1 /*- 2 * Copyright (c) 1996-2000 Whistle Communications, Inc. 3 * All rights reserved. 4 * 5 * Subject to the following obligations and disclaimer of warranty, use and 6 * redistribution of this software, in source or object code forms, with or 7 * without modifications are expressly permitted by Whistle Communications; 8 * provided, however, that: 9 * 1. Any and all reproductions of the source or object code must include the 10 * copyright notice above and the following disclaimer of warranties; and 11 * 2. No rights are granted, in any manner or form, to use Whistle 12 * Communications, Inc. trademarks, including the mark "WHISTLE 13 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 14 * such appears in the above copyright notice or in the software. 15 * 16 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 17 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 18 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 19 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 21 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 22 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 23 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 24 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 25 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 26 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 27 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 32 * OF SUCH DAMAGE. 33 * 34 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice unmodified, this list of conditions, and the following 42 * disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 60 * 61 * $FreeBSD$ 62 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 63 */ 64 65 /* 66 * PPP node type data-flow. 67 * 68 * hook xmit layer recv hook 69 * ------------------------------------ 70 * inet -> -> inet 71 * ipv6 -> -> ipv6 72 * ipx -> proto -> ipx 73 * atalk -> -> atalk 74 * bypass -> -> bypass 75 * -hcomp_xmit()----------proto_recv()- 76 * vjc_ip <- <- vjc_ip 77 * vjc_comp -> header compression -> vjc_comp 78 * vjc_uncomp -> -> vjc_uncomp 79 * vjc_vjip -> 80 * -comp_xmit()-----------hcomp_recv()- 81 * compress <- compression <- decompress 82 * compress -> -> decompress 83 * -crypt_xmit()-----------comp_recv()- 84 * encrypt <- encryption <- decrypt 85 * encrypt -> -> decrypt 86 * -ml_xmit()-------------crypt_recv()- 87 * multilink 88 * -link_xmit()--------------ml_recv()- 89 * linkX <- link <- linkX 90 * 91 */ 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/time.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/errno.h> 101 #include <sys/ctype.h> 102 103 #include <netgraph/ng_message.h> 104 #include <netgraph/netgraph.h> 105 #include <netgraph/ng_parse.h> 106 #include <netgraph/ng_ppp.h> 107 #include <netgraph/ng_vjc.h> 108 109 #ifdef NG_SEPARATE_MALLOC 110 MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 111 #else 112 #define M_NETGRAPH_PPP M_NETGRAPH 113 #endif 114 115 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 116 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 117 118 /* Some PPP protocol numbers we're interested in */ 119 #define PROT_ATALK 0x0029 120 #define PROT_COMPD 0x00fd 121 #define PROT_CRYPTD 0x0053 122 #define PROT_IP 0x0021 123 #define PROT_IPV6 0x0057 124 #define PROT_IPX 0x002b 125 #define PROT_LCP 0xc021 126 #define PROT_MP 0x003d 127 #define PROT_VJCOMP 0x002d 128 #define PROT_VJUNCOMP 0x002f 129 130 /* Multilink PPP definitions */ 131 #define MP_MIN_MRRU 1500 /* per RFC 1990 */ 132 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 133 #define MP_MIN_LINK_MRU 32 134 135 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 136 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 137 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 138 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 139 140 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 141 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 142 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 143 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 144 145 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 146 147 /* Sign extension of MP sequence numbers */ 148 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 149 ((s) | ~MP_SHORT_SEQ_MASK) \ 150 : ((s) & MP_SHORT_SEQ_MASK)) 151 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 152 ((s) | ~MP_LONG_SEQ_MASK) \ 153 : ((s) & MP_LONG_SEQ_MASK)) 154 155 /* Comparision of MP sequence numbers. Note: all sequence numbers 156 except priv->xseq are stored with the sign bit extended. */ 157 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 158 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 159 160 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 161 ((priv)->conf.recvShortSeq ? \ 162 MP_SHORT_SEQ_DIFF((x), (y)) : \ 163 MP_LONG_SEQ_DIFF((x), (y))) 164 165 /* Increment receive sequence number */ 166 #define MP_NEXT_RECV_SEQ(priv,seq) \ 167 ((priv)->conf.recvShortSeq ? \ 168 MP_SHORT_EXTEND((seq) + 1) : \ 169 MP_LONG_EXTEND((seq) + 1)) 170 171 /* Don't fragment transmitted packets to parts smaller than this */ 172 #define MP_MIN_FRAG_LEN 32 173 174 /* Maximum fragment reasssembly queue length */ 175 #define MP_MAX_QUEUE_LEN 128 176 177 /* Fragment queue scanner period */ 178 #define MP_FRAGTIMER_INTERVAL (hz/2) 179 180 /* Average link overhead. XXX: Should be given by user-level */ 181 #define MP_AVERAGE_LINK_OVERHEAD 16 182 183 /* Keep this equal to ng_ppp_hook_names lower! */ 184 #define HOOK_INDEX_MAX 13 185 186 /* We store incoming fragments this way */ 187 struct ng_ppp_frag { 188 int seq; /* fragment seq# */ 189 uint8_t first; /* First in packet? */ 190 uint8_t last; /* Last in packet? */ 191 struct timeval timestamp; /* time of reception */ 192 struct mbuf *data; /* Fragment data */ 193 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 194 }; 195 196 /* Per-link private information */ 197 struct ng_ppp_link { 198 struct ng_ppp_link_conf conf; /* link configuration */ 199 struct ng_ppp_link_stat stats; /* link stats */ 200 hook_p hook; /* connection to link data */ 201 int32_t seq; /* highest rec'd seq# - MSEQ */ 202 uint32_t latency; /* calculated link latency */ 203 struct timeval lastWrite; /* time of last write for MP */ 204 int bytesInQueue; /* bytes in the output queue for MP */ 205 }; 206 207 /* Total per-node private information */ 208 struct ng_ppp_private { 209 struct ng_ppp_bund_conf conf; /* bundle config */ 210 struct ng_ppp_link_stat bundleStats; /* bundle stats */ 211 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 212 int32_t xseq; /* next out MP seq # */ 213 int32_t mseq; /* min links[i].seq */ 214 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indicies */ 215 uint16_t numActiveLinks; /* how many links up */ 216 uint16_t lastLink; /* for round robin */ 217 uint8_t vjCompHooked; /* VJ comp hooked up? */ 218 uint8_t allLinksEqual; /* all xmit the same? */ 219 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 220 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 221 frags; 222 int qlen; /* fraq queue length */ 223 struct callout fragTimer; /* fraq queue check */ 224 }; 225 typedef struct ng_ppp_private *priv_p; 226 227 /* Netgraph node methods */ 228 static ng_constructor_t ng_ppp_constructor; 229 static ng_rcvmsg_t ng_ppp_rcvmsg; 230 static ng_shutdown_t ng_ppp_shutdown; 231 static ng_newhook_t ng_ppp_newhook; 232 static ng_rcvdata_t ng_ppp_rcvdata; 233 static ng_disconnect_t ng_ppp_disconnect; 234 235 static ng_rcvdata_t ng_ppp_rcvdata_inet; 236 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 237 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 238 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 239 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 240 241 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 242 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 243 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 244 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 245 246 static ng_rcvdata_t ng_ppp_rcvdata_compress; 247 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 248 249 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 250 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 251 252 /* We use integer indicies to refer to the non-link hooks. */ 253 static const struct { 254 char *const name; 255 ng_rcvdata_t *fn; 256 } ng_ppp_hook_names[] = { 257 #define HOOK_INDEX_ATALK 0 258 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 259 #define HOOK_INDEX_BYPASS 1 260 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 261 #define HOOK_INDEX_COMPRESS 2 262 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 263 #define HOOK_INDEX_ENCRYPT 3 264 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 265 #define HOOK_INDEX_DECOMPRESS 4 266 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 267 #define HOOK_INDEX_DECRYPT 5 268 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 269 #define HOOK_INDEX_INET 6 270 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 271 #define HOOK_INDEX_IPX 7 272 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 