1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause AND BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1996-2000 Whistle Communications, Inc. 5 * All rights reserved. 6 * 7 * Subject to the following obligations and disclaimer of warranty, use and 8 * redistribution of this software, in source or object code forms, with or 9 * without modifications are expressly permitted by Whistle Communications; 10 * provided, however, that: 11 * 1. Any and all reproductions of the source or object code must include the 12 * copyright notice above and the following disclaimer of warranties; and 13 * 2. No rights are granted, in any manner or form, to use Whistle 14 * Communications, Inc. trademarks, including the mark "WHISTLE 15 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 16 * such appears in the above copyright notice or in the software. 17 * 18 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 19 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 20 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 21 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 23 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 24 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 25 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 26 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 27 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 28 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 29 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 30 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 34 * OF SUCH DAMAGE. 35 * 36 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice unmodified, this list of conditions, and the following 44 * disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 62 * 63 * $FreeBSD$ 64 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 65 */ 66 67 /* 68 * PPP node type data-flow. 69 * 70 * hook xmit layer recv hook 71 * ------------------------------------ 72 * inet -> -> inet 73 * ipv6 -> -> ipv6 74 * ipx -> proto -> ipx 75 * atalk -> -> atalk 76 * bypass -> -> bypass 77 * -hcomp_xmit()----------proto_recv()- 78 * vjc_ip <- <- vjc_ip 79 * vjc_comp -> header compression -> vjc_comp 80 * vjc_uncomp -> -> vjc_uncomp 81 * vjc_vjip -> 82 * -comp_xmit()-----------hcomp_recv()- 83 * compress <- compression <- decompress 84 * compress -> -> decompress 85 * -crypt_xmit()-----------comp_recv()- 86 * encrypt <- encryption <- decrypt 87 * encrypt -> -> decrypt 88 * -ml_xmit()-------------crypt_recv()- 89 * multilink 90 * -link_xmit()--------------ml_recv()- 91 * linkX <- link <- linkX 92 * 93 */ 94 95 #include <sys/param.h> 96 #include <sys/systm.h> 97 #include <sys/kernel.h> 98 #include <sys/limits.h> 99 #include <sys/time.h> 100 #include <sys/mbuf.h> 101 #include <sys/malloc.h> 102 #include <sys/endian.h> 103 #include <sys/errno.h> 104 #include <sys/ctype.h> 105 106 #include <netgraph/ng_message.h> 107 #include <netgraph/netgraph.h> 108 #include <netgraph/ng_parse.h> 109 #include <netgraph/ng_ppp.h> 110 #include <netgraph/ng_vjc.h> 111 112 #ifdef NG_SEPARATE_MALLOC 113 static MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 114 #else 115 #define M_NETGRAPH_PPP M_NETGRAPH 116 #endif 117 118 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 119 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 120 121 /* Some PPP protocol numbers we're interested in */ 122 #define PROT_ATALK 0x0029 123 #define PROT_COMPD 0x00fd 124 #define PROT_CRYPTD 0x0053 125 #define PROT_IP 0x0021 126 #define PROT_IPV6 0x0057 127 #define PROT_IPX 0x002b 128 #define PROT_LCP 0xc021 129 #define PROT_MP 0x003d 130 #define PROT_VJCOMP 0x002d 131 #define PROT_VJUNCOMP 0x002f 132 133 /* Multilink PPP definitions */ 134 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 135 #define MP_MIN_LINK_MRU 32 136 137 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 138 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 139 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 140 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 141 142 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 143 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 144 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 145 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 146 147 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 148 149 /* Sign extension of MP sequence numbers */ 150 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 151 ((s) | ~MP_SHORT_SEQ_MASK) \ 152 : ((s) & MP_SHORT_SEQ_MASK)) 153 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 154 ((s) | ~MP_LONG_SEQ_MASK) \ 155 : ((s) & MP_LONG_SEQ_MASK)) 156 157 /* Comparison of MP sequence numbers. Note: all sequence numbers 158 except priv->xseq are stored with the sign bit extended. */ 159 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 160 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 161 162 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 163 ((priv)->conf.recvShortSeq ? \ 164 MP_SHORT_SEQ_DIFF((x), (y)) : \ 165 MP_LONG_SEQ_DIFF((x), (y))) 166 167 /* Increment receive sequence number */ 168 #define MP_NEXT_RECV_SEQ(priv,seq) \ 169 ((priv)->conf.recvShortSeq ? \ 170 MP_SHORT_EXTEND((seq) + 1) : \ 171 MP_LONG_EXTEND((seq) + 1)) 172 173 /* Don't fragment transmitted packets to parts smaller than this */ 174 #define MP_MIN_FRAG_LEN 32 175 176 /* Maximum fragment reasssembly queue length */ 177 #define MP_MAX_QUEUE_LEN 128 178 179 /* Fragment queue scanner period */ 180 #define MP_FRAGTIMER_INTERVAL (hz/2) 181 182 /* Average link overhead. XXX: Should be given by user-level */ 183 #define MP_AVERAGE_LINK_OVERHEAD 16 184 185 /* Keep this equal to ng_ppp_hook_names lower! */ 186 #define HOOK_INDEX_MAX 13 187 188 /* We store incoming fragments this way */ 189 struct ng_ppp_frag { 190 int seq; /* fragment seq# */ 191 uint8_t first; /* First in packet? */ 192 uint8_t last; /* Last in packet? */ 193 struct timeval timestamp; /* time of reception */ 194 struct mbuf *data; /* Fragment data */ 195 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 196 }; 197 198 /* Per-link private information */ 199 struct ng_ppp_link { 200 struct ng_ppp_link_conf conf; /* link configuration */ 201 struct ng_ppp_link_stat64 stats; /* link stats */ 202 hook_p hook; /* connection to link data */ 203 int32_t seq; /* highest rec'd seq# - MSEQ */ 204 uint32_t latency; /* calculated link latency */ 205 struct timeval lastWrite; /* time of last write for MP */ 206 int bytesInQueue; /* bytes in the output queue for MP */ 207 }; 208 209 /* Total per-node private information */ 210 struct ng_ppp_private { 211 struct ng_ppp_bund_conf conf; /* bundle config */ 212 struct ng_ppp_link_stat64 bundleStats; /* bundle stats */ 213 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 214 int32_t xseq; /* next out MP seq # */ 215 int32_t mseq; /* min links[i].seq */ 216 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indices */ 217 uint16_t numActiveLinks; /* how many links up */ 218 uint16_t lastLink; /* for round robin */ 219 uint8_t vjCompHooked; /* VJ comp hooked up? */ 220 uint8_t allLinksEqual; /* all xmit the same? */ 221 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 222 struct ng_ppp_frag fragsmem[MP_MAX_QUEUE_LEN]; /* fragments storage */ 223 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 224 frags; 225 TAILQ_HEAD(ng_ppp_fragfreelist, ng_ppp_frag) /* free fragment queue */ 226 fragsfree; 227 struct callout fragTimer; /* fraq queue check */ 228 struct mtx rmtx; /* recv mutex */ 229 struct mtx xmtx; /* xmit mutex */ 230 }; 231 typedef struct ng_ppp_private *priv_p; 232 233 /* Netgraph node methods */ 234 static ng_constructor_t ng_ppp_constructor; 235 static ng_rcvmsg_t ng_ppp_rcvmsg; 236 static ng_shutdown_t ng_ppp_shutdown; 237 static ng_newhook_t ng_ppp_newhook; 238 static ng_rcvdata_t ng_ppp_rcvdata; 239 static ng_disconnect_t ng_ppp_disconnect; 240 241 static ng_rcvdata_t ng_ppp_rcvdata_inet; 242 static ng_rcvdata_t ng_ppp_rcvdata_inet_fast; 243 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 244 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 245 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 246 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 247 248 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 249 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 250 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 251 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 252 253 static ng_rcvdata_t ng_ppp_rcvdata_compress; 254 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 255 256 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 257 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 258 259 /* We use integer indices to refer to the non-link hooks. */ 260 static const struct { 261 char *const name; 262 ng_rcvdata_t *fn; 263 } ng_ppp_hook_names[] = { 264 #define HOOK_INDEX_ATALK 0 265 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 266 #define HOOK_INDEX_BYPASS 1 267 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 268 #define HOOK_INDEX_COMPRESS 2 269 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 270 #define HOOK_INDEX_ENCRYPT 3 271 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 272 #define HOOK_INDEX_DECOMPRESS 4 273 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 274 #define HOOK_INDEX_DECRYPT 5 275 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 276 #define HOOK_INDEX_INET 6 277 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 278 #define HOOK_INDEX_IPX 7 279 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 280 #define HOOK_INDEX_VJC_COMP 8 281 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 282 #define HOOK_INDEX_VJC_IP 9 283 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 284 #define HOOK_INDEX_VJC_UNCOMP 10 285 