1 /*- 2 * Copyright (c) 1996-2000 Whistle Communications, Inc. 3 * All rights reserved. 4 * 5 * Subject to the following obligations and disclaimer of warranty, use and 6 * redistribution of this software, in source or object code forms, with or 7 * without modifications are expressly permitted by Whistle Communications; 8 * provided, however, that: 9 * 1. Any and all reproductions of the source or object code must include the 10 * copyright notice above and the following disclaimer of warranties; and 11 * 2. No rights are granted, in any manner or form, to use Whistle 12 * Communications, Inc. trademarks, including the mark "WHISTLE 13 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 14 * such appears in the above copyright notice or in the software. 15 * 16 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 17 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 18 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 19 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 21 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 22 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 23 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 24 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 25 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 26 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 27 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 32 * OF SUCH DAMAGE. 33 * 34 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice unmodified, this list of conditions, and the following 42 * disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 60 * 61 * $FreeBSD$ 62 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 63 */ 64 65 /* 66 * PPP node type data-flow. 67 * 68 * hook xmit layer recv hook 69 * ------------------------------------ 70 * inet -> -> inet 71 * ipv6 -> -> ipv6 72 * ipx -> proto -> ipx 73 * atalk -> -> atalk 74 * bypass -> -> bypass 75 * -hcomp_xmit()----------proto_recv()- 76 * vjc_ip <- <- vjc_ip 77 * vjc_comp -> header compression -> vjc_comp 78 * vjc_uncomp -> -> vjc_uncomp 79 * vjc_vjip -> 80 * -comp_xmit()-----------hcomp_recv()- 81 * compress <- compression <- decompress 82 * compress -> -> decompress 83 * -crypt_xmit()-----------comp_recv()- 84 * encrypt <- encryption <- decrypt 85 * encrypt -> -> decrypt 86 * -ml_xmit()-------------crypt_recv()- 87 * multilink 88 * -link_xmit()--------------ml_recv()- 89 * linkX <- link <- linkX 90 * 91 */ 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/time.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/endian.h> 101 #include <sys/errno.h> 102 #include <sys/ctype.h> 103 104 #include <netgraph/ng_message.h> 105 #include <netgraph/netgraph.h> 106 #include <netgraph/ng_parse.h> 107 #include <netgraph/ng_ppp.h> 108 #include <netgraph/ng_vjc.h> 109 110 #ifdef NG_SEPARATE_MALLOC 111 static MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 112 #else 113 #define M_NETGRAPH_PPP M_NETGRAPH 114 #endif 115 116 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 117 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 118 119 /* Some PPP protocol numbers we're interested in */ 120 #define PROT_ATALK 0x0029 121 #define PROT_COMPD 0x00fd 122 #define PROT_CRYPTD 0x0053 123 #define PROT_IP 0x0021 124 #define PROT_IPV6 0x0057 125 #define PROT_IPX 0x002b 126 #define PROT_LCP 0xc021 127 #define PROT_MP 0x003d 128 #define PROT_VJCOMP 0x002d 129 #define PROT_VJUNCOMP 0x002f 130 131 /* Multilink PPP definitions */ 132 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 133 #define MP_MIN_LINK_MRU 32 134 135 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 136 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 137 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 138 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 139 140 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 141 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 142 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 143 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 144 145 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 146 147 /* Sign extension of MP sequence numbers */ 148 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 149 ((s) | ~MP_SHORT_SEQ_MASK) \ 150 : ((s) & MP_SHORT_SEQ_MASK)) 151 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 152 ((s) | ~MP_LONG_SEQ_MASK) \ 153 : ((s) & MP_LONG_SEQ_MASK)) 154 155 /* Comparison of MP sequence numbers. Note: all sequence numbers 156 except priv->xseq are stored with the sign bit extended. */ 157 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 158 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 159 160 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 161 ((priv)->conf.recvShortSeq ? \ 162 MP_SHORT_SEQ_DIFF((x), (y)) : \ 163 MP_LONG_SEQ_DIFF((x), (y))) 164 165 /* Increment receive sequence number */ 166 #define MP_NEXT_RECV_SEQ(priv,seq) \ 167 ((priv)->conf.recvShortSeq ? \ 168 MP_SHORT_EXTEND((seq) + 1) : \ 169 MP_LONG_EXTEND((seq) + 1)) 170 171 /* Don't fragment transmitted packets to parts smaller than this */ 172 #define MP_MIN_FRAG_LEN 32 173 174 /* Maximum fragment reasssembly queue length */ 175 #define MP_MAX_QUEUE_LEN 128 176 177 /* Fragment queue scanner period */ 178 #define MP_FRAGTIMER_INTERVAL (hz/2) 179 180 /* Average link overhead. XXX: Should be given by user-level */ 181 #define MP_AVERAGE_LINK_OVERHEAD 16 182 183 /* Keep this equal to ng_ppp_hook_names lower! */ 184 #define HOOK_INDEX_MAX 13 185 186 /* We store incoming fragments this way */ 187 struct ng_ppp_frag { 188 int seq; /* fragment seq# */ 189 uint8_t first; /* First in packet? */ 190 uint8_t last; /* Last in packet? */ 191 struct timeval timestamp; /* time of reception */ 192 struct mbuf *data; /* Fragment data */ 193 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 194 }; 195 196 /* Per-link private information */ 197 struct ng_ppp_link { 198 struct ng_ppp_link_conf conf; /* link configuration */ 199 struct ng_ppp_link_stat64 stats; /* link stats */ 200 hook_p hook; /* connection to link data */ 201 int32_t seq; /* highest rec'd seq# - MSEQ */ 202 uint32_t latency; /* calculated link latency */ 203 struct timeval lastWrite; /* time of last write for MP */ 204 int bytesInQueue; /* bytes in the output queue for MP */ 205 }; 206 207 /* Total per-node private information */ 208 struct ng_ppp_private { 209 struct ng_ppp_bund_conf conf; /* bundle config */ 210 struct ng_ppp_link_stat64 bundleStats; /* bundle stats */ 211 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 212 int32_t xseq; /* next out MP seq # */ 213 int32_t mseq; /* min links[i].seq */ 214 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indices */ 215 uint16_t numActiveLinks; /* how many links up */ 216 uint16_t lastLink; /* for round robin */ 217 uint8_t vjCompHooked; /* VJ comp hooked up? */ 218 uint8_t allLinksEqual; /* all xmit the same? */ 219 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 220 struct ng_ppp_frag fragsmem[MP_MAX_QUEUE_LEN]; /* fragments storage */ 221 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 222 frags; 223 TAILQ_HEAD(ng_ppp_fragfreelist, ng_ppp_frag) /* free fragment queue */ 224 fragsfree; 225 struct callout fragTimer; /* fraq queue check */ 226 struct mtx rmtx; /* recv mutex */ 227 struct mtx xmtx; /* xmit mutex */ 228 }; 229 typedef struct ng_ppp_private *priv_p; 230 231 /* Netgraph node methods */ 232 static ng_constructor_t ng_ppp_constructor; 233 static ng_rcvmsg_t ng_ppp_rcvmsg; 234 static ng_shutdown_t ng_ppp_shutdown; 235 static ng_newhook_t ng_ppp_newhook; 236 static ng_rcvdata_t ng_ppp_rcvdata; 237 static ng_disconnect_t ng_ppp_disconnect; 238 239 static ng_rcvdata_t ng_ppp_rcvdata_inet; 240 static ng_rcvdata_t ng_ppp_rcvdata_inet_fast; 241 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 242 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 243 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 244 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 245 246 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 247 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 248 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 249 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 250 251 static ng_rcvdata_t ng_ppp_rcvdata_compress; 252 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 253 254 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 255 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 256 257 /* We use integer indices to refer to the non-link hooks. */ 258 static const struct { 259 char *const name; 260 ng_rcvdata_t *fn; 261 } ng_ppp_hook_names[] = { 262 #define HOOK_INDEX_ATALK 0 263 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 264 #define HOOK_INDEX_BYPASS 1 265 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 266 #define HOOK_INDEX_COMPRESS 2 267 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 268 #define HOOK_INDEX_ENCRYPT 3 269 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 270 #define HOOK_INDEX_DECOMPRESS 4 271 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 272 #define HOOK_INDEX_DECRYPT 5 273 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 274 #define HOOK_INDEX_INET 6 275 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 276 #define HOOK_INDEX_IPX 7 277 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 278 #define HOOK_INDEX_VJC_COMP 8 279 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 280 #define HOOK_INDEX_VJC_IP 9 281 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 282 #define HOOK_INDEX_VJC_UNCOMP 10 283 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 284 #define HOOK_INDEX_VJC_VJIP 11 285 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 286 #define HOOK_INDEX_IPV6 12 287 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 