xref: /freebsd/sys/netgraph/ng_ppp.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 
2 /*
3  * ng_ppp.c
4  *
5  * Copyright (c) 1996-2000 Whistle Communications, Inc.
6  * All rights reserved.
7  *
8  * Subject to the following obligations and disclaimer of warranty, use and
9  * redistribution of this software, in source or object code forms, with or
10  * without modifications are expressly permitted by Whistle Communications;
11  * provided, however, that:
12  * 1. Any and all reproductions of the source or object code must include the
13  *    copyright notice above and the following disclaimer of warranties; and
14  * 2. No rights are granted, in any manner or form, to use Whistle
15  *    Communications, Inc. trademarks, including the mark "WHISTLE
16  *    COMMUNICATIONS" on advertising, endorsements, or otherwise except as
17  *    such appears in the above copyright notice or in the software.
18  *
19  * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND
20  * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO
21  * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE,
22  * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF
23  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
24  * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
25  * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS
26  * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE.
27  * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES
28  * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING
29  * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
30  * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY
32  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34  * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY
35  * OF SUCH DAMAGE.
36  *
37  * Author: Archie Cobbs <archie@freebsd.org>
38  *
39  * $FreeBSD$
40  * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $
41  */
42 
43 /*
44  * PPP node type.
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/time.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/errno.h>
54 #include <sys/ctype.h>
55 
56 #include <machine/limits.h>
57 
58 #include <netgraph/ng_message.h>
59 #include <netgraph/netgraph.h>
60 #include <netgraph/ng_parse.h>
61 #include <netgraph/ng_ppp.h>
62 #include <netgraph/ng_vjc.h>
63 
64 #ifdef NG_SEPARATE_MALLOC
65 MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node");
66 #else
67 #define M_NETGRAPH_PPP M_NETGRAPH
68 #endif
69 
70 #define PROT_VALID(p)		(((p) & 0x0101) == 0x0001)
71 #define PROT_COMPRESSABLE(p)	(((p) & 0xff00) == 0x0000)
72 
73 /* Some PPP protocol numbers we're interested in */
74 #define PROT_APPLETALK		0x0029
75 #define PROT_COMPD		0x00fd
76 #define PROT_CRYPTD		0x0053
77 #define PROT_IP			0x0021
78 #define PROT_IPV6		0x0057
79 #define PROT_IPX		0x002b
80 #define PROT_LCP		0xc021
81 #define PROT_MP			0x003d
82 #define PROT_VJCOMP		0x002d
83 #define PROT_VJUNCOMP		0x002f
84 
85 /* Multilink PPP definitions */
86 #define MP_MIN_MRRU		1500		/* per RFC 1990 */
87 #define MP_INITIAL_SEQ		0		/* per RFC 1990 */
88 #define MP_MIN_LINK_MRU		32
89 
90 #define MP_SHORT_SEQ_MASK	0x00000fff	/* short seq # mask */
91 #define MP_SHORT_SEQ_HIBIT	0x00000800	/* short seq # high bit */
92 #define MP_SHORT_FIRST_FLAG	0x00008000	/* first fragment in frame */
93 #define MP_SHORT_LAST_FLAG	0x00004000	/* last fragment in frame */
94 
95 #define MP_LONG_SEQ_MASK	0x00ffffff	/* long seq # mask */
96 #define MP_LONG_SEQ_HIBIT	0x00800000	/* long seq # high bit */
97 #define MP_LONG_FIRST_FLAG	0x80000000	/* first fragment in frame */
98 #define MP_LONG_LAST_FLAG	0x40000000	/* last fragment in frame */
99 
100 #define MP_NOSEQ		0x7fffffff	/* impossible sequence number */
101 
102 /* Sign extension of MP sequence numbers */
103 #define MP_SHORT_EXTEND(s)	(((s) & MP_SHORT_SEQ_HIBIT) ?		\
104 				    ((s) | ~MP_SHORT_SEQ_MASK)		\
105 				    : ((s) & MP_SHORT_SEQ_MASK))
106 #define MP_LONG_EXTEND(s)	(((s) & MP_LONG_SEQ_HIBIT) ?		\
107 				    ((s) | ~MP_LONG_SEQ_MASK)		\
108 				    : ((s) & MP_LONG_SEQ_MASK))
109 
110 /* Comparision of MP sequence numbers. Note: all sequence numbers
111    except priv->xseq are stored with the sign bit extended. */
112 #define MP_SHORT_SEQ_DIFF(x,y)	MP_SHORT_EXTEND((x) - (y))
113 #define MP_LONG_SEQ_DIFF(x,y)	MP_LONG_EXTEND((x) - (y))
114 
115 #define MP_RECV_SEQ_DIFF(priv,x,y)					\
116 				((priv)->conf.recvShortSeq ?		\
117 				    MP_SHORT_SEQ_DIFF((x), (y)) :	\
118 				    MP_LONG_SEQ_DIFF((x), (y)))
119 
120 /* Increment receive sequence number */
121 #define MP_NEXT_RECV_SEQ(priv,seq)					\
122 				((priv)->conf.recvShortSeq ?		\
123 				    MP_SHORT_EXTEND((seq) + 1) :	\
124 				    MP_LONG_EXTEND((seq) + 1))
125 
126 /* Don't fragment transmitted packets smaller than this */
127 #define MP_MIN_FRAG_LEN		6
128 
129 /* Maximum fragment reasssembly queue length */
130 #define MP_MAX_QUEUE_LEN	128
131 
132 /* Fragment queue scanner period */
133 #define MP_FRAGTIMER_INTERVAL	(hz/2)
134 
135 /* We store incoming fragments this way */
136 struct ng_ppp_frag {
137 	int				seq;		/* fragment seq# */
138 	u_char				first;		/* First in packet? */
139 	u_char				last;		/* Last in packet? */
140 	struct timeval			timestamp;	/* time of reception */
141 	struct mbuf			*data;		/* Fragment data */
142 	meta_p				meta;		/* Fragment meta */
143 	TAILQ_ENTRY(ng_ppp_frag)	f_qent;		/* Fragment queue */
144 };
145 
146 /* We use integer indicies to refer to the non-link hooks */
147 static const char *const ng_ppp_hook_names[] = {
148 	NG_PPP_HOOK_ATALK,
149 #define HOOK_INDEX_ATALK		0
150 	NG_PPP_HOOK_BYPASS,
151 #define HOOK_INDEX_BYPASS		1
152 	NG_PPP_HOOK_COMPRESS,
153 #define HOOK_INDEX_COMPRESS		2
154 	NG_PPP_HOOK_ENCRYPT,
155 #define HOOK_INDEX_ENCRYPT		3
156 	NG_PPP_HOOK_DECOMPRESS,
157 #define HOOK_INDEX_DECOMPRESS		4
158 	NG_PPP_HOOK_DECRYPT,
159 #define HOOK_INDEX_DECRYPT		5
160 	NG_PPP_HOOK_INET,
161 #define HOOK_INDEX_INET			6
162 	NG_PPP_HOOK_IPX,
163 #define HOOK_INDEX_IPX			7
164 	NG_PPP_HOOK_VJC_COMP,
165 #define HOOK_INDEX_VJC_COMP		8
166 	NG_PPP_HOOK_VJC_IP,
167 #define HOOK_INDEX_VJC_IP		9
168 	NG_PPP_HOOK_VJC_UNCOMP,
169 #define HOOK_INDEX_VJC_UNCOMP		10
170 	NG_PPP_HOOK_VJC_VJIP,
171 #define HOOK_INDEX_VJC_VJIP		11
172 	NG_PPP_HOOK_IPV6,
173 #define HOOK_INDEX_IPV6			12
174 	NULL
175 #define HOOK_INDEX_MAX			13
176 };
177 
178 /* We store index numbers in the hook private pointer. The HOOK_INDEX()
179    for a hook is either the index (above) for normal hooks, or the ones
180    complement of the link number for link hooks.