273 #define HOOK_INDEX_VJC_COMP 8 274 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 275 #define HOOK_INDEX_VJC_IP 9 276 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 277 #define HOOK_INDEX_VJC_UNCOMP 10 278 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 279 #define HOOK_INDEX_VJC_VJIP 11 280 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 281 #define HOOK_INDEX_IPV6 12 282 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 283 { NULL, NULL } 284 }; 285 286 /* Helper functions */ 287 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 288 uint16_t linkNum); 289 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 290 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 291 uint16_t linkNum); 292 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 293 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 294 uint16_t linkNum); 295 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 296 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 297 uint16_t linkNum); 298 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 299 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 300 uint16_t linkNum); 301 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 302 uint16_t linkNum); 303 304 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 305 uint16_t linkNum); 306 307 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 308 static int ng_ppp_frag_drop(node_p node); 309 static int ng_ppp_check_packet(node_p node); 310 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 311 static int ng_ppp_frag_process(node_p node); 312 static int ng_ppp_frag_trim(node_p node); 313 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 314 int arg2); 315 static void ng_ppp_frag_checkstale(node_p node); 316 static void ng_ppp_frag_reset(node_p node); 317 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 318 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 319 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 320 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 321 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 322 static int ng_ppp_config_valid(node_p node, 323 const struct ng_ppp_node_conf *newConf); 324 static void ng_ppp_update(node_p node, int newConf); 325 static void ng_ppp_start_frag_timer(node_p node); 326 static void ng_ppp_stop_frag_timer(node_p node); 327 328 /* Parse type for struct ng_ppp_mp_state_type */ 329 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 330 &ng_parse_hint32_type, 331 NG_PPP_MAX_LINKS 332 }; 333 static const struct ng_parse_type ng_ppp_rseq_array_type = { 334 &ng_parse_fixedarray_type, 335 &ng_ppp_rseq_array_info, 336 }; 337 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 338 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 339 static const struct ng_parse_type ng_ppp_mp_state_type = { 340 &ng_parse_struct_type, 341 &ng_ppp_mp_state_type_fields 342 }; 343 344 /* Parse type for struct ng_ppp_link_conf */ 345 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 346 = NG_PPP_LINK_TYPE_INFO; 347 static const struct ng_parse_type ng_ppp_link_type = { 348 &ng_parse_struct_type, 349 &ng_ppp_link_type_fields 350 }; 351 352 /* Parse type for struct ng_ppp_bund_conf */ 353 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 354 = NG_PPP_BUND_TYPE_INFO; 355 static const struct ng_parse_type ng_ppp_bund_type = { 356 &ng_parse_struct_type, 357 &ng_ppp_bund_type_fields 358 }; 359 360 /* Parse type for struct ng_ppp_node_conf */ 361 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 362 &ng_ppp_link_type, 363 NG_PPP_MAX_LINKS 364 }; 365 static const struct ng_parse_type ng_ppp_link_array_type = { 366 &ng_parse_fixedarray_type, 367 &ng_ppp_array_info, 368 }; 369 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 370 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 371 static const struct ng_parse_type ng_ppp_conf_type = { 372 &ng_parse_struct_type, 373 &ng_ppp_conf_type_fields 374 }; 375 376 /* Parse type for struct ng_ppp_link_stat */ 377 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 378 = NG_PPP_STATS_TYPE_INFO; 379 static const struct ng_parse_type ng_ppp_stats_type = { 380 &ng_parse_struct_type, 381 &ng_ppp_stats_type_fields 382 }; 383 384 /* List of commands and how to convert arguments to/from ASCII */ 385 static const struct ng_cmdlist ng_ppp_cmds[] = { 386 { 387 NGM_PPP_COOKIE, 388 NGM_PPP_SET_CONFIG, 389 "setconfig", 390 &ng_ppp_conf_type, 391 NULL 392 }, 393 { 394 NGM_PPP_COOKIE, 395 NGM_PPP_GET_CONFIG, 396 "getconfig", 397 NULL, 398 &ng_ppp_conf_type 399 }, 400 { 401 NGM_PPP_COOKIE, 402 NGM_PPP_GET_MP_STATE, 403 "getmpstate", 404 NULL, 405 &ng_ppp_mp_state_type 406 }, 407 { 408 NGM_PPP_COOKIE, 409 NGM_PPP_GET_LINK_STATS, 410 "getstats", 411 &ng_parse_int16_type, 412 &ng_ppp_stats_type 413 }, 414 { 415 NGM_PPP_COOKIE, 416 NGM_PPP_CLR_LINK_STATS, 417 "clrstats", 418 &ng_parse_int16_type, 419 NULL 420 }, 421 { 422 NGM_PPP_COOKIE, 423 NGM_PPP_GETCLR_LINK_STATS, 424 "getclrstats", 425 &ng_parse_int16_type, 426 &ng_ppp_stats_type 427 }, 428 { 0 } 429 }; 430 431 /* Node type descriptor */ 432 static struct ng_type ng_ppp_typestruct = { 433 .version = NG_ABI_VERSION, 434 .name = NG_PPP_NODE_TYPE, 435 .constructor = ng_ppp_constructor, 436 .rcvmsg = ng_ppp_rcvmsg, 437 .shutdown = ng_ppp_shutdown, 438 .newhook = ng_ppp_newhook, 439 .rcvdata = ng_ppp_rcvdata, 440 .disconnect = ng_ppp_disconnect, 441 .cmdlist = ng_ppp_cmds, 442 }; 443 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 444 445 /* Address and control field header */ 446 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 447 448 /* Maximum time we'll let a complete incoming packet sit in the queue */ 449 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 450 451 #define ERROUT(x) do { error = (x); goto done; } while (0) 452 453 /************************************************************************ 454 NETGRAPH NODE STUFF 455 ************************************************************************/ 456 457 /* 458 * Node type constructor 459 */ 460 static int 461 ng_ppp_constructor(node_p node) 462 { 463 priv_p priv; 464 int i; 465 466 /* Allocate private structure */ 467 MALLOC(priv, priv_p, sizeof(*priv), M_NETGRAPH_PPP, M_NOWAIT | M_ZERO); 468 if (priv == NULL) 469 return (ENOMEM); 470 471 NG_NODE_SET_PRIVATE(node, priv); 472 473 /* Initialize state */ 474 TAILQ_INIT(&priv->frags); 475 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 476 priv->links[i].seq = MP_NOSEQ; 477 ng_callout_init(&priv->fragTimer); 478 479 /* Done */ 480 return (0); 481 } 482 483 /* 484 * Give our OK for a hook to be added 485 */ 486 static int 487 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 488 { 489 const priv_p priv = NG_NODE_PRIVATE(node); 490 hook_p *hookPtr = NULL; 491 int linkNum = -1; 492 int hookIndex = -1; 493 494 /* Figure out which hook it is */ 495 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 496 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 497 const char *cp; 498 char *eptr; 499 500 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 501 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 502 return (EINVAL); 503 linkNum = (int)strtoul(cp, &eptr, 10); 504 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 505 return (EINVAL); 506 hookPtr = &priv->links[linkNum].hook; 507 hookIndex = ~linkNum; 508 509 /* See if hook is already connected. */ 510 if (*hookPtr != NULL) 511 return (EISCONN); 512 513 /* Disallow more than one link unless multilink is enabled. */ 514 if (priv->links[linkNum].conf.enableLink && 515 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 516 return (ENODEV); 517 518 /* MP recv code is not thread-safe. */ 519 NG_HOOK_FORCE_WRITER(hook); 520 521 } else { /* must be a non-link hook */ 522 int i; 523 524 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 525 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 526 hookPtr = &priv->hooks[i]; 527 hookIndex = i; 528 break; 529 } 530 } 531 if (ng_ppp_hook_names[i].name == NULL) 532 return (EINVAL); /* no such hook */ 533 534 /* See if hook is already connected */ 535 if (*hookPtr != NULL) 536 return (EISCONN); 537 538 /* Every non-linkX hook have it's own function. */ 539 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 540 } 541 542 /* OK */ 543 *hookPtr = hook; 544 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 545 ng_ppp_update(node, 0); 546 return (0); 547 } 548 549 /* 550 * Receive a control message 551 */ 552 static int 553 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 554 { 555 const priv_p priv = NG_NODE_PRIVATE(node); 556 struct ng_mesg *resp = NULL; 557 int error = 0; 558 struct ng_mesg *msg; 559 560 NGI_GET_MSG(item, msg); 561 switch (msg->header.typecookie) { 562 case NGM_PPP_COOKIE: 563 switch (msg->header.cmd) { 564 case NGM_PPP_SET_CONFIG: 565 { 566 struct ng_ppp_node_conf *const conf = 567 (struct ng_ppp_node_conf *)msg->data; 568 int i; 569 570 /* Check for invalid or illegal config */ 571 if (msg->header.arglen != sizeof(*conf)) 572 ERROUT(EINVAL); 573 if (!ng_ppp_config_valid(node, conf)) 574 ERROUT(EINVAL); 