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 286 #define HOOK_INDEX_VJC_VJIP 11 287 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 288 #define HOOK_INDEX_IPV6 12 289 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 290 { NULL, NULL } 291 }; 292 293 /* Helper functions */ 294 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 295 uint16_t linkNum); 296 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 297 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 298 uint16_t linkNum); 299 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 300 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 301 uint16_t linkNum); 302 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 303 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 304 uint16_t linkNum); 305 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 306 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 307 uint16_t linkNum); 308 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 309 uint16_t linkNum, int plen); 310 311 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 312 uint16_t linkNum); 313 314 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 315 static int ng_ppp_frag_drop(node_p node); 316 static int ng_ppp_check_packet(node_p node); 317 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 318 static int ng_ppp_frag_process(node_p node, item_p oitem); 319 static int ng_ppp_frag_trim(node_p node); 320 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 321 int arg2); 322 static void ng_ppp_frag_checkstale(node_p node); 323 static void ng_ppp_frag_reset(node_p node); 324 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 325 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 326 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 327 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 328 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 329 static int ng_ppp_config_valid(node_p node, 330 const struct ng_ppp_node_conf *newConf); 331 static void ng_ppp_update(node_p node, int newConf); 332 static void ng_ppp_start_frag_timer(node_p node); 333 static void ng_ppp_stop_frag_timer(node_p node); 334 335 /* Parse type for struct ng_ppp_mp_state_type */ 336 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 337 &ng_parse_hint32_type, 338 NG_PPP_MAX_LINKS 339 }; 340 static const struct ng_parse_type ng_ppp_rseq_array_type = { 341 &ng_parse_fixedarray_type, 342 &ng_ppp_rseq_array_info, 343 }; 344 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 345 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 346 static const struct ng_parse_type ng_ppp_mp_state_type = { 347 &ng_parse_struct_type, 348 &ng_ppp_mp_state_type_fields 349 }; 350 351 /* Parse type for struct ng_ppp_link_conf */ 352 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 353 = NG_PPP_LINK_TYPE_INFO; 354 static const struct ng_parse_type ng_ppp_link_type = { 355 &ng_parse_struct_type, 356 &ng_ppp_link_type_fields 357 }; 358 359 /* Parse type for struct ng_ppp_bund_conf */ 360 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 361 = NG_PPP_BUND_TYPE_INFO; 362 static const struct ng_parse_type ng_ppp_bund_type = { 363 &ng_parse_struct_type, 364 &ng_ppp_bund_type_fields 365 }; 366 367 /* Parse type for struct ng_ppp_node_conf */ 368 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 369 &ng_ppp_link_type, 370 NG_PPP_MAX_LINKS 371 }; 372 static const struct ng_parse_type ng_ppp_link_array_type = { 373 &ng_parse_fixedarray_type, 374 &ng_ppp_array_info, 375 }; 376 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 377 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 378 static const struct ng_parse_type ng_ppp_conf_type = { 379 &ng_parse_struct_type, 380 &ng_ppp_conf_type_fields 381 }; 382 383 /* Parse type for struct ng_ppp_link_stat */ 384 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 385 = NG_PPP_STATS_TYPE_INFO; 386 static const struct ng_parse_type ng_ppp_stats_type = { 387 &ng_parse_struct_type, 388 &ng_ppp_stats_type_fields 389 }; 390 391 /* Parse type for struct ng_ppp_link_stat64 */ 392 static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[] 393 = NG_PPP_STATS64_TYPE_INFO; 394 static const struct ng_parse_type ng_ppp_stats64_type = { 395 &ng_parse_struct_type, 396 &ng_ppp_stats64_type_fields 397 }; 398 399 /* List of commands and how to convert arguments to/from ASCII */ 400 static const struct ng_cmdlist ng_ppp_cmds[] = { 401 { 402 NGM_PPP_COOKIE, 403 NGM_PPP_SET_CONFIG, 404 "setconfig", 405 &ng_ppp_conf_type, 406 NULL 407 }, 408 { 409 NGM_PPP_COOKIE, 410 NGM_PPP_GET_CONFIG, 411 "getconfig", 412 NULL, 413 &ng_ppp_conf_type 414 }, 415 { 416 NGM_PPP_COOKIE, 417 NGM_PPP_GET_MP_STATE, 418 "getmpstate", 419 NULL, 420 &ng_ppp_mp_state_type 421 }, 422 { 423 NGM_PPP_COOKIE, 424 NGM_PPP_GET_LINK_STATS, 425 "getstats", 426 &ng_parse_int16_type, 427 &ng_ppp_stats_type 428 }, 429 { 430 NGM_PPP_COOKIE, 431 NGM_PPP_CLR_LINK_STATS, 432 "clrstats", 433 &ng_parse_int16_type, 434 NULL 435 }, 436 { 437 NGM_PPP_COOKIE, 438 NGM_PPP_GETCLR_LINK_STATS, 439 "getclrstats", 440 &ng_parse_int16_type, 441 &ng_ppp_stats_type 442 }, 443 { 444 NGM_PPP_COOKIE, 445 NGM_PPP_GET_LINK_STATS64, 446 "getstats64", 447 &ng_parse_int16_type, 448 &ng_ppp_stats64_type 449 }, 450 { 451 NGM_PPP_COOKIE, 452 NGM_PPP_GETCLR_LINK_STATS64, 453 "getclrstats64", 454 &ng_parse_int16_type, 455 &ng_ppp_stats64_type 456 }, 457 { 0 } 458 }; 459 460 /* Node type descriptor */ 461 static struct ng_type ng_ppp_typestruct = { 462 .version = NG_ABI_VERSION, 463 .name = NG_PPP_NODE_TYPE, 464 .constructor = ng_ppp_constructor, 465 .rcvmsg = ng_ppp_rcvmsg, 466 .shutdown = ng_ppp_shutdown, 467 .newhook = ng_ppp_newhook, 468 .rcvdata = ng_ppp_rcvdata, 469 .disconnect = ng_ppp_disconnect, 470 .cmdlist = ng_ppp_cmds, 471 }; 472 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 473 474 /* Address and control field header */ 475 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 476 477 /* Maximum time we'll let a complete incoming packet sit in the queue */ 478 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 479 480 #define ERROUT(x) do { error = (x); goto done; } while (0) 481 482 /************************************************************************ 483 NETGRAPH NODE STUFF 484 ************************************************************************/ 485 486 /* 487 * Node type constructor 488 */ 489 static int 490 ng_ppp_constructor(node_p node) 491 { 492 priv_p priv; 493 int i; 494 495 /* Allocate private structure */ 496 priv = malloc(sizeof(*priv), M_NETGRAPH_PPP, M_WAITOK | M_ZERO); 497 498 NG_NODE_SET_PRIVATE(node, priv); 499 500 /* Initialize state */ 501 TAILQ_INIT(&priv->frags); 502 TAILQ_INIT(&priv->fragsfree); 503 for (i = 0; i < MP_MAX_QUEUE_LEN; i++) 504 TAILQ_INSERT_TAIL(&priv->fragsfree, &priv->fragsmem[i], f_qent); 505 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 506 priv->links[i].seq = MP_NOSEQ; 507 ng_callout_init(&priv->fragTimer); 508 509 mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF); 510 mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF); 511 512 /* Done */ 513 return (0); 514 } 515 516 /* 517 * Give our OK for a hook to be added 518 */ 519 static int 520 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 521 { 522 const priv_p priv = NG_NODE_PRIVATE(node); 523 hook_p *hookPtr = NULL; 524 int linkNum = -1; 525 int hookIndex = -1; 526 527 /* Figure out which hook it is */ 528 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 529 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 530 const char *cp; 531 char *eptr; 532 533 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 534 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 535 return (EINVAL); 536 linkNum = (int)strtoul(cp, &eptr, 10); 537 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 538 return (EINVAL); 539 hookPtr = &priv->links[linkNum].hook; 540 hookIndex = ~linkNum; 541 542 /* See if hook is already connected. */ 543 if (*hookPtr != NULL) 544 return (EISCONN); 545 546 /* Disallow more than one link unless multilink is enabled. */ 547 if (priv->links[linkNum].conf.enableLink && 548 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 549 return (ENODEV); 550 551 } else { /* must be a non-link hook */ 552 int i; 553 554 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 555 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 556 hookPtr = &priv->hooks[i]; 557 hookIndex = i; 558 break; 559 } 560 } 561 if (ng_ppp_hook_names[i].name == NULL) 562 return (EINVAL); /* no such hook */ 563 564 /* See if hook is already connected */ 565 if (*hookPtr != NULL) 566 return (EISCONN); 567 568 /* Every non-linkX hook have it's own function. */ 569 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 570 } 571 572 /* OK */ 573 *hookPtr = hook; 574 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 575 ng_ppp_update(node, 0); 576 return (0); 577 } 578 579 /* 580 * Receive a control message 581 */ 582 static int 583 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 584 { 585 const priv_p priv = NG_NODE_PRIVATE(node); 586 struct ng_mesg *resp = NULL; 587 int error = 0; 588 struct ng_mesg *msg; 589 590 NGI_GET_MSG(item, msg); 591 switch (msg->header.typecookie) { 592 case NGM_PPP_COOKIE: 593 switch (msg->header.cmd) { 594 case NGM_PPP_SET_CONFIG: 595 { 596 struct ng_ppp_node_conf *const conf = 597 (struct ng_ppp_node_conf *)msg->data; 598 int i; 599 600 /* Check for invalid or illegal config */ 601 if (msg->header.arglen != sizeof(*conf)) 602 ERROUT(EINVAL); 603 if (!ng_ppp_config_valid(node, conf)) 604 ERROUT(EINVAL); 605 606 /* Copy config */ 607 priv->conf = conf->bund; 608 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 609 priv->links[i].conf = conf->links[i]; 610 ng_ppp_update(node, 1); 611 break; 612 } 613 case NGM_PPP_GET_CONFIG: 614 { 615 struct ng_ppp_node_conf *conf; 616 int i; 617 618 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 619 if (resp == NULL) 620 ERROUT(ENOMEM); 621 conf = (struct ng_ppp_node_conf *)resp->data; 622 conf->bund = priv->conf; 623 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 624 conf->links[i] = priv->links[i].conf; 625 break; 626 } 627 case NGM_PPP_GET_MP_STATE: 628 { 629 struct ng_ppp_mp_state *info; 630 int i; 631 632 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 633 if (resp == NULL) 634 ERROUT(ENOMEM); 635 info = (struct ng_ppp_mp_state *)resp->data; 636 bzero(info, sizeof(*info)); 637 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 638 if (priv->links[i].seq != MP_NOSEQ) 639 info->rseq[i] = priv->links[i].seq; 640 } 641 info->mseq = priv->mseq; 642 info->xseq = priv->xseq; 643 break; 644 } 645 case NGM_PPP_GET_LINK_STATS: 646 case NGM_PPP_CLR_LINK_STATS: 647 case NGM_PPP_GETCLR_LINK_STATS: 648 case NGM_PPP_GET_LINK_STATS64: 649 case NGM_PPP_GETCLR_LINK_STATS64: 650 { 651 struct ng_ppp_link_stat64 *stats; 652 uint16_t linkNum; 653 654 /* Process request. */ 655 if (msg->header.arglen != sizeof(uint16_t)) 656 ERROUT(EINVAL); 657 linkNum = *((uint16_t *) msg->data); 658 if (linkNum >= NG_PPP_MAX_LINKS 659 && linkNum != NG_PPP_BUNDLE_LINKNUM) 660 ERROUT(EINVAL); 661 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 662 &priv->bundleStats : &priv->links[linkNum].stats; 663 664 /* Make 64bit reply. */ 665 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 || 666 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) { 667 NG_MKRESPONSE(resp, msg, 668 sizeof(struct ng_ppp_link_stat64), M_NOWAIT); 669 if (resp == NULL) 670 ERROUT(ENOMEM); 671 bcopy(stats, resp->data, sizeof(*stats)); 672 } else 673 /* Make 32bit reply. */ 674 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS || 675 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) { 676 struct ng_ppp_link_stat *rs; 677 NG_MKRESPONSE(resp, msg, 678 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 679 if (resp == NULL) 680 ERROUT(ENOMEM); 681 rs = (struct ng_ppp_link_stat *)resp->data; 682 /* Truncate 64->32 bits. */ 683 rs->xmitFrames = stats->xmitFrames; 684 rs->xmitOctets = stats->xmitOctets; 685 rs->recvFrames = stats->recvFrames; 686 rs->recvOctets = stats->recvOctets; 687 rs->badProtos = stats->badProtos; 688 rs->runts = stats->runts; 689 rs->dupFragments = stats->dupFragments; 690 rs->dropFragments = stats->dropFragments; 691 } 692 /* Clear stats. */ 693 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS && 694 msg->header.cmd != NGM_PPP_GET_LINK_STATS64) 695 bzero(stats, sizeof(*stats)); 696 break; 697 } 698 default: 699 error = EINVAL; 700 break; 701 } 702 break; 703 case NGM_VJC_COOKIE: 704 { 705 /* 706 * Forward it to the vjc node. leave the 707 * old return address alone. 708 * If we have no hook, let NG_RESPOND_MSG 709 * clean up any remaining resources. 710 * Because we have no resp, the item will be freed 711 * along with anything it references. Don't 712 * let msg be freed twice. 713 */ 714 NGI_MSG(item) = msg; /* put it back in the item */ 715 msg = NULL; 716 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 717 NG_FWD_ITEM_HOOK(error, item, lasthook); 718 } 719 return (error); 720 } 721 default: 722 error = EINVAL; 723 break; 724 } 725 done: 726 NG_RESPOND_MSG(error, node, item, resp); 727 NG_FREE_MSG(msg); 728 return (error); 729 } 730 731 /* 732 * Destroy node 733 */ 734 static int 735 ng_ppp_shutdown(node_p node) 736 { 737 const priv_p priv = NG_NODE_PRIVATE(node); 738 739 /* Stop fragment queue timer */ 740 ng_ppp_stop_frag_timer(node); 741 742 /* Take down netgraph node */ 743 ng_ppp_frag_reset(node); 744 mtx_destroy(&priv->rmtx); 745 mtx_destroy(&priv->xmtx); 746 bzero(priv, sizeof(*priv)); 747 free(priv, M_NETGRAPH_PPP); 748 NG_NODE_SET_PRIVATE(node, NULL); 749 NG_NODE_UNREF(node); /* let the node escape */ 750 return (0); 751 } 752 753 /* 754 * Hook disconnection 755 */ 756 static int 757 ng_ppp_disconnect(hook_p hook) 758 { 759 const node_p node = NG_HOOK_NODE(hook); 760 const priv_p priv = NG_NODE_PRIVATE(node); 761 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 762 763 /* Zero out hook pointer */ 764 if (index < 0) 765 priv->links[~index].hook = NULL; 766 else 767 priv->hooks[index] = NULL; 768 769 /* Update derived info (or go away if no hooks left). */ 770 if (NG_NODE_NUMHOOKS(node) > 0) 771 ng_ppp_update(node, 0); 772 else if (NG_NODE_IS_VALID(node)) 773 ng_rmnode_self(node); 774 775 return (0); 776 } 777 778 /* 779 * Proto layer 780 */ 781 782 /* 783 * Receive data on a hook inet. 784 */ 785 static int 786 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 787 { 788 const node_p node = NG_HOOK_NODE(hook); 789 const priv_p priv = NG_NODE_PRIVATE(node); 790 791 if (!priv->conf.enableIP) { 792 NG_FREE_ITEM(item); 793 return (ENXIO); 794 } 795 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 796 } 797 798 /* 799 * Receive data on a hook inet and pass it directly to first link. 800 */ 801 static int 802 ng_ppp_rcvdata_inet_fast(hook_p hook, item_p item) 803 { 804 const node_p node = NG_HOOK_NODE(hook); 805 const priv_p priv = NG_NODE_PRIVATE(node); 806 807 return (ng_ppp_link_xmit(node, item, PROT_IP, priv->activeLinks[0], 808 NGI_M(item)->m_pkthdr.len)); 809 } 810 811 /* 812 * Receive data on a hook ipv6. 813 */ 814 static int 815 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 816 { 817 const node_p node = NG_HOOK_NODE(hook); 818 const priv_p priv = NG_NODE_PRIVATE(node); 819 820 if (!priv->conf.enableIPv6) { 821 NG_FREE_ITEM(item); 822 return (ENXIO); 823 } 824 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 825 } 826 827 /* 828 * Receive data on a hook atalk. 829 */ 830 static int 831 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 832 { 833 const node_p node = NG_HOOK_NODE(hook); 834 const priv_p priv = NG_NODE_PRIVATE(node); 835 836 if (!priv->conf.enableAtalk) { 837 NG_FREE_ITEM(item); 838 return (ENXIO); 839 } 840 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 841 } 842 843 /* 844 * Receive data on a hook ipx 845 */ 846 static int 847 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 848 { 849 const node_p node = NG_HOOK_NODE(hook); 850 const priv_p priv = NG_NODE_PRIVATE(node); 851 852 if (!priv->conf.enableIPX) { 853 NG_FREE_ITEM(item); 854 return (ENXIO); 855 } 856 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 857 } 858 859 /* 860 * Receive data on a hook bypass 861 */ 862 static int 863 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 864 { 865 uint16_t linkNum; 866 uint16_t proto; 867 struct mbuf *m; 868 869 NGI_GET_M(item, m); 870 if (m->m_pkthdr.len < 4) { 871 NG_FREE_ITEM(item); 872 return (EINVAL); 873 } 874 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 875 NG_FREE_ITEM(item); 876 return (ENOBUFS); 877 } 878 linkNum = be16dec(mtod(m, uint8_t *)); 879 proto = be16dec(mtod(m, uint8_t *) + 2); 880 m_adj(m, 4); 881 NGI_M(item) = m; 882 883 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 884 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 885 else 886 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 887 linkNum, 0)); 888 } 889 890 static int 891 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 892 { 893 const priv_p priv = NG_NODE_PRIVATE(node); 894 uint16_t hdr[2]; 895 struct mbuf *m; 896 int error; 897 898 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 899 NG_FREE_ITEM(item); 900 return (ENXIO); 901 } 902 903 /* Add 4-byte bypass header. */ 904 hdr[0] = htons(linkNum); 905 hdr[1] = htons(proto); 906 907 NGI_GET_M(item, m); 908 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 909 NG_FREE_ITEM(item); 910 return (ENOBUFS); 911 } 912 NGI_M(item) = m; 913 914 /* Send packet out hook. */ 915 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 916 return (error); 917 } 918 919 static int 920 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 921 { 922 const priv_p priv = NG_NODE_PRIVATE(node); 923 hook_p outHook = NULL; 924 int error; 925 #ifdef ALIGNED_POINTER 926 struct mbuf *m, *n; 927 928 NGI_GET_M(item, m); 929 if (!ALIGNED_POINTER(mtod(m, caddr_t), uint32_t)) { 930 n = m_defrag(m, M_NOWAIT); 931 if (n == NULL) { 932 m_freem(m); 933 NG_FREE_ITEM(item); 934 return (ENOBUFS); 935 } 936 m = n; 937 } 938 NGI_M(item) = m; 939 #endif /* ALIGNED_POINTER */ 940 switch (proto) { 941 case PROT_IP: 942 if (priv->conf.enableIP) 943 outHook = priv->hooks[HOOK_INDEX_INET]; 944 break; 945 case PROT_IPV6: 946 if (priv->conf.enableIPv6) 947 outHook = priv->hooks[HOOK_INDEX_IPV6]; 948 break; 949 case PROT_ATALK: 950 if (priv->conf.enableAtalk) 951 outHook = priv->hooks[HOOK_INDEX_ATALK]; 952 break; 953 case PROT_IPX: 954 if (priv->conf.enableIPX) 955 outHook = priv->hooks[HOOK_INDEX_IPX]; 956 break; 957 } 958 959 if (outHook == NULL) 960 return (ng_ppp_bypass(node, item, proto, linkNum)); 961 962 /* Send packet out hook. */ 963 NG_FWD_ITEM_HOOK(error, item, outHook); 964 return (error); 965 } 966 967 /* 968 * Header compression layer 969 */ 970 971 static int 972 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 973 { 974 const priv_p priv = NG_NODE_PRIVATE(node); 975 976 if (proto == PROT_IP && 977 priv->conf.enableVJCompression && 978 priv->vjCompHooked) { 979 int error; 980 981 /* Send packet out hook. */ 982 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 983 return (error); 984 } 985 986 return (ng_ppp_comp_xmit(node, item, proto)); 987 } 988 989 /* 990 * Receive data on a hook vjc_comp. 991 */ 992 static int 993 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 994 { 995 const node_p node = NG_HOOK_NODE(hook); 996 const priv_p priv = NG_NODE_PRIVATE(node); 997 998 if (!priv->conf.enableVJCompression) { 999 NG_FREE_ITEM(item); 1000 return (ENXIO); 1001 } 1002 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 1003 } 1004 1005 /* 1006 * Receive data on a hook vjc_uncomp. 