288 { NULL, NULL } 289 }; 290 291 /* Helper functions */ 292 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 293 uint16_t linkNum); 294 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 295 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 296 uint16_t linkNum); 297 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 298 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 299 uint16_t linkNum); 300 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 301 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 302 uint16_t linkNum); 303 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 304 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 305 uint16_t linkNum); 306 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 307 uint16_t linkNum, int plen); 308 309 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 310 uint16_t linkNum); 311 312 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 313 static int ng_ppp_frag_drop(node_p node); 314 static int ng_ppp_check_packet(node_p node); 315 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 316 static int ng_ppp_frag_process(node_p node, item_p oitem); 317 static int ng_ppp_frag_trim(node_p node); 318 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 319 int arg2); 320 static void ng_ppp_frag_checkstale(node_p node); 321 static void ng_ppp_frag_reset(node_p node); 322 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 323 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 324 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 325 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 326 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 327 static int ng_ppp_config_valid(node_p node, 328 const struct ng_ppp_node_conf *newConf); 329 static void ng_ppp_update(node_p node, int newConf); 330 static void ng_ppp_start_frag_timer(node_p node); 331 static void ng_ppp_stop_frag_timer(node_p node); 332 333 /* Parse type for struct ng_ppp_mp_state_type */ 334 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 335 &ng_parse_hint32_type, 336 NG_PPP_MAX_LINKS 337 }; 338 static const struct ng_parse_type ng_ppp_rseq_array_type = { 339 &ng_parse_fixedarray_type, 340 &ng_ppp_rseq_array_info, 341 }; 342 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 343 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 344 static const struct ng_parse_type ng_ppp_mp_state_type = { 345 &ng_parse_struct_type, 346 &ng_ppp_mp_state_type_fields 347 }; 348 349 /* Parse type for struct ng_ppp_link_conf */ 350 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 351 = NG_PPP_LINK_TYPE_INFO; 352 static const struct ng_parse_type ng_ppp_link_type = { 353 &ng_parse_struct_type, 354 &ng_ppp_link_type_fields 355 }; 356 357 /* Parse type for struct ng_ppp_bund_conf */ 358 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 359 = NG_PPP_BUND_TYPE_INFO; 360 static const struct ng_parse_type ng_ppp_bund_type = { 361 &ng_parse_struct_type, 362 &ng_ppp_bund_type_fields 363 }; 364 365 /* Parse type for struct ng_ppp_node_conf */ 366 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 367 &ng_ppp_link_type, 368 NG_PPP_MAX_LINKS 369 }; 370 static const struct ng_parse_type ng_ppp_link_array_type = { 371 &ng_parse_fixedarray_type, 372 &ng_ppp_array_info, 373 }; 374 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 375 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 376 static const struct ng_parse_type ng_ppp_conf_type = { 377 &ng_parse_struct_type, 378 &ng_ppp_conf_type_fields 379 }; 380 381 /* Parse type for struct ng_ppp_link_stat */ 382 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 383 = NG_PPP_STATS_TYPE_INFO; 384 static const struct ng_parse_type ng_ppp_stats_type = { 385 &ng_parse_struct_type, 386 &ng_ppp_stats_type_fields 387 }; 388 389 /* Parse type for struct ng_ppp_link_stat64 */ 390 static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[] 391 = NG_PPP_STATS64_TYPE_INFO; 392 static const struct ng_parse_type ng_ppp_stats64_type = { 393 &ng_parse_struct_type, 394 &ng_ppp_stats64_type_fields 395 }; 396 397 /* List of commands and how to convert arguments to/from ASCII */ 398 static const struct ng_cmdlist ng_ppp_cmds[] = { 399 { 400 NGM_PPP_COOKIE, 401 NGM_PPP_SET_CONFIG, 402 "setconfig", 403 &ng_ppp_conf_type, 404 NULL 405 }, 406 { 407 NGM_PPP_COOKIE, 408 NGM_PPP_GET_CONFIG, 409 "getconfig", 410 NULL, 411 &ng_ppp_conf_type 412 }, 413 { 414 NGM_PPP_COOKIE, 415 NGM_PPP_GET_MP_STATE, 416 "getmpstate", 417 NULL, 418 &ng_ppp_mp_state_type 419 }, 420 { 421 NGM_PPP_COOKIE, 422 NGM_PPP_GET_LINK_STATS, 423 "getstats", 424 &ng_parse_int16_type, 425 &ng_ppp_stats_type 426 }, 427 { 428 NGM_PPP_COOKIE, 429 NGM_PPP_CLR_LINK_STATS, 430 "clrstats", 431 &ng_parse_int16_type, 432 NULL 433 }, 434 { 435 NGM_PPP_COOKIE, 436 NGM_PPP_GETCLR_LINK_STATS, 437 "getclrstats", 438 &ng_parse_int16_type, 439 &ng_ppp_stats_type 440 }, 441 { 442 NGM_PPP_COOKIE, 443 NGM_PPP_GET_LINK_STATS64, 444 "getstats64", 445 &ng_parse_int16_type, 446 &ng_ppp_stats64_type 447 }, 448 { 449 NGM_PPP_COOKIE, 450 NGM_PPP_GETCLR_LINK_STATS64, 451 "getclrstats64", 452 &ng_parse_int16_type, 453 &ng_ppp_stats64_type 454 }, 455 { 0 } 456 }; 457 458 /* Node type descriptor */ 459 static struct ng_type ng_ppp_typestruct = { 460 .version = NG_ABI_VERSION, 461 .name = NG_PPP_NODE_TYPE, 462 .constructor = ng_ppp_constructor, 463 .rcvmsg = ng_ppp_rcvmsg, 464 .shutdown = ng_ppp_shutdown, 465 .newhook = ng_ppp_newhook, 466 .rcvdata = ng_ppp_rcvdata, 467 .disconnect = ng_ppp_disconnect, 468 .cmdlist = ng_ppp_cmds, 469 }; 470 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 471 472 /* Address and control field header */ 473 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 474 475 /* Maximum time we'll let a complete incoming packet sit in the queue */ 476 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 477 478 #define ERROUT(x) do { error = (x); goto done; } while (0) 479 480 /************************************************************************ 481 NETGRAPH NODE STUFF 482 ************************************************************************/ 483 484 /* 485 * Node type constructor 486 */ 487 static int 488 ng_ppp_constructor(node_p node) 489 { 490 priv_p priv; 491 int i; 492 493 /* Allocate private structure */ 494 priv = malloc(sizeof(*priv), M_NETGRAPH_PPP, M_WAITOK | M_ZERO); 495 496 NG_NODE_SET_PRIVATE(node, priv); 497 498 /* Initialize state */ 499 TAILQ_INIT(&priv->frags); 500 TAILQ_INIT(&priv->fragsfree); 501 for (i = 0; i < MP_MAX_QUEUE_LEN; i++) 502 TAILQ_INSERT_TAIL(&priv->fragsfree, &priv->fragsmem[i], f_qent); 503 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 504 priv->links[i].seq = MP_NOSEQ; 505 ng_callout_init(&priv->fragTimer); 506 507 mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF); 508 mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF); 509 510 /* Done */ 511 return (0); 512 } 513 514 /* 515 * Give our OK for a hook to be added 516 */ 517 static int 518 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 519 { 520 const priv_p priv = NG_NODE_PRIVATE(node); 521 hook_p *hookPtr = NULL; 522 int linkNum = -1; 523 int hookIndex = -1; 524 525 /* Figure out which hook it is */ 526 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 527 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 528 const char *cp; 529 char *eptr; 530 531 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 532 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 533 return (EINVAL); 534 linkNum = (int)strtoul(cp, &eptr, 10); 535 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 536 return (EINVAL); 537 hookPtr = &priv->links[linkNum].hook; 538 hookIndex = ~linkNum; 539 540 /* See if hook is already connected. */ 541 if (*hookPtr != NULL) 542 return (EISCONN); 543 544 /* Disallow more than one link unless multilink is enabled. */ 545 if (priv->links[linkNum].conf.enableLink && 546 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 547 return (ENODEV); 548 549 } else { /* must be a non-link hook */ 550 int i; 551 552 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 553 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 554 hookPtr = &priv->hooks[i]; 555 hookIndex = i; 556 break; 557 } 558 } 559 if (ng_ppp_hook_names[i].name == NULL) 560 return (EINVAL); /* no such hook */ 561 562 /* See if hook is already connected */ 563 if (*hookPtr != NULL) 564 return (EISCONN); 565 566 /* Every non-linkX hook have it's own function. */ 567 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 568 } 569 570 /* OK */ 571 *hookPtr = hook; 572 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 573 ng_ppp_update(node, 0); 574 return (0); 575 } 576 577 /* 578 * Receive a control message 579 */ 580 static int 581 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 582 { 583 const priv_p priv = NG_NODE_PRIVATE(node); 584 struct ng_mesg *resp = NULL; 585 int error = 0; 586 struct ng_mesg *msg; 587 588 NGI_GET_MSG(item, msg); 589 switch (msg->header.typecookie) { 590 case NGM_PPP_COOKIE: 591 switch (msg->header.cmd) { 592 case NGM_PPP_SET_CONFIG: 593 { 594 struct ng_ppp_node_conf *const conf = 595 (struct ng_ppp_node_conf *)msg->data; 596 int i; 597 598 /* Check for invalid or illegal config */ 599 if (msg->header.arglen != sizeof(*conf)) 600 ERROUT(EINVAL); 601 if (!ng_ppp_config_valid(node, conf)) 602 ERROUT(EINVAL); 603 604 /* Copy config */ 605 priv->conf = conf->bund; 606 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 607 priv->links[i].conf = conf->links[i]; 608 ng_ppp_update(node, 1); 609 break; 610 } 611 case NGM_PPP_GET_CONFIG: 612 { 613 struct ng_ppp_node_conf *conf; 614 int i; 615 616 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 617 if (resp == NULL) 618 ERROUT(ENOMEM); 619 conf = (struct ng_ppp_node_conf *)resp->data; 620 