575 576 /* Copy config */ 577 priv->conf = conf->bund; 578 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 579 priv->links[i].conf = conf->links[i]; 580 ng_ppp_update(node, 1); 581 break; 582 } 583 case NGM_PPP_GET_CONFIG: 584 { 585 struct ng_ppp_node_conf *conf; 586 int i; 587 588 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 589 if (resp == NULL) 590 ERROUT(ENOMEM); 591 conf = (struct ng_ppp_node_conf *)resp->data; 592 conf->bund = priv->conf; 593 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 594 conf->links[i] = priv->links[i].conf; 595 break; 596 } 597 case NGM_PPP_GET_MP_STATE: 598 { 599 struct ng_ppp_mp_state *info; 600 int i; 601 602 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 603 if (resp == NULL) 604 ERROUT(ENOMEM); 605 info = (struct ng_ppp_mp_state *)resp->data; 606 bzero(info, sizeof(*info)); 607 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 608 if (priv->links[i].seq != MP_NOSEQ) 609 info->rseq[i] = priv->links[i].seq; 610 } 611 info->mseq = priv->mseq; 612 info->xseq = priv->xseq; 613 break; 614 } 615 case NGM_PPP_GET_LINK_STATS: 616 case NGM_PPP_CLR_LINK_STATS: 617 case NGM_PPP_GETCLR_LINK_STATS: 618 { 619 struct ng_ppp_link_stat *stats; 620 uint16_t linkNum; 621 622 if (msg->header.arglen != sizeof(uint16_t)) 623 ERROUT(EINVAL); 624 linkNum = *((uint16_t *) msg->data); 625 if (linkNum >= NG_PPP_MAX_LINKS 626 && linkNum != NG_PPP_BUNDLE_LINKNUM) 627 ERROUT(EINVAL); 628 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 629 &priv->bundleStats : &priv->links[linkNum].stats; 630 if (msg->header.cmd != NGM_PPP_CLR_LINK_STATS) { 631 NG_MKRESPONSE(resp, msg, 632 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 633 if (resp == NULL) 634 ERROUT(ENOMEM); 635 bcopy(stats, resp->data, sizeof(*stats)); 636 } 637 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS) 638 bzero(stats, sizeof(*stats)); 639 break; 640 } 641 default: 642 error = EINVAL; 643 break; 644 } 645 break; 646 case NGM_VJC_COOKIE: 647 { 648 /* 649 * Forward it to the vjc node. leave the 650 * old return address alone. 651 * If we have no hook, let NG_RESPOND_MSG 652 * clean up any remaining resources. 653 * Because we have no resp, the item will be freed 654 * along with anything it references. Don't 655 * let msg be freed twice. 656 */ 657 NGI_MSG(item) = msg; /* put it back in the item */ 658 msg = NULL; 659 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 660 NG_FWD_ITEM_HOOK(error, item, lasthook); 661 } 662 return (error); 663 } 664 default: 665 error = EINVAL; 666 break; 667 } 668 done: 669 NG_RESPOND_MSG(error, node, item, resp); 670 NG_FREE_MSG(msg); 671 return (error); 672 } 673 674 /* 675 * Destroy node 676 */ 677 static int 678 ng_ppp_shutdown(node_p node) 679 { 680 const priv_p priv = NG_NODE_PRIVATE(node); 681 682 /* Stop fragment queue timer */ 683 ng_ppp_stop_frag_timer(node); 684 685 /* Take down netgraph node */ 686 ng_ppp_frag_reset(node); 687 bzero(priv, sizeof(*priv)); 688 FREE(priv, M_NETGRAPH_PPP); 689 NG_NODE_SET_PRIVATE(node, NULL); 690 NG_NODE_UNREF(node); /* let the node escape */ 691 return (0); 692 } 693 694 /* 695 * Hook disconnection 696 */ 697 static int 698 ng_ppp_disconnect(hook_p hook) 699 { 700 const node_p node = NG_HOOK_NODE(hook); 701 const priv_p priv = NG_NODE_PRIVATE(node); 702 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 703 704 /* Zero out hook pointer */ 705 if (index < 0) 706 priv->links[~index].hook = NULL; 707 else 708 priv->hooks[index] = NULL; 709 710 /* Update derived info (or go away if no hooks left). */ 711 if (NG_NODE_NUMHOOKS(node) > 0) 712 ng_ppp_update(node, 0); 713 else if (NG_NODE_IS_VALID(node)) 714 ng_rmnode_self(node); 715 716 return (0); 717 } 718 719 /* 720 * Proto layer 721 */ 722 723 /* 724 * Receive data on a hook inet. 725 */ 726 static int 727 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 728 { 729 const node_p node = NG_HOOK_NODE(hook); 730 const priv_p priv = NG_NODE_PRIVATE(node); 731 732 if (!priv->conf.enableIP) { 733 NG_FREE_ITEM(item); 734 return (ENXIO); 735 } 736 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 737 } 738 739 /* 740 * Receive data on a hook ipv6. 741 */ 742 static int 743 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 744 { 745 const node_p node = NG_HOOK_NODE(hook); 746 const priv_p priv = NG_NODE_PRIVATE(node); 747 748 if (!priv->conf.enableIPv6) { 749 NG_FREE_ITEM(item); 750 return (ENXIO); 751 } 752 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 753 } 754 755 /* 756 * Receive data on a hook atalk. 757 */ 758 static int 759 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 760 { 761 const node_p node = NG_HOOK_NODE(hook); 762 const priv_p priv = NG_NODE_PRIVATE(node); 763 764 if (!priv->conf.enableAtalk) { 765 NG_FREE_ITEM(item); 766 return (ENXIO); 767 } 768 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 769 } 770 771 /* 772 * Receive data on a hook ipx 773 */ 774 static int 775 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 776 { 777 const node_p node = NG_HOOK_NODE(hook); 778 const priv_p priv = NG_NODE_PRIVATE(node); 779 780 if (!priv->conf.enableIPX) { 781 NG_FREE_ITEM(item); 782 return (ENXIO); 783 } 784 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 785 } 786 787 /* 788 * Receive data on a hook bypass 789 */ 790 static int 791 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 792 { 793 uint16_t linkNum; 794 uint16_t proto; 795 struct mbuf *m; 796 797 NGI_GET_M(item, m); 798 if (m->m_pkthdr.len < 4) { 799 NG_FREE_ITEM(item); 800 return (EINVAL); 801 } 802 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 803 NG_FREE_ITEM(item); 804 return (ENOBUFS); 805 } 806 linkNum = ntohs(mtod(m, uint16_t *)[0]); 807 proto = ntohs(mtod(m, uint16_t *)[1]); 808 m_adj(m, 4); 809 NGI_M(item) = m; 810 811 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 812 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 813 else 814 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 815 linkNum)); 816 } 817 818 static int 819 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 820 { 821 const priv_p priv = NG_NODE_PRIVATE(node); 822 uint16_t hdr[2]; 823 struct mbuf *m; 824 int error; 825 826 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 827 NG_FREE_ITEM(item); 828 return (ENXIO); 829 } 830 831 /* Add 4-byte bypass header. */ 832 hdr[0] = htons(linkNum); 833 hdr[1] = htons(proto); 834 835 NGI_GET_M(item, m); 836 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 837 NG_FREE_ITEM(item); 838 return (ENOBUFS); 839 } 840 NGI_M(item) = m; 841 842 /* Send packet out hook. */ 843 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 844 return (error); 845 } 846 847 static int 848 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 849 { 850 const priv_p priv = NG_NODE_PRIVATE(node); 851 hook_p outHook = NULL; 852 int error; 853 854 switch (proto) { 855 case PROT_IP: 856 if (priv->conf.enableIP) 857 outHook = priv->hooks[HOOK_INDEX_INET]; 858 break; 859 case PROT_IPV6: 860 if (priv->conf.enableIPv6) 861 outHook = priv->hooks[HOOK_INDEX_IPV6]; 862 break; 863 case PROT_ATALK: 864 if (priv->conf.enableAtalk) 865 outHook = priv->hooks[HOOK_INDEX_ATALK]; 866 break; 867 case PROT_IPX: 868 if (priv->conf.enableIPX) 869 outHook = priv->hooks[HOOK_INDEX_IPX]; 870 break; 871 } 872 873 if (outHook == NULL) 874 return (ng_ppp_bypass(node, item, proto, linkNum)); 875 876 /* Send packet out hook. */ 877 NG_FWD_ITEM_HOOK(error, item, outHook); 878 return (error); 879 } 880 881 /* 882 * Header compression layer 883 */ 884 885 static int 886 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 887 { 888 const priv_p priv = NG_NODE_PRIVATE(node); 889 890 if (proto == PROT_IP && 891 priv->conf.enableVJCompression && 892 priv->vjCompHooked) { 893 int error; 894 895 /* Send packet out hook. */ 896 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 897 return (error); 898 } 899 900 return (ng_ppp_comp_xmit(node, item, proto)); 901 } 902 903 /* 904 * Receive data on a hook vjc_comp. 905 */ 906 static int 907 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 908 { 909 const node_p node = NG_HOOK_NODE(hook); 910 const priv_p priv = NG_NODE_PRIVATE(node); 911 912 if (!priv->conf.enableVJCompression) { 913 NG_FREE_ITEM(item); 914 return (ENXIO); 915 } 916 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 917 } 918 919 /* 920 * Receive data on a hook vjc_uncomp. 