181 XXX Not any more.. (what a hack)
182 #define HOOK_INDEX(hook)	(*((int16_t *) &(hook)->private))
183 */
184 
185 /* Per-link private information */
186 struct ng_ppp_link {
187 	struct ng_ppp_link_conf	conf;		/* link configuration */
188 	hook_p			hook;		/* connection to link data */
189 	int32_t			seq;		/* highest rec'd seq# - MSEQ */
190 	struct timeval		lastWrite;	/* time of last write */
191 	int			bytesInQueue;	/* bytes in the output queue */
192 	struct ng_ppp_link_stat	stats;		/* Link stats */
193 };
194 
195 /* Total per-node private information */
196 struct ng_ppp_private {
197 	struct ng_ppp_bund_conf	conf;			/* bundle config */
198 	struct ng_ppp_link_stat	bundleStats;		/* bundle stats */
199 	struct ng_ppp_link	links[NG_PPP_MAX_LINKS];/* per-link info */
200 	int32_t			xseq;			/* next out MP seq # */
201 	int32_t			mseq;			/* min links[i].seq */
202 	u_char			vjCompHooked;		/* VJ comp hooked up? */
203 	u_char			allLinksEqual;		/* all xmit the same? */
204 	u_char			timerActive;		/* frag timer active? */
205 	u_int			numActiveLinks;		/* how many links up */
206 	int			activeLinks[NG_PPP_MAX_LINKS];	/* indicies */
207 	u_int			lastLink;		/* for round robin */
208 	hook_p			hooks[HOOK_INDEX_MAX];	/* non-link hooks */
209 	TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag)	/* fragment queue */
210 				frags;
211 	int			qlen;			/* fraq queue length */
212 	struct callout_handle	fragTimer;		/* fraq queue check */
213 };
214 typedef struct ng_ppp_private *priv_p;
215 
216 /* Netgraph node methods */
217 static ng_constructor_t	ng_ppp_constructor;
218 static ng_rcvmsg_t	ng_ppp_rcvmsg;
219 static ng_shutdown_t	ng_ppp_shutdown;
220 static ng_newhook_t	ng_ppp_newhook;
221 static ng_rcvdata_t	ng_ppp_rcvdata;
222 static ng_disconnect_t	ng_ppp_disconnect;
223 
224 /* Helper functions */
225 static int	ng_ppp_input(node_p node, int bypass,
226 			int linkNum, item_p item);
227 static int	ng_ppp_output(node_p node, int bypass, int proto,
228 			int linkNum, item_p item);
229 static int	ng_ppp_mp_input(node_p node, int linkNum, item_p item);
230 static int	ng_ppp_check_packet(node_p node);
231 static void	ng_ppp_get_packet(node_p node, struct mbuf **mp, meta_p *metap);
232 static int	ng_ppp_frag_process(node_p node);
233 static int	ng_ppp_frag_trim(node_p node);
234 static void	ng_ppp_frag_timeout(void *arg);
235 static void	ng_ppp_frag_checkstale(node_p node);
236 static void	ng_ppp_frag_reset(node_p node);
237 static int	ng_ppp_mp_output(node_p node, struct mbuf *m, meta_p meta);
238 static void	ng_ppp_mp_strategy(node_p node, int len, int *distrib);
239 static int	ng_ppp_intcmp(const void *v1, const void *v2);
240 static struct	mbuf *ng_ppp_addproto(struct mbuf *m, int proto, int compOK);
241 static struct	mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len);
242 static int	ng_ppp_config_valid(node_p node,
243 			const struct ng_ppp_node_conf *newConf);
244 static void	ng_ppp_update(node_p node, int newConf);
245 static void	ng_ppp_start_frag_timer(node_p node);
246 static void	ng_ppp_stop_frag_timer(node_p node);
247 
248 /* Parse type for struct ng_ppp_mp_state_type */
249 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = {
250 	&ng_parse_hint32_type,
251 	NG_PPP_MAX_LINKS
252 };
253 static const struct ng_parse_type ng_ppp_rseq_array_type = {
254 	&ng_parse_fixedarray_type,
255 	&ng_ppp_rseq_array_info,
256 };
257 static const struct ng_parse_struct_info ng_ppp_mp_state_type_info
258 	= NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type);
259 static const struct ng_parse_type ng_ppp_mp_state_type = {
260 	&ng_parse_struct_type,
261 	&ng_ppp_mp_state_type_info,
262 };
263 
264 /* Parse type for struct ng_ppp_link_conf */
265 static const struct ng_parse_struct_info
266 	ng_ppp_link_type_info = NG_PPP_LINK_TYPE_INFO;
267 static const struct ng_parse_type ng_ppp_link_type = {
268 	&ng_parse_struct_type,
269 	&ng_ppp_link_type_info,
270 };
271 
272 /* Parse type for struct ng_ppp_bund_conf */
273 static const struct ng_parse_struct_info
274 	ng_ppp_bund_type_info = NG_PPP_BUND_TYPE_INFO;
275 static const struct ng_parse_type ng_ppp_bund_type = {
276 	&ng_parse_struct_type,
277 	&ng_ppp_bund_type_info,
278 };
279 
280 /* Parse type for struct ng_ppp_node_conf */
281 static const struct ng_parse_fixedarray_info ng_ppp_array_info = {
282 	&ng_ppp_link_type,
283 	NG_PPP_MAX_LINKS
284 };
285 static const struct ng_parse_type ng_ppp_link_array_type = {
286 	&ng_parse_fixedarray_type,
287 	&ng_ppp_array_info,
288 };
289 static const struct ng_parse_struct_info ng_ppp_conf_type_info
290 	= NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type);
291 static const struct ng_parse_type ng_ppp_conf_type = {
292 	&ng_parse_struct_type,
293 	&ng_ppp_conf_type_info
294 };
295 
296 /* Parse type for struct ng_ppp_link_stat */
297 static const struct ng_parse_struct_info
298 	ng_ppp_stats_type_info = NG_PPP_STATS_TYPE_INFO;
299 static const struct ng_parse_type ng_ppp_stats_type = {
300 	&ng_parse_struct_type,
301 	&ng_ppp_stats_type_info
302 };
303 
304 /* List of commands and how to convert arguments to/from ASCII */
305 static const struct ng_cmdlist ng_ppp_cmds[] = {
306 	{
307 	  NGM_PPP_COOKIE,
308 	  NGM_PPP_SET_CONFIG,
309 	  "setconfig",
310 	  &ng_ppp_conf_type,
311 	  NULL
312 	},
313 	{
314 	  NGM_PPP_COOKIE,
315 	  NGM_PPP_GET_CONFIG,
316 	  "getconfig",
317 	  NULL,
318 	  &ng_ppp_conf_type
319 	},
320 	{
321 	  NGM_PPP_COOKIE,
322 	  NGM_PPP_GET_MP_STATE,
323 	  "getmpstate",
324 	  NULL,
325 	  &ng_ppp_mp_state_type
326 	},
327 	{
328 	  NGM_PPP_COOKIE,
329 	  NGM_PPP_GET_LINK_STATS,
330 	  "getstats",
331 	  &ng_parse_int16_type,
332 	  &ng_ppp_stats_type
333 	},
334 	{
335 	  NGM_PPP_COOKIE,
336 	  NGM_PPP_CLR_LINK_STATS,
337 	  "clrstats",
338 	  &ng_parse_int16_type,
339 	  NULL
340 	},
341 	{
342 	  NGM_PPP_COOKIE,
343 	  NGM_PPP_GETCLR_LINK_STATS,
344 	  "getclrstats",
345 	  &ng_parse_int16_type,
346 	  &ng_ppp_stats_type
347 	},
348 	{ 0 }
349 };
350 
351 /* Node type descriptor */
352 static struct ng_type ng_ppp_typestruct = {
353 	NG_ABI_VERSION,
354 	NG_PPP_NODE_TYPE,
355 	NULL,
356 	ng_ppp_constructor,
357 	ng_ppp_rcvmsg,
358 	ng_ppp_shutdown,
359 	ng_ppp_newhook,
360 	NULL,
361 	NULL,
362 	ng_ppp_rcvdata,
363 	ng_ppp_disconnect,
364 	ng_ppp_cmds
365 };
366 NETGRAPH_INIT(ppp, &ng_ppp_typestruct);
367 
368 static int *compareLatencies;			/* hack for ng_ppp_intcmp() */
369 
370 /* Address and control field header */
371 static const u_char ng_ppp_acf[2] = { 0xff, 0x03 };
372 
373 /* Maximum time we'll let a complete incoming packet sit in the queue */
374 static const struct timeval ng_ppp_max_staleness = { 2, 0 };	/* 2 seconds */
375 
376 #define ERROUT(x)	do { error = (x); goto done; } while (0)
377 
378 /************************************************************************
379 			NETGRAPH NODE STUFF
380  ************************************************************************/
381 
382 /*
383  * Node type constructor
384  */
385 static int
386 ng_ppp_constructor(node_p node)
387 {
388 	priv_p priv;
389 	int i;
390 
391 	/* Allocate private structure */
392 	MALLOC(priv, priv_p, sizeof(*priv), M_NETGRAPH_PPP, M_NOWAIT | M_ZERO);
393 	if (priv == NULL)
394 		return (ENOMEM);
395 
396 	NG_NODE_SET_PRIVATE(node, priv);
397 
398 	/* Initialize state */
399 	TAILQ_INIT(&priv->frags);
400 	for (i = 0; i < NG_PPP_MAX_LINKS; i++)
401 		priv->links[i].seq = MP_NOSEQ;
402 	callout_handle_init(&priv->fragTimer);
403 
404 	/* Done */
405 	return (0);
406 }
407 
408 /*
409  * Give our OK for a hook to be added
410  */
411 static int
412 ng_ppp_newhook(node_p node, hook_p hook, const char *name)
413 {
414 	const priv_p priv = NG_NODE_PRIVATE(node);
415 	int linkNum = -1;
416 	hook_p *hookPtr = NULL;
417 	int hookIndex = -1;
418 
419 	/* Figure out which hook it is */
420 	if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX,	/* a link hook? */
421 	    strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) {
422 		const char *cp;
423 		char *eptr;
424 
425 		cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX);
426 		if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0'))
427 			return (EINVAL);
428 		linkNum = (int)strtoul(cp, &eptr, 10);
429 		if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS)
430 			return (EINVAL);
431 		hookPtr = &priv->links[linkNum].hook;
432 		hookIndex = ~linkNum;
433 	} else {				/* must be a non-link hook */
434 		int i;
435 
436 		for (i = 0; ng_ppp_hook_names[i] != NULL; i++) {
437 			if (strcmp(name, ng_ppp_hook_names[i]) == 0) {
438 				hookPtr = &priv->hooks[i];
439 				hookIndex = i;
440 				break;
441 			}
442 		}
443 		if (ng_ppp_hook_names[i] == NULL)
444 			return (EINVAL);	/* no such hook */
445 	}
446 
447 	/* See if hook is already connected */
448 	if (*hookPtr != NULL)
449 		return (EISCONN);
450 
451 	/* Disallow more than one link unless multilink is enabled */
452 	if (linkNum != -1 && priv->links[linkNum].conf.enableLink
453 	    && !priv->conf.enableMultilink && priv->numActiveLinks >= 1)
454 		return (ENODEV);
455 
456 	/* OK */
457 	*hookPtr = hook;
458 	NG_HOOK_SET_PRIVATE(hook, (void *)hookIndex);
459 	ng_ppp_update(node, 0);
460 	return (0);
461 }
462 
463 /*
464  * Receive a control message
465  */
466 static int
467 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook)
468 {
469 	const priv_p priv = NG_NODE_PRIVATE(node);
470 	struct ng_mesg *resp = NULL;
471 	int error = 0;
472 	struct ng_mesg *msg;
473 
474 	NGI_GET_MSG(item, msg);
475 	switch (msg->header.typecookie) {
476 	case NGM_PPP_COOKIE:
477 		switch (msg->header.cmd) {
478 		case NGM_PPP_SET_CONFIG:
479 		    {
480 			struct ng_ppp_node_conf *const conf =
481 			    (struct ng_ppp_node_conf *)msg->data;
482 			int i;
483 
484 			/* Check for invalid or illegal config */
485 			if (msg->header.arglen != sizeof(*conf))
486 				ERROUT(EINVAL);
487 			if (!ng_ppp_config_valid(node, conf))
488 				ERROUT(EINVAL);
489 
490 			/* Copy config */
491 			priv->conf = conf->bund;
492 			for (i = 0; i < NG_PPP_MAX_LINKS; i++)
493 				priv->links[i].conf = conf->links[i];
494 			ng_ppp_update(node, 1);
495 			break;
496 		    }
497 		case NGM_PPP_GET_CONFIG:
498 		    {
499 			struct ng_ppp_node_conf *conf;
500 			int i;
501 
502 			NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT);
503 			if (resp == NULL)
504 				ERROUT(ENOMEM);
505 			conf = (struct ng_ppp_node_conf *)resp->data;
506 			conf->bund = priv->conf;
507 			for (i = 0; i < NG_PPP_MAX_LINKS; i++)
508 				conf->links[i] = priv->links[i].conf;
509 			break;
510 		    }
511 		case NGM_PPP_GET_MP_STATE:
512 		    {
513 			struct ng_ppp_mp_state *info;
514 			int i;
515 
516 			NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT);
517 			if (resp == NULL)
518 				ERROUT(ENOMEM);
519 			info = (struct ng_ppp_mp_state *)resp->data;
520 			bzero(info, sizeof(*info));
521 			for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
522 				if (priv->links[i].seq != MP_NOSEQ)
523 					info->rseq[i] = priv->links[i].seq;
524 			}
525 			info->mseq = priv->mseq;
526 			info->xseq = priv->xseq;
527 			break;
528 		    }
529 		case NGM_PPP_GET_LINK_STATS:
530 		case NGM_PPP_CLR_LINK_STATS:
531 		case NGM_PPP_GETCLR_LINK_STATS:
532 		    {
533 			struct ng_ppp_link_stat *stats;
534 			u_int16_t linkNum;
535 
536 			if (msg->header.arglen != sizeof(u_int16_t))
537 				ERROUT(EINVAL);
538 			linkNum = *((u_int16_t *) msg->data);
539 			if (linkNum >= NG_PPP_MAX_LINKS
540 			    && linkNum != NG_PPP_BUNDLE_LINKNUM)
541 				ERROUT(EINVAL);
542 			stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ?