1007 */ 1008 static int 1009 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 1010 { 1011 const node_p node = NG_HOOK_NODE(hook); 1012 const priv_p priv = NG_NODE_PRIVATE(node); 1013 1014 if (!priv->conf.enableVJCompression) { 1015 NG_FREE_ITEM(item); 1016 return (ENXIO); 1017 } 1018 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 1019 } 1020 1021 /* 1022 * Receive data on a hook vjc_vjip. 1023 */ 1024 static int 1025 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 1026 { 1027 const node_p node = NG_HOOK_NODE(hook); 1028 const priv_p priv = NG_NODE_PRIVATE(node); 1029 1030 if (!priv->conf.enableVJCompression) { 1031 NG_FREE_ITEM(item); 1032 return (ENXIO); 1033 } 1034 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 1035 } 1036 1037 static int 1038 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1039 { 1040 const priv_p priv = NG_NODE_PRIVATE(node); 1041 1042 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 1043 hook_p outHook = NULL; 1044 1045 switch (proto) { 1046 case PROT_VJCOMP: 1047 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 1048 break; 1049 case PROT_VJUNCOMP: 1050 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 1051 break; 1052 } 1053 1054 if (outHook) { 1055 int error; 1056 1057 /* Send packet out hook. */ 1058 NG_FWD_ITEM_HOOK(error, item, outHook); 1059 return (error); 1060 } 1061 } 1062 1063 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 1064 } 1065 1066 /* 1067 * Receive data on a hook vjc_ip. 1068 */ 1069 static int 1070 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 1071 { 1072 const node_p node = NG_HOOK_NODE(hook); 1073 const priv_p priv = NG_NODE_PRIVATE(node); 1074 1075 if (!priv->conf.enableVJDecompression) { 1076 NG_FREE_ITEM(item); 1077 return (ENXIO); 1078 } 1079 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 1080 } 1081 1082 /* 1083 * Compression layer 1084 */ 1085 1086 static int 1087 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1088 { 1089 const priv_p priv = NG_NODE_PRIVATE(node); 1090 1091 if (priv->conf.enableCompression && 1092 proto < 0x4000 && 1093 proto != PROT_COMPD && 1094 proto != PROT_CRYPTD && 1095 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1096 struct mbuf *m; 1097 int error; 1098 1099 NGI_GET_M(item, m); 1100 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1101 NG_FREE_ITEM(item); 1102 return (ENOBUFS); 1103 } 1104 NGI_M(item) = m; 1105 1106 /* Send packet out hook. */ 1107 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1108 return (error); 1109 } 1110 1111 return (ng_ppp_crypt_xmit(node, item, proto)); 1112 } 1113 1114 /* 1115 * Receive data on a hook compress. 1116 */ 1117 static int 1118 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1119 { 1120 const node_p node = NG_HOOK_NODE(hook); 1121 const priv_p priv = NG_NODE_PRIVATE(node); 1122 uint16_t proto; 1123 1124 switch (priv->conf.enableCompression) { 1125 case NG_PPP_COMPRESS_NONE: 1126 NG_FREE_ITEM(item); 1127 return (ENXIO); 1128 case NG_PPP_COMPRESS_FULL: 1129 { 1130 struct mbuf *m; 1131 1132 NGI_GET_M(item, m); 1133 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1134 NG_FREE_ITEM(item); 1135 return (EIO); 1136 } 1137 NGI_M(item) = m; 1138 if (!PROT_VALID(proto)) { 1139 NG_FREE_ITEM(item); 1140 return (EIO); 1141 } 1142 } 1143 break; 1144 default: 1145 proto = PROT_COMPD; 1146 break; 1147 } 1148 return (ng_ppp_crypt_xmit(node, item, proto)); 1149 } 1150 1151 static int 1152 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1153 { 1154 const priv_p priv = NG_NODE_PRIVATE(node); 1155 1156 if (proto < 0x4000 && 1157 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1158 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1159 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1160 int error; 1161 1162 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1163 struct mbuf *m; 1164 NGI_GET_M(item, m); 1165 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1166 NG_FREE_ITEM(item); 1167 return (EIO); 1168 } 1169 NGI_M(item) = m; 1170 } 1171 1172 /* Send packet out hook. */ 1173 NG_FWD_ITEM_HOOK(error, item, 1174 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1175 return (error); 1176 } else if (proto == PROT_COMPD) { 1177 /* Disabled protos MUST be silently discarded, but 1178 * unsupported MUST not. Let user-level decide this. */ 1179 return (ng_ppp_bypass(node, item, proto, linkNum)); 1180 } 1181 1182 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1183 } 1184 1185 /* 1186 * Receive data on a hook decompress. 1187 */ 1188 static int 1189 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1190 { 1191 const node_p node = NG_HOOK_NODE(hook); 1192 const priv_p priv = NG_NODE_PRIVATE(node); 1193 uint16_t proto; 1194 struct mbuf *m; 1195 1196 if (!priv->conf.enableDecompression) { 1197 NG_FREE_ITEM(item); 1198 return (ENXIO); 1199 } 1200 NGI_GET_M(item, m); 1201 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1202 NG_FREE_ITEM(item); 1203 return (EIO); 1204 } 1205 NGI_M(item) = m; 1206 if (!PROT_VALID(proto)) { 1207 priv->bundleStats.badProtos++; 1208 NG_FREE_ITEM(item); 1209 return (EIO); 1210 } 1211 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1212 } 1213 1214 /* 1215 * Encryption layer 1216 */ 1217 1218 static int 1219 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1220 { 1221 const priv_p priv = NG_NODE_PRIVATE(node); 1222 1223 if (priv->conf.enableEncryption && 1224 proto < 0x4000 && 1225 proto != PROT_CRYPTD && 1226 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1227 struct mbuf *m; 1228 int error; 1229 1230 NGI_GET_M(item, m); 1231 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1232 NG_FREE_ITEM(item); 1233 return (ENOBUFS); 1234 } 1235 NGI_M(item) = m; 1236 1237 /* Send packet out hook. */ 1238 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1239 return (error); 1240 } 1241 1242 return (ng_ppp_mp_xmit(node, item, proto)); 1243 } 1244 1245 /* 1246 * Receive data on a hook encrypt. 1247 */ 1248 static int 1249 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1250 { 1251 const node_p node = NG_HOOK_NODE(hook); 1252 const priv_p priv = NG_NODE_PRIVATE(node); 1253 1254 if (!priv->conf.enableEncryption) { 1255 NG_FREE_ITEM(item); 1256 return (ENXIO); 1257 } 1258 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1259 } 1260 1261 static int 1262 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1263 { 1264 const priv_p priv = NG_NODE_PRIVATE(node); 1265 1266 if (proto == PROT_CRYPTD) { 1267 if (priv->conf.enableDecryption && 1268 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1269 int error; 1270 1271 /* Send packet out hook. */ 1272 NG_FWD_ITEM_HOOK(error, item, 1273 priv->hooks[HOOK_INDEX_DECRYPT]); 1274 return (error); 1275 } else { 1276 /* Disabled protos MUST be silently discarded, but 1277 * unsupported MUST not. Let user-level decide this. */ 1278 return (ng_ppp_bypass(node, item, proto, linkNum)); 1279 } 1280 } 1281 1282 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1283 } 1284 1285 /* 1286 * Receive data on a hook decrypt. 1287 */ 1288 static int 1289 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1290 { 1291 const node_p node = NG_HOOK_NODE(hook); 1292 const priv_p priv = NG_NODE_PRIVATE(node); 1293 uint16_t proto; 1294 struct mbuf *m; 1295 1296 if (!priv->conf.enableDecryption) { 1297 NG_FREE_ITEM(item); 1298 return (ENXIO); 1299 } 1300 NGI_GET_M(item, m); 1301 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1302 NG_FREE_ITEM(item); 1303 return (EIO); 1304 } 1305 NGI_M(item) = m; 1306 if (!PROT_VALID(proto)) { 1307 priv->bundleStats.badProtos++; 1308 NG_FREE_ITEM(item); 1309 return (EIO); 1310 } 1311 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1312 } 1313 1314 /* 1315 * Link layer 1316 */ 1317 1318 static int 1319 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen) 1320 { 1321 const priv_p priv = NG_NODE_PRIVATE(node); 1322 struct ng_ppp_link *link; 1323 int len, error; 1324 struct mbuf *m; 1325 uint16_t mru; 1326 1327 /* Check if link correct. */ 1328 if (linkNum >= NG_PPP_MAX_LINKS) { 1329 ERROUT(ENETDOWN); 1330 } 1331 1332 /* Get link pointer (optimization). */ 1333 link = &priv->links[linkNum]; 1334 1335 /* Check link status (if real). */ 1336 if (link->hook == NULL) { 1337 ERROUT(ENETDOWN); 1338 } 1339 1340 /* Extract mbuf. */ 1341 NGI_GET_M(item, m); 1342 1343 /* Check peer's MRU for this link. */ 1344 mru = link->conf.mru; 1345 if (mru != 0 && m->m_pkthdr.len > mru) { 1346 NG_FREE_M(m); 1347 ERROUT(EMSGSIZE); 1348 } 1349 1350 /* Prepend protocol number, possibly compressed. */ 1351 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1352 NULL) { 1353 ERROUT(ENOBUFS); 1354 } 1355 1356 /* Prepend address and control field (unless compressed). */ 1357 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1358 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) 1359 ERROUT(ENOBUFS); 1360 } 1361 1362 /* Deliver frame. */ 1363 len = m->m_pkthdr.len; 1364 NG_FWD_NEW_DATA(error, item, link->hook, m); 1365 1366 mtx_lock(&priv->xmtx); 1367 1368 /* Update link stats. */ 1369 link->stats.xmitFrames++; 1370 link->stats.xmitOctets += len; 1371 1372 /* Update bundle stats. */ 1373 if (plen > 0) { 1374 priv->bundleStats.xmitFrames++; 1375 priv->bundleStats.xmitOctets += plen; 1376 } 1377 1378 /* Update 'bytes in queue' counter. */ 1379 if (error == 0) { 1380 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1381 if (priv->conf.enableMultilink && !priv->allLinksEqual && 1382 !priv->conf.enableRoundRobin) { 1383 /* If queue was empty, then mark this time. */ 1384 if (link->bytesInQueue == 0) 1385 getmicrouptime(&link->lastWrite); 1386 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1387 /* Limit max queue length to 50 pkts. BW can be defined 1388 incorrectly and link may not signal overload. */ 1389 if (link->bytesInQueue > 50 * 1600) 1390 link->bytesInQueue = 50 * 1600; 1391 } 1392 } 1393 mtx_unlock(&priv->xmtx); 1394 return (error); 1395 1396 done: 1397 NG_FREE_ITEM(item); 1398 return (error); 1399 } 1400 1401 /* 1402 * Receive data on a hook linkX. 