921 */ 922 static int 923 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 924 { 925 const node_p node = NG_HOOK_NODE(hook); 926 const priv_p priv = NG_NODE_PRIVATE(node); 927 928 if (!priv->conf.enableVJCompression) { 929 NG_FREE_ITEM(item); 930 return (ENXIO); 931 } 932 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 933 } 934 935 /* 936 * Receive data on a hook vjc_vjip. 937 */ 938 static int 939 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 940 { 941 const node_p node = NG_HOOK_NODE(hook); 942 const priv_p priv = NG_NODE_PRIVATE(node); 943 944 if (!priv->conf.enableVJCompression) { 945 NG_FREE_ITEM(item); 946 return (ENXIO); 947 } 948 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 949 } 950 951 static int 952 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 953 { 954 const priv_p priv = NG_NODE_PRIVATE(node); 955 956 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 957 hook_p outHook = NULL; 958 959 switch (proto) { 960 case PROT_VJCOMP: 961 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 962 break; 963 case PROT_VJUNCOMP: 964 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 965 break; 966 } 967 968 if (outHook) { 969 int error; 970 971 /* Send packet out hook. */ 972 NG_FWD_ITEM_HOOK(error, item, outHook); 973 return (error); 974 } 975 } 976 977 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 978 } 979 980 /* 981 * Receive data on a hook vjc_ip. 982 */ 983 static int 984 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 985 { 986 const node_p node = NG_HOOK_NODE(hook); 987 const priv_p priv = NG_NODE_PRIVATE(node); 988 989 if (!priv->conf.enableVJCompression) { 990 NG_FREE_ITEM(item); 991 return (ENXIO); 992 } 993 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 994 } 995 996 /* 997 * Compression layer 998 */ 999 1000 static int 1001 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1002 { 1003 const priv_p priv = NG_NODE_PRIVATE(node); 1004 1005 if (priv->conf.enableCompression && 1006 proto < 0x4000 && 1007 proto != PROT_COMPD && 1008 proto != PROT_CRYPTD && 1009 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1010 struct mbuf *m; 1011 int error; 1012 1013 NGI_GET_M(item, m); 1014 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1015 NG_FREE_ITEM(item); 1016 return (ENOBUFS); 1017 } 1018 NGI_M(item) = m; 1019 1020 /* Send packet out hook. */ 1021 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1022 return (error); 1023 } 1024 1025 return (ng_ppp_crypt_xmit(node, item, proto)); 1026 } 1027 1028 /* 1029 * Receive data on a hook compress. 1030 */ 1031 static int 1032 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1033 { 1034 const node_p node = NG_HOOK_NODE(hook); 1035 const priv_p priv = NG_NODE_PRIVATE(node); 1036 uint16_t proto; 1037 1038 switch (priv->conf.enableCompression) { 1039 case NG_PPP_COMPRESS_NONE: 1040 NG_FREE_ITEM(item); 1041 return (ENXIO); 1042 case NG_PPP_COMPRESS_FULL: 1043 { 1044 struct mbuf *m; 1045 1046 NGI_GET_M(item, m); 1047 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1048 NG_FREE_ITEM(item); 1049 return (EIO); 1050 } 1051 NGI_M(item) = m; 1052 if (!PROT_VALID(proto)) { 1053 NG_FREE_ITEM(item); 1054 return (EIO); 1055 } 1056 } 1057 break; 1058 default: 1059 proto = PROT_COMPD; 1060 break; 1061 } 1062 return (ng_ppp_crypt_xmit(node, item, proto)); 1063 } 1064 1065 static int 1066 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1067 { 1068 const priv_p priv = NG_NODE_PRIVATE(node); 1069 1070 if (proto < 0x4000 && 1071 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1072 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1073 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1074 int error; 1075 1076 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1077 struct mbuf *m; 1078 NGI_GET_M(item, m); 1079 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1080 NG_FREE_ITEM(item); 1081 return (EIO); 1082 } 1083 NGI_M(item) = m; 1084 } 1085 1086 /* Send packet out hook. */ 1087 NG_FWD_ITEM_HOOK(error, item, 1088 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1089 return (error); 1090 } else if (proto == PROT_COMPD) { 1091 /* Disabled protos MUST be silently discarded, but 1092 * unsupported MUST not. Let user-level decide this. */ 1093 return (ng_ppp_bypass(node, item, proto, linkNum)); 1094 } 1095 1096 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1097 } 1098 1099 /* 1100 * Receive data on a hook decompress. 1101 */ 1102 static int 1103 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1104 { 1105 const node_p node = NG_HOOK_NODE(hook); 1106 const priv_p priv = NG_NODE_PRIVATE(node); 1107 uint16_t proto; 1108 struct mbuf *m; 1109 1110 if (!priv->conf.enableDecompression) { 1111 NG_FREE_ITEM(item); 1112 return (ENXIO); 1113 } 1114 NGI_GET_M(item, m); 1115 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1116 NG_FREE_ITEM(item); 1117 return (EIO); 1118 } 1119 NGI_M(item) = m; 1120 if (!PROT_VALID(proto)) { 1121 priv->bundleStats.badProtos++; 1122 NG_FREE_ITEM(item); 1123 return (EIO); 1124 } 1125 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1126 } 1127 1128 /* 1129 * Encryption layer 1130 */ 1131 1132 static int 1133 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1134 { 1135 const priv_p priv = NG_NODE_PRIVATE(node); 1136 1137 if (priv->conf.enableEncryption && 1138 proto < 0x4000 && 1139 proto != PROT_CRYPTD && 1140 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1141 struct mbuf *m; 1142 int error; 1143 1144 NGI_GET_M(item, m); 1145 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1146 NG_FREE_ITEM(item); 1147 return (ENOBUFS); 1148 } 1149 NGI_M(item) = m; 1150 1151 /* Send packet out hook. */ 1152 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1153 return (error); 1154 } 1155 1156 return (ng_ppp_mp_xmit(node, item, proto)); 1157 } 1158 1159 /* 1160 * Receive data on a hook encrypt. 1161 */ 1162 static int 1163 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1164 { 1165 const node_p node = NG_HOOK_NODE(hook); 1166 const priv_p priv = NG_NODE_PRIVATE(node); 1167 1168 if (!priv->conf.enableEncryption) { 1169 NG_FREE_ITEM(item); 1170 return (ENXIO); 1171 } 1172 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1173 } 1174 1175 static int 1176 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1177 { 1178 const priv_p priv = NG_NODE_PRIVATE(node); 1179 1180 /* Stats */ 1181 priv->bundleStats.recvFrames++; 1182 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1183 1184 if (proto == PROT_CRYPTD) { 1185 if (priv->conf.enableDecryption && 1186 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1187 int error; 1188 1189 /* Send packet out hook. */ 1190 NG_FWD_ITEM_HOOK(error, item, 1191 priv->hooks[HOOK_INDEX_DECRYPT]); 1192 return (error); 1193 } else { 1194 /* Disabled protos MUST be silently discarded, but 1195 * unsupported MUST not. Let user-level decide this. */ 1196 return (ng_ppp_bypass(node, item, proto, linkNum)); 1197 } 1198 } 1199 1200 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1201 } 1202 1203 /* 1204 * Receive data on a hook decrypt. 1205 */ 1206 static int 1207 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1208 { 1209 const node_p node = NG_HOOK_NODE(hook); 1210 const priv_p priv = NG_NODE_PRIVATE(node); 1211 uint16_t proto; 1212 struct mbuf *m; 1213 1214 if (!priv->conf.enableDecryption) { 1215 NG_FREE_ITEM(item); 1216 return (ENXIO); 1217 } 1218 NGI_GET_M(item, m); 1219 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1220 NG_FREE_ITEM(item); 1221 return (EIO); 1222 } 1223 NGI_M(item) = m; 1224 if (!PROT_VALID(proto)) { 1225 priv->bundleStats.badProtos++; 1226 NG_FREE_ITEM(item); 1227 return (EIO); 1228 } 1229 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1230 } 1231 1232 /* 1233 * Link layer 1234 */ 1235 1236 static int 1237 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1238 { 1239 const priv_p priv = NG_NODE_PRIVATE(node); 1240 struct ng_ppp_link *link; 1241 int len, error; 1242 struct mbuf *m; 1243 uint16_t mru; 1244 1245 /* Check if link correct. */ 1246 if (linkNum >= NG_PPP_MAX_LINKS) { 1247 NG_FREE_ITEM(item); 1248 return (ENETDOWN); 1249 } 1250 1251 /* Get link pointer (optimization). */ 1252 link = &priv->links[linkNum]; 1253 1254 /* Check link status (if real). */ 1255 if (link->hook == NULL) { 1256 NG_FREE_ITEM(item); 1257 return (ENETDOWN); 1258 } 1259 1260 /* Extract mbuf. */ 1261 NGI_GET_M(item, m); 1262 1263 /* Check peer's MRU for this link. */ 1264 mru = link->conf.mru; 1265 if (mru != 0 && m->m_pkthdr.len > mru) { 1266 NG_FREE_M(m); 1267 NG_FREE_ITEM(item); 1268 return (EMSGSIZE); 1269 } 1270 1271 /* Prepend protocol number, possibly compressed. */ 1272 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1273 NULL) { 1274 NG_FREE_ITEM(item); 1275 return (ENOBUFS); 1276 } 1277 1278 /* Prepend address and control field (unless compressed). */ 1279 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1280 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) { 1281 NG_FREE_ITEM(item); 1282 return (ENOBUFS); 1283 } 1284 } 1285 1286 /* Deliver frame. */ 1287 len = m->m_pkthdr.len; 1288 NG_FWD_NEW_DATA(error, item, link->hook, m); 1289 1290 /* Update stats and 'bytes in queue' counter. */ 1291 if (error == 0) { 1292 link->stats.xmitFrames++; 1293 link->stats.xmitOctets += len; 1294 1295 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1296 if (priv->conf.enableMultilink && !priv->allLinksEqual) { 1297 /* If queue was empty, then mark this time. */ 1298 if (link->bytesInQueue == 0) 1299 getmicrouptime(&link->lastWrite); 1300 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1301 /* Limit max queue length to 50 pkts. BW can be defined 1302 incorrectly and link may not signal overload. */ 1303 if (link->bytesInQueue > 50 * 1600) 1304 link->bytesInQueue = 50 * 1600; 1305 } 1306 } 1307 return (error); 1308 } 1309 1310 /* 1311 * Receive data on a hook linkX. 