543 			    &priv->bundleStats : &priv->links[linkNum].stats;
544 			if (msg->header.cmd != NGM_PPP_CLR_LINK_STATS) {
545 				NG_MKRESPONSE(resp, msg,
546 				    sizeof(struct ng_ppp_link_stat), M_NOWAIT);
547 				if (resp == NULL)
548 					ERROUT(ENOMEM);
549 				bcopy(stats, resp->data, sizeof(*stats));
550 			}
551 			if (msg->header.cmd != NGM_PPP_GET_LINK_STATS)
552 				bzero(stats, sizeof(*stats));
553 			break;
554 		    }
555 		default:
556 			error = EINVAL;
557 			break;
558 		}
559 		break;
560 	case NGM_VJC_COOKIE:
561 	    {
562 		/*
563 		 * Forward it to the vjc node. leave the
564 		 * old return address alone.
565 		 * If we have no hook, let NG_RESPOND_MSG
566 		 * clean up any remaining resources.
567 		 * Because we have no resp, the item will be freed
568 		 * along with anything it references. Don't
569 		 * let msg be freed twice.
570 		 */
571 		NGI_MSG(item) = msg;	/* put it back in the item */
572 		msg = NULL;
573 		if ((lasthook = priv->links[HOOK_INDEX_VJC_IP].hook)) {
574 			NG_FWD_ITEM_HOOK(error, item, lasthook);
575 		}
576 		return (error);
577 	    }
578 	default:
579 		error = EINVAL;
580 		break;
581 	}
582 done:
583 	NG_RESPOND_MSG(error, node, item, resp);
584 	NG_FREE_MSG(msg);
585 	return (error);
586 }
587 
588 /*
589  * Receive data on a hook
590  */
591 static int
592 ng_ppp_rcvdata(hook_p hook, item_p item)
593 {
594 	const node_p node = NG_HOOK_NODE(hook);
595 	const priv_p priv = NG_NODE_PRIVATE(node);
596 	const int index = (int)NG_HOOK_PRIVATE(hook);
597 	u_int16_t linkNum = NG_PPP_BUNDLE_LINKNUM;
598 	hook_p outHook = NULL;
599 	int proto = 0, error;
600 	struct mbuf *m;
601 
602 	NGI_GET_M(item, m);
603 	/* Did it come from a link hook? */
604 	if (index < 0) {
605 		struct ng_ppp_link *link;
606 
607 		/* Convert index into a link number */
608 		linkNum = (u_int16_t)~index;
609 		KASSERT(linkNum < NG_PPP_MAX_LINKS,
610 		    ("%s: bogus index 0x%x", __func__, index));
611 		link = &priv->links[linkNum];
612 
613 		/* Stats */
614 		link->stats.recvFrames++;
615 		link->stats.recvOctets += m->m_pkthdr.len;
616 
617 		/* Strip address and control fields, if present */
618 		if (m->m_pkthdr.len >= 2) {
619 			if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) {
620 				NG_FREE_ITEM(item);
621 				return (ENOBUFS);
622 			}
623 			if (bcmp(mtod(m, u_char *), &ng_ppp_acf, 2) == 0)
624 				m_adj(m, 2);
625 		}
626 
627 		/* Dispatch incoming frame (if not enabled, to bypass) */
628 		NGI_M(item) = m; 	/* put changed m back in item */
629 		return ng_ppp_input(node,
630 		    !link->conf.enableLink, linkNum, item);
631 	}
632 
633 	/* Get protocol & check if data allowed from this hook */
634 	NGI_M(item) = m; 	/* put possibly changed m back in item */
635 	switch (index) {
636 
637 	/* Outgoing data */
638 	case HOOK_INDEX_ATALK:
639 		if (!priv->conf.enableAtalk) {
640 			NG_FREE_ITEM(item);
641 			return (ENXIO);
642 		}
643 		proto = PROT_APPLETALK;
644 		break;
645 	case HOOK_INDEX_IPX:
646 		if (!priv->conf.enableIPX) {
647 			NG_FREE_ITEM(item);
648 			return (ENXIO);
649 		}
650 		proto = PROT_IPX;
651 		break;
652 	case HOOK_INDEX_IPV6:
653 		if (!priv->conf.enableIPv6) {
654 			NG_FREE_ITEM(item);
655 			return (ENXIO);
656 		}
657 		proto = PROT_IPV6;
658 		break;
659 	case HOOK_INDEX_INET:
660 	case HOOK_INDEX_VJC_VJIP:
661 		if (!priv->conf.enableIP) {
662 			NG_FREE_ITEM(item);
663 			return (ENXIO);
664 		}
665 		proto = PROT_IP;
666 		break;
667 	case HOOK_INDEX_VJC_COMP:
668 		if (!priv->conf.enableVJCompression) {
669 			NG_FREE_ITEM(item);
670 			return (ENXIO);
671 		}
672 		proto = PROT_VJCOMP;
673 		break;
674 	case HOOK_INDEX_VJC_UNCOMP:
675 		if (!priv->conf.enableVJCompression) {
676 			NG_FREE_ITEM(item);
677 			return (ENXIO);
678 		}
679 		proto = PROT_VJUNCOMP;
680 		break;
681 	case HOOK_INDEX_COMPRESS:
682 		if (!priv->conf.enableCompression) {
683 			NG_FREE_ITEM(item);
684 			return (ENXIO);
685 		}
686 		proto = PROT_COMPD;
687 		break;
688 	case HOOK_INDEX_ENCRYPT:
689 		if (!priv->conf.enableEncryption) {
690 			NG_FREE_ITEM(item);
691 			return (ENXIO);
692 		}
693 		proto = PROT_CRYPTD;
694 		break;
695 	case HOOK_INDEX_BYPASS:
696 		if (m->m_pkthdr.len < 4) {
697 			NG_FREE_ITEM(item);
698 			return (EINVAL);
699 		}
700 		if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) {
701 			NGI_M(item) = NULL; /* don't free twice */
702 			NG_FREE_ITEM(item);
703 			return (ENOBUFS);
704 		}
705 		NGI_M(item) = m; /* m may have changed */
706 		linkNum = ntohs(mtod(m, u_int16_t *)[0]);
707 		proto = ntohs(mtod(m, u_int16_t *)[1]);
708 		m_adj(m, 4);
709 		if (linkNum >= NG_PPP_MAX_LINKS
710 		    && linkNum != NG_PPP_BUNDLE_LINKNUM) {
711 			NG_FREE_ITEM(item);
712 			return (EINVAL);
713 		}
714 		break;
715 
716 	/* Incoming data */
717 	case HOOK_INDEX_VJC_IP:
718 		if (!priv->conf.enableIP || !priv->conf.enableVJDecompression) {
719 			NG_FREE_ITEM(item);
720 			return (ENXIO);
721 		}
722 		break;
723 	case HOOK_INDEX_DECOMPRESS:
724 		if (!priv->conf.enableDecompression) {
725 			NG_FREE_ITEM(item);
726 			return (ENXIO);
727 		}
728 		break;
729 	case HOOK_INDEX_DECRYPT:
730 		if (!priv->conf.enableDecryption) {
731 			NG_FREE_ITEM(item);
732 			return (ENXIO);
733 		}
734 		break;
735 	default:
736 		panic("%s: bogus index 0x%x", __func__, index);
737 	}
738 
739 	/* Now figure out what to do with the frame */
740 	switch (index) {
741 
742 	/* Outgoing data */
743 	case HOOK_INDEX_INET:
744 		if (priv->conf.enableVJCompression && priv->vjCompHooked) {
745 			outHook = priv->hooks[HOOK_INDEX_VJC_IP];
746 			break;
747 		}
748 		/* FALLTHROUGH */
749 	case HOOK_INDEX_ATALK:
750 	case HOOK_INDEX_IPV6:
751 	case HOOK_INDEX_IPX:
752 	case HOOK_INDEX_VJC_COMP:
753 	case HOOK_INDEX_VJC_UNCOMP:
754 	case HOOK_INDEX_VJC_VJIP:
755 		if (priv->conf.enableCompression
756 		    && priv->hooks[HOOK_INDEX_COMPRESS] != NULL) {
757 			if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) {
758 				NGI_M(item) = NULL;
759 				NG_FREE_ITEM(item);
760 				return (ENOBUFS);
761 			}
762 			NGI_M(item) = m; /* m may have changed */
763 			outHook = priv->hooks[HOOK_INDEX_COMPRESS];
764 			break;
765 		}
766 		/* FALLTHROUGH */
767 	case HOOK_INDEX_COMPRESS:
768 		if (priv->conf.enableEncryption
769 		    && priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) {
770 			if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) {
771 				NGI_M(item) = NULL;
772 				NG_FREE_ITEM(item);
773 				return (ENOBUFS);
774 			}
775 			NGI_M(item) = m; /* m may have changed */
776 			outHook = priv->hooks[HOOK_INDEX_ENCRYPT];
777 			break;
778 		}
779 		/* FALLTHROUGH */
780 	case HOOK_INDEX_ENCRYPT:
781 		return ng_ppp_output(node, 0, proto, NG_PPP_BUNDLE_LINKNUM, item);
782 
783 	case HOOK_INDEX_BYPASS:
784 		return ng_ppp_output(node, 1, proto, linkNum, item);
785 
786 	/* Incoming data */
787 	case HOOK_INDEX_DECRYPT:
788 	case HOOK_INDEX_DECOMPRESS:
789 		return ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, item);
790 
791 	case HOOK_INDEX_VJC_IP:
792 		outHook = priv->hooks[HOOK_INDEX_INET];
793 		break;
794 	}
795 
796 	/* Send packet out hook */
797 	NG_FWD_ITEM_HOOK(error, item, outHook);
798 	return (error);
799 }
800 
801 /*
802  * Destroy node
803  */
804 static int
805 ng_ppp_shutdown(node_p node)
806 {
807 	const priv_p priv = NG_NODE_PRIVATE(node);
808 
809 	/* Stop fragment queue timer */
810 	ng_ppp_stop_frag_timer(node);
811 
812 	/* Take down netgraph node */
813 	ng_ppp_frag_reset(node);
814 	bzero(priv, sizeof(*priv));
815 	FREE(priv, M_NETGRAPH_PPP);
816 	NG_NODE_SET_PRIVATE(node, NULL);
817 	NG_NODE_UNREF(node);		/* let the node escape */
818 	return (0);
819 }
820 
821 /*
822  * Hook disconnection
823  */
824 static int
825 ng_ppp_disconnect(hook_p hook)
826 {
827 	const node_p node = NG_HOOK_NODE(hook);
828 	const priv_p priv = NG_NODE_PRIVATE(node);
829 	const int index = (int)NG_HOOK_PRIVATE(hook);
830 
831 	/* Zero out hook pointer */
832 	if (index < 0)
833 		priv->links[~index].hook = NULL;
834 	else
835 		priv->hooks[index] = NULL;
836 
837 	/* Update derived info (or go away if no hooks left) */
838 	if (NG_NODE_NUMHOOKS(node) > 0) {
839 		ng_ppp_update(node, 0);
840 	} else {
841 		if (NG_NODE_IS_VALID(node)) {
842 			ng_rmnode_self(node);
843 		}
844 	}
845 	return (0);
846 }
847 
848 /************************************************************************
849 			HELPER STUFF
850  ************************************************************************/
851 
852 /*
853  * Handle an incoming frame.  Extract the PPP protocol number
854  * and dispatch accordingly.
