * keep updating our current estimate of the
211 			 * max_cwnd.
212 			 */
213 			if (((cubic_data->flags & CUBICFLAG_CONG_EVENT) == 0) &&
214 			    cubic_data->max_cwnd < CCV(ccv, snd_cwnd)) {
215 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
216 				cubic_data->K = cubic_k(cubic_data->max_cwnd /
217 				    CCV(ccv, t_maxseg));
218 			}
219 		}
220 	} else if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
221 	    !(ccv->flags & CCF_CWND_LIMITED)) {
222 		cubic_data->flags |= CUBICFLAG_IN_APPLIMIT;
223 	}
224 }
225 
226 /*
227  * This is a Cubic specific implementation of after_idle.
228  *   - Reset cwnd by calling New Reno implementation of after_idle.
229  *   - Reset t_last_cong.
230  */
231 static void
232 cubic_after_idle(struct cc_var *ccv)
233 {
234 	struct cubic *cubic_data;
235 
236 	cubic_data = ccv->cc_data;
237 
238 	cubic_data->max_cwnd = ulmax(cubic_data->max_cwnd, CCV(ccv, snd_cwnd));
239 	cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
240 
241 	newreno_cc_algo.after_idle(ccv);
242 	cubic_data->t_last_cong = ticks;
243 }
244 
245 
246 static void
247 cubic_cb_destroy(struct cc_var *ccv)
248 {
249 	free(ccv->cc_data, M_CUBIC);
250 }
251 
252 static int
253 cubic_cb_init(struct cc_var *ccv)
254 {
255 	struct cubic *cubic_data;
256 
257 	cubic_data = malloc(sizeof(struct cubic), M_CUBIC, M_NOWAIT|M_ZERO);
258 
259 	if (cubic_data == NULL)
260 		return (ENOMEM);
261 
262 	/* Init some key variables with sensible defaults. */
263 	cubic_data->t_last_cong = ticks;
264 	cubic_data->min_rtt_ticks = TCPTV_SRTTBASE;
265 	cubic_data->mean_rtt_ticks = 1;
266 
267 	ccv->cc_data = cubic_data;
268 
269 	return (0);
270 }
271 
272 /*
273  * Perform any necessary tasks before we enter congestion recovery.
274  */
275 static void
276 cubic_cong_signal(struct cc_var *ccv, uint32_t type)
277 {
278 	struct cubic *cubic_data;
279 
280 	cubic_data = ccv->cc_data;
281 
282 	switch (type) {
283 	case CC_NDUPACK:
284 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
285 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
286 				cubic_ssthresh_update(ccv);
287 				cubic_data->flags |= CUBICFLAG_CONG_EVENT;
288 				cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
289 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
290 				cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
291 			}
292 			ENTER_RECOVERY(CCV(ccv, t_flags));
293 		}
294 		break;
295 
296 	case CC_ECN:
297 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
298 			cubic_ssthresh_update(ccv);
299 			cubic_data->flags |= CUBICFLAG_CONG_EVENT;
300 			cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
301 			cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
302 			cubic_data->t_last_cong = ticks;
303 			cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
304 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
305 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
306 		}
307 		break;
308 
309 	case CC_RTO:
310 		/*
311 		 * Grab the current time and record it so we know when the
312 		 * most recent congestion event was. Only record it when the
313 		 * timeout has fired more than once, as there is a reasonable
314 		 * chance the first one is a false alarm and may not indicate
315 		 * congestion.
316 		 */
317 		if (CCV(ccv, t_rxtshift) >= 2) {
318 			cubic_data->flags |= CUBICFLAG_CONG_EVENT;
319 			cubic_data->t_last_cong = ticks;
320 		}
321 		break;
322 	}
323 }
324 
325 static void
326 cubic_conn_init(struct cc_var *ccv)
327 {
328 	struct cubic *cubic_data;
329 
330 	cubic_data = ccv->cc_data;
331 
332 	/*
333 	 * Ensure we have a sane initial value for max_cwnd recorded. Without
334 	 * this here bad things happen when entries from the TCP hostcache
335 	 * get used.
336 	 */
337 	cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
338 }
339 
340 static int
341 cubic_mod_init(void)
342 {
343 	return (0);
344 }
345 
346 /*
347  * Perform any necessary tasks before we exit congestion recovery.
348  */
349 static void
350 cubic_post_recovery(struct cc_var *ccv)
351 {
352 	struct cubic *cubic_data;
353 	int pipe;
354 
355 	cubic_data = ccv->cc_data;
356 	pipe = 0;
357 
358 	/* Fast convergence heuristic. */
359 	if (cubic_data->max_cwnd < cubic_data->prev_max_cwnd)
360 		cubic_data->max_cwnd = (cubic_data->max_cwnd * CUBIC_FC_FACTOR)
361 		    >> CUBIC_SHIFT;
362 
363 	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
364 		/*
365 		 * If inflight data is less than ssthresh, set cwnd
366 		 * conservatively to avoid a burst of data, as suggested in
367 		 * the NewReno RFC. Otherwise, use the CUBIC method.