1312 */ 1313 static int 1314 ng_ppp_rcvdata(hook_p hook, item_p item) 1315 { 1316 const node_p node = NG_HOOK_NODE(hook); 1317 const priv_p priv = NG_NODE_PRIVATE(node); 1318 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1319 const uint16_t linkNum = (uint16_t)~index; 1320 struct ng_ppp_link * const link = &priv->links[linkNum]; 1321 uint16_t proto; 1322 struct mbuf *m; 1323 1324 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1325 ("%s: bogus index 0x%x", __func__, index)); 1326 1327 NGI_GET_M(item, m); 1328 1329 /* Stats */ 1330 link->stats.recvFrames++; 1331 link->stats.recvOctets += m->m_pkthdr.len; 1332 1333 /* Strip address and control fields, if present. */ 1334 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) { 1335 NG_FREE_ITEM(item); 1336 return (ENOBUFS); 1337 } 1338 if (bcmp(mtod(m, uint8_t *), &ng_ppp_acf, 2) == 0) 1339 m_adj(m, 2); 1340 1341 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1342 NG_FREE_ITEM(item); 1343 return (ENOBUFS); 1344 } 1345 NGI_M(item) = m; /* Put changed m back into item. */ 1346 1347 if (!PROT_VALID(proto)) { 1348 link->stats.badProtos++; 1349 NG_FREE_ITEM(item); 1350 return (EIO); 1351 } 1352 1353 /* LCP packets must go directly to bypass. */ 1354 if (proto >= 0xB000) 1355 return (ng_ppp_bypass(node, item, proto, linkNum)); 1356 1357 if (!link->conf.enableLink) { 1358 /* Non-LCP packets are denied on a disabled link. */ 1359 NG_FREE_ITEM(item); 1360 return (ENXIO); 1361 } 1362 1363 return (ng_ppp_mp_recv(node, item, proto, linkNum)); 1364 } 1365 1366 /* 1367 * Multilink layer 1368 */ 1369 1370 /* 1371 * Handle an incoming multi-link fragment 1372 * 1373 * The fragment reassembly algorithm is somewhat complex. This is mainly 1374 * because we are required not to reorder the reconstructed packets, yet 1375 * fragments are only guaranteed to arrive in order on a per-link basis. 1376 * In other words, when we have a complete packet ready, but the previous 1377 * packet is still incomplete, we have to decide between delivering the 1378 * complete packet and throwing away the incomplete one, or waiting to 1379 * see if the remainder of the incomplete one arrives, at which time we 1380 * can deliver both packets, in order. 1381 * 1382 * This problem is exacerbated by "sequence number slew", which is when 1383 * the sequence numbers coming in from different links are far apart from 1384 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1385 * has been seen to generate sequence number slew of up to 10 on an ISDN 1386 * 2B-channel MP link. There is nothing invalid about sequence number slew 1387 * but it makes the reasssembly process have to work harder. 1388 * 1389 * However, the peer is required to transmit fragments in order on each 1390 * link. That means if we define MSEQ as the minimum over all links of 1391 * the highest sequence number received on that link, then we can always 1392 * give up any hope of receiving a fragment with sequence number < MSEQ in 1393 * the future (all of this using 'wraparound' sequence number space). 1394 * Therefore we can always immediately throw away incomplete packets 1395 * missing fragments with sequence numbers < MSEQ. 1396 * 1397 * Here is an overview of our algorithm: 1398 * 1399 * o Received fragments are inserted into a queue, for which we 1400 * maintain these invariants between calls to this function: 1401 * 1402 * - Fragments are ordered in the queue by sequence number 1403 * - If a complete packet is at the head of the queue, then 1404 * the first fragment in the packet has seq# > MSEQ + 1 1405 * (otherwise, we could deliver it immediately) 1406 * - If any fragments have seq# < MSEQ, then they are necessarily 1407 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1408 * we can throw them away because they'll never be completed) 1409 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1410 * 1411 * o We have a periodic timer that checks the queue for the first 1412 * complete packet that has been sitting in the queue "too long". 1413 * When one is detected, all previous (incomplete) fragments are 1414 * discarded, their missing fragments are declared lost and MSEQ 1415 * is increased. 1416 * 1417 * o If we recieve a fragment with seq# < MSEQ, we throw it away 1418 * because we've already delcared it lost. 1419 * 1420 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1421 */ 1422 static int 1423 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1424 { 1425 const priv_p priv = NG_NODE_PRIVATE(node); 1426 struct ng_ppp_link *const link = &priv->links[linkNum]; 1427 struct ng_ppp_frag frag0, *frag = &frag0; 1428 struct ng_ppp_frag *qent; 1429 int i, diff, inserted; 1430 struct mbuf *m; 1431 1432 if ((!priv->conf.enableMultilink) || proto != PROT_MP) 1433 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1434 1435 NGI_GET_M(item, m); 1436 NG_FREE_ITEM(item); 1437 1438 /* Extract fragment information from MP header */ 1439 if (priv->conf.recvShortSeq) { 1440 uint16_t shdr; 1441 1442 if (m->m_pkthdr.len < 2) { 1443 link->stats.runts++; 1444 NG_FREE_M(m); 1445 return (EINVAL); 1446 } 1447 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1448 return (ENOBUFS); 1449 1450 shdr = ntohs(*mtod(m, uint16_t *)); 1451 frag->seq = MP_SHORT_EXTEND(shdr); 1452 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1453 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1454 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1455 m_adj(m, 2); 1456 } else { 1457 uint32_t lhdr; 1458 1459 if (m->m_pkthdr.len < 4) { 1460 link->stats.runts++; 1461 NG_FREE_M(m); 1462 return (EINVAL); 1463 } 1464 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1465 return (ENOBUFS); 1466 1467 lhdr = ntohl(*mtod(m, uint32_t *)); 1468 frag->seq = MP_LONG_EXTEND(lhdr); 1469 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1470 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1471 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1472 m_adj(m, 4); 1473 } 1474 frag->data = m; 1475 getmicrouptime(&frag->timestamp); 1476 1477 /* If sequence number is < MSEQ, we've already declared this 1478 fragment as lost, so we have no choice now but to drop it */ 1479 if (diff < 0) { 1480 link->stats.dropFragments++; 1481 NG_FREE_M(m); 1482 return (0); 1483 } 1484 1485 /* Update highest received sequence number on this link and MSEQ */ 1486 priv->mseq = link->seq = frag->seq; 1487 for (i = 0; i < priv->numActiveLinks; i++) { 1488 struct ng_ppp_link *const alink = 1489 &priv->links[priv->activeLinks[i]]; 1490 1491 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1492 priv->mseq = alink->seq; 1493 } 1494 1495 /* Allocate a new frag struct for the queue */ 1496 MALLOC(frag, struct ng_ppp_frag *, sizeof(*frag), M_NETGRAPH_PPP, M_NOWAIT); 1497 if (frag == NULL) { 1498 NG_FREE_M(m); 1499 ng_ppp_frag_process(node); 1500 return (ENOMEM); 1501 } 1502 *frag = frag0; 1503 1504 /* Add fragment to queue, which is sorted by sequence number */ 1505 inserted = 0; 1506 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1507 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1508 if (diff > 0) { 1509 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1510 inserted = 1; 1511 break; 1512 } else if (diff == 0) { /* should never happen! */ 1513 link->stats.dupFragments++; 1514 NG_FREE_M(frag->data); 1515 FREE(frag, M_NETGRAPH_PPP); 1516 return (EINVAL); 1517 } 1518 } 1519 if (!inserted) 1520 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1521 priv->qlen++; 1522 1523 /* Process the queue */ 1524 return ng_ppp_frag_process(node); 1525 } 1526 1527 /************************************************************************ 1528 HELPER STUFF 1529 ************************************************************************/ 1530 1531 /* 1532 * If new mseq > current then set it and update all active links 1533 */ 1534 static void 1535 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1536 { 1537 const priv_p priv = NG_NODE_PRIVATE(node); 1538 int i; 1539 1540 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1541 priv->mseq = new_mseq; 1542 for (i = 0; i < priv->numActiveLinks; i++) { 1543 struct ng_ppp_link *const alink = 1544 &priv->links[priv->activeLinks[i]]; 1545 1546 if (MP_RECV_SEQ_DIFF(priv, 1547 alink->seq, new_mseq) < 0) 1548 alink->seq = new_mseq; 1549 } 1550 } 1551 } 1552 1553 /* 1554 * Examine our list of fragments, and determine if there is a 1555 * complete and deliverable packet at the head of the list. 1556 * Return 1 if so, zero otherwise. 1557 */ 1558 static int 1559 ng_ppp_check_packet(node_p node) 1560 { 1561 const priv_p priv = NG_NODE_PRIVATE(node); 1562 struct ng_ppp_frag *qent, *qnext; 1563 1564 /* Check for empty queue */ 1565 if (TAILQ_EMPTY(&priv->frags)) 1566 return (0); 1567 1568 /* Check first fragment is the start of a deliverable packet */ 1569 qent = TAILQ_FIRST(&priv->frags); 1570 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1571 return (0); 1572 1573 /* Check that all the fragments are there */ 1574 while (!qent->last) { 1575 qnext = TAILQ_NEXT(qent, f_qent); 1576 if (qnext == NULL) /* end of queue */ 1577 return (0); 1578 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1579 return (0); 1580 qent = qnext; 1581 } 1582 1583 /* Got one */ 1584 return (1); 1585 } 1586 1587 /* 1588 * Pull a completed packet off the head of the incoming fragment queue. 