855  */
856 static int
857 ng_ppp_input(node_p node, int bypass, int linkNum, item_p item)
858 {
859 	const priv_p priv = NG_NODE_PRIVATE(node);
860 	hook_p outHook = NULL;
861 	int proto, error;
862 	struct mbuf *m;
863 
864 
865 	NGI_GET_M(item, m);
866 	/* Extract protocol number */
867 	for (proto = 0; !PROT_VALID(proto) && m->m_pkthdr.len > 0; ) {
868 		if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) {
869 			NG_FREE_ITEM(item);
870 			return (ENOBUFS);
871 		}
872 		proto = (proto << 8) + *mtod(m, u_char *);
873 		m_adj(m, 1);
874 	}
875 	if (!PROT_VALID(proto)) {
876 		if (linkNum == NG_PPP_BUNDLE_LINKNUM)
877 			priv->bundleStats.badProtos++;
878 		else
879 			priv->links[linkNum].stats.badProtos++;
880 		NG_FREE_ITEM(item);
881 		NG_FREE_M(m);
882 		return (EINVAL);
883 	}
884 
885 	/* Bypass frame? */
886 	if (bypass)
887 		goto bypass;
888 
889 	/* Check protocol */
890 	switch (proto) {
891 	case PROT_COMPD:
892 		if (priv->conf.enableDecompression)
893 			outHook = priv->hooks[HOOK_INDEX_DECOMPRESS];
894 		break;
895 	case PROT_CRYPTD:
896 		if (priv->conf.enableDecryption)
897 			outHook = priv->hooks[HOOK_INDEX_DECRYPT];
898 		break;
899 	case PROT_VJCOMP:
900 		if (priv->conf.enableVJDecompression && priv->vjCompHooked)
901 			outHook = priv->hooks[HOOK_INDEX_VJC_COMP];
902 		break;
903 	case PROT_VJUNCOMP:
904 		if (priv->conf.enableVJDecompression && priv->vjCompHooked)
905 			outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP];
906 		break;
907 	case PROT_MP:
908 		if (priv->conf.enableMultilink
909 		    && linkNum != NG_PPP_BUNDLE_LINKNUM)
910 			return ng_ppp_mp_input(node, linkNum, item);
911 		break;
912 	case PROT_APPLETALK:
913 		if (priv->conf.enableAtalk)
914 			outHook = priv->hooks[HOOK_INDEX_ATALK];
915 		break;
916 	case PROT_IPX:
917 		if (priv->conf.enableIPX)
918 			outHook = priv->hooks[HOOK_INDEX_IPX];
919 		break;
920 	case PROT_IP:
921 		if (priv->conf.enableIP)
922 			outHook = priv->hooks[HOOK_INDEX_INET];
923 		break;
924 	case PROT_IPV6:
925 		if (priv->conf.enableIPv6)
926 			outHook = priv->hooks[HOOK_INDEX_IPV6];
927 		break;
928 	}
929 
930 bypass:
931 	/* For unknown/inactive protocols, forward out the bypass hook */
932 	if (outHook == NULL) {
933 		u_int16_t hdr[2];
934 
935 		hdr[0] = htons(linkNum);
936 		hdr[1] = htons((u_int16_t)proto);
937 		if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) {
938 			NG_FREE_ITEM(item);
939 			return (ENOBUFS);
940 		}
941 		outHook = priv->hooks[HOOK_INDEX_BYPASS];
942 	}
943 
944 	/* Forward frame */
945 	NG_FWD_NEW_DATA(error, item, outHook, m);
946 	return (error);
947 }
948 
949 /*
950  * Deliver a frame out a link, either a real one or NG_PPP_BUNDLE_LINKNUM.
951  * If the link is not enabled then ENXIO is returned, unless "bypass" is != 0.
952  *
953  * If the frame is too big for the particular link, return EMSGSIZE.
954  */
955 static int
956 ng_ppp_output(node_p node, int bypass,
957 	int proto, int linkNum, item_p item)
958 {
959 	const priv_p priv = NG_NODE_PRIVATE(node);
960 	struct ng_ppp_link *link;
961 	int len, error;
962 	struct mbuf *m;
963 	u_int16_t mru;
964 
965 	/* Extract mbuf */
966 	NGI_GET_M(item, m);
967 
968 	/* If not doing MP, map bundle virtual link to (the only) link */
969 	if (linkNum == NG_PPP_BUNDLE_LINKNUM && !priv->conf.enableMultilink)
970 		linkNum = priv->activeLinks[0];
971 
972 	/* Get link pointer (optimization) */
973 	link = (linkNum != NG_PPP_BUNDLE_LINKNUM) ?
974 	    &priv->links[linkNum] : NULL;
975 
976 	/* Check link status (if real) */
977 	if (linkNum != NG_PPP_BUNDLE_LINKNUM) {
978 		if (!bypass && !link->conf.enableLink) {
979 			NG_FREE_M(m);
980 			NG_FREE_ITEM(item);
981 			return (ENXIO);
982 		}
983 		if (link->hook == NULL) {
984 			NG_FREE_M(m);
985 			NG_FREE_ITEM(item);
986 			return (ENETDOWN);
987 		}
988 	}
989 
990 	/* Check peer's MRU for this link */
991 	mru = (link != NULL) ? link->conf.mru : priv->conf.mrru;
992 	if (mru != 0 && m->m_pkthdr.len > mru) {
993 		NG_FREE_M(m);
994 		NG_FREE_ITEM(item);
995 		return (EMSGSIZE);
996 	}
997 
998 	/* Prepend protocol number, possibly compressed */
999 	if ((m = ng_ppp_addproto(m, proto,
1000 	    linkNum == NG_PPP_BUNDLE_LINKNUM
1001 	      || link->conf.enableProtoComp)) == NULL) {
1002 		NG_FREE_ITEM(item);
1003 		return (ENOBUFS);
1004 	}
1005 
1006 	/* Special handling for the MP virtual link */
1007 	if (linkNum == NG_PPP_BUNDLE_LINKNUM) {
1008 		meta_p meta;
1009 
1010 		/* strip off and discard the queue item */
1011 		NGI_GET_META(item, meta);
1012 		NG_FREE_ITEM(item);
1013 		return ng_ppp_mp_output(node, m, meta);
1014 	}
1015 
1016 	/* Prepend address and control field (unless compressed) */
1017 	if (proto == PROT_LCP || !link->conf.enableACFComp) {
1018 		if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) {
1019 			NG_FREE_ITEM(item);
1020 			return (ENOBUFS);
1021 		}
1022 	}
1023 
1024 	/* Deliver frame */
1025 	len = m->m_pkthdr.len;
1026 	NG_FWD_NEW_DATA(error, item,  link->hook, m);
1027 
1028 	/* Update stats and 'bytes in queue' counter */
1029 	if (error == 0) {
1030 		link->stats.xmitFrames++;
1031 		link->stats.xmitOctets += len;
1032 		link->bytesInQueue += len;
1033 		getmicrouptime(&link->lastWrite);
1034 	}
1035 	return error;
1036 }
1037 
1038 /*
1039  * Handle an incoming multi-link fragment
1040  *
1041  * The fragment reassembly algorithm is somewhat complex. This is mainly
1042  * because we are required not to reorder the reconstructed packets, yet
1043  * fragments are only guaranteed to arrive in order on a per-link basis.
1044  * In other words, when we have a complete packet ready, but the previous
1045  * packet is still incomplete, we have to decide between delivering the
1046  * complete packet and throwing away the incomplete one, or waiting to
1047  * see if the remainder of the incomplete one arrives, at which time we
1048  * can deliver both packets, in order.