1403 */ 1404 static int 1405 ng_ppp_rcvdata(hook_p hook, item_p item) 1406 { 1407 const node_p node = NG_HOOK_NODE(hook); 1408 const priv_p priv = NG_NODE_PRIVATE(node); 1409 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1410 const uint16_t linkNum = (uint16_t)~index; 1411 struct ng_ppp_link * const link = &priv->links[linkNum]; 1412 uint16_t proto; 1413 struct mbuf *m; 1414 int error = 0; 1415 1416 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1417 ("%s: bogus index 0x%x", __func__, index)); 1418 1419 NGI_GET_M(item, m); 1420 1421 mtx_lock(&priv->rmtx); 1422 1423 /* Stats */ 1424 link->stats.recvFrames++; 1425 link->stats.recvOctets += m->m_pkthdr.len; 1426 1427 /* Strip address and control fields, if present. */ 1428 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1429 ERROUT(ENOBUFS); 1430 if (mtod(m, uint8_t *)[0] == 0xff && 1431 mtod(m, uint8_t *)[1] == 0x03) 1432 m_adj(m, 2); 1433 1434 /* Get protocol number */ 1435 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1436 ERROUT(ENOBUFS); 1437 NGI_M(item) = m; /* Put changed m back into item. */ 1438 1439 if (!PROT_VALID(proto)) { 1440 link->stats.badProtos++; 1441 ERROUT(EIO); 1442 } 1443 1444 /* LCP packets must go directly to bypass. */ 1445 if (proto >= 0xB000) { 1446 mtx_unlock(&priv->rmtx); 1447 return (ng_ppp_bypass(node, item, proto, linkNum)); 1448 } 1449 1450 /* Other packets are denied on a disabled link. */ 1451 if (!link->conf.enableLink) 1452 ERROUT(ENXIO); 1453 1454 /* Proceed to multilink layer. Mutex will be unlocked inside. */ 1455 error = ng_ppp_mp_recv(node, item, proto, linkNum); 1456 mtx_assert(&priv->rmtx, MA_NOTOWNED); 1457 return (error); 1458 1459 done: 1460 mtx_unlock(&priv->rmtx); 1461 NG_FREE_ITEM(item); 1462 return (error); 1463 } 1464 1465 /* 1466 * Multilink layer 1467 */ 1468 1469 /* 1470 * Handle an incoming multi-link fragment 1471 * 1472 * The fragment reassembly algorithm is somewhat complex. This is mainly 1473 * because we are required not to reorder the reconstructed packets, yet 1474 * fragments are only guaranteed to arrive in order on a per-link basis. 1475 * In other words, when we have a complete packet ready, but the previous 1476 * packet is still incomplete, we have to decide between delivering the 1477 * complete packet and throwing away the incomplete one, or waiting to 1478 * see if the remainder of the incomplete one arrives, at which time we 1479 * can deliver both packets, in order. 1480 * 1481 * This problem is exacerbated by "sequence number slew", which is when 1482 * the sequence numbers coming in from different links are far apart from 1483 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1484 * has been seen to generate sequence number slew of up to 10 on an ISDN 1485 * 2B-channel MP link. There is nothing invalid about sequence number slew 1486 * but it makes the reasssembly process have to work harder. 1487 * 1488 * However, the peer is required to transmit fragments in order on each 1489 * link. That means if we define MSEQ as the minimum over all links of 1490 * the highest sequence number received on that link, then we can always 1491 * give up any hope of receiving a fragment with sequence number < MSEQ in 1492 * the future (all of this using 'wraparound' sequence number space). 1493 * Therefore we can always immediately throw away incomplete packets 1494 * missing fragments with sequence numbers < MSEQ. 1495 * 1496 * Here is an overview of our algorithm: 1497 * 1498 * o Received fragments are inserted into a queue, for which we 1499 * maintain these invariants between calls to this function: 1500 * 1501 * - Fragments are ordered in the queue by sequence number 1502 * - If a complete packet is at the head of the queue, then 1503 * the first fragment in the packet has seq# > MSEQ + 1 1504 * (otherwise, we could deliver it immediately) 1505 * - If any fragments have seq# < MSEQ, then they are necessarily 1506 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1507 * we can throw them away because they'll never be completed) 1508 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1509 * 1510 * o We have a periodic timer that checks the queue for the first 1511 * complete packet that has been sitting in the queue "too long". 1512 * When one is detected, all previous (incomplete) fragments are 1513 * discarded, their missing fragments are declared lost and MSEQ 1514 * is increased. 1515 * 1516 * o If we receive a fragment with seq# < MSEQ, we throw it away 1517 * because we've already delcared it lost. 1518 * 1519 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1520 */ 1521 static int 1522 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1523 { 1524 const priv_p priv = NG_NODE_PRIVATE(node); 1525 struct ng_ppp_link *const link = &priv->links[linkNum]; 1526 struct ng_ppp_frag *frag; 1527 struct ng_ppp_frag *qent; 1528 int i, diff, inserted; 1529 struct mbuf *m; 1530 int error = 0; 1531 1532 if ((!priv->conf.enableMultilink) || proto != PROT_MP) { 1533 /* Stats */ 1534 priv->bundleStats.recvFrames++; 1535 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1536 1537 mtx_unlock(&priv->rmtx); 1538 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1539 } 1540 1541 NGI_GET_M(item, m); 1542 1543 /* Get a new frag struct from the free queue */ 1544 if ((frag = TAILQ_FIRST(&priv->fragsfree)) == NULL) { 1545 printf("No free fragments headers in ng_ppp!\n"); 1546 NG_FREE_M(m); 1547 goto process; 1548 } 1549 1550 /* Extract fragment information from MP header */ 1551 if (priv->conf.recvShortSeq) { 1552 uint16_t shdr; 1553 1554 if (m->m_pkthdr.len < 2) { 1555 link->stats.runts++; 1556 NG_FREE_M(m); 1557 ERROUT(EINVAL); 1558 } 1559 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1560 ERROUT(ENOBUFS); 1561 1562 shdr = be16dec(mtod(m, void *)); 1563 frag->seq = MP_SHORT_EXTEND(shdr); 1564 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1565 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1566 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1567 m_adj(m, 2); 1568 } else { 1569 uint32_t lhdr; 1570 1571 if (m->m_pkthdr.len < 4) { 1572 link->stats.runts++; 1573 NG_FREE_M(m); 1574 ERROUT(EINVAL); 1575 } 1576 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1577 ERROUT(ENOBUFS); 1578 1579 lhdr = be32dec(mtod(m, void *)); 1580 frag->seq = MP_LONG_EXTEND(lhdr); 1581 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1582 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1583 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1584 m_adj(m, 4); 1585 } 1586 frag->data = m; 1587 getmicrouptime(&frag->timestamp); 1588 1589 /* If sequence number is < MSEQ, we've already declared this 1590 fragment as lost, so we have no choice now but to drop it */ 1591 if (diff < 0) { 1592 link->stats.dropFragments++; 1593 NG_FREE_M(m); 1594 ERROUT(0); 1595 } 1596 1597 /* Update highest received sequence number on this link and MSEQ */ 1598 priv->mseq = link->seq = frag->seq; 1599 for (i = 0; i < priv->numActiveLinks; i++) { 1600 struct ng_ppp_link *const alink = 1601 &priv->links[priv->activeLinks[i]]; 1602 1603 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1604 priv->mseq = alink->seq; 1605 } 1606 1607 /* Remove frag struct from free queue. */ 1608 TAILQ_REMOVE(&priv->fragsfree, frag, f_qent); 1609 1610 /* Add fragment to queue, which is sorted by sequence number */ 1611 inserted = 0; 1612 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1613 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1614 if (diff > 0) { 1615 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1616 inserted = 1; 1617 break; 1618 } else if (diff == 0) { /* should never happen! */ 1619 link->stats.dupFragments++; 1620 NG_FREE_M(frag->data); 1621 TAILQ_INSERT_HEAD(&priv->fragsfree, frag, f_qent); 1622 ERROUT(EINVAL); 1623 } 1624 } 1625 if (!inserted) 1626 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1627 1628 process: 1629 /* Process the queue */ 1630 /* NOTE: rmtx will be unlocked for sending time! */ 1631 error = ng_ppp_frag_process(node, item); 1632 mtx_unlock(&priv->rmtx); 1633 return (error); 1634 1635 done: 1636 mtx_unlock(&priv->rmtx); 1637 NG_FREE_ITEM(item); 1638 return (error); 1639 } 1640 1641 /************************************************************************ 1642 HELPER STUFF 1643 ************************************************************************/ 1644 1645 /* 1646 * If new mseq > current then set it and update all active links 1647 */ 1648 static void 1649 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1650 { 1651 const priv_p priv = NG_NODE_PRIVATE(node); 1652 int i; 1653 1654 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1655 priv->mseq = new_mseq; 1656 for (i = 0; i < priv->numActiveLinks; i++) { 1657 struct ng_ppp_link *const alink = 1658 &priv->links[priv->activeLinks[i]]; 1659 1660 if (MP_RECV_SEQ_DIFF(priv, 1661 alink->seq, new_mseq) < 0) 1662 alink->seq = new_mseq; 1663 } 1664 } 1665 } 1666 1667 /* 1668 * Examine our list of fragments, and determine if there is a 1669 * complete and deliverable packet at the head of the list. 1670 * Return 1 if so, zero otherwise. 1671 */ 1672 static int 1673 ng_ppp_check_packet(node_p node) 1674 { 1675 const priv_p priv = NG_NODE_PRIVATE(node); 1676 struct ng_ppp_frag *qent, *qnext; 1677 1678 /* Check for empty queue */ 1679 if (TAILQ_EMPTY(&priv->frags)) 1680 return (0); 1681 1682 /* Check first fragment is the start of a deliverable packet */ 1683 qent = TAILQ_FIRST(&priv->frags); 1684 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1685 return (0); 1686 1687 /* Check that all the fragments are there */ 1688 while (!qent->last) { 1689 qnext = TAILQ_NEXT(qent, f_qent); 1690 if (qnext == NULL) /* end of queue */ 1691 return (0); 1692 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1693 return (0); 1694 qent = qnext; 1695 } 1696 1697 /* Got one */ 1698 return (1); 1699 } 1700 1701 /* 1702 * Pull a completed packet off the head of the incoming fragment queue. 