xref: /freebsd/sys/netinet/cc/cc_cubic.c (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2010 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * This software was developed by Lawrence Stewart while studying at the Centre
9  * for Advanced Internet Architectures, Swinburne University of Technology, made
10  * possible in part by a grant from the Cisco University Research Program Fund
11  * at Community Foundation Silicon Valley.
12  *
13  * Portions of this software were developed at the Centre for Advanced
14  * Internet Architectures, Swinburne University of Technology, Melbourne,
15  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * An implementation of the CUBIC congestion control algorithm for FreeBSD,
41  * based on the Internet Draft "draft-rhee-tcpm-cubic-02" by Rhee, Xu and Ha.
42  * Originally released as part of the NewTCP research project at Swinburne
43  * University of Technology's Centre for Advanced Internet Architectures,
44  * Melbourne, Australia, which was made possible in part by a grant from the
45  * Cisco University Research Program Fund at Community Foundation Silicon
46  * Valley. More details are available at:
47  *   http://caia.swin.edu.au/urp/newtcp/
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/limits.h>
56 #include <sys/malloc.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 
63 #include <net/vnet.h>
64 
65 #include <netinet/tcp.h>
66 #include <netinet/tcp_seq.h>
67 #include <netinet/tcp_timer.h>
68 #include <netinet/tcp_var.h>
69 #include <netinet/cc/cc.h>
70 #include <netinet/cc/cc_cubic.h>
71 #include <netinet/cc/cc_module.h>
72 
73 static void	cubic_ack_received(struct cc_var *ccv, uint16_t type);
74 static void	cubic_cb_destroy(struct cc_var *ccv);
75 static int	cubic_cb_init(struct cc_var *ccv);
76 static void	cubic_cong_signal(struct cc_var *ccv, uint32_t type);
77 static void	cubic_conn_init(struct cc_var *ccv);
78 static int	cubic_mod_init(void);
79 static void	cubic_post_recovery(struct cc_var *ccv);
80 static void	cubic_record_rtt(struct cc_var *ccv);
81 static void	cubic_ssthresh_update(struct cc_var *ccv, uint32_t maxseg);
82 static void	cubic_after_idle(struct cc_var *ccv);
83 
84 struct cubic {
85 	/* Cubic K in fixed point form with CUBIC_SHIFT worth of precision. */
86 	int64_t		K;
87 	/* Sum of RTT samples across an epoch in ticks. */
88 	int64_t		sum_rtt_ticks;
89 	/* cwnd at the most recent congestion event. */
90 	unsigned long	max_cwnd;
91 	/* cwnd at the previous congestion event. */
92 	unsigned long	prev_max_cwnd;
93 	/* A copy of prev_max_cwnd. Used for CC_RTO_ERR */
94 	unsigned long	prev_max_cwnd_cp;
95 	/* various flags */
96 	uint32_t	flags;
97 #define CUBICFLAG_CONG_EVENT	0x00000001	/* congestion experienced */
98 #define CUBICFLAG_IN_SLOWSTART	0x00000002	/* in slow start */
99 #define CUBICFLAG_IN_APPLIMIT	0x00000004	/* application limited */
100 #define CUBICFLAG_RTO_EVENT	0x00000008	/* RTO experienced */
101 	/* Minimum observed rtt in ticks. */
102 	int		min_rtt_ticks;
103 	/* Mean observed rtt between congestion epochs. */
104 	int		mean_rtt_ticks;
105 	/* ACKs since last congestion event. */
106 	int		epoch_ack_count;
107 	/* Timestamp (in ticks) of arriving in congestion avoidance from last
108 	 * congestion event.
109 	 */
110 	int		t_last_cong;
111 	/* Timestamp (in ticks) of a previous congestion event. Used for
112 	 * CC_RTO_ERR.
113 	 */
114 	int		t_last_cong_prev;
115 };
116 
117 static MALLOC_DEFINE(M_CUBIC, "cubic data",
118     "Per connection data required for the CUBIC congestion control algorithm");
119 
120 struct cc_algo cubic_cc_algo = {
121 	.name = "cubic",
122 	.ack_received = cubic_ack_received,
123 	.cb_destroy = cubic_cb_destroy,
124 	.cb_init = cubic_cb_init,
125 	.cong_signal = cubic_cong_signal,
126 	.conn_init = cubic_conn_init,
127 	.mod_init = cubic_mod_init,
128 	.post_recovery = cubic_post_recovery,
129 	.after_idle = cubic_after_idle,
130 };
131 
132 static void
133 cubic_ack_received(struct cc_var *ccv, uint16_t type)
134 {
135 	struct cubic *cubic_data;
136 	unsigned long w_tf, w_cubic_next;
137 	int ticks_since_cong;
138 
139 	cubic_data = ccv->cc_data;
140 	cubic_record_rtt(ccv);
141 
142 	/*
143 	 * For a regular ACK and we're not in cong/fast recovery and
144 	 * we're cwnd limited, always recalculate cwnd.