conf->bund = priv->conf; 621 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 622 conf->links[i] = priv->links[i].conf; 623 break; 624 } 625 case NGM_PPP_GET_MP_STATE: 626 { 627 struct ng_ppp_mp_state *info; 628 int i; 629 630 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 631 if (resp == NULL) 632 ERROUT(ENOMEM); 633 info = (struct ng_ppp_mp_state *)resp->data; 634 bzero(info, sizeof(*info)); 635 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 636 if (priv->links[i].seq != MP_NOSEQ) 637 info->rseq[i] = priv->links[i].seq; 638 } 639 info->mseq = priv->mseq; 640 info->xseq = priv->xseq; 641 break; 642 } 643 case NGM_PPP_GET_LINK_STATS: 644 case NGM_PPP_CLR_LINK_STATS: 645 case NGM_PPP_GETCLR_LINK_STATS: 646 case NGM_PPP_GET_LINK_STATS64: 647 case NGM_PPP_GETCLR_LINK_STATS64: 648 { 649 struct ng_ppp_link_stat64 *stats; 650 uint16_t linkNum; 651 652 /* Process request. */ 653 if (msg->header.arglen != sizeof(uint16_t)) 654 ERROUT(EINVAL); 655 linkNum = *((uint16_t *) msg->data); 656 if (linkNum >= NG_PPP_MAX_LINKS 657 && linkNum != NG_PPP_BUNDLE_LINKNUM) 658 ERROUT(EINVAL); 659 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 660 &priv->bundleStats : &priv->links[linkNum].stats; 661 662 /* Make 64bit reply. */ 663 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 || 664 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) { 665 NG_MKRESPONSE(resp, msg, 666 sizeof(struct ng_ppp_link_stat64), M_NOWAIT); 667 if (resp == NULL) 668 ERROUT(ENOMEM); 669 bcopy(stats, resp->data, sizeof(*stats)); 670 } else 671 /* Make 32bit reply. */ 672 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS || 673 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) { 674 struct ng_ppp_link_stat *rs; 675 NG_MKRESPONSE(resp, msg, 676 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 677 if (resp == NULL) 678 ERROUT(ENOMEM); 679 rs = (struct ng_ppp_link_stat *)resp->data; 680 /* Truncate 64->32 bits. */ 681 rs->xmitFrames = stats->xmitFrames; 682 rs->xmitOctets = stats->xmitOctets; 683 rs->recvFrames = stats->recvFrames; 684 rs->recvOctets = stats->recvOctets; 685 rs->badProtos = stats->badProtos; 686 rs->runts = stats->runts; 687 rs->dupFragments = stats->dupFragments; 688 rs->dropFragments = stats->dropFragments; 689 } 690 /* Clear stats. */ 691 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS && 692 msg->header.cmd != NGM_PPP_GET_LINK_STATS64) 693 bzero(stats, sizeof(*stats)); 694 break; 695 } 696 default: 697 error = EINVAL; 698 break; 699 } 700 break; 701 case NGM_VJC_COOKIE: 702 { 703 /* 704 * Forward it to the vjc node. leave the 705 * old return address alone. 706 * If we have no hook, let NG_RESPOND_MSG 707 * clean up any remaining resources. 708 * Because we have no resp, the item will be freed 709 * along with anything it references. Don't 710 * let msg be freed twice. 711 */ 712 NGI_MSG(item) = msg; /* put it back in the item */ 713 msg = NULL; 714 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 715 NG_FWD_ITEM_HOOK(error, item, lasthook); 716 } 717 return (error); 718 } 719 default: 720 error = EINVAL; 721 break; 722 } 723 done: 724 NG_RESPOND_MSG(error, node, item, resp); 725 NG_FREE_MSG(msg); 726 return (error); 727 } 728 729 /* 730 * Destroy node 731 */ 732 static int 733 ng_ppp_shutdown(node_p node) 734 { 735 const priv_p priv = NG_NODE_PRIVATE(node); 736 737 /* Stop fragment queue timer */ 738 ng_ppp_stop_frag_timer(node); 739 740 /* Take down netgraph node */ 741 ng_ppp_frag_reset(node); 742 mtx_destroy(&priv->rmtx); 743 mtx_destroy(&priv->xmtx); 744 bzero(priv, sizeof(*priv)); 745 free(priv, M_NETGRAPH_PPP); 746 NG_NODE_SET_PRIVATE(node, NULL); 747 NG_NODE_UNREF(node); /* let the node escape */ 748 return (0); 749 } 750 751 /* 752 * Hook disconnection 753 */ 754 static int 755 ng_ppp_disconnect(hook_p hook) 756 { 757 const node_p node = NG_HOOK_NODE(hook); 758 const priv_p priv = NG_NODE_PRIVATE(node); 759 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 760 761 /* Zero out hook pointer */ 762 if (index < 0) 763 priv->links[~index].hook = NULL; 764 else 765 priv->hooks[index] = NULL; 766 767 /* Update derived info (or go away if no hooks left). */ 768 if (NG_NODE_NUMHOOKS(node) > 0) 769 ng_ppp_update(node, 0); 770 else if (NG_NODE_IS_VALID(node)) 771 ng_rmnode_self(node); 772 773 return (0); 774 } 775 776 /* 777 * Proto layer 778 */ 779 780 /* 781 * Receive data on a hook inet. 782 */ 783 static int 784 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 785 { 786 const node_p node = NG_HOOK_NODE(hook); 787 const priv_p priv = NG_NODE_PRIVATE(node); 788 789 if (!priv->conf.enableIP) { 790 NG_FREE_ITEM(item); 791 return (ENXIO); 792 } 793 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 794 } 795 796 /* 797 * Receive data on a hook inet and pass it directly to first link. 798 */ 799 static int 800 ng_ppp_rcvdata_inet_fast(hook_p hook, item_p item) 801 { 802 const node_p node = NG_HOOK_NODE(hook); 803 const priv_p priv = NG_NODE_PRIVATE(node); 804 805 return (ng_ppp_link_xmit(node, item, PROT_IP, priv->activeLinks[0], 806 NGI_M(item)->m_pkthdr.len)); 807 } 808 809 /* 810 * Receive data on a hook ipv6. 811 */ 812 static int 813 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 814 { 815 const node_p node = NG_HOOK_NODE(hook); 816 const priv_p priv = NG_NODE_PRIVATE(node); 817 818 if (!priv->conf.enableIPv6) { 819 NG_FREE_ITEM(item); 820 return (ENXIO); 821 } 822 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 823 } 824 825 /* 826 * Receive data on a hook atalk. 827 */ 828 static int 829 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 830 { 831 const node_p node = NG_HOOK_NODE(hook); 832 const priv_p priv = NG_NODE_PRIVATE(node); 833 834 if (!priv->conf.enableAtalk) { 835 NG_FREE_ITEM(item); 836 return (ENXIO); 837 } 838 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 839 } 840 841 /* 842 * Receive data on a hook ipx 843 */ 844 static int 845 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 846 { 847 const node_p node = NG_HOOK_NODE(hook); 848 const priv_p priv = NG_NODE_PRIVATE(node); 849 850 if (!priv->conf.enableIPX) { 851 NG_FREE_ITEM(item); 852 return (ENXIO); 853 } 854 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 855 } 856 857 /* 858 * Receive data on a hook bypass 859 */ 860 static int 861 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 862 { 863 uint16_t linkNum; 864 uint16_t proto; 865 struct mbuf *m; 866 867 NGI_GET_M(item, m); 868 if (m->m_pkthdr.len < 4) { 869 NG_FREE_ITEM(item); 870 return (EINVAL); 871 } 872 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 873 NG_FREE_ITEM(item); 874 return (ENOBUFS); 875 } 876 linkNum = be16dec(mtod(m, uint8_t *)); 877 proto = be16dec(mtod(m, uint8_t *) + 2); 878 m_adj(m, 4); 879 NGI_M(item) = m; 880 881 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 882 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 883 else 884 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 885 linkNum, 0)); 886 } 887 888 static int 889 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 890 { 891 const priv_p priv = NG_NODE_PRIVATE(node); 892 uint16_t hdr[2]; 893 struct mbuf *m; 894 int error; 895 896 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 897 NG_FREE_ITEM(item); 898 return (ENXIO); 899 } 900 901 /* Add 4-byte bypass header. */ 902 hdr[0] = htons(linkNum); 903 hdr[1] = htons(proto); 904 905 NGI_GET_M(item, m); 906 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 907 NG_FREE_ITEM(item); 908 return (ENOBUFS); 909 } 910 NGI_M(item) = m; 911 912 /* Send packet out hook. */ 913 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 914 return (error); 915 } 916 917 static int 918 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 919 { 920 const priv_p priv = NG_NODE_PRIVATE(node); 921 hook_p outHook = NULL; 922 int error; 923 #ifdef ALIGNED_POINTER 924 struct mbuf *m, *n; 925 926 NGI_GET_M(item, m); 927 if (!ALIGNED_POINTER(mtod(m, caddr_t), uint32_t)) { 928 n = m_defrag(m, M_NOWAIT); 929 if (n == NULL) { 930 m_freem(m); 931 NG_FREE_ITEM(item); 932 return (ENOBUFS); 933 } 934 m = n; 935 } 936 NGI_M(item) = m; 937 #endif /* ALIGNED_POINTER */ 938 switch (proto) { 939 case PROT_IP: 940 if (priv->conf.enableIP) 941 outHook = priv->hooks[HOOK_INDEX_INET]; 942 break; 943 case PROT_IPV6: 944 if (priv->conf.enableIPv6) 945 outHook = priv->hooks[HOOK_INDEX_IPV6]; 946 break; 947 case PROT_ATALK: 948 if (priv->conf.enableAtalk) 949 outHook = priv->hooks[HOOK_INDEX_ATALK]; 950 break; 951 case PROT_IPX: 952 if (priv->conf.enableIPX) 953 outHook = priv->hooks[HOOK_INDEX_IPX]; 954 break; 955 } 956 957 if (outHook == NULL) 958 return (ng_ppp_bypass(node, item, proto, linkNum)); 959 960 /* Send packet out hook. */ 961 NG_FWD_ITEM_HOOK(error, item, outHook); 962 return (error); 963 } 964 965 /* 966 * Header compression layer 967 */ 968 969 static int 970 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 971 { 972 const priv_p priv = NG_NODE_PRIVATE(node); 973 974 if (proto == PROT_IP && 975 priv->conf.enableVJCompression && 976 priv->vjCompHooked) { 977 int error; 978 979 /* Send packet out hook. */ 980 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 981 return (error); 982 } 983 984 return (ng_ppp_comp_xmit(node, item, proto)); 985 } 986 987 /* 988 * Receive data on a hook vjc_comp. 989 */ 990 static int 991 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 992 { 993 const node_p node = NG_HOOK_NODE(hook); 994 const priv_p priv = NG_NODE_PRIVATE(node); 995 996 if (!priv->conf.enableVJCompression) { 997 NG_FREE_ITEM(item); 998 return (ENXIO); 999 } 1000 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 1001 } 1002 1003 /* 1004 * Receive data on a hook vjc_uncomp. 