1703 * This assumes there is a completed packet there to pull off. 1704 */ 1705 static void 1706 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1707 { 1708 const priv_p priv = NG_NODE_PRIVATE(node); 1709 struct ng_ppp_frag *qent, *qnext; 1710 struct mbuf *m = NULL, *tail; 1711 1712 qent = TAILQ_FIRST(&priv->frags); 1713 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1714 ("%s: no packet", __func__)); 1715 for (tail = NULL; qent != NULL; qent = qnext) { 1716 qnext = TAILQ_NEXT(qent, f_qent); 1717 KASSERT(!TAILQ_EMPTY(&priv->frags), 1718 ("%s: empty q", __func__)); 1719 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1720 if (tail == NULL) 1721 tail = m = qent->data; 1722 else { 1723 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1724 tail->m_next = qent->data; 1725 } 1726 while (tail->m_next != NULL) 1727 tail = tail->m_next; 1728 if (qent->last) { 1729 qnext = NULL; 1730 /* Bump MSEQ if necessary */ 1731 ng_ppp_bump_mseq(node, qent->seq); 1732 } 1733 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1734 } 1735 *mp = m; 1736 } 1737 1738 /* 1739 * Trim fragments from the queue whose packets can never be completed. 1740 * This assumes a complete packet is NOT at the beginning of the queue. 1741 * Returns 1 if fragments were removed, zero otherwise. 1742 */ 1743 static int 1744 ng_ppp_frag_trim(node_p node) 1745 { 1746 const priv_p priv = NG_NODE_PRIVATE(node); 1747 struct ng_ppp_frag *qent, *qnext = NULL; 1748 int removed = 0; 1749 1750 /* Scan for "dead" fragments and remove them */ 1751 while (1) { 1752 int dead = 0; 1753 1754 /* If queue is empty, we're done */ 1755 if (TAILQ_EMPTY(&priv->frags)) 1756 break; 1757 1758 /* Determine whether first fragment can ever be completed */ 1759 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1760 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1761 break; 1762 qnext = TAILQ_NEXT(qent, f_qent); 1763 KASSERT(qnext != NULL, 1764 ("%s: last frag < MSEQ?", __func__)); 1765 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1766 || qent->last || qnext->first) { 1767 dead = 1; 1768 break; 1769 } 1770 } 1771 if (!dead) 1772 break; 1773 1774 /* Remove fragment and all others in the same packet */ 1775 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1776 KASSERT(!TAILQ_EMPTY(&priv->frags), 1777 ("%s: empty q", __func__)); 1778 priv->bundleStats.dropFragments++; 1779 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1780 NG_FREE_M(qent->data); 1781 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1782 removed = 1; 1783 } 1784 } 1785 return (removed); 1786 } 1787 1788 /* 1789 * Drop fragments on queue overflow. 1790 * Returns 1 if fragments were removed, zero otherwise. 1791 */ 1792 static int 1793 ng_ppp_frag_drop(node_p node) 1794 { 1795 const priv_p priv = NG_NODE_PRIVATE(node); 1796 1797 /* Check queue length */ 1798 if (TAILQ_EMPTY(&priv->fragsfree)) { 1799 struct ng_ppp_frag *qent; 1800 1801 /* Get oldest fragment */ 1802 KASSERT(!TAILQ_EMPTY(&priv->frags), 1803 ("%s: empty q", __func__)); 1804 qent = TAILQ_FIRST(&priv->frags); 1805 1806 /* Bump MSEQ if necessary */ 1807 ng_ppp_bump_mseq(node, qent->seq); 1808 1809 /* Drop it */ 1810 priv->bundleStats.dropFragments++; 1811 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1812 NG_FREE_M(qent->data); 1813 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1814 1815 return (1); 1816 } 1817 return (0); 1818 } 1819 1820 /* 1821 * Run the queue, restoring the queue invariants 1822 */ 1823 static int 1824 ng_ppp_frag_process(node_p node, item_p oitem) 1825 { 1826 const priv_p priv = NG_NODE_PRIVATE(node); 1827 struct mbuf *m; 1828 item_p item; 1829 uint16_t proto; 1830 1831 do { 1832 /* Deliver any deliverable packets */ 1833 while (ng_ppp_check_packet(node)) { 1834 ng_ppp_get_packet(node, &m); 1835 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1836 continue; 1837 if (!PROT_VALID(proto)) { 1838 priv->bundleStats.badProtos++; 1839 NG_FREE_M(m); 1840 continue; 1841 } 1842 if (oitem) { /* If original item present - reuse it. */ 1843 item = oitem; 1844 oitem = NULL; 1845 NGI_M(item) = m; 1846 } else { 1847 item = ng_package_data(m, NG_NOFLAGS); 1848 } 1849 if (item != NULL) { 1850 /* Stats */ 1851 priv->bundleStats.recvFrames++; 1852 priv->bundleStats.recvOctets += 1853 NGI_M(item)->m_pkthdr.len; 1854 1855 /* Drop mutex for the sending time. 1856 * Priv may change, but we are ready! 1857 */ 1858 mtx_unlock(&priv->rmtx); 1859 ng_ppp_crypt_recv(node, item, proto, 1860 NG_PPP_BUNDLE_LINKNUM); 1861 mtx_lock(&priv->rmtx); 1862 } 1863 } 1864 /* Delete dead fragments and try again */ 1865 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1866 1867 /* If we haven't reused original item - free it. */ 1868 if (oitem) NG_FREE_ITEM(oitem); 1869 1870 /* Done */ 1871 return (0); 1872 } 1873 1874 /* 1875 * Check for 'stale' completed packets that need to be delivered 1876 * 1877 * If a link goes down or has a temporary failure, MSEQ can get 1878 * "stuck", because no new incoming fragments appear on that link. 1879 * This can cause completed packets to never get delivered if 1880 * their sequence numbers are all > MSEQ + 1. 1881 * 1882 * This routine checks how long all of the completed packets have 1883 * been sitting in the queue, and if too long, removes fragments 1884 * from the queue and increments MSEQ to allow them to be delivered. 1885 */ 1886 static void 1887 ng_ppp_frag_checkstale(node_p node) 1888 { 1889 const priv_p priv = NG_NODE_PRIVATE(node); 1890 struct ng_ppp_frag *qent, *beg, *end; 1891 struct timeval now, age; 1892 struct mbuf *m; 1893 int seq; 1894 item_p item; 1895 int endseq; 1896 uint16_t proto; 1897 1898 now.tv_sec = 0; /* uninitialized state */ 1899 while (1) { 1900 1901 /* If queue is empty, we're done */ 1902 if (TAILQ_EMPTY(&priv->frags)) 1903 break; 1904 1905 /* Find the first complete packet in the queue */ 1906 beg = end = NULL; 1907 seq = TAILQ_FIRST(&priv->frags)->seq; 1908 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1909 if (qent->first) 1910 beg = qent; 1911 else if (qent->seq != seq) 1912 beg = NULL; 1913 if (beg != NULL && qent->last) { 1914 end = qent; 1915 break; 1916 } 1917 seq = MP_NEXT_RECV_SEQ(priv, seq); 1918 } 1919 1920 /* If none found, exit */ 1921 if (end == NULL) 1922 break; 1923 1924 /* Get current time (we assume we've been up for >= 1 second) */ 1925 if (now.tv_sec == 0) 1926 getmicrouptime(&now); 1927 1928 /* Check if packet has been queued too long */ 1929 age = now; 1930 timevalsub(&age, &beg->timestamp); 1931 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1932 break; 1933 1934 /* Throw away junk fragments in front of the completed packet */ 1935 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1936 KASSERT(!TAILQ_EMPTY(&priv->frags), 1937 ("%s: empty q", __func__)); 1938 priv->bundleStats.dropFragments++; 1939 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1940 NG_FREE_M(qent->data); 1941 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1942 } 1943 1944 /* Extract completed packet */ 1945 endseq = end->seq; 1946 ng_ppp_get_packet(node, &m); 1947 1948 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1949 continue; 1950 if (!PROT_VALID(proto)) { 1951 priv->bundleStats.badProtos++; 1952 NG_FREE_M(m); 1953 continue; 1954 } 1955 1956 /* Deliver packet */ 1957 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1958 /* Stats */ 1959 priv->bundleStats.recvFrames++; 1960 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1961 1962 ng_ppp_crypt_recv(node, item, proto, 1963 NG_PPP_BUNDLE_LINKNUM); 1964 } 1965 } 1966 } 1967 1968 /* 1969 * Periodically call ng_ppp_frag_checkstale() 1970 */ 1971 static void 1972 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1973 { 1974 /* XXX: is this needed? */ 1975 if (NG_NODE_NOT_VALID(node)) 1976 return; 1977 1978 /* Scan the fragment queue */ 1979 ng_ppp_frag_checkstale(node); 1980 1981 /* Start timer again */ 1982 ng_ppp_start_frag_timer(node); 1983 } 1984 1985 /* 1986 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1987 * the frame across the individual PPP links and do so. 1988 */ 1989 static int 1990 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1991 { 1992 const priv_p priv = NG_NODE_PRIVATE(node); 1993 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1994 int distrib[NG_PPP_MAX_LINKS]; 1995 int firstFragment; 1996 int activeLinkNum; 1997 struct mbuf *m; 1998 int plen; 1999 int frags; 2000 int32_t seq; 2001 2002 /* At least one link must be active */ 2003 if (priv->numActiveLinks == 0) { 2004 NG_FREE_ITEM(item); 2005 return (ENETDOWN); 2006 } 2007 2008 /* Save length for later stats. */ 2009 plen = NGI_M(item)->m_pkthdr.len; 2010 2011 if (!priv->conf.enableMultilink) { 2012 return (ng_ppp_link_xmit(node, item, proto, 2013 priv->activeLinks[0], plen)); 2014 } 2015 2016 /* Check peer's MRRU for this bundle. */ 2017 if (plen > priv->conf.mrru) { 2018 NG_FREE_ITEM(item); 2019 return (EMSGSIZE); 2020 } 2021 2022 /* Extract mbuf. */ 2023 NGI_GET_M(item, m); 2024 2025 /* Prepend protocol number, possibly compressed. */ 2026 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) { 2027 NG_FREE_ITEM(item); 2028 return (ENOBUFS); 2029 } 2030 2031 /* Clear distribution plan */ 2032 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 2033 2034 mtx_lock(&priv->xmtx); 2035 2036 /* Round-robin strategy */ 2037 if (priv->conf.enableRoundRobin) { 2038 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 