145 	 */
146 	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
147 	    (ccv->flags & CCF_CWND_LIMITED)) {
148 		 /* Use the logic in NewReno ack_received() for slow start. */
149 		if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
150 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE) {
151 			cubic_data->flags |= CUBICFLAG_IN_SLOWSTART;
152 			newreno_cc_algo.ack_received(ccv, type);
153 		} else {
154 			if ((cubic_data->flags & CUBICFLAG_RTO_EVENT) &&
155 			    (cubic_data->flags & CUBICFLAG_IN_SLOWSTART)) {
156 				/* RFC8312 Section 4.7 */
157 				cubic_data->flags &= ~(CUBICFLAG_RTO_EVENT |
158 						       CUBICFLAG_IN_SLOWSTART);
159 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
160 				cubic_data->K = 0;
161 			} else if (cubic_data->flags & (CUBICFLAG_IN_SLOWSTART |
162 						 CUBICFLAG_IN_APPLIMIT)) {
163 				cubic_data->flags &= ~(CUBICFLAG_IN_SLOWSTART |
164 						       CUBICFLAG_IN_APPLIMIT);
165 				cubic_data->t_last_cong = ticks;
166 				cubic_data->K = cubic_k(cubic_data->max_cwnd /
167 							CCV(ccv, t_maxseg));
168 			}
169 			if ((ticks_since_cong =
170 			    ticks - cubic_data->t_last_cong) < 0) {
171 				/*
172 				 * dragging t_last_cong along
173 				 */
174 				ticks_since_cong = INT_MAX;
175 				cubic_data->t_last_cong = ticks - INT_MAX;
176 			}
177 			/*
178 			 * The mean RTT is used to best reflect the equations in
179 			 * the I-D. Using min_rtt in the tf_cwnd calculation
180 			 * causes w_tf to grow much faster than it should if the
181 			 * RTT is dominated by network buffering rather than
182 			 * propagation delay.
183 			 */
184 			w_tf = tf_cwnd(ticks_since_cong,
185 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
186 			    CCV(ccv, t_maxseg));
187 
188 			w_cubic_next = cubic_cwnd(ticks_since_cong +
189 			    cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
190 			    CCV(ccv, t_maxseg), cubic_data->K);
191 
192 			ccv->flags &= ~CCF_ABC_SENTAWND;
193 
194 			if (w_cubic_next < w_tf) {
195 				/*
196 				 * TCP-friendly region, follow tf
197 				 * cwnd growth.
198 				 */
199 				if (CCV(ccv, snd_cwnd) < w_tf)
200 					CCV(ccv, snd_cwnd) = ulmin(w_tf, INT_MAX);
201 			} else if (CCV(ccv, snd_cwnd) < w_cubic_next) {
202 				/*
203 				 * Concave or convex region, follow CUBIC
204 				 * cwnd growth.
205 				 * Only update snd_cwnd, if it doesn't shrink.
206 				 */
207 				CCV(ccv, snd_cwnd) = ulmin(w_cubic_next,
208 				    INT_MAX);
209 			}
210 
211 			/*
212 			 * If we're not in slow start and we're probing for a
213 			 * new cwnd limit at the start of a connection
214 			 * (happens when hostcache has a relevant entry),
215 			 * keep updating our current estimate of the
216 			 * max_cwnd.
217 			 */
218 			if (((cubic_data->flags & CUBICFLAG_CONG_EVENT) == 0) &&
219 			    cubic_data->max_cwnd < CCV(ccv, snd_cwnd)) {
220 				cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
221 				cubic_data->K = cubic_k(cubic_data->max_cwnd /
222 				    CCV(ccv, t_maxseg));
223 			}
224 		}
225 	} else if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
226 	    !(ccv->flags & CCF_CWND_LIMITED)) {
227 		cubic_data->flags |= CUBICFLAG_IN_APPLIMIT;
228 	}
229 }
230 
231 /*
232  * This is a Cubic specific implementation of after_idle.
233  *   - Reset cwnd by calling New Reno implementation of after_idle.
234  *   - Reset t_last_cong.