1005 */ 1006 static int 1007 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 1008 { 1009 const node_p node = NG_HOOK_NODE(hook); 1010 const priv_p priv = NG_NODE_PRIVATE(node); 1011 1012 if (!priv->conf.enableVJCompression) { 1013 NG_FREE_ITEM(item); 1014 return (ENXIO); 1015 } 1016 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 1017 } 1018 1019 /* 1020 * Receive data on a hook vjc_vjip. 1021 */ 1022 static int 1023 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 1024 { 1025 const node_p node = NG_HOOK_NODE(hook); 1026 const priv_p priv = NG_NODE_PRIVATE(node); 1027 1028 if (!priv->conf.enableVJCompression) { 1029 NG_FREE_ITEM(item); 1030 return (ENXIO); 1031 } 1032 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 1033 } 1034 1035 static int 1036 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1037 { 1038 const priv_p priv = NG_NODE_PRIVATE(node); 1039 1040 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 1041 hook_p outHook = NULL; 1042 1043 switch (proto) { 1044 case PROT_VJCOMP: 1045 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 1046 break; 1047 case PROT_VJUNCOMP: 1048 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 1049 break; 1050 } 1051 1052 if (outHook) { 1053 int error; 1054 1055 /* Send packet out hook. */ 1056 NG_FWD_ITEM_HOOK(error, item, outHook); 1057 return (error); 1058 } 1059 } 1060 1061 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 1062 } 1063 1064 /* 1065 * Receive data on a hook vjc_ip. 1066 */ 1067 static int 1068 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 1069 { 1070 const node_p node = NG_HOOK_NODE(hook); 1071 const priv_p priv = NG_NODE_PRIVATE(node); 1072 1073 if (!priv->conf.enableVJDecompression) { 1074 NG_FREE_ITEM(item); 1075 return (ENXIO); 1076 } 1077 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 1078 } 1079 1080 /* 1081 * Compression layer 1082 */ 1083 1084 static int 1085 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1086 { 1087 const priv_p priv = NG_NODE_PRIVATE(node); 1088 1089 if (priv->conf.enableCompression && 1090 proto < 0x4000 && 1091 proto != PROT_COMPD && 1092 proto != PROT_CRYPTD && 1093 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1094 struct mbuf *m; 1095 int error; 1096 1097 NGI_GET_M(item, m); 1098 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1099 NG_FREE_ITEM(item); 1100 return (ENOBUFS); 1101 } 1102 NGI_M(item) = m; 1103 1104 /* Send packet out hook. */ 1105 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1106 return (error); 1107 } 1108 1109 return (ng_ppp_crypt_xmit(node, item, proto)); 1110 } 1111 1112 /* 1113 * Receive data on a hook compress. 1114 */ 1115 static int 1116 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1117 { 1118 const node_p node = NG_HOOK_NODE(hook); 1119 const priv_p priv = NG_NODE_PRIVATE(node); 1120 uint16_t proto; 1121 1122 switch (priv->conf.enableCompression) { 1123 case NG_PPP_COMPRESS_NONE: 1124 NG_FREE_ITEM(item); 1125 return (ENXIO); 1126 case NG_PPP_COMPRESS_FULL: 1127 { 1128 struct mbuf *m; 1129 1130 NGI_GET_M(item, m); 1131 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1132 NG_FREE_ITEM(item); 1133 return (EIO); 1134 } 1135 NGI_M(item) = m; 1136 if (!PROT_VALID(proto)) { 1137 NG_FREE_ITEM(item); 1138 return (EIO); 1139 } 1140 } 1141 break; 1142 default: 1143 proto = PROT_COMPD; 1144 break; 1145 } 1146 return (ng_ppp_crypt_xmit(node, item, proto)); 1147 } 1148 1149 static int 1150 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1151 { 1152 const priv_p priv = NG_NODE_PRIVATE(node); 1153 1154 if (proto < 0x4000 && 1155 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1156 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1157 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1158 int error; 1159 1160 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1161 struct mbuf *m; 1162 NGI_GET_M(item, m); 1163 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1164 NG_FREE_ITEM(item); 1165 return (EIO); 1166 } 1167 NGI_M(item) = m; 1168 } 1169 1170 /* Send packet out hook. */ 1171 NG_FWD_ITEM_HOOK(error, item, 1172 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1173 return (error); 1174 } else if (proto == PROT_COMPD) { 1175 /* Disabled protos MUST be silently discarded, but 1176 * unsupported MUST not. Let user-level decide this. */ 1177 return (ng_ppp_bypass(node, item, proto, linkNum)); 1178 } 1179 1180 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1181 } 1182 1183 /* 1184 * Receive data on a hook decompress. 1185 */ 1186 static int 1187 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1188 { 1189 const node_p node = NG_HOOK_NODE(hook); 1190 const priv_p priv = NG_NODE_PRIVATE(node); 1191 uint16_t proto; 1192 struct mbuf *m; 1193 1194 if (!priv->conf.enableDecompression) { 1195 NG_FREE_ITEM(item); 1196 return (ENXIO); 1197 } 1198 NGI_GET_M(item, m); 1199 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1200 NG_FREE_ITEM(item); 1201 return (EIO); 1202 } 1203 NGI_M(item) = m; 1204 if (!PROT_VALID(proto)) { 1205 priv->bundleStats.badProtos++; 1206 NG_FREE_ITEM(item); 1207 return (EIO); 1208 } 1209 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1210 } 1211 1212 /* 1213 * Encryption layer 1214 */ 1215 1216 static int 1217 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1218 { 1219 const priv_p priv = NG_NODE_PRIVATE(node); 1220 1221 if (priv->conf.enableEncryption && 1222 proto < 0x4000 && 1223 proto != PROT_CRYPTD && 1224 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1225 struct mbuf *m; 1226 int error; 1227 1228 NGI_GET_M(item, m); 1229 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1230 NG_FREE_ITEM(item); 1231 return (ENOBUFS); 1232 } 1233 NGI_M(item) = m; 1234 1235 /* Send packet out hook. */ 1236 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1237 return (error); 1238 } 1239 1240 return (ng_ppp_mp_xmit(node, item, proto)); 1241 } 1242 1243 /* 1244 * Receive data on a hook encrypt. 1245 */ 1246 static int 1247 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1248 { 1249 const node_p node = NG_HOOK_NODE(hook); 1250 const priv_p priv = NG_NODE_PRIVATE(node); 1251 1252 if (!priv->conf.enableEncryption) { 1253 NG_FREE_ITEM(item); 1254 return (ENXIO); 1255 } 1256 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1257 } 1258 1259 static int 1260 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1261 { 1262 const priv_p priv = NG_NODE_PRIVATE(node); 1263 1264 if (proto == PROT_CRYPTD) { 1265 if (priv->conf.enableDecryption && 1266 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1267 int error; 1268 1269 /* Send packet out hook. */ 1270 NG_FWD_ITEM_HOOK(error, item, 1271 priv->hooks[HOOK_INDEX_DECRYPT]); 1272 return (error); 1273 } else { 1274 /* Disabled protos MUST be silently discarded, but 1275 * unsupported MUST not. Let user-level decide this. */ 1276 return (ng_ppp_bypass(node, item, proto, linkNum)); 1277 } 1278 } 1279 1280 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1281 } 1282 1283 /* 1284 * Receive data on a hook decrypt. 1285 */ 1286 static int 1287 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1288 { 1289 const node_p node = NG_HOOK_NODE(hook); 1290 const priv_p priv = NG_NODE_PRIVATE(node); 1291 uint16_t proto; 1292 struct mbuf *m; 1293 1294 if (!priv->conf.enableDecryption) { 1295 NG_FREE_ITEM(item); 1296 return (ENXIO); 1297 } 1298 NGI_GET_M(item, m); 1299 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1300 NG_FREE_ITEM(item); 1301 return (EIO); 1302 } 1303 NGI_M(item) = m; 1304 if (!PROT_VALID(proto)) { 1305 priv->bundleStats.badProtos++; 1306 NG_FREE_ITEM(item); 1307 return (EIO); 1308 } 1309 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1310 } 1311 1312 /* 1313 * Link layer 1314 */ 1315 1316 static int 1317 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen) 1318 { 1319 const priv_p priv = NG_NODE_PRIVATE(node); 1320 struct ng_ppp_link *link; 1321 int len, error; 1322 struct mbuf *m; 1323 uint16_t mru; 1324 1325 /* Check if link correct. */ 1326 if (linkNum >= NG_PPP_MAX_LINKS) { 1327 ERROUT(ENETDOWN); 1328 } 1329 1330 /* Get link pointer (optimization). */ 1331 link = &priv->links[linkNum]; 1332 1333 /* Check link status (if real). */ 1334 if (link->hook == NULL) { 1335 ERROUT(ENETDOWN); 1336 } 1337 1338 /* Extract mbuf. */ 1339 NGI_GET_M(item, m); 1340 1341 /* Check peer's MRU for this link. */ 1342 mru = link->conf.mru; 1343 if (mru != 0 && m->m_pkthdr.len > mru) { 1344 NG_FREE_M(m); 1345 ERROUT(EMSGSIZE); 1346 } 1347 1348 /* Prepend protocol number, possibly compressed. */ 1349 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1350 NULL) { 1351 ERROUT(ENOBUFS); 1352 } 1353 1354 /* Prepend address and control field (unless compressed). */ 1355 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1356 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) 1357 ERROUT(ENOBUFS); 1358 } 1359 1360 /* Deliver frame. */ 1361 len = m->m_pkthdr.len; 1362 NG_FWD_NEW_DATA(error, item, link->hook, m); 1363 1364 mtx_lock(&priv->xmtx); 1365 1366 /* Update link stats. */ 1367 link->stats.xmitFrames++; 1368 link->stats.xmitOctets += len; 1369 1370 /* Update bundle stats. */ 1371 if (plen > 0) { 1372 priv->bundleStats.xmitFrames++; 1373 priv->bundleStats.xmitOctets += plen; 1374 } 1375 1376 /* Update 'bytes in queue' counter. */ 1377 if (error == 0) { 1378 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1379 if (priv->conf.enableMultilink && !priv->allLinksEqual && 1380 !priv->conf.enableRoundRobin) { 1381 /* If queue was empty, then mark this time. */ 1382 if (link->bytesInQueue == 0) 1383 getmicrouptime(&link->lastWrite); 1384 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1385 /* Limit max queue length to 50 pkts. BW can be defined 1386 incorrectly and link may not signal overload. */ 1387 if (link->bytesInQueue > 50 * 1600) 1388 link->bytesInQueue = 50 * 1600; 1389 } 1390 } 1391 mtx_unlock(&priv->xmtx); 1392 return (error); 1393 1394 done: 1395 NG_FREE_ITEM(item); 1396 return (error); 1397 } 1398 1399 /* 1400 * Receive data on a hook linkX. 