2039 distrib[activeLinkNum] = m->m_pkthdr.len; 2040 goto deliver; 2041 } 2042 2043 /* Strategy when all links are equivalent (optimize the common case) */ 2044 if (priv->allLinksEqual) { 2045 int numFrags, fraction, remain; 2046 int i; 2047 2048 /* Calculate optimal fragment count */ 2049 numFrags = priv->numActiveLinks; 2050 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 2051 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 2052 if (numFrags == 0) 2053 numFrags = 1; 2054 2055 fraction = m->m_pkthdr.len / numFrags; 2056 remain = m->m_pkthdr.len - (fraction * numFrags); 2057 2058 /* Assign distribution */ 2059 for (i = 0; i < numFrags; i++) { 2060 distrib[priv->lastLink++ % priv->numActiveLinks] 2061 = fraction + (((remain--) > 0)?1:0); 2062 } 2063 goto deliver; 2064 } 2065 2066 /* Strategy when all links are not equivalent */ 2067 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 2068 2069 deliver: 2070 /* Estimate fragments count */ 2071 frags = 0; 2072 for (activeLinkNum = priv->numActiveLinks - 1; 2073 activeLinkNum >= 0; activeLinkNum--) { 2074 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2075 struct ng_ppp_link *const link = &priv->links[linkNum]; 2076 2077 frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) / 2078 (link->conf.mru - hdr_len); 2079 } 2080 2081 /* Get out initial sequence number */ 2082 seq = priv->xseq; 2083 2084 /* Update next sequence number */ 2085 if (priv->conf.xmitShortSeq) { 2086 priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK; 2087 } else { 2088 priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK; 2089 } 2090 2091 mtx_unlock(&priv->xmtx); 2092 2093 /* Send alloted portions of frame out on the link(s) */ 2094 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 2095 activeLinkNum >= 0; activeLinkNum--) { 2096 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2097 struct ng_ppp_link *const link = &priv->links[linkNum]; 2098 2099 /* Deliver fragment(s) out the next link */ 2100 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 2101 int len, lastFragment, error; 2102 struct mbuf *m2; 2103 2104 /* Calculate fragment length; don't exceed link MTU */ 2105 len = distrib[activeLinkNum]; 2106 if (len > link->conf.mru - hdr_len) 2107 len = link->conf.mru - hdr_len; 2108 distrib[activeLinkNum] -= len; 2109 lastFragment = (len == m->m_pkthdr.len); 2110 2111 /* Split off next fragment as "m2" */ 2112 m2 = m; 2113 if (!lastFragment) { 2114 struct mbuf *n = m_split(m, len, M_NOWAIT); 2115 2116 if (n == NULL) { 2117 NG_FREE_M(m); 2118 if (firstFragment) 2119 NG_FREE_ITEM(item); 2120 return (ENOMEM); 2121 } 2122 m_tag_copy_chain(n, m, M_NOWAIT); 2123 m = n; 2124 } 2125 2126 /* Prepend MP header */ 2127 if (priv->conf.xmitShortSeq) { 2128 uint16_t shdr; 2129 2130 shdr = seq; 2131 seq = (seq + 1) & MP_SHORT_SEQ_MASK; 2132 if (firstFragment) 2133 shdr |= MP_SHORT_FIRST_FLAG; 2134 if (lastFragment) 2135 shdr |= MP_SHORT_LAST_FLAG; 2136 shdr = htons(shdr); 2137 m2 = ng_ppp_prepend(m2, &shdr, 2); 2138 } else { 2139 uint32_t lhdr; 2140 2141 lhdr = seq; 2142 seq = (seq + 1) & MP_LONG_SEQ_MASK; 2143 if (firstFragment) 2144 lhdr |= MP_LONG_FIRST_FLAG; 2145 if (lastFragment) 2146 lhdr |= MP_LONG_LAST_FLAG; 2147 lhdr = htonl(lhdr); 2148 m2 = ng_ppp_prepend(m2, &lhdr, 4); 2149 } 2150 if (m2 == NULL) { 2151 if (!lastFragment) 2152 m_freem(m); 2153 if (firstFragment) 2154 NG_FREE_ITEM(item); 2155 return (ENOBUFS); 2156 } 2157 2158 /* Send fragment */ 2159 if (firstFragment) { 2160 NGI_M(item) = m2; /* Reuse original item. */ 2161 } else { 2162 item = ng_package_data(m2, NG_NOFLAGS); 2163 } 2164 if (item != NULL) { 2165 error = ng_ppp_link_xmit(node, item, PROT_MP, 2166 linkNum, (firstFragment?plen:0)); 2167 if (error != 0) { 2168 if (!lastFragment) 2169 NG_FREE_M(m); 2170 return (error); 2171 } 2172 } 2173 } 2174 } 2175 2176 /* Done */ 2177 return (0); 2178 } 2179 2180 /* 2181 * Computing the optimal fragmentation 2182 * ----------------------------------- 2183 * 2184 * This routine tries to compute the optimal fragmentation pattern based 2185 * on each link's latency, bandwidth, and calculated additional latency. 2186 * The latter quantity is the additional latency caused by previously 2187 * written data that has not been transmitted yet. 2188 * 2189 * This algorithm is only useful when not all of the links have the 2190 * same latency and bandwidth values. 2191 * 2192 * The essential idea is to make the last bit of each fragment of the 2193 * frame arrive at the opposite end at the exact same time. This greedy 2194 * algorithm is optimal, in that no other scheduling could result in any 2195 * packet arriving any sooner unless packets are delivered out of order. 2196 * 2197 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2198 * latency l_i (in miliseconds). Consider the function function f_i(t) 2199 * which is equal to the number of bytes that will have arrived at 2200 * the peer after t miliseconds if we start writing continuously at 2201 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2202 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2203 * Note that the y-intersect is always <= zero because latency can't be 2204 * negative. Note also that really the function is f_i(t) except when 2205 * f_i(t) is negative, in which case the function is zero. To take 2206 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2207 * So the actual number of bytes that will have arrived at the peer after 2208 * t miliseconds is f_i(t) * Q_i(t). 2209 * 2210 * At any given time, each link has some additional latency a_i >= 0 2211 * due to previously written fragment(s) which are still in the queue. 2212 * This value is easily computed from the time since last transmission, 2213 * the previous latency value, the number of bytes written, and the 2214 * link's bandwidth. 2215 * 2216 * Assume that l_i includes any a_i already, and that the links are 2217 * sorted by latency, so that l_i <= l_{i+1}. 2218 * 2219 * Let N be the total number of bytes in the current frame we are sending. 2220 * 2221 * Suppose we were to start writing bytes at time t = 0 on all links 2222 * simultaneously, which is the most we can possibly do. Then let 2223 * F(t) be equal to the total number of bytes received by the peer 2224 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2225 * 2226 * Our goal is simply this: fragment the frame across the links such 2227 * that the peer is able to reconstruct the completed frame as soon as 2228 * possible, i.e., at the least possible value of t. Call this value t_0. 2229 * 2230 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2231 * of t_0, and then deduce how many bytes to write to each link. 2232 * 2233 * Rewriting F(t_0): 2234 * 2235 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2236 * 2237 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2238 * lie in one of these ranges. To find it, we just need to find the i such 2239 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2240 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2241 * 2242 * Once t_0 is known, then the number of bytes to send on link i is 2243 * just f_i(t_0) * Q_i(t_0). 2244 * 2245 * In other words, we start allocating bytes to the links one at a time. 2246 * We keep adding links until the frame is completely sent. Some links 2247 * may not get any bytes because their latency is too high. 2248 * 2249 * Is all this work really worth the trouble? Depends on the situation. 2250 * The bigger the ratio of computer speed to link speed, and the more 2251 * important total bundle latency is (e.g., for interactive response time), 2252 * the more it's worth it. There is however the cost of calling this 2253 * function for every frame. The running time is O(n^2) where n is the 2254 * number of links that receive a non-zero number of bytes. 2255 * 2256 * Since latency is measured in miliseconds, the "resolution" of this 2257 * algorithm is one milisecond. 2258 * 2259 * To avoid this algorithm altogether, configure all links to have the 2260 * same latency and bandwidth. 2261 */ 2262 static void 2263 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2264 { 2265 const priv_p priv = NG_NODE_PRIVATE(node); 2266 int latency[NG_PPP_MAX_LINKS]; 2267 int sortByLatency[NG_PPP_MAX_LINKS]; 2268 int activeLinkNum; 2269 int t0, total, topSum, botSum; 2270 struct timeval now; 2271 int i, numFragments; 2272 2273 /* If only one link, this gets real easy */ 2274 if (priv->numActiveLinks == 1) { 2275 distrib[0] = len; 2276 return; 2277 } 2278 2279 /* Get current time */ 2280 getmicrouptime(&now); 2281 2282 /* Compute latencies for each link at this point in time */ 2283 for (activeLinkNum = 0; 2284 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2285 struct ng_ppp_link *alink; 2286 struct timeval diff; 2287 int xmitBytes; 2288 2289 /* Start with base latency value */ 2290 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2291 latency[activeLinkNum] = alink->latency; 2292 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2293 2294 /* Any additional latency? */ 2295 if (alink->bytesInQueue == 0) 2296 continue; 2297 2298 /* Compute time delta since last write */ 2299 diff = now; 2300 timevalsub(&diff, &alink->lastWrite); 2301 2302 /* alink->bytesInQueue will be changed, mark change time. */ 2303 alink->lastWrite = now; 2304 2305 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2306 alink->bytesInQueue = 0; 2307 continue; 2308 } 2309 2310 /* How many bytes could have transmitted since last write? */ 2311 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2312 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2313 alink->bytesInQueue -= xmitBytes; 2314 if (alink->bytesInQueue < 0) 2315 alink->bytesInQueue = 0; 2316 else 2317 latency[activeLinkNum] += 2318 