1049  *
1050  * This problem is exacerbated by "sequence number slew", which is when
1051  * the sequence numbers coming in from different links are far apart from
1052  * each other. In particular, certain unnamed equipment (*cough* Ascend)
1053  * has been seen to generate sequence number slew of up to 10 on an ISDN
1054  * 2B-channel MP link. There is nothing invalid about sequence number slew
1055  * but it makes the reasssembly process have to work harder.
1056  *
1057  * However, the peer is required to transmit fragments in order on each
1058  * link. That means if we define MSEQ as the minimum over all links of
1059  * the highest sequence number received on that link, then we can always
1060  * give up any hope of receiving a fragment with sequence number < MSEQ in
1061  * the future (all of this using 'wraparound' sequence number space).
1062  * Therefore we can always immediately throw away incomplete packets
1063  * missing fragments with sequence numbers < MSEQ.
1064  *
1065  * Here is an overview of our algorithm:
1066  *
1067  *    o Received fragments are inserted into a queue, for which we
1068  *	maintain these invariants between calls to this function:
1069  *
1070  *	- Fragments are ordered in the queue by sequence number
1071  *	- If a complete packet is at the head of the queue, then
1072  *	  the first fragment in the packet has seq# > MSEQ + 1
1073  *	  (otherwise, we could deliver it immediately)
1074  *	- If any fragments have seq# < MSEQ, then they are necessarily
1075  *	  part of a packet whose missing seq#'s are all > MSEQ (otherwise,
1076  *	  we can throw them away because they'll never be completed)
1077  *	- The queue contains at most MP_MAX_QUEUE_LEN fragments
1078  *
1079  *    o We have a periodic timer that checks the queue for the first
1080  *	complete packet that has been sitting in the queue "too long".
1081  *	When one is detected, all previous (incomplete) fragments are
1082  *	discarded, their missing fragments are declared lost and MSEQ
1083  *	is increased.
1084  *
1085  *    o If we recieve a fragment with seq# < MSEQ, we throw it away
1086  *	because we've already delcared it lost.
1087  *
1088  * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM.
1089  */
1090 static int
1091 ng_ppp_mp_input(node_p node, int linkNum, item_p item)
1092 {
1093 	const priv_p priv = NG_NODE_PRIVATE(node);
1094 	struct ng_ppp_link *const link = &priv->links[linkNum];
1095 	struct ng_ppp_frag frag0, *frag = &frag0;
1096 	struct ng_ppp_frag *qent;
1097 	int i, diff, inserted;
1098 	struct mbuf *m;
1099 	meta_p meta;
1100 
1101 	NGI_GET_M(item, m);
1102 	NGI_GET_META(item, meta);
1103 	NG_FREE_ITEM(item);
1104 	/* Stats */
1105 	priv->bundleStats.recvFrames++;
1106 	priv->bundleStats.recvOctets += m->m_pkthdr.len;
1107 
1108 	/* Extract fragment information from MP header */
1109 	if (priv->conf.recvShortSeq) {
1110 		u_int16_t shdr;
1111 
1112 		if (m->m_pkthdr.len < 2) {
1113 			link->stats.runts++;
1114 			NG_FREE_M(m);
1115 			NG_FREE_META(meta);
1116 			return (EINVAL);
1117 		}
1118 		if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) {
1119 			NG_FREE_META(meta);
1120 			return (ENOBUFS);
1121 		}
1122 		shdr = ntohs(*mtod(m, u_int16_t *));
1123 		frag->seq = MP_SHORT_EXTEND(shdr);
1124 		frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0;
1125 		frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0;
1126 		diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq);
1127 		m_adj(m, 2);
1128 	} else {
1129 		u_int32_t lhdr;
1130 
1131 		if (m->m_pkthdr.len < 4) {
1132 			link->stats.runts++;
1133 			NG_FREE_M(m);
1134 			NG_FREE_META(meta);
1135 			return (EINVAL);
1136 		}
1137 		if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) {
1138 			NG_FREE_META(meta);
1139 			return (ENOBUFS);
1140 		}
1141 		lhdr = ntohl(*mtod(m, u_int32_t *));
1142 		frag->seq = MP_LONG_EXTEND(lhdr);
1143 		frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0;
1144 		frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0;
1145 		diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq);
1146 		m_adj(m, 4);
1147 	}
1148 	frag->data = m;
1149 	frag->meta = meta;
1150 	getmicrouptime(&frag->timestamp);
1151 
1152 	/* If sequence number is < MSEQ, we've already declared this
1153 	   fragment as lost, so we have no choice now but to drop it */
1154 	if (diff < 0) {
1155 		link->stats.dropFragments++;
1156 		NG_FREE_M(m);
1157 		NG_FREE_META(meta);
1158 		return (0);
1159 	}
1160 
1161 	/* Update highest received sequence number on this link and MSEQ */
1162 	priv->mseq = link->seq = frag->seq;
1163 	for (i = 0; i < priv->numActiveLinks; i++) {
1164 		struct ng_ppp_link *const alink =
1165 		    &priv->links[priv->activeLinks[i]];
1166 
1167 		if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0)
1168 			priv->mseq = alink->seq;
1169 	}
1170 
1171 	/* Allocate a new frag struct for the queue */
1172 	MALLOC(frag, struct ng_ppp_frag *, sizeof(*frag), M_NETGRAPH_PPP, M_NOWAIT);
1173 	if (frag == NULL) {
1174 		NG_FREE_M(m);
1175 		NG_FREE_META(meta);
1176 		ng_ppp_frag_process(node);
1177 		return (ENOMEM);
1178 	}
1179 	*frag = frag0;
1180 
1181 	/* Add fragment to queue, which is sorted by sequence number */
1182 	inserted = 0;
1183 	TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) {
1184 		diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq);
1185 		if (diff > 0) {
1186 			TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent);
1187 			inserted = 1;
1188 			break;
1189 		} else if (diff == 0) {	     /* should never happen! */
1190 			link->stats.dupFragments++;
1191 			NG_FREE_M(frag->data);
1192 			NG_FREE_META(frag->meta);
1193 			FREE(frag, M_NETGRAPH_PPP);
1194 			return (EINVAL);
1195 		}
1196 	}
1197 	if (!inserted)
1198 		TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent);
1199 	priv->qlen++;
1200 
1201 	/* Process the queue */
1202 	return ng_ppp_frag_process(node);
1203 }
1204 
1205 /*
1206  * Examine our list of fragments, and determine if there is a
1207  * complete and deliverable packet at the head of the list.
1208  * Return 1 if so, zero otherwise.
1209  */
1210 static int
1211 ng_ppp_check_packet(node_p node)
1212 {
1213 	const priv_p priv = NG_NODE_PRIVATE(node);
1214 	struct ng_ppp_frag *qent, *qnext;
1215 
1216 	/* Check for empty queue */
1217 	if (TAILQ_EMPTY(&priv->frags))
1218 		return (0);
1219 
1220 	/* Check first fragment is the start of a deliverable packet */
1221 	qent = TAILQ_FIRST(&priv->frags);
1222 	if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1)
1223 		return (0);
1224 
1225 	/* Check that all the fragments are there */
1226 	while (!qent->last) {
1227 		qnext = TAILQ_NEXT(qent, f_qent);
1228 		if (qnext == NULL)	/* end of queue */
1229 			return (0);
1230 		if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq))
1231 			return (0);
1232 		qent = qnext;
1233 	}
1234 
1235 	/* Got one */
1236 	return (1);
1237 }
1238 
1239 /*
1240  * Pull a completed packet off the head of the incoming fragment queue.
1241  * This assumes there is a completed packet there to pull off.
1242  */
1243 static void
1244 ng_ppp_get_packet(node_p node, struct mbuf **mp, meta_p *metap)
1245 {
1246 	const priv_p priv = NG_NODE_PRIVATE(node);
1247 	struct ng_ppp_frag *qent, *qnext;
1248 	struct mbuf *m = NULL, *tail;
1249 
1250 	qent = TAILQ_FIRST(&priv->frags);
1251 	KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first,
1252 	    ("%s: no packet", __func__));
1253 	for (tail = NULL; qent != NULL; qent = qnext) {
1254 		qnext = TAILQ_NEXT(qent, f_qent);
1255 		KASSERT(!TAILQ_EMPTY(&priv->frags),
1256 		    ("%s: empty q", __func__));
1257 		TAILQ_REMOVE(&priv->frags, qent, f_qent);
1258 		if (tail == NULL) {
1259 			tail = m = qent->data;
1260 			*metap = qent->meta;	/* inherit first frag's meta */
1261 		} else {
1262 			m->m_pkthdr.len += qent->data->m_pkthdr.len;
1263 			tail->m_next = qent->data;
1264 			NG_FREE_META(qent->meta); /* drop other frags' metas */
1265 		}
1266 		while (tail->m_next != NULL)
1267 			tail = tail->m_next;
1268 		if (qent->last)
1269 			qnext = NULL;
1270 		FREE(qent, M_NETGRAPH_PPP);
1271 		priv->qlen--;
1272 	}
1273 	*mp = m;
1274 }
1275 
1276 /*
1277  * Trim fragments from the queue whose packets can never be completed.
1278  * This assumes a complete packet is NOT at the beginning of the queue.
1279  * Returns 1 if fragments were removed, zero otherwise.