1401 */ 1402 static int 1403 ng_ppp_rcvdata(hook_p hook, item_p item) 1404 { 1405 const node_p node = NG_HOOK_NODE(hook); 1406 const priv_p priv = NG_NODE_PRIVATE(node); 1407 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1408 const uint16_t linkNum = (uint16_t)~index; 1409 struct ng_ppp_link * const link = &priv->links[linkNum]; 1410 uint16_t proto; 1411 struct mbuf *m; 1412 int error = 0; 1413 1414 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1415 ("%s: bogus index 0x%x", __func__, index)); 1416 1417 NGI_GET_M(item, m); 1418 1419 mtx_lock(&priv->rmtx); 1420 1421 /* Stats */ 1422 link->stats.recvFrames++; 1423 link->stats.recvOctets += m->m_pkthdr.len; 1424 1425 /* Strip address and control fields, if present. */ 1426 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1427 ERROUT(ENOBUFS); 1428 if (mtod(m, uint8_t *)[0] == 0xff && 1429 mtod(m, uint8_t *)[1] == 0x03) 1430 m_adj(m, 2); 1431 1432 /* Get protocol number */ 1433 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1434 ERROUT(ENOBUFS); 1435 NGI_M(item) = m; /* Put changed m back into item. */ 1436 1437 if (!PROT_VALID(proto)) { 1438 link->stats.badProtos++; 1439 ERROUT(EIO); 1440 } 1441 1442 /* LCP packets must go directly to bypass. */ 1443 if (proto >= 0xB000) { 1444 mtx_unlock(&priv->rmtx); 1445 return (ng_ppp_bypass(node, item, proto, linkNum)); 1446 } 1447 1448 /* Other packets are denied on a disabled link. */ 1449 if (!link->conf.enableLink) 1450 ERROUT(ENXIO); 1451 1452 /* Proceed to multilink layer. Mutex will be unlocked inside. */ 1453 error = ng_ppp_mp_recv(node, item, proto, linkNum); 1454 mtx_assert(&priv->rmtx, MA_NOTOWNED); 1455 return (error); 1456 1457 done: 1458 mtx_unlock(&priv->rmtx); 1459 NG_FREE_ITEM(item); 1460 return (error); 1461 } 1462 1463 /* 1464 * Multilink layer 1465 */ 1466 1467 /* 1468 * Handle an incoming multi-link fragment 1469 * 1470 * The fragment reassembly algorithm is somewhat complex. This is mainly 1471 * because we are required not to reorder the reconstructed packets, yet 1472 * fragments are only guaranteed to arrive in order on a per-link basis. 1473 * In other words, when we have a complete packet ready, but the previous 1474 * packet is still incomplete, we have to decide between delivering the 1475 * complete packet and throwing away the incomplete one, or waiting to 1476 * see if the remainder of the incomplete one arrives, at which time we 1477 * can deliver both packets, in order. 1478 * 1479 * This problem is exacerbated by "sequence number slew", which is when 1480 * the sequence numbers coming in from different links are far apart from 1481 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1482 * has been seen to generate sequence number slew of up to 10 on an ISDN 1483 * 2B-channel MP link. There is nothing invalid about sequence number slew 1484 * but it makes the reasssembly process have to work harder. 1485 * 1486 * However, the peer is required to transmit fragments in order on each 1487 * link. That means if we define MSEQ as the minimum over all links of 1488 * the highest sequence number received on that link, then we can always 1489 * give up any hope of receiving a fragment with sequence number < MSEQ in 1490 * the future (all of this using 'wraparound' sequence number space). 1491 * Therefore we can always immediately throw away incomplete packets 1492 * missing fragments with sequence numbers < MSEQ. 1493 * 1494 * Here is an overview of our algorithm: 1495 * 1496 * o Received fragments are inserted into a queue, for which we 1497 * maintain these invariants between calls to this function: 1498 * 1499 * - Fragments are ordered in the queue by sequence number 1500 * - If a complete packet is at the head of the queue, then 1501 * the first fragment in the packet has seq# > MSEQ + 1 1502 * (otherwise, we could deliver it immediately) 1503 * - If any fragments have seq# < MSEQ, then they are necessarily 1504 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1505 * we can throw them away because they'll never be completed) 1506 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1507 * 1508 * o We have a periodic timer that checks the queue for the first 1509 * complete packet that has been sitting in the queue "too long". 1510 * When one is detected, all previous (incomplete) fragments are 1511 * discarded, their missing fragments are declared lost and MSEQ 1512 * is increased. 1513 * 1514 * o If we receive a fragment with seq# < MSEQ, we throw it away 1515 * because we've already delcared it lost. 1516 * 1517 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1518 */ 1519 static int 1520 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1521 { 1522 const priv_p priv = NG_NODE_PRIVATE(node); 1523 struct ng_ppp_link *const link = &priv->links[linkNum]; 1524 struct ng_ppp_frag *frag; 1525 struct ng_ppp_frag *qent; 1526 int i, diff, inserted; 1527 struct mbuf *m; 1528 int error = 0; 1529 1530 if ((!priv->conf.enableMultilink) || proto != PROT_MP) { 1531 /* Stats */ 1532 priv->bundleStats.recvFrames++; 1533 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1534 1535 mtx_unlock(&priv->rmtx); 1536 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1537 } 1538 1539 NGI_GET_M(item, m); 1540 1541 /* Get a new frag struct from the free queue */ 1542 if ((frag = TAILQ_FIRST(&priv->fragsfree)) == NULL) { 1543 printf("No free fragments headers in ng_ppp!\n"); 1544 NG_FREE_M(m); 1545 goto process; 1546 } 1547 1548 /* Extract fragment information from MP header */ 1549 if (priv->conf.recvShortSeq) { 1550 uint16_t shdr; 1551 1552 if (m->m_pkthdr.len < 2) { 1553 link->stats.runts++; 1554 NG_FREE_M(m); 1555 ERROUT(EINVAL); 1556 } 1557 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1558 ERROUT(ENOBUFS); 1559 1560 shdr = be16dec(mtod(m, void *)); 1561 frag->seq = MP_SHORT_EXTEND(shdr); 1562 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1563 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1564 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1565 m_adj(m, 2); 1566 } else { 1567 uint32_t lhdr; 1568 1569 if (m->m_pkthdr.len < 4) { 1570 link->stats.runts++; 1571 NG_FREE_M(m); 1572 ERROUT(EINVAL); 1573 } 1574 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1575 ERROUT(ENOBUFS); 1576 1577 lhdr = be32dec(mtod(m, void *)); 1578 frag->seq = MP_LONG_EXTEND(lhdr); 1579 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1580 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1581 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1582 m_adj(m, 4); 1583 } 1584 frag->data = m; 1585 getmicrouptime(&frag->timestamp); 1586 1587 /* If sequence number is < MSEQ, we've already declared this 1588 fragment as lost, so we have no choice now but to drop it */ 1589 if (diff < 0) { 1590 link->stats.dropFragments++; 1591 NG_FREE_M(m); 1592 ERROUT(0); 1593 } 1594 1595 /* Update highest received sequence number on this link and MSEQ */ 1596 priv->mseq = link->seq = frag->seq; 1597 for (i = 0; i < priv->numActiveLinks; i++) { 1598 struct ng_ppp_link *const alink = 1599 &priv->links[priv->activeLinks[i]]; 1600 1601 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1602 priv->mseq = alink->seq; 1603 } 1604 1605 /* Remove frag struct from free queue. */ 1606 TAILQ_REMOVE(&priv->fragsfree, frag, f_qent); 1607 1608 /* Add fragment to queue, which is sorted by sequence number */ 1609 inserted = 0; 1610 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1611 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1612 if (diff > 0) { 1613 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1614 inserted = 1; 1615 break; 1616 } else if (diff == 0) { /* should never happen! */ 1617 link->stats.dupFragments++; 1618 NG_FREE_M(frag->data); 1619 TAILQ_INSERT_HEAD(&priv->fragsfree, frag, f_qent); 1620 ERROUT(EINVAL); 1621 } 1622 } 1623 if (!inserted) 1624 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1625 1626 process: 1627 /* Process the queue */ 1628 /* NOTE: rmtx will be unlocked for sending time! */ 1629 error = ng_ppp_frag_process(node, item); 1630 mtx_unlock(&priv->rmtx); 1631 return (error); 1632 1633 done: 1634 mtx_unlock(&priv->rmtx); 1635 NG_FREE_ITEM(item); 1636 return (error); 1637 } 1638 1639 /************************************************************************ 1640 HELPER STUFF 1641 ************************************************************************/ 1642 1643 /* 1644 * If new mseq > current then set it and update all active links 1645 */ 1646 static void 1647 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1648 { 1649 const priv_p priv = NG_NODE_PRIVATE(node); 1650 int i; 1651 1652 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1653 priv->mseq = new_mseq; 1654 for (i = 0; i < priv->numActiveLinks; i++) { 1655 struct ng_ppp_link *const alink = 1656 &priv->links[priv->activeLinks[i]]; 1657 1658 if (MP_RECV_SEQ_DIFF(priv, 1659 alink->seq, new_mseq) < 0) 1660 alink->seq = new_mseq; 1661 } 1662 } 1663 } 1664 1665 /* 1666 * Examine our list of fragments, and determine if there is a 1667 * complete and deliverable packet at the head of the list. 1668 * Return 1 if so, zero otherwise. 1669 */ 1670 static int 1671 ng_ppp_check_packet(node_p node) 1672 { 1673 const priv_p priv = NG_NODE_PRIVATE(node); 1674 struct ng_ppp_frag *qent, *qnext; 1675 1676 /* Check for empty queue */ 1677 if (TAILQ_EMPTY(&priv->frags)) 1678 return (0); 1679 1680 /* Check first fragment is the start of a deliverable packet */ 1681 qent = TAILQ_FIRST(&priv->frags); 1682 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1683 return (0); 1684 1685 /* Check that all the fragments are there */ 1686 while (!qent->last) { 1687 qnext = TAILQ_NEXT(qent, f_qent); 1688 if (qnext == NULL) /* end of queue */ 1689 return (0); 1690 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1691 return (0); 1692 qent = qnext; 1693 } 1694 1695 /* Got one */ 1696 return (1); 1697 } 1698 1699 /* 1700 * Pull a completed packet off the head of the incoming fragment queue. 