1589 * This assumes there is a completed packet there to pull off. 1590 */ 1591 static void 1592 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1593 { 1594 const priv_p priv = NG_NODE_PRIVATE(node); 1595 struct ng_ppp_frag *qent, *qnext; 1596 struct mbuf *m = NULL, *tail; 1597 1598 qent = TAILQ_FIRST(&priv->frags); 1599 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1600 ("%s: no packet", __func__)); 1601 for (tail = NULL; qent != NULL; qent = qnext) { 1602 qnext = TAILQ_NEXT(qent, f_qent); 1603 KASSERT(!TAILQ_EMPTY(&priv->frags), 1604 ("%s: empty q", __func__)); 1605 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1606 if (tail == NULL) 1607 tail = m = qent->data; 1608 else { 1609 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1610 tail->m_next = qent->data; 1611 } 1612 while (tail->m_next != NULL) 1613 tail = tail->m_next; 1614 if (qent->last) { 1615 qnext = NULL; 1616 /* Bump MSEQ if necessary */ 1617 ng_ppp_bump_mseq(node, qent->seq); 1618 } 1619 FREE(qent, M_NETGRAPH_PPP); 1620 priv->qlen--; 1621 } 1622 *mp = m; 1623 } 1624 1625 /* 1626 * Trim fragments from the queue whose packets can never be completed. 1627 * This assumes a complete packet is NOT at the beginning of the queue. 1628 * Returns 1 if fragments were removed, zero otherwise. 1629 */ 1630 static int 1631 ng_ppp_frag_trim(node_p node) 1632 { 1633 const priv_p priv = NG_NODE_PRIVATE(node); 1634 struct ng_ppp_frag *qent, *qnext = NULL; 1635 int removed = 0; 1636 1637 /* Scan for "dead" fragments and remove them */ 1638 while (1) { 1639 int dead = 0; 1640 1641 /* If queue is empty, we're done */ 1642 if (TAILQ_EMPTY(&priv->frags)) 1643 break; 1644 1645 /* Determine whether first fragment can ever be completed */ 1646 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1647 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1648 break; 1649 qnext = TAILQ_NEXT(qent, f_qent); 1650 KASSERT(qnext != NULL, 1651 ("%s: last frag < MSEQ?", __func__)); 1652 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1653 || qent->last || qnext->first) { 1654 dead = 1; 1655 break; 1656 } 1657 } 1658 if (!dead) 1659 break; 1660 1661 /* Remove fragment and all others in the same packet */ 1662 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1663 KASSERT(!TAILQ_EMPTY(&priv->frags), 1664 ("%s: empty q", __func__)); 1665 priv->bundleStats.dropFragments++; 1666 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1667 NG_FREE_M(qent->data); 1668 FREE(qent, M_NETGRAPH_PPP); 1669 priv->qlen--; 1670 removed = 1; 1671 } 1672 } 1673 return (removed); 1674 } 1675 1676 /* 1677 * Drop fragments on queue overflow. 1678 * Returns 1 if fragments were removed, zero otherwise. 1679 */ 1680 static int 1681 ng_ppp_frag_drop(node_p node) 1682 { 1683 const priv_p priv = NG_NODE_PRIVATE(node); 1684 1685 /* Check queue length */ 1686 if (priv->qlen > MP_MAX_QUEUE_LEN) { 1687 struct ng_ppp_frag *qent; 1688 1689 /* Get oldest fragment */ 1690 KASSERT(!TAILQ_EMPTY(&priv->frags), 1691 ("%s: empty q", __func__)); 1692 qent = TAILQ_FIRST(&priv->frags); 1693 1694 /* Bump MSEQ if necessary */ 1695 ng_ppp_bump_mseq(node, qent->seq); 1696 1697 /* Drop it */ 1698 priv->bundleStats.dropFragments++; 1699 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1700 NG_FREE_M(qent->data); 1701 FREE(qent, M_NETGRAPH_PPP); 1702 priv->qlen--; 1703 1704 return (1); 1705 } 1706 return (0); 1707 } 1708 1709 /* 1710 * Run the queue, restoring the queue invariants 1711 */ 1712 static int 1713 ng_ppp_frag_process(node_p node) 1714 { 1715 const priv_p priv = NG_NODE_PRIVATE(node); 1716 struct mbuf *m; 1717 item_p item; 1718 uint16_t proto; 1719 1720 do { 1721 /* Deliver any deliverable packets */ 1722 while (ng_ppp_check_packet(node)) { 1723 ng_ppp_get_packet(node, &m); 1724 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1725 continue; 1726 if (!PROT_VALID(proto)) { 1727 priv->bundleStats.badProtos++; 1728 NG_FREE_M(m); 1729 continue; 1730 } 1731 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) 1732 ng_ppp_crypt_recv(node, item, proto, 1733 NG_PPP_BUNDLE_LINKNUM); 1734 } 1735 /* Delete dead fragments and try again */ 1736 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1737 1738 /* Done */ 1739 return (0); 1740 } 1741 1742 /* 1743 * Check for 'stale' completed packets that need to be delivered 1744 * 1745 * If a link goes down or has a temporary failure, MSEQ can get 1746 * "stuck", because no new incoming fragments appear on that link. 1747 * This can cause completed packets to never get delivered if 1748 * their sequence numbers are all > MSEQ + 1. 1749 * 1750 * This routine checks how long all of the completed packets have 1751 * been sitting in the queue, and if too long, removes fragments 1752 * from the queue and increments MSEQ to allow them to be delivered. 1753 */ 1754 static void 1755 ng_ppp_frag_checkstale(node_p node) 1756 { 1757 const priv_p priv = NG_NODE_PRIVATE(node); 1758 struct ng_ppp_frag *qent, *beg, *end; 1759 struct timeval now, age; 1760 struct mbuf *m; 1761 int seq; 1762 item_p item; 1763 int endseq; 1764 uint16_t proto; 1765 1766 now.tv_sec = 0; /* uninitialized state */ 1767 while (1) { 1768 1769 /* If queue is empty, we're done */ 1770 if (TAILQ_EMPTY(&priv->frags)) 1771 break; 1772 1773 /* Find the first complete packet in the queue */ 1774 beg = end = NULL; 1775 seq = TAILQ_FIRST(&priv->frags)->seq; 1776 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1777 if (qent->first) 1778 beg = qent; 1779 else if (qent->seq != seq) 1780 beg = NULL; 1781 if (beg != NULL && qent->last) { 1782 end = qent; 1783 break; 1784 } 1785 seq = MP_NEXT_RECV_SEQ(priv, seq); 1786 } 1787 1788 /* If none found, exit */ 1789 if (end == NULL) 1790 break; 1791 1792 /* Get current time (we assume we've been up for >= 1 second) */ 1793 if (now.tv_sec == 0) 1794 getmicrouptime(&now); 1795 1796 /* Check if packet has been queued too long */ 1797 age = now; 1798 timevalsub(&age, &beg->timestamp); 1799 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1800 break; 1801 1802 /* Throw away junk fragments in front of the completed packet */ 1803 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1804 KASSERT(!TAILQ_EMPTY(&priv->frags), 1805 ("%s: empty q", __func__)); 1806 priv->bundleStats.dropFragments++; 1807 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1808 NG_FREE_M(qent->data); 1809 FREE(qent, M_NETGRAPH_PPP); 1810 priv->qlen--; 1811 } 1812 1813 /* Extract completed packet */ 1814 endseq = end->seq; 1815 ng_ppp_get_packet(node, &m); 1816 1817 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1818 continue; 1819 if (!PROT_VALID(proto)) { 1820 priv->bundleStats.badProtos++; 1821 NG_FREE_M(m); 1822 continue; 1823 } 1824 1825 /* Deliver packet */ 1826 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) 1827 ng_ppp_crypt_recv(node, item, proto, 1828 NG_PPP_BUNDLE_LINKNUM); 1829 } 1830 } 1831 1832 /* 1833 * Periodically call ng_ppp_frag_checkstale() 1834 */ 1835 static void 1836 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1837 { 1838 /* XXX: is this needed? */ 1839 if (NG_NODE_NOT_VALID(node)) 1840 return; 1841 1842 /* Scan the fragment queue */ 1843 ng_ppp_frag_checkstale(node); 1844 1845 /* Start timer again */ 1846 ng_ppp_start_frag_timer(node); 1847 } 1848 1849 /* 1850 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1851 * the frame across the individual PPP links and do so. 1852 */ 1853 static int 1854 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1855 { 1856 const priv_p priv = NG_NODE_PRIVATE(node); 1857 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1858 int distrib[NG_PPP_MAX_LINKS]; 1859 int firstFragment; 1860 int activeLinkNum; 1861 struct mbuf *m; 1862 1863 /* At least one link must be active */ 1864 if (priv->numActiveLinks == 0) { 1865 NG_FREE_ITEM(item); 1866 return (ENETDOWN); 1867 } 1868 1869 /* Update stats. */ 1870 priv->bundleStats.xmitFrames++; 1871 priv->bundleStats.xmitOctets += NGI_M(item)->m_pkthdr.len; 1872 1873 if (!priv->conf.enableMultilink) 1874 return (ng_ppp_link_xmit(node, item, proto, 1875 priv->activeLinks[0])); 1876 1877 /* Extract mbuf. */ 1878 NGI_GET_M(item, m); 1879 NG_FREE_ITEM(item); 1880 1881 /* Prepend protocol number, possibly compressed. */ 1882 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) 1883 return (ENOBUFS); 1884 1885 /* Clear distribution plan */ 1886 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 1887 1888 /* Round-robin strategy */ 1889 if (priv->conf.enableRoundRobin) { 1890 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 1891 distrib[activeLinkNum] = m->m_pkthdr.len; 1892 goto deliver; 1893 } 1894 1895 /* Strategy when all links are equivalent (optimize the common case) */ 1896 if (priv->allLinksEqual) { 1897 int numFrags, fraction, remain; 