368 		 *
369 		 * XXXLAS: Find a way to do this without needing curack
370 		 */
371 		if (V_tcp_do_rfc6675_pipe)
372 			pipe = tcp_compute_pipe(ccv->ccvc.tcp);
373 		else
374 			pipe = CCV(ccv, snd_max) - ccv->curack;
375 
376 		if (pipe < CCV(ccv, snd_ssthresh))
377 			/*
378 			 * Ensure that cwnd does not collapse to 1 MSS under
379 			 * adverse conditions. Implements RFC6582
380 			 */
381 			CCV(ccv, snd_cwnd) = max(pipe, CCV(ccv, t_maxseg)) +
382 			    CCV(ccv, t_maxseg);
383 		else
384 			/* Update cwnd based on beta and adjusted max_cwnd. */
385 			CCV(ccv, snd_cwnd) = max(((uint64_t)cubic_data->max_cwnd *
386 			    CUBIC_BETA) >> CUBIC_SHIFT,
387 			    2 * CCV(ccv, t_maxseg));
388 	}
389 	cubic_data->t_last_cong = ticks;
390 
391 	/* Calculate the average RTT between congestion epochs. */
392 	if (cubic_data->epoch_ack_count > 0 &&
393 	    cubic_data->sum_rtt_ticks >= cubic_data->epoch_ack_count) {
394 		cubic_data->mean_rtt_ticks = (int)(cubic_data->sum_rtt_ticks /
395 		    cubic_data->epoch_ack_count);
396 	}
397 
398 	cubic_data->epoch_ack_count = 0;
399 	cubic_data->sum_rtt_ticks = 0;
400 	cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
401 }
402 
403 /*
404  * Record the min RTT and sum samples for the epoch average RTT calculation.
405  */
406 static void
407 cubic_record_rtt(struct cc_var *ccv)
408 {
409 	struct cubic *cubic_data;
410 	int t_srtt_ticks;
411 
412 	/* Ignore srtt until a min number of samples have been taken. */
413 	if (CCV(ccv, t_rttupdated) >= CUBIC_MIN_RTT_SAMPLES) {
414 		cubic_data = ccv->cc_data;
415 		t_srtt_ticks = CCV(ccv, t_srtt) / TCP_RTT_SCALE;
416 
417 		/*
418 		 * Record the current SRTT as our minrtt if it's the smallest
419 		 * we've seen or minrtt is currently equal to its initialised
420 		 * value.
421 		 *
422 		 * XXXLAS: Should there be some hysteresis for minrtt?
423 		 */
424 		if ((t_srtt_ticks < cubic_data->min_rtt_ticks ||
425 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)) {
426 			cubic_data->min_rtt_ticks = max(1, t_srtt_ticks);
427 
428 			/*
429 			 * If the connection is within its first congestion
430 			 * epoch, ensure we prime mean_rtt_ticks with a
431 			 * reasonable value until the epoch average RTT is
432 			 * calculated in cubic_post_recovery().
433 			 */
434 			if (cubic_data->min_rtt_ticks >
435 			    cubic_data->mean_rtt_ticks)
436 				cubic_data->mean_rtt_ticks =
437 				    cubic_data->min_rtt_ticks;
438 		}
439 
440 		/* Sum samples for epoch average RTT calculation. */
441 		cubic_data->sum_rtt_ticks += t_srtt_ticks;
442 		cubic_data->epoch_ack_count++;
443 	}
444 }
445 
446 /*
447  * Update the ssthresh in the event of congestion.
448  */
449 static void
450 cubic_ssthresh_update(struct cc_var *ccv)
451 {
452 	struct cubic *cubic_data;
453 	uint32_t ssthresh;
454 
455 	cubic_data = ccv->cc_data;
456 
457 	/*
458 	 * On the first congestion event, set ssthresh to cwnd * 0.5, on
459 	 * subsequent congestion events, set it to cwnd * beta.
460 	 */
461 	if ((cubic_data->flags & CUBICFLAG_CONG_EVENT) == 0)
462 		ssthresh = CCV(ccv, snd_cwnd) >> 1;
463 	else
464 		ssthresh = ((uint64_t)CCV(ccv, snd_cwnd) *
465 		    CUBIC_BETA) >> CUBIC_SHIFT;
466 	CCV(ccv, snd_ssthresh) = max(ssthresh, 2 * CCV(ccv, t_maxseg));
467 }
468 
469 
470 DECLARE_CC_MODULE(cubic, &cubic_cc_algo);
471