1701 * This assumes there is a completed packet there to pull off. 1702 */ 1703 static void 1704 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1705 { 1706 const priv_p priv = NG_NODE_PRIVATE(node); 1707 struct ng_ppp_frag *qent, *qnext; 1708 struct mbuf *m = NULL, *tail; 1709 1710 qent = TAILQ_FIRST(&priv->frags); 1711 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1712 ("%s: no packet", __func__)); 1713 for (tail = NULL; qent != NULL; qent = qnext) { 1714 qnext = TAILQ_NEXT(qent, f_qent); 1715 KASSERT(!TAILQ_EMPTY(&priv->frags), 1716 ("%s: empty q", __func__)); 1717 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1718 if (tail == NULL) 1719 tail = m = qent->data; 1720 else { 1721 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1722 tail->m_next = qent->data; 1723 } 1724 while (tail->m_next != NULL) 1725 tail = tail->m_next; 1726 if (qent->last) { 1727 qnext = NULL; 1728 /* Bump MSEQ if necessary */ 1729 ng_ppp_bump_mseq(node, qent->seq); 1730 } 1731 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1732 } 1733 *mp = m; 1734 } 1735 1736 /* 1737 * Trim fragments from the queue whose packets can never be completed. 1738 * This assumes a complete packet is NOT at the beginning of the queue. 1739 * Returns 1 if fragments were removed, zero otherwise. 1740 */ 1741 static int 1742 ng_ppp_frag_trim(node_p node) 1743 { 1744 const priv_p priv = NG_NODE_PRIVATE(node); 1745 struct ng_ppp_frag *qent, *qnext = NULL; 1746 int removed = 0; 1747 1748 /* Scan for "dead" fragments and remove them */ 1749 while (1) { 1750 int dead = 0; 1751 1752 /* If queue is empty, we're done */ 1753 if (TAILQ_EMPTY(&priv->frags)) 1754 break; 1755 1756 /* Determine whether first fragment can ever be completed */ 1757 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1758 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1759 break; 1760 qnext = TAILQ_NEXT(qent, f_qent); 1761 KASSERT(qnext != NULL, 1762 ("%s: last frag < MSEQ?", __func__)); 1763 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1764 || qent->last || qnext->first) { 1765 dead = 1; 1766 break; 1767 } 1768 } 1769 if (!dead) 1770 break; 1771 1772 /* Remove fragment and all others in the same packet */ 1773 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1774 KASSERT(!TAILQ_EMPTY(&priv->frags), 1775 ("%s: empty q", __func__)); 1776 priv->bundleStats.dropFragments++; 1777 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1778 NG_FREE_M(qent->data); 1779 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1780 removed = 1; 1781 } 1782 } 1783 return (removed); 1784 } 1785 1786 /* 1787 * Drop fragments on queue overflow. 1788 * Returns 1 if fragments were removed, zero otherwise. 1789 */ 1790 static int 1791 ng_ppp_frag_drop(node_p node) 1792 { 1793 const priv_p priv = NG_NODE_PRIVATE(node); 1794 1795 /* Check queue length */ 1796 if (TAILQ_EMPTY(&priv->fragsfree)) { 1797 struct ng_ppp_frag *qent; 1798 1799 /* Get oldest fragment */ 1800 KASSERT(!TAILQ_EMPTY(&priv->frags), 1801 ("%s: empty q", __func__)); 1802 qent = TAILQ_FIRST(&priv->frags); 1803 1804 /* Bump MSEQ if necessary */ 1805 ng_ppp_bump_mseq(node, qent->seq); 1806 1807 /* Drop it */ 1808 priv->bundleStats.dropFragments++; 1809 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1810 NG_FREE_M(qent->data); 1811 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1812 1813 return (1); 1814 } 1815 return (0); 1816 } 1817 1818 /* 1819 * Run the queue, restoring the queue invariants 1820 */ 1821 static int 1822 ng_ppp_frag_process(node_p node, item_p oitem) 1823 { 1824 const priv_p priv = NG_NODE_PRIVATE(node); 1825 struct mbuf *m; 1826 item_p item; 1827 uint16_t proto; 1828 1829 do { 1830 /* Deliver any deliverable packets */ 1831 while (ng_ppp_check_packet(node)) { 1832 ng_ppp_get_packet(node, &m); 1833 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1834 continue; 1835 if (!PROT_VALID(proto)) { 1836 priv->bundleStats.badProtos++; 1837 NG_FREE_M(m); 1838 continue; 1839 } 1840 if (oitem) { /* If original item present - reuse it. */ 1841 item = oitem; 1842 oitem = NULL; 1843 NGI_M(item) = m; 1844 } else { 1845 item = ng_package_data(m, NG_NOFLAGS); 1846 } 1847 if (item != NULL) { 1848 /* Stats */ 1849 priv->bundleStats.recvFrames++; 1850 priv->bundleStats.recvOctets += 1851 NGI_M(item)->m_pkthdr.len; 1852 1853 /* Drop mutex for the sending time. 1854 * Priv may change, but we are ready! 1855 */ 1856 mtx_unlock(&priv->rmtx); 1857 ng_ppp_crypt_recv(node, item, proto, 1858 NG_PPP_BUNDLE_LINKNUM); 1859 mtx_lock(&priv->rmtx); 1860 } 1861 } 1862 /* Delete dead fragments and try again */ 1863 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1864 1865 /* If we haven't reused original item - free it. */ 1866 if (oitem) NG_FREE_ITEM(oitem); 1867 1868 /* Done */ 1869 return (0); 1870 } 1871 1872 /* 1873 * Check for 'stale' completed packets that need to be delivered 1874 * 1875 * If a link goes down or has a temporary failure, MSEQ can get 1876 * "stuck", because no new incoming fragments appear on that link. 1877 * This can cause completed packets to never get delivered if 1878 * their sequence numbers are all > MSEQ + 1. 1879 * 1880 * This routine checks how long all of the completed packets have 1881 * been sitting in the queue, and if too long, removes fragments 1882 * from the queue and increments MSEQ to allow them to be delivered. 1883 */ 1884 static void 1885 ng_ppp_frag_checkstale(node_p node) 1886 { 1887 const priv_p priv = NG_NODE_PRIVATE(node); 1888 struct ng_ppp_frag *qent, *beg, *end; 1889 struct timeval now, age; 1890 struct mbuf *m; 1891 int seq; 1892 item_p item; 1893 int endseq; 1894 uint16_t proto; 1895 1896 now.tv_sec = 0; /* uninitialized state */ 1897 while (1) { 1898 1899 /* If queue is empty, we're done */ 1900 if (TAILQ_EMPTY(&priv->frags)) 1901 break; 1902 1903 /* Find the first complete packet in the queue */ 1904 beg = end = NULL; 1905 seq = TAILQ_FIRST(&priv->frags)->seq; 1906 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1907 if (qent->first) 1908 beg = qent; 1909 else if (qent->seq != seq) 1910 beg = NULL; 1911 if (beg != NULL && qent->last) { 1912 end = qent; 1913 break; 1914 } 1915 seq = MP_NEXT_RECV_SEQ(priv, seq); 1916 } 1917 1918 /* If none found, exit */ 1919 if (end == NULL) 1920 break; 1921 1922 /* Get current time (we assume we've been up for >= 1 second) */ 1923 if (now.tv_sec == 0) 1924 getmicrouptime(&now); 1925 1926 /* Check if packet has been queued too long */ 1927 age = now; 1928 timevalsub(&age, &beg->timestamp); 1929 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1930 break; 1931 1932 /* Throw away junk fragments in front of the completed packet */ 1933 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1934 KASSERT(!TAILQ_EMPTY(&priv->frags), 1935 ("%s: empty q", __func__)); 1936 priv->bundleStats.dropFragments++; 1937 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1938 NG_FREE_M(qent->data); 1939 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1940 } 1941 1942 /* Extract completed packet */ 1943 endseq = end->seq; 1944 ng_ppp_get_packet(node, &m); 1945 1946 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1947 continue; 1948 if (!PROT_VALID(proto)) { 1949 priv->bundleStats.badProtos++; 1950 NG_FREE_M(m); 1951 continue; 1952 } 1953 1954 /* Deliver packet */ 1955 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1956 /* Stats */ 1957 priv->bundleStats.recvFrames++; 1958 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1959 1960 ng_ppp_crypt_recv(node, item, proto, 1961 NG_PPP_BUNDLE_LINKNUM); 1962 } 1963 } 1964 } 1965 1966 /* 1967 * Periodically call ng_ppp_frag_checkstale() 1968 */ 1969 static void 1970 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1971 { 1972 /* XXX: is this needed? */ 1973 if (NG_NODE_NOT_VALID(node)) 1974 return; 1975 1976 /* Scan the fragment queue */ 1977 ng_ppp_frag_checkstale(node); 1978 1979 /* Start timer again */ 1980 ng_ppp_start_frag_timer(node); 1981 } 1982 1983 /* 1984 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1985 * the frame across the individual PPP links and do so. 1986 */ 1987 static int 1988 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1989 { 1990 const priv_p priv = NG_NODE_PRIVATE(node); 1991 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1992 int distrib[NG_PPP_MAX_LINKS]; 1993 int firstFragment; 1994 int activeLinkNum; 1995 struct mbuf *m; 1996 int plen; 1997 int frags; 1998 int32_t seq; 1999 2000 /* At least one link must be active */ 2001 if (priv->numActiveLinks == 0) { 2002 NG_FREE_ITEM(item); 2003 return (ENETDOWN); 2004 } 2005 2006 /* Save length for later stats. */ 2007 plen = NGI_M(item)->m_pkthdr.len; 2008 2009 if (!priv->conf.enableMultilink) { 2010 return (ng_ppp_link_xmit(node, item, proto, 2011 priv->activeLinks[0], plen)); 2012 } 2013 2014 /* Check peer's MRRU for this bundle. */ 2015 if (plen > priv->conf.mrru) { 2016 NG_FREE_ITEM(item); 2017 return (EMSGSIZE); 2018 } 2019 2020 /* Extract mbuf. */ 2021 NGI_GET_M(item, m); 2022 2023 /* Prepend protocol number, possibly compressed. */ 2024 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) { 2025 NG_FREE_ITEM(item); 2026 return (ENOBUFS); 2027 } 2028 2029 /* Clear distribution plan */ 2030 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 2031 2032 mtx_lock(&priv->xmtx); 2033 2034 /* Round-robin strategy */ 2035 if (priv->conf.enableRoundRobin) { 2036 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 2037 distrib[activeLinkNum] = m->m_pkthdr.len; 