1280  */
1281 static int
1282 ng_ppp_frag_trim(node_p node)
1283 {
1284 	const priv_p priv = NG_NODE_PRIVATE(node);
1285 	struct ng_ppp_frag *qent, *qnext = NULL;
1286 	int removed = 0;
1287 
1288 	/* Scan for "dead" fragments and remove them */
1289 	while (1) {
1290 		int dead = 0;
1291 
1292 		/* If queue is empty, we're done */
1293 		if (TAILQ_EMPTY(&priv->frags))
1294 			break;
1295 
1296 		/* Determine whether first fragment can ever be completed */
1297 		TAILQ_FOREACH(qent, &priv->frags, f_qent) {
1298 			if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0)
1299 				break;
1300 			qnext = TAILQ_NEXT(qent, f_qent);
1301 			KASSERT(qnext != NULL,
1302 			    ("%s: last frag < MSEQ?", __func__));
1303 			if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)
1304 			    || qent->last || qnext->first) {
1305 				dead = 1;
1306 				break;
1307 			}
1308 		}
1309 		if (!dead)
1310 			break;
1311 
1312 		/* Remove fragment and all others in the same packet */
1313 		while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) {
1314 			KASSERT(!TAILQ_EMPTY(&priv->frags),
1315 			    ("%s: empty q", __func__));
1316 			priv->bundleStats.dropFragments++;
1317 			TAILQ_REMOVE(&priv->frags, qent, f_qent);
1318 			NG_FREE_M(qent->data);
1319 			NG_FREE_META(qent->meta);
1320 			FREE(qent, M_NETGRAPH_PPP);
1321 			priv->qlen--;
1322 			removed = 1;
1323 		}
1324 	}
1325 	return (removed);
1326 }
1327 
1328 /*
1329  * Run the queue, restoring the queue invariants
1330  */
1331 static int
1332 ng_ppp_frag_process(node_p node)
1333 {
1334 	const priv_p priv = NG_NODE_PRIVATE(node);
1335 	struct mbuf *m;
1336 	meta_p meta;
1337 	item_p item;
1338 
1339 	/* Deliver any deliverable packets */
1340 	while (ng_ppp_check_packet(node)) {
1341 		ng_ppp_get_packet(node, &m, &meta);
1342 		item = ng_package_data(m, meta);
1343 		ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, item);
1344 	}
1345 
1346 	/* Delete dead fragments and try again */
1347 	if (ng_ppp_frag_trim(node)) {
1348 		while (ng_ppp_check_packet(node)) {
1349 			ng_ppp_get_packet(node, &m, &meta);
1350 			item = ng_package_data(m, meta);
1351 			ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, item);
1352 		}
1353 	}
1354 
1355 	/* Check for stale fragments while we're here */
1356 	ng_ppp_frag_checkstale(node);
1357 
1358 	/* Check queue length */
1359 	if (priv->qlen > MP_MAX_QUEUE_LEN) {
1360 		struct ng_ppp_frag *qent;
1361 		int i;
1362 
1363 		/* Get oldest fragment */
1364 		KASSERT(!TAILQ_EMPTY(&priv->frags),
1365 		    ("%s: empty q", __func__));
1366 		qent = TAILQ_FIRST(&priv->frags);
1367 
1368 		/* Bump MSEQ if necessary */
1369 		if (MP_RECV_SEQ_DIFF(priv, priv->mseq, qent->seq) < 0) {
1370 			priv->mseq = qent->seq;
1371 			for (i = 0; i < priv->numActiveLinks; i++) {
1372 				struct ng_ppp_link *const alink =
1373 				    &priv->links[priv->activeLinks[i]];
1374 
1375 				if (MP_RECV_SEQ_DIFF(priv,
1376 				    alink->seq, priv->mseq) < 0)
1377 					alink->seq = priv->mseq;
1378 			}
1379 		}
1380 
1381 		/* Drop it */
1382 		priv->bundleStats.dropFragments++;
1383 		TAILQ_REMOVE(&priv->frags, qent, f_qent);
1384 		NG_FREE_M(qent->data);
1385 		NG_FREE_META(qent->meta);
1386 		FREE(qent, M_NETGRAPH_PPP);
1387 		priv->qlen--;
1388 
1389 		/* Process queue again */
1390 		return ng_ppp_frag_process(node);
1391 	}
1392 
1393 	/* Done */
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Check for 'stale' completed packets that need to be delivered
1399  *
1400  * If a link goes down or has a temporary failure, MSEQ can get
1401  * "stuck", because no new incoming fragments appear on that link.
1402  * This can cause completed packets to never get delivered if
1403  * their sequence numbers are all > MSEQ + 1.
1404  *
1405  * This routine checks how long all of the completed packets have
1406  * been sitting in the queue, and if too long, removes fragments
1407  * from the queue and increments MSEQ to allow them to be delivered.
1408  */
1409 static void
1410 ng_ppp_frag_checkstale(node_p node)
1411 {
1412 	const priv_p priv = NG_NODE_PRIVATE(node);
1413 	struct ng_ppp_frag *qent, *beg, *end;
1414 	struct timeval now, age;
1415 	struct mbuf *m;
1416 	meta_p meta;
1417 	int i, seq;
1418 	item_p item;
1419 
1420 	now.tv_sec = 0;			/* uninitialized state */
1421 	while (1) {
1422 
1423 		/* If queue is empty, we're done */
1424 		if (TAILQ_EMPTY(&priv->frags))
1425 			break;
1426 
1427 		/* Find the first complete packet in the queue */
1428 		beg = end = NULL;
1429 		seq = TAILQ_FIRST(&priv->frags)->seq;
1430 		TAILQ_FOREACH(qent, &priv->frags, f_qent) {
1431 			if (qent->first)
1432 				beg = qent;
1433 			else if (qent->seq != seq)
1434 				beg = NULL;
1435 			if (beg != NULL && qent->last) {
1436 				end = qent;
1437 				break;
1438 			}
1439 			seq = MP_NEXT_RECV_SEQ(priv, seq);
1440 		}
1441 
1442 		/* If none found, exit */
1443 		if (end == NULL)
1444 			break;
1445 
1446 		/* Get current time (we assume we've been up for >= 1 second) */
1447 		if (now.tv_sec == 0)
1448 			getmicrouptime(&now);
1449 
1450 		/* Check if packet has been queued too long */
1451 		age = now;
1452 		timevalsub(&age, &beg->timestamp);
1453 		if (timevalcmp(&age, &ng_ppp_max_staleness, < ))
1454 			break;
1455 
1456 		/* Throw away junk fragments in front of the completed packet */
1457 		while ((qent = TAILQ_FIRST(&priv->frags)) != beg) {
1458 			KASSERT(!TAILQ_EMPTY(&priv->frags),
1459 			    ("%s: empty q", __func__));
1460 			priv->bundleStats.dropFragments++;
1461 			TAILQ_REMOVE(&priv->frags, qent, f_qent);
1462 			NG_FREE_M(qent->data);
1463 			NG_FREE_META(qent->meta);
1464 			FREE(qent, M_NETGRAPH_PPP);
1465 			priv->qlen--;
1466 		}
1467 
1468 		/* Extract completed packet */
1469 		ng_ppp_get_packet(node, &m, &meta);
1470 
1471 		/* Bump MSEQ if necessary */
1472 		if (MP_RECV_SEQ_DIFF(priv, priv->mseq, end->seq) < 0) {
1473 			priv->mseq = end->seq;
1474 			for (i = 0; i < priv->numActiveLinks; i++) {
1475 				struct ng_ppp_link *const alink =
1476 				    &priv->links[priv->activeLinks[i]];
1477 
1478 				if (MP_RECV_SEQ_DIFF(priv,
1479 				    alink->seq, priv->mseq) < 0)
1480 					alink->seq = priv->mseq;
1481 			}
1482 		}
1483 
1484 		/* Deliver packet */
1485 		item = ng_package_data(m, meta);
1486 		ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, item);
1487 	}
1488 }
1489 
1490 /*
1491  * Periodically call ng_ppp_frag_checkstale()
1492  */
1493 static void
1494 ng_ppp_frag_timeout(void *arg)
1495 {
1496 	const node_p node = arg;
1497 	const priv_p priv = NG_NODE_PRIVATE(node);
1498 	int s = splnet();
1499 
1500 	/* Handle the race where shutdown happens just before splnet() above */
1501 	if (NG_NODE_NOT_VALID(node)) {
1502 		NG_NODE_UNREF(node);
1503 		splx(s);
1504 		return;
1505 	}
1506 
1507 	/* Reset timer state after timeout */
1508 	KASSERT(priv->timerActive, ("%s: !timerActive", __func__));
1509 	priv->timerActive = 0;
1510 	KASSERT(node->nd_refs > 1, ("%s: nd_refs=%d", __func__, node->nd_refs));
1511 	NG_NODE_UNREF(node);
1512 
1513 	/* Start timer again */
1514 	ng_ppp_start_frag_timer(node);
1515 
1516 	/* Scan the fragment queue */
1517 	ng_ppp_frag_checkstale(node);
1518 	splx(s);
1519 }
1520 
1521 /*
1522  * Deliver a frame out on the bundle, i.e., figure out how to fragment
1523  * the frame across the individual PPP links and do so.