1898 int i; 1899 1900 /* Calculate optimal fragment count */ 1901 numFrags = priv->numActiveLinks; 1902 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 1903 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 1904 if (numFrags == 0) 1905 numFrags = 1; 1906 1907 fraction = m->m_pkthdr.len / numFrags; 1908 remain = m->m_pkthdr.len - (fraction * numFrags); 1909 1910 /* Assign distribution */ 1911 for (i = 0; i < numFrags; i++) { 1912 distrib[priv->lastLink++ % priv->numActiveLinks] 1913 = fraction + (((remain--) > 0)?1:0); 1914 } 1915 goto deliver; 1916 } 1917 1918 /* Strategy when all links are not equivalent */ 1919 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 1920 1921 deliver: 1922 /* Send alloted portions of frame out on the link(s) */ 1923 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 1924 activeLinkNum >= 0; activeLinkNum--) { 1925 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 1926 struct ng_ppp_link *const link = &priv->links[linkNum]; 1927 1928 /* Deliver fragment(s) out the next link */ 1929 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 1930 int len, lastFragment, error; 1931 struct mbuf *m2; 1932 1933 /* Calculate fragment length; don't exceed link MTU */ 1934 len = distrib[activeLinkNum]; 1935 if (len > link->conf.mru - hdr_len) 1936 len = link->conf.mru - hdr_len; 1937 distrib[activeLinkNum] -= len; 1938 lastFragment = (len == m->m_pkthdr.len); 1939 1940 /* Split off next fragment as "m2" */ 1941 m2 = m; 1942 if (!lastFragment) { 1943 struct mbuf *n = m_split(m, len, M_DONTWAIT); 1944 1945 if (n == NULL) { 1946 NG_FREE_M(m); 1947 return (ENOMEM); 1948 } 1949 m_tag_copy_chain(n, m, M_DONTWAIT); 1950 m = n; 1951 } 1952 1953 /* Prepend MP header */ 1954 if (priv->conf.xmitShortSeq) { 1955 uint16_t shdr; 1956 1957 shdr = priv->xseq; 1958 priv->xseq = 1959 (priv->xseq + 1) & MP_SHORT_SEQ_MASK; 1960 if (firstFragment) 1961 shdr |= MP_SHORT_FIRST_FLAG; 1962 if (lastFragment) 1963 shdr |= MP_SHORT_LAST_FLAG; 1964 shdr = htons(shdr); 1965 m2 = ng_ppp_prepend(m2, &shdr, 2); 1966 } else { 1967 uint32_t lhdr; 1968 1969 lhdr = priv->xseq; 1970 priv->xseq = 1971 (priv->xseq + 1) & MP_LONG_SEQ_MASK; 1972 if (firstFragment) 1973 lhdr |= MP_LONG_FIRST_FLAG; 1974 if (lastFragment) 1975 lhdr |= MP_LONG_LAST_FLAG; 1976 lhdr = htonl(lhdr); 1977 m2 = ng_ppp_prepend(m2, &lhdr, 4); 1978 } 1979 if (m2 == NULL) { 1980 if (!lastFragment) 1981 m_freem(m); 1982 return (ENOBUFS); 1983 } 1984 1985 /* Send fragment */ 1986 if ((item = ng_package_data(m2, NG_NOFLAGS)) != NULL) { 1987 error = ng_ppp_link_xmit(node, item, PROT_MP, 1988 linkNum); 1989 if (error != 0) { 1990 if (!lastFragment) 1991 NG_FREE_M(m); 1992 return (error); 1993 } 1994 } 1995 } 1996 } 1997 1998 /* Done */ 1999 return (0); 2000 } 2001 2002 /* 2003 * Computing the optimal fragmentation 2004 * ----------------------------------- 2005 * 2006 * This routine tries to compute the optimal fragmentation pattern based 2007 * on each link's latency, bandwidth, and calculated additional latency. 2008 * The latter quantity is the additional latency caused by previously 2009 * written data that has not been transmitted yet. 2010 * 2011 * This algorithm is only useful when not all of the links have the 2012 * same latency and bandwidth values. 2013 * 2014 * The essential idea is to make the last bit of each fragment of the 2015 * frame arrive at the opposite end at the exact same time. This greedy 2016 * algorithm is optimal, in that no other scheduling could result in any 2017 * packet arriving any sooner unless packets are delivered out of order. 2018 * 2019 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2020 * latency l_i (in miliseconds). Consider the function function f_i(t) 2021 * which is equal to the number of bytes that will have arrived at 2022 * the peer after t miliseconds if we start writing continuously at 2023 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2024 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2025 * Note that the y-intersect is always <= zero because latency can't be 2026 * negative. Note also that really the function is f_i(t) except when 2027 * f_i(t) is negative, in which case the function is zero. To take 2028 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2029 * So the actual number of bytes that will have arrived at the peer after 2030 * t miliseconds is f_i(t) * Q_i(t). 2031 * 2032 * At any given time, each link has some additional latency a_i >= 0 2033 * due to previously written fragment(s) which are still in the queue. 2034 * This value is easily computed from the time since last transmission, 2035 * the previous latency value, the number of bytes written, and the 2036 * link's bandwidth. 2037 * 2038 * Assume that l_i includes any a_i already, and that the links are 2039 * sorted by latency, so that l_i <= l_{i+1}. 2040 * 2041 * Let N be the total number of bytes in the current frame we are sending. 2042 * 2043 * Suppose we were to start writing bytes at time t = 0 on all links 2044 * simultaneously, which is the most we can possibly do. Then let 2045 * F(t) be equal to the total number of bytes received by the peer 2046 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2047 * 2048 * Our goal is simply this: fragment the frame across the links such 2049 * that the peer is able to reconstruct the completed frame as soon as 2050 * possible, i.e., at the least possible value of t. Call this value t_0. 2051 * 2052 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2053 * of t_0, and then deduce how many bytes to write to each link. 2054 * 2055 * Rewriting F(t_0): 2056 * 2057 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2058 * 2059 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2060 * lie in one of these ranges. To find it, we just need to find the i such 2061 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2062 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2063 * 2064 * Once t_0 is known, then the number of bytes to send on link i is 2065 * just f_i(t_0) * Q_i(t_0). 2066 * 2067 * In other words, we start allocating bytes to the links one at a time. 2068 * We keep adding links until the frame is completely sent. Some links 2069 * may not get any bytes because their latency is too high. 2070 * 2071 * Is all this work really worth the trouble? Depends on the situation. 2072 * The bigger the ratio of computer speed to link speed, and the more 2073 * important total bundle latency is (e.g., for interactive response time), 2074 * the more it's worth it. There is however the cost of calling this 2075 * function for every frame. The running time is O(n^2) where n is the 2076 * number of links that receive a non-zero number of bytes. 2077 * 2078 * Since latency is measured in miliseconds, the "resolution" of this 2079 * algorithm is one milisecond. 2080 * 2081 * To avoid this algorithm altogether, configure all links to have the 2082 * same latency and bandwidth. 2083 */ 2084 static void 2085 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2086 { 2087 const priv_p priv = NG_NODE_PRIVATE(node); 2088 int latency[NG_PPP_MAX_LINKS]; 2089 int sortByLatency[NG_PPP_MAX_LINKS]; 2090 int activeLinkNum; 2091 int t0, total, topSum, botSum; 2092 struct timeval now; 2093 int i, numFragments; 2094 2095 /* If only one link, this gets real easy */ 2096 if (priv->numActiveLinks == 1) { 2097 distrib[0] = len; 2098 return; 2099 } 2100 2101 /* Get current time */ 2102 getmicrouptime(&now); 2103 2104 /* Compute latencies for each link at this point in time */ 2105 for (activeLinkNum = 0; 2106 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2107 struct ng_ppp_link *alink; 2108 struct timeval diff; 2109 int xmitBytes; 2110 2111 /* Start with base latency value */ 2112 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2113 latency[activeLinkNum] = alink->latency; 2114 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2115 2116 /* Any additional latency? */ 2117 if (alink->bytesInQueue == 0) 2118 continue; 2119 2120 /* Compute time delta since last write */ 2121 diff = now; 2122 timevalsub(&diff, &alink->lastWrite); 2123 2124 /* alink->bytesInQueue will be changed, mark change time. */ 2125 alink->lastWrite = now; 2126 2127 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2128 alink->bytesInQueue = 0; 2129 continue; 2130 } 2131 2132 /* How many bytes could have transmitted since last write? */ 2133 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2134 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2135 alink->bytesInQueue -= xmitBytes; 2136 if (alink->bytesInQueue < 0) 2137 alink->bytesInQueue = 0; 2138 else 2139 latency[activeLinkNum] += 2140 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2141 } 2142 2143 /* Sort active links by latency */ 2144 qsort_r(sortByLatency, 2145 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2146 2147 /* Find the interval we need (add links in sortByLatency[] order) */ 2148 for (numFragments = 1; 2149 numFragments < priv->numActiveLinks; numFragments++) { 2150 for (total = i = 0; i < numFragments; i++) { 2151 int