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2319 } 2320 2321 /* Sort active links by latency */ 2322 qsort_r(sortByLatency, 2323 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2324 2325 /* Find the interval we need (add links in sortByLatency[] order) */ 2326 for (numFragments = 1; 2327 numFragments < priv->numActiveLinks; numFragments++) { 2328 for (total = i = 0; i < numFragments; i++) { 2329 int flowTime; 2330 2331 flowTime = latency[sortByLatency[numFragments]] 2332 - latency[sortByLatency[i]]; 2333 total += ((flowTime * priv->links[ 2334 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2335 + 99) / 100; 2336 } 2337 if (total >= len) 2338 break; 2339 } 2340 2341 /* Solve for t_0 in that interval */ 2342 for (topSum = botSum = i = 0; i < numFragments; i++) { 2343 int bw = priv->links[ 2344 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2345 2346 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2347 botSum += bw; /* / 100 */ 2348 } 2349 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2350 2351 /* Compute f_i(t_0) all i */ 2352 for (total = i = 0; i < numFragments; i++) { 2353 int bw = priv->links[ 2354 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2355 2356 distrib[sortByLatency[i]] = 2357 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2358 total += distrib[sortByLatency[i]]; 2359 } 2360 2361 /* Deal with any rounding error */ 2362 if (total < len) { 2363 struct ng_ppp_link *fastLink = 2364 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2365 int fast = 0; 2366 2367 /* Find the fastest link */ 2368 for (i = 1; i < numFragments; i++) { 2369 struct ng_ppp_link *const link = 2370 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2371 2372 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2373 fast = i; 2374 fastLink = link; 2375 } 2376 } 2377 distrib[sortByLatency[fast]] += len - total; 2378 } else while (total > len) { 2379 struct ng_ppp_link *slowLink = 2380 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2381 int delta, slow = 0; 2382 2383 /* Find the slowest link that still has bytes to remove */ 2384 for (i = 1; i < numFragments; i++) { 2385 struct ng_ppp_link *const link = 2386 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2387 2388 if (distrib[sortByLatency[slow]] == 0 || 2389 (distrib[sortByLatency[i]] > 0 && 2390 link->conf.bandwidth < slowLink->conf.bandwidth)) { 2391 slow = i; 2392 slowLink = link; 2393 } 2394 } 2395 delta = total - len; 2396 if (delta > distrib[sortByLatency[slow]]) 2397 delta = distrib[sortByLatency[slow]]; 2398 distrib[sortByLatency[slow]] -= delta; 2399 total -= delta; 2400 } 2401 } 2402 2403 /* 2404 * Compare two integers 2405 */ 2406 static int 2407 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2408 { 2409 const int index1 = *((const int *) v1); 2410 const int index2 = *((const int *) v2); 2411 2412 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2413 } 2414 2415 /* 2416 * Prepend a possibly compressed PPP protocol number in front of a frame 2417 */ 2418 static struct mbuf * 2419 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2420 { 2421 if (compOK && PROT_COMPRESSABLE(proto)) { 2422 uint8_t pbyte = (uint8_t)proto; 2423 2424 return ng_ppp_prepend(m, &pbyte, 1); 2425 } else { 2426 uint16_t pword = htons((uint16_t)proto); 2427 2428 return ng_ppp_prepend(m, &pword, 2); 2429 } 2430 } 2431 2432 /* 2433 * Cut a possibly compressed PPP protocol number from the front of a frame. 2434 */ 2435 static struct mbuf * 2436 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2437 { 2438 2439 *proto = 0; 2440 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2441 return (NULL); 2442 2443 *proto = *mtod(m, uint8_t *); 2444 m_adj(m, 1); 2445 2446 if (!PROT_VALID(*proto)) { 2447 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2448 return (NULL); 2449 2450 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2451 m_adj(m, 1); 2452 } 2453 2454 return (m); 2455 } 2456 2457 /* 2458 * Prepend some bytes to an mbuf. 2459 */ 2460 static struct mbuf * 2461 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2462 { 2463 M_PREPEND(m, len, M_NOWAIT); 2464 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2465 return (NULL); 2466 bcopy(buf, mtod(m, uint8_t *), len); 2467 return (m); 2468 } 2469 2470 /* 2471 * Update private information that is derived from other private information 2472 */ 2473 static void 2474 ng_ppp_update(node_p node, int newConf) 2475 { 2476 const priv_p priv = NG_NODE_PRIVATE(node); 2477 int i; 2478 2479 /* Update active status for VJ Compression */ 2480 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2481 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2482 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2483 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2484 2485 /* Increase latency for each link an amount equal to one MP header */ 2486 if (newConf) { 2487 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2488 int hdrBytes; 2489 2490 if (priv->links[i].conf.bandwidth == 0) 2491 continue; 2492 2493 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2494 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2495 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2496 + (priv->conf.xmitShortSeq ? 2 : 4); 2497 priv->links[i].latency = 2498 priv->links[i].conf.latency + 2499 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2500 } 2501 } 2502 2503 /* Update list of active links */ 2504 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2505 priv->numActiveLinks = 0; 2506 priv->allLinksEqual = 1; 2507 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2508 struct ng_ppp_link *const link = &priv->links[i]; 2509 2510 /* Is link active? */ 2511 if (link->conf.enableLink && link->hook != NULL) { 2512 struct ng_ppp_link *link0; 2513 2514 /* Add link to list of active links */ 2515 priv->activeLinks[priv->numActiveLinks++] = i; 2516 link0 = &priv->links[priv->activeLinks[0]]; 2517 2518 /* Determine if all links are still equal */ 2519 if (link->latency != link0->latency 2520 || link->conf.bandwidth != link0->conf.bandwidth) 2521 priv->allLinksEqual = 0; 2522 2523 /* Initialize rec'd sequence number */ 2524 if (link->seq == MP_NOSEQ) { 2525 link->seq = (link == link0) ? 2526 MP_INITIAL_SEQ : link0->seq; 2527 } 2528 } else 2529 link->seq = MP_NOSEQ; 2530 } 2531 2532 /* Update MP state as multi-link is active or not */ 2533 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2534 ng_ppp_start_frag_timer(node); 2535 else { 2536 ng_ppp_stop_frag_timer(node); 2537 ng_ppp_frag_reset(node); 2538 priv->xseq = MP_INITIAL_SEQ; 2539 priv->mseq = MP_INITIAL_SEQ; 2540 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2541 struct ng_ppp_link *const link = &priv->links[i]; 2542 2543 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2544 link->bytesInQueue = 0; 2545 link->seq = MP_NOSEQ; 2546 } 2547 } 2548 2549 if (priv->hooks[HOOK_INDEX_INET] != NULL) { 2550 if (priv->conf.enableIP == 1 && 2551 priv->numActiveLinks == 1 && 2552 priv->conf.enableMultilink == 0 && 2553 priv->conf.enableCompression == 0 && 2554 priv->conf.enableEncryption == 0 && 2555 priv->conf.enableVJCompression == 0) 2556 NG_HOOK_SET_RCVDATA(priv->hooks[HOOK_INDEX_INET], 2557 ng_ppp_rcvdata_inet_fast); 2558 else 2559 NG_HOOK_SET_RCVDATA(priv->hooks[HOOK_INDEX_INET], 2560 ng_ppp_rcvdata_inet); 2561 } 2562 } 2563 2564 /* 2565 * Determine if a new configuration would represent a valid change 2566 * from the current configuration and link activity status. 2567 */ 2568 static int 2569 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2570 { 2571 const priv_p priv = NG_NODE_PRIVATE(node); 2572 int i, newNumLinksActive; 2573 2574 /* Check per-link config and count how many links would be active */ 2575 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2576 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2577 newNumLinksActive++; 2578 if (!newConf->links[i].enableLink) 2579 continue; 2580 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2581 return (0); 2582 if (newConf->links[i].bandwidth == 0) 2583 return (0); 2584 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2585 return (0); 2586 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2587 return (0); 2588 } 2589 2590 /* Disallow changes to multi-link configuration while MP is active */ 2591 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2592 if (!priv->conf.enableMultilink 2593 != !newConf->bund.enableMultilink 2594 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2595 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2596 return (0); 2597 } 2598 2599 /* At most one link can be active unless multi-link is enabled */ 2600 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2601 return (0); 2602 2603 /* Configuration change would be valid */ 2604 return (1); 2605 } 2606 2607 /* 2608 * Free all entries in the fragment queue 2609 */ 2610 static void 2611 ng_ppp_frag_reset(node_p node) 2612 { 2613 const priv_p priv = NG_NODE_PRIVATE(node); 2614 struct ng_ppp_frag *qent, *qnext; 2615 2616 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2617 qnext = TAILQ_NEXT(qent, f_qent); 2618 NG_FREE_M(qent->data); 2619 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 2620 } 2621 TAILQ_INIT(&priv->frags); 2622 } 2623 2624 /* 2625 * Start fragment queue timer 2626 */ 2627 static void 2628 ng_ppp_start_frag_timer(node_p node) 2629 { 2630 const priv_p priv = NG_NODE_PRIVATE(node); 2631 2632 if (!(callout_pending(&priv->fragTimer))) 2633 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2634 ng_ppp_frag_timeout, NULL, 0); 2635 } 2636 2637 /* 2638 * Stop fragment queue timer 2639 */ 2640 static void 2641 ng_ppp_stop_frag_timer(node_p node) 2642 { 2643 const priv_p priv = NG_NODE_PRIVATE(node); 2644 2645 if (callout_pending(&priv->fragTimer)) 2646 ng_uncallout(&priv->fragTimer, node); 2647 } 2648