1524  */
1525 static int
1526 ng_ppp_mp_output(node_p node, struct mbuf *m, meta_p meta)
1527 {
1528 	const priv_p priv = NG_NODE_PRIVATE(node);
1529 	const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4;
1530 	int distrib[NG_PPP_MAX_LINKS];
1531 	int firstFragment;
1532 	int activeLinkNum;
1533 	item_p item;
1534 
1535 	/* At least one link must be active */
1536 	if (priv->numActiveLinks == 0) {
1537 		NG_FREE_M(m);
1538 		NG_FREE_META(meta);
1539 		return (ENETDOWN);
1540 	}
1541 
1542 	/* Round-robin strategy */
1543 	if (priv->conf.enableRoundRobin || m->m_pkthdr.len < MP_MIN_FRAG_LEN) {
1544 		activeLinkNum = priv->lastLink++ % priv->numActiveLinks;
1545 		bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0]));
1546 		distrib[activeLinkNum] = m->m_pkthdr.len;
1547 		goto deliver;
1548 	}
1549 
1550 	/* Strategy when all links are equivalent (optimize the common case) */
1551 	if (priv->allLinksEqual) {
1552 		const int fraction = m->m_pkthdr.len / priv->numActiveLinks;
1553 		int i, remain;
1554 
1555 		for (i = 0; i < priv->numActiveLinks; i++)
1556 			distrib[priv->lastLink++ % priv->numActiveLinks]
1557 			    = fraction;
1558 		remain = m->m_pkthdr.len - (fraction * priv->numActiveLinks);
1559 		while (remain > 0) {
1560 			distrib[priv->lastLink++ % priv->numActiveLinks]++;
1561 			remain--;
1562 		}
1563 		goto deliver;
1564 	}
1565 
1566 	/* Strategy when all links are not equivalent */
1567 	ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib);
1568 
1569 deliver:
1570 	/* Update stats */
1571 	priv->bundleStats.xmitFrames++;
1572 	priv->bundleStats.xmitOctets += m->m_pkthdr.len;
1573 
1574 	/* Send alloted portions of frame out on the link(s) */
1575 	for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1;
1576 	    activeLinkNum >= 0; activeLinkNum--) {
1577 		const int linkNum = priv->activeLinks[activeLinkNum];
1578 		struct ng_ppp_link *const link = &priv->links[linkNum];
1579 
1580 		/* Deliver fragment(s) out the next link */
1581 		for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) {
1582 			int len, lastFragment, error;
1583 			struct mbuf *m2;
1584 			meta_p meta2;
1585 
1586 			/* Calculate fragment length; don't exceed link MTU */
1587 			len = distrib[activeLinkNum];
1588 			if (len > link->conf.mru - hdr_len)
1589 				len = link->conf.mru - hdr_len;
1590 			distrib[activeLinkNum] -= len;
1591 			lastFragment = (len == m->m_pkthdr.len);
1592 
1593 			/* Split off next fragment as "m2" */
1594 			m2 = m;
1595 			if (!lastFragment) {
1596 				struct mbuf *n = m_split(m, len, M_NOWAIT);
1597 
1598 				if (n == NULL) {
1599 					NG_FREE_M(m);
1600 					NG_FREE_META(meta);
1601 					return (ENOMEM);
1602 				}
1603 				m = n;
1604 			}
1605 
1606 			/* Prepend MP header */
1607 			if (priv->conf.xmitShortSeq) {
1608 				u_int16_t shdr;
1609 
1610 				shdr = priv->xseq;
1611 				priv->xseq =
1612 				    (priv->xseq + 1) & MP_SHORT_SEQ_MASK;
1613 				if (firstFragment)
1614 					shdr |= MP_SHORT_FIRST_FLAG;
1615 				if (lastFragment)
1616 					shdr |= MP_SHORT_LAST_FLAG;
1617 				shdr = htons(shdr);
1618 				m2 = ng_ppp_prepend(m2, &shdr, 2);
1619 			} else {
1620 				u_int32_t lhdr;
1621 
1622 				lhdr = priv->xseq;
1623 				priv->xseq =
1624 				    (priv->xseq + 1) & MP_LONG_SEQ_MASK;
1625 				if (firstFragment)
1626 					lhdr |= MP_LONG_FIRST_FLAG;
1627 				if (lastFragment)
1628 					lhdr |= MP_LONG_LAST_FLAG;
1629 				lhdr = htonl(lhdr);
1630 				m2 = ng_ppp_prepend(m2, &lhdr, 4);
1631 			}
1632 			if (m2 == NULL) {
1633 				if (!lastFragment)
1634 					m_freem(m);
1635 				NG_FREE_META(meta);
1636 				return (ENOBUFS);
1637 			}
1638 
1639 			/* Copy the meta information, if any */
1640 			meta2 = lastFragment ? meta : ng_copy_meta(meta);
1641 
1642 			/* Send fragment */
1643 			item = ng_package_data(m2, meta2);
1644 			error = ng_ppp_output(node, 0, PROT_MP, linkNum, item);
1645 			if (error != 0) {
1646 				if (!lastFragment) {
1647 					NG_FREE_M(m);
1648 					NG_FREE_META(meta);
1649 				}
1650 				return (error);
1651 			}
1652 		}
1653 	}
1654 
1655 	/* Done */
1656 	return (0);
1657 }
1658 
1659 /*
1660  * Computing the optimal fragmentation
1661  * -----------------------------------
1662  *
1663  * This routine tries to compute the optimal fragmentation pattern based
1664  * on each link's latency, bandwidth, and calculated additional latency.
1665  * The latter quantity is the additional latency caused by previously
1666  * written data that has not been transmitted yet.
1667  *
1668  * This algorithm is only useful when not all of the links have the
1669  * same latency and bandwidth values.
1670  *
1671  * The essential idea is to make the last bit of each fragment of the
1672  * frame arrive at the opposite end at the exact same time. This greedy
1673  * algorithm is optimal, in that no other scheduling could result in any
1674  * packet arriving any sooner unless packets are delivered out of order.
1675  *
1676  * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and
1677  * latency l_i (in miliseconds). Consider the function function f_i(t)
1678  * which is equal to the number of bytes that will have arrived at
1679  * the peer after t miliseconds if we start writing continuously at
1680  * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i).
1681  * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i).
1682  * Note that the y-intersect is always <= zero because latency can't be
1683  * negative.  Note also that really the function is f_i(t) except when
1684  * f_i(t) is negative, in which case the function is zero.  To take
1685  * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }.
1686  * So the actual number of bytes that will have arrived at the peer after
1687  * t miliseconds is f_i(t) * Q_i(t).
1688  *
1689  * At any given time, each link has some additional latency a_i >= 0
1690  * due to previously written fragment(s) which are still in the queue.
1691  * This value is easily computed from the time since last transmission,
1692  * the previous latency value, the number of bytes written, and the
1693  * link's bandwidth.
1694  *
1695  * Assume that l_i includes any a_i already, and that the links are
1696  * sorted by latency, so that l_i <= l_{i+1}.
1697  *
1698  * Let N be the total number of bytes in the current frame we are sending.
1699  *
1700  * Suppose we were to start writing bytes at time t = 0 on all links
1701  * simultaneously, which is the most we can possibly do.  Then let
1702  * F(t) be equal to the total number of bytes received by the peer
1703  * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)).
1704  *
1705  * Our goal is simply this: fragment the frame across the links such
1706  * that the peer is able to reconstruct the completed frame as soon as
1707  * possible, i.e., at the least possible value of t. Call this value t_0.
1708  *
1709  * Then it follows that F(t_0) = N. Our strategy is first to find the value
1710  * of t_0, and then deduce how many bytes to write to each link.
1711  *
1712  * Rewriting F(t_0):
1713  *
1714  *   t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) )
1715  *
1716  * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will
1717  * lie in one of these ranges.  To find it, we just need to find the i such
1718  * that F(l_i) <= N <= F(l_{i+1}).  Then we compute all the constant values
1719  * for Q_i() in this range, plug in the remaining values, solving for t_0.
1720  *
1721  * Once t_0 is known, then the number of bytes to send on link i is
1722  * just f_i(t_0) * Q_i(t_0).
1723  *
1724  * In other words, we start allocating bytes to the links one at a time.
1725  * We keep adding links until the frame is completely sent.  Some links
1726  * may not get any bytes because their latency is too high.
1727  *
1728  * Is all this work really worth the trouble?  Depends on the situation.
1729  * The bigger the ratio of computer speed to link speed, and the more
1730  * important total bundle latency is (e.g., for interactive response time),
1731  * the more it's worth it.  There is however the cost of calling this
1732  * function for every frame.  The running time is O(n^2) where n is the
1733  * number of links that receive a non-zero number of bytes.
1734  *
1735  * Since latency is measured in miliseconds, the "resolution" of this
1736  * algorithm is one milisecond.
1737  *
1738  * To avoid this algorithm altogether, configure all links to have the
1739  * same latency and bandwidth.
1740  */
1741 static void
1742 ng_ppp_mp_strategy(node_p node, int len, int *distrib)
1743 {
1744 	const priv_p priv = NG_NODE_PRIVATE(node);
1745 	int latency[NG_PPP_MAX_LINKS];
1746 	int sortByLatency[NG_PPP_MAX_LINKS];
1747 	int activeLinkNum;
1748 	int t0, total, topSum, botSum;
1749 	struct timeval now;
1750 	int i, numFragments;
1751 
1752 	/* If only one link, this gets real easy */
1753 	if (priv->numActiveLinks == 1) {
1754 		distrib[0] = len;
1755 		return;
1756 	}
1757 
1758 	/* Get current time */
1759 	getmicrouptime(&now);
1760 
1761 	/* Compute latencies for each link at this point in time */
1762 	for (activeLinkNum = 0;
1763 	    activeLinkNum < priv->numActiveLinks; activeLinkNum++) {
1764 		struct ng_ppp_link *alink;
1765 		struct timeval diff;
1766 		int xmitBytes;
1767 
1768 		/* Start with base latency value */
1769 		alink = &priv->links[priv->activeLinks[activeLinkNum]];
1770 		latency[activeLinkNum] = alink->conf.latency;
1771 		sortByLatency[activeLinkNum] = activeLinkNum;	/* see below */
1772 
1773 		/* Any additional latency? */
1774 		if (alink->bytesInQueue == 0)
1775 			continue;
1776 
1777 		/* Compute time delta since last write */
1778 		diff = now;
1779 		timevalsub(&diff, &alink->lastWrite);
1780 		if (now.tv_sec < 0 || diff.tv_sec >= 10) {	/* sanity */
1781 			alink->bytesInQueue = 0;
1782 			continue;
1783 		}
1784 
1785 		/* How many bytes could have transmitted since last write? */
1786 		xmitBytes = (alink->conf.bandwidth * diff.tv_sec)