flowTime; 2152 2153 flowTime = latency[sortByLatency[numFragments]] 2154 - latency[sortByLatency[i]]; 2155 total += ((flowTime * priv->links[ 2156 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2157 + 99) / 100; 2158 } 2159 if (total >= len) 2160 break; 2161 } 2162 2163 /* Solve for t_0 in that interval */ 2164 for (topSum = botSum = i = 0; i < numFragments; i++) { 2165 int bw = priv->links[ 2166 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2167 2168 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2169 botSum += bw; /* / 100 */ 2170 } 2171 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2172 2173 /* Compute f_i(t_0) all i */ 2174 for (total = i = 0; i < numFragments; i++) { 2175 int bw = priv->links[ 2176 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2177 2178 distrib[sortByLatency[i]] = 2179 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2180 total += distrib[sortByLatency[i]]; 2181 } 2182 2183 /* Deal with any rounding error */ 2184 if (total < len) { 2185 struct ng_ppp_link *fastLink = 2186 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2187 int fast = 0; 2188 2189 /* Find the fastest link */ 2190 for (i = 1; i < numFragments; i++) { 2191 struct ng_ppp_link *const link = 2192 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2193 2194 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2195 fast = i; 2196 fastLink = link; 2197 } 2198 } 2199 distrib[sortByLatency[fast]] += len - total; 2200 } else while (total > len) { 2201 struct ng_ppp_link *slowLink = 2202 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2203 int delta, slow = 0; 2204 2205 /* Find the slowest link that still has bytes to remove */ 2206 for (i = 1; i < numFragments; i++) { 2207 struct ng_ppp_link *const link = 2208 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2209 2210 if (distrib[sortByLatency[slow]] == 0 2211 || (distrib[sortByLatency[i]] > 0 2212 && link->conf.bandwidth < 2213 slowLink->conf.bandwidth)) { 2214 slow = i; 2215 slowLink = link; 2216 } 2217 } 2218 delta = total - len; 2219 if (delta > distrib[sortByLatency[slow]]) 2220 delta = distrib[sortByLatency[slow]]; 2221 distrib[sortByLatency[slow]] -= delta; 2222 total -= delta; 2223 } 2224 } 2225 2226 /* 2227 * Compare two integers 2228 */ 2229 static int 2230 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2231 { 2232 const int index1 = *((const int *) v1); 2233 const int index2 = *((const int *) v2); 2234 2235 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2236 } 2237 2238 /* 2239 * Prepend a possibly compressed PPP protocol number in front of a frame 2240 */ 2241 static struct mbuf * 2242 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2243 { 2244 if (compOK && PROT_COMPRESSABLE(proto)) { 2245 uint8_t pbyte = (uint8_t)proto; 2246 2247 return ng_ppp_prepend(m, &pbyte, 1); 2248 } else { 2249 uint16_t pword = htons((uint16_t)proto); 2250 2251 return ng_ppp_prepend(m, &pword, 2); 2252 } 2253 } 2254 2255 /* 2256 * Cut a possibly compressed PPP protocol number from the front of a frame. 2257 */ 2258 static struct mbuf * 2259 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2260 { 2261 2262 *proto = 0; 2263 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2264 return (NULL); 2265 2266 *proto = *mtod(m, uint8_t *); 2267 m_adj(m, 1); 2268 2269 if (!PROT_VALID(*proto)) { 2270 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2271 return (NULL); 2272 2273 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2274 m_adj(m, 1); 2275 } 2276 2277 return (m); 2278 } 2279 2280 /* 2281 * Prepend some bytes to an mbuf. 2282 */ 2283 static struct mbuf * 2284 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2285 { 2286 M_PREPEND(m, len, M_DONTWAIT); 2287 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2288 return (NULL); 2289 bcopy(buf, mtod(m, uint8_t *), len); 2290 return (m); 2291 } 2292 2293 /* 2294 * Update private information that is derived from other private information 2295 */ 2296 static void 2297 ng_ppp_update(node_p node, int newConf) 2298 { 2299 const priv_p priv = NG_NODE_PRIVATE(node); 2300 int i; 2301 2302 /* Update active status for VJ Compression */ 2303 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2304 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2305 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2306 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2307 2308 /* Increase latency for each link an amount equal to one MP header */ 2309 if (newConf) { 2310 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2311 int hdrBytes; 2312 2313 if (priv->links[i].conf.bandwidth == 0) 2314 continue; 2315 2316 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2317 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2318 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2319 + (priv->conf.xmitShortSeq ? 2 : 4); 2320 priv->links[i].latency = 2321 priv->links[i].conf.latency + 2322 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2323 } 2324 } 2325 2326 /* Update list of active links */ 2327 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2328 priv->numActiveLinks = 0; 2329 priv->allLinksEqual = 1; 2330 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2331 struct ng_ppp_link *const link = &priv->links[i]; 2332 2333 /* Is link active? */ 2334 if (link->conf.enableLink && link->hook != NULL) { 2335 struct ng_ppp_link *link0; 2336 2337 /* Add link to list of active links */ 2338 priv->activeLinks[priv->numActiveLinks++] = i; 2339 link0 = &priv->links[priv->activeLinks[0]]; 2340 2341 /* Determine if all links are still equal */ 2342 if (link->latency != link0->latency 2343 || link->conf.bandwidth != link0->conf.bandwidth) 2344 priv->allLinksEqual = 0; 2345 2346 /* Initialize rec'd sequence number */ 2347 if (link->seq == MP_NOSEQ) { 2348 link->seq = (link == link0) ? 2349 MP_INITIAL_SEQ : link0->seq; 2350 } 2351 } else 2352 link->seq = MP_NOSEQ; 2353 } 2354 2355 /* Update MP state as multi-link is active or not */ 2356 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2357 ng_ppp_start_frag_timer(node); 2358 else { 2359 ng_ppp_stop_frag_timer(node); 2360 ng_ppp_frag_reset(node); 2361 priv->xseq = MP_INITIAL_SEQ; 2362 priv->mseq = MP_INITIAL_SEQ; 2363 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2364 struct ng_ppp_link *const link = &priv->links[i]; 2365 2366 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2367 link->bytesInQueue = 0; 2368 link->seq = MP_NOSEQ; 2369 } 2370 } 2371 } 2372 2373 /* 2374 * Determine if a new configuration would represent a valid change 2375 * from the current configuration and link activity status. 2376 */ 2377 static int 2378 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2379 { 2380 const priv_p priv = NG_NODE_PRIVATE(node); 2381 int i, newNumLinksActive; 2382 2383 /* Check per-link config and count how many links would be active */ 2384 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2385 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2386 newNumLinksActive++; 2387 if (!newConf->links[i].enableLink) 2388 continue; 2389 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2390 return (0); 2391 if (newConf->links[i].bandwidth == 0) 2392 return (0); 2393 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2394 return (0); 2395 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2396 return (0); 2397 } 2398 2399 /* Check bundle parameters */ 2400 if (newConf->bund.enableMultilink && newConf->bund.mrru < MP_MIN_MRRU) 2401 return (0); 2402 2403 /* Disallow changes to multi-link configuration while MP is active */ 2404 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2405 if (!priv->conf.enableMultilink 2406 != !newConf->bund.enableMultilink 2407 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2408 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2409 return (0); 2410 } 2411 2412 /* At most one link can be active unless multi-link is enabled */ 2413 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2414 return (0); 2415 2416 /* Configuration change would be valid */ 2417 return (1); 2418 } 2419 2420 /* 2421 * Free all entries in the fragment queue 2422 */ 2423 static void 2424 ng_ppp_frag_reset(node_p node) 2425 { 2426 const priv_p priv = NG_NODE_PRIVATE(node); 2427 struct ng_ppp_frag *qent, *qnext; 2428 2429 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2430 qnext = TAILQ_NEXT(qent, f_qent); 2431 NG_FREE_M(qent->data); 2432 FREE(qent, M_NETGRAPH_PPP); 2433 } 2434 TAILQ_INIT(&priv->frags); 2435 priv->qlen = 0; 2436 } 2437 2438 /* 2439 * Start fragment queue timer 2440 */ 2441 static void 2442 ng_ppp_start_frag_timer(node_p node) 2443 { 2444 const priv_p priv = NG_NODE_PRIVATE(node); 2445 2446 if (!(callout_pending(&priv->fragTimer))) 2447 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2448 ng_ppp_frag_timeout, NULL, 0); 2449 } 2450 2451 /* 2452 * Stop fragment queue timer 2453 */ 2454 static void 2455 ng_ppp_stop_frag_timer(node_p node) 2456 { 2457 const priv_p priv = NG_NODE_PRIVATE(node); 2458 2459 if (callout_pending(&priv->fragTimer)) 2460 ng_uncallout(&priv->fragTimer, node); 2461 } 2462