235  */
236 static void
237 cubic_after_idle(struct cc_var *ccv)
238 {
239 	struct cubic *cubic_data;
240 
241 	cubic_data = ccv->cc_data;
242 
243 	cubic_data->max_cwnd = ulmax(cubic_data->max_cwnd, CCV(ccv, snd_cwnd));
244 	cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
245 
246 	newreno_cc_algo.after_idle(ccv);
247 	cubic_data->t_last_cong = ticks;
248 }
249 
250 static void
251 cubic_cb_destroy(struct cc_var *ccv)
252 {
253 	free(ccv->cc_data, M_CUBIC);
254 }
255 
256 static int
257 cubic_cb_init(struct cc_var *ccv)
258 {
259 	struct cubic *cubic_data;
260 
261 	cubic_data = malloc(sizeof(struct cubic), M_CUBIC, M_NOWAIT|M_ZERO);
262 
263 	if (cubic_data == NULL)
264 		return (ENOMEM);
265 
266 	/* Init some key variables with sensible defaults. */
267 	cubic_data->t_last_cong = ticks;
268 	cubic_data->min_rtt_ticks = TCPTV_SRTTBASE;
269 	cubic_data->mean_rtt_ticks = 1;
270 
271 	ccv->cc_data = cubic_data;
272 
273 	return (0);
274 }
275 
276 /*
277  * Perform any necessary tasks before we enter congestion recovery.
278  */
279 static void
280 cubic_cong_signal(struct cc_var *ccv, uint32_t type)
281 {
282 	struct cubic *cubic_data;
283 	u_int mss;
284 
285 	cubic_data = ccv->cc_data;
286 	mss = tcp_maxseg(ccv->ccvc.tcp);
287 
288 	switch (type) {
289 	case CC_NDUPACK:
290 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
291 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
292 				cubic_ssthresh_update(ccv, mss);
293 				cubic_data->flags |= CUBICFLAG_CONG_EVENT;
294 				cubic_data->t_last_cong = ticks;
295 				cubic_data->K = cubic_k(cubic_data->max_cwnd / mss);
296 			}
297 			ENTER_RECOVERY(CCV(ccv, t_flags));
298 		}
299 		break;
300 
301 	case CC_ECN:
302 		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
303 			cubic_ssthresh_update(ccv, mss);
304 			cubic_data->flags |= CUBICFLAG_CONG_EVENT;
305 			cubic_data->t_last_cong = ticks;
306 			cubic_data->K = cubic_k(cubic_data->max_cwnd / mss);
307 			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
308 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
309 		}
310 		break;
311 
312 	case CC_RTO:
313 		/* RFC8312 Section 4.7 */
314 		if (CCV(ccv, t_rxtshift) == 1) {
315 			cubic_data->t_last_cong_prev = cubic_data->t_last_cong;
316 			cubic_data->prev_max_cwnd_cp = cubic_data->prev_max_cwnd;
317 		}
318 		cubic_data->flags |= CUBICFLAG_CONG_EVENT | CUBICFLAG_RTO_EVENT;
319 		cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
320 		CCV(ccv, snd_ssthresh) = ((uint64_t)CCV(ccv, snd_cwnd) *
321 					  CUBIC_BETA) >> CUBIC_SHIFT;
322 		CCV(ccv, snd_cwnd) = mss;
323 		break;
324 
325 	case CC_RTO_ERR:
326 		cubic_data->flags &= ~(CUBICFLAG_CONG_EVENT | CUBICFLAG_RTO_EVENT);
327 		cubic_data->max_cwnd = cubic_data->prev_max_cwnd;
328 		cubic_data->prev_max_cwnd = cubic_data->prev_max_cwnd_cp;
329 		cubic_data->t_last_cong = cubic_data->t_last_cong_prev;
330 		cubic_data->K = cubic_k(cubic_data->max_cwnd / mss);
331 		break;
332 	}
333 }
334 
335 static void
336 cubic_conn_init(struct cc_var *ccv)
337 {
338 	struct cubic *cubic_data;
339 
340 	cubic_data = ccv->cc_data;
341 
342 	/*
343 	 * Ensure we have a sane initial value for max_cwnd recorded. Without
344 	 * this here bad things happen when entries from the TCP hostcache
345 	 * get used.
346 	 */
347 	cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
348 }
349 
350 static int
351 cubic_mod_init(void)
352 {
353 	return (0);
354 }
355 
356 /*
357  * Perform any necessary tasks before we exit congestion recovery.
358  */
359 static void
360 cubic_post_recovery(struct cc_var *ccv)
361 {
362 	struct cubic *cubic_data;
363 	int pipe;
364 
365 	cubic_data = ccv->cc_data;
366 	pipe = 0;
367 
368 	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
369 		/*
370 		 * If inflight data is less than ssthresh, set cwnd
371 		 * conservatively to avoid a burst of data, as suggested in
372 		 * the NewReno RFC. Otherwise, use the CUBIC method.