1787 		    + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100;
1788 		alink->bytesInQueue -= xmitBytes;
1789 		if (alink->bytesInQueue < 0)
1790 			alink->bytesInQueue = 0;
1791 		else
1792 			latency[activeLinkNum] +=
1793 			    (100 * alink->bytesInQueue) / alink->conf.bandwidth;
1794 	}
1795 
1796 	/* Sort active links by latency */
1797 	compareLatencies = latency;
1798 	qsort(sortByLatency,
1799 	    priv->numActiveLinks, sizeof(*sortByLatency), ng_ppp_intcmp);
1800 	compareLatencies = NULL;
1801 
1802 	/* Find the interval we need (add links in sortByLatency[] order) */
1803 	for (numFragments = 1;
1804 	    numFragments < priv->numActiveLinks; numFragments++) {
1805 		for (total = i = 0; i < numFragments; i++) {
1806 			int flowTime;
1807 
1808 			flowTime = latency[sortByLatency[numFragments]]
1809 			    - latency[sortByLatency[i]];
1810 			total += ((flowTime * priv->links[
1811 			    priv->activeLinks[sortByLatency[i]]].conf.bandwidth)
1812 			    	+ 99) / 100;
1813 		}
1814 		if (total >= len)
1815 			break;
1816 	}
1817 
1818 	/* Solve for t_0 in that interval */
1819 	for (topSum = botSum = i = 0; i < numFragments; i++) {
1820 		int bw = priv->links[
1821 		    priv->activeLinks[sortByLatency[i]]].conf.bandwidth;
1822 
1823 		topSum += latency[sortByLatency[i]] * bw;	/* / 100 */
1824 		botSum += bw;					/* / 100 */
1825 	}
1826 	t0 = ((len * 100) + topSum + botSum / 2) / botSum;
1827 
1828 	/* Compute f_i(t_0) all i */
1829 	bzero(distrib, priv->numActiveLinks * sizeof(*distrib));
1830 	for (total = i = 0; i < numFragments; i++) {
1831 		int bw = priv->links[
1832 		    priv->activeLinks[sortByLatency[i]]].conf.bandwidth;
1833 
1834 		distrib[sortByLatency[i]] =
1835 		    (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100;
1836 		total += distrib[sortByLatency[i]];
1837 	}
1838 
1839 	/* Deal with any rounding error */
1840 	if (total < len) {
1841 		struct ng_ppp_link *fastLink =
1842 		    &priv->links[priv->activeLinks[sortByLatency[0]]];
1843 		int fast = 0;
1844 
1845 		/* Find the fastest link */
1846 		for (i = 1; i < numFragments; i++) {
1847 			struct ng_ppp_link *const link =
1848 			    &priv->links[priv->activeLinks[sortByLatency[i]]];
1849 
1850 			if (link->conf.bandwidth > fastLink->conf.bandwidth) {
1851 				fast = i;
1852 				fastLink = link;
1853 			}
1854 		}
1855 		distrib[sortByLatency[fast]] += len - total;
1856 	} else while (total > len) {
1857 		struct ng_ppp_link *slowLink =
1858 		    &priv->links[priv->activeLinks[sortByLatency[0]]];
1859 		int delta, slow = 0;
1860 
1861 		/* Find the slowest link that still has bytes to remove */
1862 		for (i = 1; i < numFragments; i++) {
1863 			struct ng_ppp_link *const link =
1864 			    &priv->links[priv->activeLinks[sortByLatency[i]]];
1865 
1866 			if (distrib[sortByLatency[slow]] == 0
1867 			  || (distrib[sortByLatency[i]] > 0
1868 			    && link->conf.bandwidth <
1869 			      slowLink->conf.bandwidth)) {
1870 				slow = i;
1871 				slowLink = link;
1872 			}
1873 		}
1874 		delta = total - len;
1875 		if (delta > distrib[sortByLatency[slow]])
1876 			delta = distrib[sortByLatency[slow]];
1877 		distrib[sortByLatency[slow]] -= delta;
1878 		total -= delta;
1879 	}
1880 }
1881 
1882 /*
1883  * Compare two integers
1884  */
1885 static int
1886 ng_ppp_intcmp(const void *v1, const void *v2)
1887 {
1888 	const int index1 = *((const int *) v1);
1889 	const int index2 = *((const int *) v2);
1890 
1891 	return compareLatencies[index1] - compareLatencies[index2];
1892 }
1893 
1894 /*
1895  * Prepend a possibly compressed PPP protocol number in front of a frame
1896  */
1897 static struct mbuf *
1898 ng_ppp_addproto(struct mbuf *m, int proto, int compOK)
1899 {
1900 	if (compOK && PROT_COMPRESSABLE(proto)) {
1901 		u_char pbyte = (u_char)proto;
1902 
1903 		return ng_ppp_prepend(m, &pbyte, 1);
1904 	} else {
1905 		u_int16_t pword = htons((u_int16_t)proto);
1906 
1907 		return ng_ppp_prepend(m, &pword, 2);
1908 	}
1909 }
1910 
1911 /*
1912  * Prepend some bytes to an mbuf
1913  */
1914 static struct mbuf *
1915 ng_ppp_prepend(struct mbuf *m, const void *buf, int len)
1916 {
1917 	M_PREPEND(m, len, M_NOWAIT);
1918 	if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL))
1919 		return (NULL);
1920 	bcopy(buf, mtod(m, u_char *), len);
1921 	return (m);
1922 }
1923 
1924 /*
1925  * Update private information that is derived from other private information
1926  */
1927 static void
1928 ng_ppp_update(node_p node, int newConf)
1929 {
1930 	const priv_p priv = NG_NODE_PRIVATE(node);
1931 	int i;
1932 
1933 	/* Update active status for VJ Compression */
1934 	priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL
1935 	    && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL
1936 	    && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL
1937 	    && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL;
1938 
1939 	/* Increase latency for each link an amount equal to one MP header */
1940 	if (newConf) {
1941 		for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
1942 			int hdrBytes;
1943 
1944 			hdrBytes = (priv->links[i].conf.enableACFComp ? 0 : 2)
1945 			    + (priv->links[i].conf.enableProtoComp ? 1 : 2)
1946 			    + (priv->conf.xmitShortSeq ? 2 : 4);
1947 			priv->links[i].conf.latency +=
1948 			    ((hdrBytes * priv->links[i].conf.bandwidth) + 50)
1949 				/ 100;
1950 		}
1951 	}
1952 
1953 	/* Update list of active links */
1954 	bzero(&priv->activeLinks, sizeof(priv->activeLinks));
1955 	priv->numActiveLinks = 0;
1956 	priv->allLinksEqual = 1;
1957 	for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
1958 		struct ng_ppp_link *const link = &priv->links[i];
1959 
1960 		/* Is link active? */
1961 		if (link->conf.enableLink && link->hook != NULL) {
1962 			struct ng_ppp_link *link0;
1963 
1964 			/* Add link to list of active links */
1965 			priv->activeLinks[priv->numActiveLinks++] = i;
1966 			link0 = &priv->links[priv->activeLinks[0]];
1967 
1968 			/* Determine if all links are still equal */
1969 			if (link->conf.latency != link0->conf.latency
1970 			  || link->conf.bandwidth != link0->conf.bandwidth)
1971 				priv->allLinksEqual = 0;
1972 
1973 			/* Initialize rec'd sequence number */
1974 			if (link->seq == MP_NOSEQ) {
1975 				link->seq = (link == link0) ?
1976 				    MP_INITIAL_SEQ : link0->seq;
1977 			}
1978 		} else
1979 			link->seq = MP_NOSEQ;
1980 	}
1981 
1982 	/* Update MP state as multi-link is active or not */
1983 	if (priv->conf.enableMultilink && priv->numActiveLinks > 0)
1984 		ng_ppp_start_frag_timer(node);
1985 	else {
1986 		ng_ppp_stop_frag_timer(node);
1987 		ng_ppp_frag_reset(node);
1988 		priv->xseq = MP_INITIAL_SEQ;
1989 		priv->mseq = MP_INITIAL_SEQ;
1990 		for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
1991 			struct ng_ppp_link *const link = &priv->links[i];
1992 
1993 			bzero(&link->lastWrite, sizeof(link->lastWrite));
1994 			link->bytesInQueue = 0;
1995 			link->seq = MP_NOSEQ;
1996 		}
1997 	}
1998 }
1999 
2000 /*
2001  * Determine if a new configuration would represent a valid change
2002  * from the current configuration and link activity status.
2003  */
2004 static int
2005 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf)
2006 {
2007 	const priv_p priv = NG_NODE_PRIVATE(node);
2008 	int i, newNumLinksActive;
2009 
2010 	/* Check per-link config and count how many links would be active */
2011 	for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) {
2012 		if (newConf->links[i].enableLink && priv->links[i].hook != NULL)
2013 			newNumLinksActive++;
2014 		if (!newConf->links[i].enableLink)
2015 			continue;
2016 		if (newConf->links[i].mru < MP_MIN_LINK_MRU)
2017 			return (0);
2018 		if (newConf->links[i].bandwidth == 0)
2019 			return (0);
2020 		if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH)
2021 			return (0);
2022 		if (newConf->links[i].latency > NG_PPP_MAX_LATENCY)
2023 			return (0);
2024 	}
2025 
2026 	/* Check bundle parameters */
2027 	if (newConf->bund.enableMultilink && newConf->bund.mrru < MP_MIN_MRRU)
2028 		return (0);
2029 
2030 	/* Disallow changes to multi-link configuration while MP is active */
2031 	if (priv->numActiveLinks > 0 && newNumLinksActive > 0) {
2032 		if (!priv->conf.enableMultilink
2033 				!= !newConf->bund.enableMultilink
2034 		    || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq
2035 		    || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq)
2036 			return (0);
2037 	}
2038 
2039 	/* At most one link can be active unless multi-link is enabled */
2040 	if (!newConf->bund.enableMultilink && newNumLinksActive > 1)
2041 		return (0);
2042 
2043 	/* Configuration change would be valid */
2044 	return (1);
2045 }
2046 
2047 /*
2048  * Free all entries in the fragment queue
2049  */
2050 static void
2051 ng_ppp_frag_reset(node_p node)
2052 {
2053 	const priv_p priv = NG_NODE_PRIVATE(node);
2054 	struct ng_ppp_frag *qent, *qnext;
2055 
2056 	for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) {
2057 		qnext = TAILQ_NEXT(qent, f_qent);
2058 		NG_FREE_M(qent->data);
2059 		NG_FREE_META(qent->meta);
2060 		FREE(qent, M_NETGRAPH_PPP);
2061 	}
2062 	TAILQ_INIT(&priv->frags);
2063 	priv->qlen = 0;
2064 }
2065 
2066 /*
2067  * Start fragment queue timer
2068  */
2069 static void
2070 ng_ppp_start_frag_timer(node_p node)
2071 {
2072 	const priv_p priv = NG_NODE_PRIVATE(node);
2073 
2074 	if (!priv->timerActive) {
2075 		priv->fragTimer = timeout(ng_ppp_frag_timeout,
2076 		    node, MP_FRAGTIMER_INTERVAL);
2077 		priv->timerActive = 1;
2078 		NG_NODE_REF(node);
2079 	}
2080 }
2081 
2082 /*
2083  * Stop fragment queue timer
2084  */
2085 static void
2086 ng_ppp_stop_frag_timer(node_p node)
2087 {
2088 	const priv_p priv = NG_NODE_PRIVATE(node);
2089 
2090 	if (priv->timerActive) {
2091 		untimeout(ng_ppp_frag_timeout, node, priv->fragTimer);
2092 		priv->timerActive = 0;
2093 		KASSERT(node->nd_refs > 1,
2094 		    ("%s: nd_refs=%d", __func__, node->nd_refs));
2095 		NG_NODE_UNREF(node);
2096 	}
2097 }
2098 
2099