2038 goto deliver; 2039 } 2040 2041 /* Strategy when all links are equivalent (optimize the common case) */ 2042 if (priv->allLinksEqual) { 2043 int numFrags, fraction, remain; 2044 int i; 2045 2046 /* Calculate optimal fragment count */ 2047 numFrags = priv->numActiveLinks; 2048 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 2049 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 2050 if (numFrags == 0) 2051 numFrags = 1; 2052 2053 fraction = m->m_pkthdr.len / numFrags; 2054 remain = m->m_pkthdr.len - (fraction * numFrags); 2055 2056 /* Assign distribution */ 2057 for (i = 0; i < numFrags; i++) { 2058 distrib[priv->lastLink++ % priv->numActiveLinks] 2059 = fraction + (((remain--) > 0)?1:0); 2060 } 2061 goto deliver; 2062 } 2063 2064 /* Strategy when all links are not equivalent */ 2065 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 2066 2067 deliver: 2068 /* Estimate fragments count */ 2069 frags = 0; 2070 for (activeLinkNum = priv->numActiveLinks - 1; 2071 activeLinkNum >= 0; activeLinkNum--) { 2072 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2073 struct ng_ppp_link *const link = &priv->links[linkNum]; 2074 2075 frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) / 2076 (link->conf.mru - hdr_len); 2077 } 2078 2079 /* Get out initial sequence number */ 2080 seq = priv->xseq; 2081 2082 /* Update next sequence number */ 2083 if (priv->conf.xmitShortSeq) { 2084 priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK; 2085 } else { 2086 priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK; 2087 } 2088 2089 mtx_unlock(&priv->xmtx); 2090 2091 /* Send alloted portions of frame out on the link(s) */ 2092 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 2093 activeLinkNum >= 0; activeLinkNum--) { 2094 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2095 struct ng_ppp_link *const link = &priv->links[linkNum]; 2096 2097 /* Deliver fragment(s) out the next link */ 2098 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 2099 int len, lastFragment, error; 2100 struct mbuf *m2; 2101 2102 /* Calculate fragment length; don't exceed link MTU */ 2103 len = distrib[activeLinkNum]; 2104 if (len > link->conf.mru - hdr_len) 2105 len = link->conf.mru - hdr_len; 2106 distrib[activeLinkNum] -= len; 2107 lastFragment = (len == m->m_pkthdr.len); 2108 2109 /* Split off next fragment as "m2" */ 2110 m2 = m; 2111 if (!lastFragment) { 2112 struct mbuf *n = m_split(m, len, M_NOWAIT); 2113 2114 if (n == NULL) { 2115 NG_FREE_M(m); 2116 if (firstFragment) 2117 NG_FREE_ITEM(item); 2118 return (ENOMEM); 2119 } 2120 m_tag_copy_chain(n, m, M_NOWAIT); 2121 m = n; 2122 } 2123 2124 /* Prepend MP header */ 2125 if (priv->conf.xmitShortSeq) { 2126 uint16_t shdr; 2127 2128 shdr = seq; 2129 seq = (seq + 1) & MP_SHORT_SEQ_MASK; 2130 if (firstFragment) 2131 shdr |= MP_SHORT_FIRST_FLAG; 2132 if (lastFragment) 2133 shdr |= MP_SHORT_LAST_FLAG; 2134 shdr = htons(shdr); 2135 m2 = ng_ppp_prepend(m2, &shdr, 2); 2136 } else { 2137 uint32_t lhdr; 2138 2139 lhdr = seq; 2140 seq = (seq + 1) & MP_LONG_SEQ_MASK; 2141 if (firstFragment) 2142 lhdr |= MP_LONG_FIRST_FLAG; 2143 if (lastFragment) 2144 lhdr |= MP_LONG_LAST_FLAG; 2145 lhdr = htonl(lhdr); 2146 m2 = ng_ppp_prepend(m2, &lhdr, 4); 2147 } 2148 if (m2 == NULL) { 2149 if (!lastFragment) 2150 m_freem(m); 2151 if (firstFragment) 2152 NG_FREE_ITEM(item); 2153 return (ENOBUFS); 2154 } 2155 2156 /* Send fragment */ 2157 if (firstFragment) { 2158 NGI_M(item) = m2; /* Reuse original item. */ 2159 } else { 2160 item = ng_package_data(m2, NG_NOFLAGS); 2161 } 2162 if (item != NULL) { 2163 error = ng_ppp_link_xmit(node, item, PROT_MP, 2164 linkNum, (firstFragment?plen:0)); 2165 if (error != 0) { 2166 if (!lastFragment) 2167 NG_FREE_M(m); 2168 return (error); 2169 } 2170 } 2171 } 2172 } 2173 2174 /* Done */ 2175 return (0); 2176 } 2177 2178 /* 2179 * Computing the optimal fragmentation 2180 * ----------------------------------- 2181 * 2182 * This routine tries to compute the optimal fragmentation pattern based 2183 * on each link's latency, bandwidth, and calculated additional latency. 2184 * The latter quantity is the additional latency caused by previously 2185 * written data that has not been transmitted yet. 2186 * 2187 * This algorithm is only useful when not all of the links have the 2188 * same latency and bandwidth values. 2189 * 2190 * The essential idea is to make the last bit of each fragment of the 2191 * frame arrive at the opposite end at the exact same time. This greedy 2192 * algorithm is optimal, in that no other scheduling could result in any 2193 * packet arriving any sooner unless packets are delivered out of order. 2194 * 2195 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2196 * latency l_i (in miliseconds). Consider the function function f_i(t) 2197 * which is equal to the number of bytes that will have arrived at 2198 * the peer after t miliseconds if we start writing continuously at 2199 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2200 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2201 * Note that the y-intersect is always <= zero because latency can't be 2202 * negative. Note also that really the function is f_i(t) except when 2203 * f_i(t) is negative, in which case the function is zero. To take 2204 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2205 * So the actual number of bytes that will have arrived at the peer after 2206 * t miliseconds is f_i(t) * Q_i(t). 2207 * 2208 * At any given time, each link has some additional latency a_i >= 0 2209 * due to previously written fragment(s) which are still in the queue. 2210 * This value is easily computed from the time since last transmission, 2211 * the previous latency value, the number of bytes written, and the 2212 * link's bandwidth. 2213 * 2214 * Assume that l_i includes any a_i already, and that the links are 2215 * sorted by latency, so that l_i <= l_{i+1}. 2216 * 2217 * Let N be the total number of bytes in the current frame we are sending. 2218 * 2219 * Suppose we were to start writing bytes at time t = 0 on all links 2220 * simultaneously, which is the most we can possibly do. Then let 2221 * F(t) be equal to the total number of bytes received by the peer 2222 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2223 * 2224 * Our goal is simply this: fragment the frame across the links such 2225 * that the peer is able to reconstruct the completed frame as soon as 2226 * possible, i.e., at the least possible value of t. Call this value t_0. 2227 * 2228 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2229 * of t_0, and then deduce how many bytes to write to each link. 2230 * 2231 * Rewriting F(t_0): 2232 * 2233 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2234 * 2235 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2236 * lie in one of these ranges. To find it, we just need to find the i such 2237 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2238 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2239 * 2240 * Once t_0 is known, then the number of bytes to send on link i is 2241 * just f_i(t_0) * Q_i(t_0). 2242 * 2243 * In other words, we start allocating bytes to the links one at a time. 2244 * We keep adding links until the frame is completely sent. Some links 2245 * may not get any bytes because their latency is too high. 2246 * 2247 * Is all this work really worth the trouble? Depends on the situation. 2248 * The bigger the ratio of computer speed to link speed, and the more 2249 * important total bundle latency is (e.g., for interactive response time), 2250 * the more it's worth it. There is however the cost of calling this 2251 * function for every frame. The running time is O(n^2) where n is the 2252 * number of links that receive a non-zero number of bytes. 2253 * 2254 * Since latency is measured in miliseconds, the "resolution" of this 2255 * algorithm is one milisecond. 2256 * 2257 * To avoid this algorithm altogether, configure all links to have the 2258 * same latency and bandwidth. 2259 */ 2260 static void 2261 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2262 { 2263 const priv_p priv = NG_NODE_PRIVATE(node); 2264 int latency[NG_PPP_MAX_LINKS]; 2265 int sortByLatency[NG_PPP_MAX_LINKS]; 2266 int activeLinkNum; 2267 int t0, total, topSum, botSum; 2268 struct timeval now; 2269 int i, numFragments; 2270 2271 /* If only one link, this gets real easy */ 2272 if (priv->numActiveLinks == 1) { 2273 distrib[0] = len; 2274 return; 2275 } 2276 2277 /* Get current time */ 2278 getmicrouptime(&now); 2279 2280 /* Compute latencies for each link at this point in time */ 2281 for (activeLinkNum = 0; 2282 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2283 struct ng_ppp_link *alink; 2284 struct timeval diff; 2285 int xmitBytes; 2286 2287 /* Start with base latency value */ 2288 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2289 latency[activeLinkNum] = alink->latency; 2290 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2291 2292 /* Any additional latency? */ 2293 if (alink->bytesInQueue == 0) 2294 continue; 2295 2296 /* Compute time delta since last write */ 2297 diff = now; 2298 timevalsub(&diff, &alink->lastWrite); 2299 2300 /* alink->bytesInQueue will be changed, mark change time. */ 2301 alink->lastWrite = now; 2302 2303 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2304 alink->bytesInQueue = 0; 2305 continue; 2306 } 2307 2308 /* How many bytes could have transmitted since last write? */ 2309 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2310 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2311 alink->bytesInQueue -= xmitBytes; 2312 if (alink->bytesInQueue < 0) 2313 alink->bytesInQueue = 0; 2314 else 2315 latency[activeLinkNum] += 2316 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2317 } 2318 2319 /* Sort active links by latency */ 2320 qsort_r(sortByLatency, 2321 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2322 2323 /* Find the interval we need (add links in sortByLatency[] order) */ 2324 for (numFragments = 1; 2325 numFragments < priv->numActiveLinks; numFragments++) { 2326 for (total = i = 0; i < numFragments; i++) { 2327 int flowTime; 2328 2329 flowTime = latency[sortByLatency[numFragments]] 2330 - latency[sortByLatency[i]]; 2331 total += ((flowTime * priv->links[ 2332 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2333 + 99) / 100; 2334 } 2335 if (total >= len) 2336 break; 2337 } 2338 2339 /* Solve for t_0 in that interval */ 2340 for (topSum = botSum = i = 0; i < numFragments; i++) { 2341 int bw = priv->links[ 2342 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2343 2344 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2345 botSum += bw; /* / 100 */ 2346 } 2347 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2348 2349 /* Compute f_i(t_0) all i */ 2350 for (total = i = 0; i < numFragments; i++) { 2351 int bw = priv->links[ 2352 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2353 2354 distrib[sortByLatency[i]] = 2355 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2356 total += distrib[sortByLatency[i]]; 2357 } 2358 2359 /* Deal with any rounding error */ 2360 if (total < len) { 2361 struct ng_ppp_link *fastLink = 2362 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2363 int fast = 0; 2364 2365 /* Find the fastest link */ 2366 for (i = 1; i < numFragments; i++) { 2367 struct ng_ppp_link *const link = 2368 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2369 2370 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2371 fast = i; 2372 fastLink = link; 2373 } 2374 } 2375 distrib[sortByLatency[fast]] += len - total; 2376 } else while (total > len) { 2377 struct ng_ppp_link *slowLink = 2378 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2379 int delta, slow = 0; 2380 2381 /* Find the slowest link that still has bytes to remove */ 2382 for (i = 1; i < numFragments; i++) { 2383 struct ng_ppp_link *const link = 2384 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2385 2386 if (distrib[sortByLatency[slow]] == 0 || 2387 (distrib[sortByLatency[i]] > 0 && 2388 link->conf.bandwidth < slowLink->conf.bandwidth)) { 2389 slow = i; 2390 slowLink = link; 2391 } 2392 } 2393 delta = total - len; 2394 if (delta > distrib[sortByLatency[slow]]) 2395 delta = distrib[sortByLatency[slow]]; 2396 distrib[sortByLatency[slow]] -= delta; 2397 total -= delta; 2398 } 2399 } 2400 2401 /* 2402 * Compare two integers 2403 */ 2404 static int 2405 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2406 { 2407 const int index1 = *((const int *) v1); 2408 const int index2 = *((const int *) v2); 2409 2410 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2411 } 2412 2413 /* 2414 * Prepend a possibly compressed PPP protocol number in front of a frame 2415 */ 2416 static struct mbuf * 2417 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2418 { 2419 if (compOK && PROT_COMPRESSABLE(proto)) { 2420 uint8_t pbyte = (uint8_t)proto; 2421 2422 return ng_ppp_prepend(m, &pbyte, 1); 2423 } else { 2424 uint16_t pword = htons((uint16_t)proto); 2425 2426 return ng_ppp_prepend(m, &pword, 2); 2427 } 2428 } 2429 2430 /* 2431 * Cut a possibly compressed PPP protocol number from the front of a frame. 2432 */ 2433 static struct mbuf * 2434 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2435 { 2436 2437 *proto = 0; 2438 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2439 return (NULL); 2440 2441 *proto = *mtod(m, uint8_t *); 2442 m_adj(m, 1); 2443 2444 if (!PROT_VALID(*proto)) { 2445 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2446 return (NULL); 2447 2448 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2449 m_adj(m, 1); 2450 } 2451 2452 return (m); 2453 } 2454 2455 /* 2456 * Prepend some bytes to an mbuf. 2457 */ 2458 static struct mbuf * 2459 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2460 { 2461 M_PREPEND(m, len, M_NOWAIT); 2462 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2463 return (NULL); 2464 bcopy(buf, mtod(m, uint8_t *), len); 2465 return (m); 2466 } 2467 2468 /* 2469 * Update private information that is derived from other private information 2470 */ 2471 static void 2472 ng_ppp_update(node_p node, int newConf) 2473 { 2474 const priv_p priv = NG_NODE_PRIVATE(node); 2475 int i; 2476 2477 /* Update active status for VJ Compression */ 2478 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2479 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2480 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2481 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2482 2483 /* Increase latency for each link an amount equal to one MP header */ 2484 if (newConf) { 2485 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2486 int hdrBytes; 2487 2488 if (priv->links[i].conf.bandwidth == 0) 2489 continue; 2490 2491 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2492 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2493 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2494 + (priv->conf.xmitShortSeq ? 2 : 4); 2495 priv->links[i].latency = 2496 priv->links[i].conf.latency + 2497 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2498 } 2499 } 2500 2501 /* Update list of active links */ 2502 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2503 priv->numActiveLinks = 0; 2504 priv->allLinksEqual = 1; 2505 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2506 struct ng_ppp_link *const link = &priv->links[i]; 2507 2508 /* Is link active? */ 2509 if (link->conf.enableLink && link->hook != NULL) { 2510 struct ng_ppp_link *link0; 2511 2512 /* Add link to list of active links */ 2513 priv->activeLinks[priv->numActiveLinks++] = i; 2514 link0 = &priv->links[priv->activeLinks[0]]; 2515 2516 /* Determine if all links are still equal */ 2517 if (link->latency != link0->latency 2518 || link->conf.bandwidth != link0->conf.bandwidth) 2519 priv->allLinksEqual = 0; 2520 2521 /* Initialize rec'd sequence number */ 2522 if (link->seq == MP_NOSEQ) { 2523 link->seq = (link == link0) ? 2524 MP_INITIAL_SEQ : link0->seq; 2525 } 2526 } else 2527 link->seq = MP_NOSEQ; 2528 } 2529 2530 /* Update MP state as multi-link is active or not */ 2531 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2532 ng_ppp_start_frag_timer(node); 2533 else { 2534 ng_ppp_stop_frag_timer(node); 2535 ng_ppp_frag_reset(node); 2536 priv->xseq = MP_INITIAL_SEQ; 2537 priv->mseq = MP_INITIAL_SEQ; 2538 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2539 struct ng_ppp_link *const link = &priv->links[i]; 2540 2541 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2542 link->bytesInQueue = 0; 2543 link->seq = MP_NOSEQ; 2544 } 2545 } 2546 2547 if (priv->hooks[HOOK_INDEX_INET] != NULL) { 2548 if (priv->conf.enableIP == 1 && 2549 priv->numActiveLinks == 1 && 2550 priv->conf.enableMultilink == 0 && 2551 priv->conf.enableCompression == 0 && 2552 priv->conf.enableEncryption == 0 && 2553 priv->conf.enableVJCompression == 0) 2554 NG_HOOK_SET_RCVDATA(priv->hooks[HOOK_INDEX_INET], 2555 ng_ppp_rcvdata_inet_fast); 2556 else 2557 NG_HOOK_SET_RCVDATA(priv->hooks[HOOK_INDEX_INET], 2558 ng_ppp_rcvdata_inet); 2559 } 2560 } 2561 2562 /* 2563 * Determine if a new configuration would represent a valid change 2564 * from the current configuration and link activity status. 2565 */ 2566 static int 2567 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2568 { 2569 const priv_p priv = NG_NODE_PRIVATE(node); 2570 int i, newNumLinksActive; 2571 2572 /* Check per-link config and count how many links would be active */ 2573 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2574 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2575 newNumLinksActive++; 2576 if (!newConf->links[i].enableLink) 2577 continue; 2578 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2579 return (0); 2580 if (newConf->links[i].bandwidth == 0) 2581 return (0); 2582 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2583 return (0); 2584 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2585 return (0); 2586 } 2587 2588 /* Disallow changes to multi-link configuration while MP is active */ 2589 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2590 if (!priv->conf.enableMultilink 2591 != !newConf->bund.enableMultilink 2592 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2593 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2594 return (0); 2595 } 2596 2597 /* At most one link can be active unless multi-link is enabled */ 2598 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2599 return (0); 2600 2601 /* Configuration change would be valid */ 2602 return (1); 2603 } 2604 2605 /* 2606 * Free all entries in the fragment queue 2607 */ 2608 static void 2609 ng_ppp_frag_reset(node_p node) 2610 { 2611 const priv_p priv = NG_NODE_PRIVATE(node); 2612 struct ng_ppp_frag *qent, *qnext; 2613 2614 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2615 qnext = TAILQ_NEXT(qent, f_qent); 2616 NG_FREE_M(qent->data); 2617 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 2618 } 2619 TAILQ_INIT(&priv->frags); 2620 } 2621 2622 /* 2623 * Start fragment queue timer 2624 */ 2625 static void 2626 ng_ppp_start_frag_timer(node_p node) 2627 { 2628 const priv_p priv = NG_NODE_PRIVATE(node); 2629 2630 if (!(callout_pending(&priv->fragTimer))) 2631 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2632 ng_ppp_frag_timeout, NULL, 0); 2633 } 2634 2635 /* 2636 * Stop fragment queue timer 2637 */ 2638 static void 2639 ng_ppp_stop_frag_timer(node_p node) 2640 { 2641 const priv_p priv = NG_NODE_PRIVATE(node); 2642 2643 if (callout_pending(&priv->fragTimer)) 2644 ng_uncallout(&priv->fragTimer, node); 2645 } 2646