373 		 *
374 		 * XXXLAS: Find a way to do this without needing curack
375 		 */
376 		if (V_tcp_do_newsack)
377 			pipe = tcp_compute_pipe(ccv->ccvc.tcp);
378 		else
379 			pipe = CCV(ccv, snd_max) - ccv->curack;
380 
381 		if (pipe < CCV(ccv, snd_ssthresh))
382 			/*
383 			 * Ensure that cwnd does not collapse to 1 MSS under
384 			 * adverse conditions. Implements RFC6582
385 			 */
386 			CCV(ccv, snd_cwnd) = max(pipe, CCV(ccv, t_maxseg)) +
387 			    CCV(ccv, t_maxseg);
388 		else
389 			/* Update cwnd based on beta and adjusted max_cwnd. */
390 			CCV(ccv, snd_cwnd) = max(((uint64_t)cubic_data->max_cwnd *
391 			    CUBIC_BETA) >> CUBIC_SHIFT,
392 			    2 * CCV(ccv, t_maxseg));
393 	}
394 
395 	/* Calculate the average RTT between congestion epochs. */
396 	if (cubic_data->epoch_ack_count > 0 &&
397 	    cubic_data->sum_rtt_ticks >= cubic_data->epoch_ack_count) {
398 		cubic_data->mean_rtt_ticks = (int)(cubic_data->sum_rtt_ticks /
399 		    cubic_data->epoch_ack_count);
400 	}
401 
402 	cubic_data->epoch_ack_count = 0;
403 	cubic_data->sum_rtt_ticks = 0;
404 }
405 
406 /*
407  * Record the min RTT and sum samples for the epoch average RTT calculation.
408  */
409 static void
410 cubic_record_rtt(struct cc_var *ccv)
411 {
412 	struct cubic *cubic_data;
413 	int t_srtt_ticks;
414 
415 	/* Ignore srtt until a min number of samples have been taken. */
416 	if (CCV(ccv, t_rttupdated) >= CUBIC_MIN_RTT_SAMPLES) {
417 		cubic_data = ccv->cc_data;
418 		t_srtt_ticks = CCV(ccv, t_srtt) / TCP_RTT_SCALE;
419 
420 		/*
421 		 * Record the current SRTT as our minrtt if it's the smallest
422 		 * we've seen or minrtt is currently equal to its initialised
423 		 * value.
424 		 *
425 		 * XXXLAS: Should there be some hysteresis for minrtt?
426 		 */
427 		if ((t_srtt_ticks < cubic_data->min_rtt_ticks ||
428 		    cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)) {
429 			cubic_data->min_rtt_ticks = max(1, t_srtt_ticks);
430 
431 			/*
432 			 * If the connection is within its first congestion
433 			 * epoch, ensure we prime mean_rtt_ticks with a
434 			 * reasonable value until the epoch average RTT is
435 			 * calculated in cubic_post_recovery().
436 			 */
437 			if (cubic_data->min_rtt_ticks >
438 			    cubic_data->mean_rtt_ticks)
439 				cubic_data->mean_rtt_ticks =
440 				    cubic_data->min_rtt_ticks;
441 		}
442 
443 		/* Sum samples for epoch average RTT calculation. */
444 		cubic_data->sum_rtt_ticks += t_srtt_ticks;
445 		cubic_data->epoch_ack_count++;
446 	}
447 }
448 
449 /*
450  * Update the ssthresh in the event of congestion.
451  */
452 static void
453 cubic_ssthresh_update(struct cc_var *ccv, uint32_t maxseg)
454 {
455 	struct cubic *cubic_data;
456 	uint32_t ssthresh;
457 	uint32_t cwnd;
458 
459 	cubic_data = ccv->cc_data;
460 	cwnd = CCV(ccv, snd_cwnd);
461 
462 	/* Fast convergence heuristic. */
463 	if (cwnd < cubic_data->max_cwnd) {
464 		cwnd = ((uint64_t)cwnd * CUBIC_FC_FACTOR) >> CUBIC_SHIFT;
465 	}
466 	cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
467 	cubic_data->max_cwnd = cwnd;
468 
469 	/*
470 	 * On the first congestion event, set ssthresh to cwnd * 0.5
471 	 * and reduce max_cwnd to cwnd * beta. This aligns the cubic concave
472 	 * region appropriately. On subsequent congestion events, set
473 	 * ssthresh to cwnd * beta.
474 	 */
475 	if ((cubic_data->flags & CUBICFLAG_CONG_EVENT) == 0) {
476 		ssthresh = cwnd >> 1;
477 		cubic_data->max_cwnd = ((uint64_t)cwnd *
478 		    CUBIC_BETA) >> CUBIC_SHIFT;
479 	} else {
480 		ssthresh = ((uint64_t)cwnd *
481 		    CUBIC_BETA) >> CUBIC_SHIFT;
482 	}
483 	CCV(ccv, snd_ssthresh) = max(ssthresh, 2 * maxseg);
484 }
485 
486 DECLARE_CC_MODULE(cubic, &cubic_cc_algo);
487 MODULE_VERSION(cubic, 1);
488