1 /*- 2 * Copyright (c) 1996-2000 Whistle Communications, Inc. 3 * All rights reserved. 4 * 5 * Subject to the following obligations and disclaimer of warranty, use and 6 * redistribution of this software, in source or object code forms, with or 7 * without modifications are expressly permitted by Whistle Communications; 8 * provided, however, that: 9 * 1. Any and all reproductions of the source or object code must include the 10 * copyright notice above and the following disclaimer of warranties; and 11 * 2. No rights are granted, in any manner or form, to use Whistle 12 * Communications, Inc. trademarks, including the mark "WHISTLE 13 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 14 * such appears in the above copyright notice or in the software. 15 * 16 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 17 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 18 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 19 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 21 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 22 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 23 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 24 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 25 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 26 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 27 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 32 * OF SUCH DAMAGE. 33 * 34 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice unmodified, this list of conditions, and the following 42 * disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 60 * 61 * $FreeBSD$ 62 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 63 */ 64 65 /* 66 * PPP node type data-flow. 67 * 68 * hook xmit layer recv hook 69 * ------------------------------------ 70 * inet -> -> inet 71 * ipv6 -> -> ipv6 72 * ipx -> proto -> ipx 73 * atalk -> -> atalk 74 * bypass -> -> bypass 75 * -hcomp_xmit()----------proto_recv()- 76 * vjc_ip <- <- vjc_ip 77 * vjc_comp -> header compression -> vjc_comp 78 * vjc_uncomp -> -> vjc_uncomp 79 * vjc_vjip -> 80 * -comp_xmit()-----------hcomp_recv()- 81 * compress <- compression <- decompress 82 * compress -> -> decompress 83 * -crypt_xmit()-----------comp_recv()- 84 * encrypt <- encryption <- decrypt 85 * encrypt -> -> decrypt 86 * -ml_xmit()-------------crypt_recv()- 87 * multilink 88 * -link_xmit()--------------ml_recv()- 89 * linkX <- link <- linkX 90 * 91 */ 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/time.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/errno.h> 101 #include <sys/ctype.h> 102 103 #include <netgraph/ng_message.h> 104 #include <netgraph/netgraph.h> 105 #include <netgraph/ng_parse.h> 106 #include <netgraph/ng_ppp.h> 107 #include <netgraph/ng_vjc.h> 108 109 #ifdef NG_SEPARATE_MALLOC 110 MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 111 #else 112 #define M_NETGRAPH_PPP M_NETGRAPH 113 #endif 114 115 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 116 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 117 118 /* Some PPP protocol numbers we're interested in */ 119 #define PROT_ATALK 0x0029 120 #define PROT_COMPD 0x00fd 121 #define PROT_CRYPTD 0x0053 122 #define PROT_IP 0x0021 123 #define PROT_IPV6 0x0057 124 #define PROT_IPX 0x002b 125 #define PROT_LCP 0xc021 126 #define PROT_MP 0x003d 127 #define PROT_VJCOMP 0x002d 128 #define PROT_VJUNCOMP 0x002f 129 130 /* Multilink PPP definitions */ 131 #define MP_MIN_MRRU 1500 /* per RFC 1990 */ 132 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 133 #define MP_MIN_LINK_MRU 32 134 135 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 136 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 137 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 138 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 139 140 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 141 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 142 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 143 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 144 145 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 146 147 /* Sign extension of MP sequence numbers */ 148 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 149 ((s) | ~MP_SHORT_SEQ_MASK) \ 150 : ((s) & MP_SHORT_SEQ_MASK)) 151 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 152 ((s) | ~MP_LONG_SEQ_MASK) \ 153 : ((s) & MP_LONG_SEQ_MASK)) 154 155 /* Comparision of MP sequence numbers. Note: all sequence numbers 156 except priv->xseq are stored with the sign bit extended. */ 157 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 158 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 159 160 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 161 ((priv)->conf.recvShortSeq ? \ 162 MP_SHORT_SEQ_DIFF((x), (y)) : \ 163 MP_LONG_SEQ_DIFF((x), (y))) 164 165 /* Increment receive sequence number */ 166 #define MP_NEXT_RECV_SEQ(priv,seq) \ 167 ((priv)->conf.recvShortSeq ? \ 168 MP_SHORT_EXTEND((seq) + 1) : \ 169 MP_LONG_EXTEND((seq) + 1)) 170 171 /* Don't fragment transmitted packets to parts smaller than this */ 172 #define MP_MIN_FRAG_LEN 32 173 174 /* Maximum fragment reasssembly queue length */ 175 #define MP_MAX_QUEUE_LEN 128 176 177 /* Fragment queue scanner period */ 178 #define MP_FRAGTIMER_INTERVAL (hz/2) 179 180 /* Average link overhead. XXX: Should be given by user-level */ 181 #define MP_AVERAGE_LINK_OVERHEAD 16 182 183 /* Keep this equal to ng_ppp_hook_names lower! */ 184 #define HOOK_INDEX_MAX 13 185 186 /* We store incoming fragments this way */ 187 struct ng_ppp_frag { 188 int seq; /* fragment seq# */ 189 uint8_t first; /* First in packet? */ 190 uint8_t last; /* Last in packet? */ 191 struct timeval timestamp; /* time of reception */ 192 struct mbuf *data; /* Fragment data */ 193 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 194 }; 195 196 /* Per-link private information */ 197 struct ng_ppp_link { 198 struct ng_ppp_link_conf conf; /* link configuration */ 199 struct ng_ppp_link_stat64 stats; /* link stats */ 200 hook_p hook; /* connection to link data */ 201 int32_t seq; /* highest rec'd seq# - MSEQ */ 202 uint32_t latency; /* calculated link latency */ 203 struct timeval lastWrite; /* time of last write for MP */ 204 int bytesInQueue; /* bytes in the output queue for MP */ 205 }; 206 207 /* Total per-node private information */ 208 struct ng_ppp_private { 209 struct ng_ppp_bund_conf conf; /* bundle config */ 210 struct ng_ppp_link_stat64 bundleStats; /* bundle stats */ 211 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 212 int32_t xseq; /* next out MP seq # */ 213 int32_t mseq; /* min links[i].seq */ 214 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indicies */ 215 uint16_t numActiveLinks; /* how many links up */ 216 uint16_t lastLink; /* for round robin */ 217 uint8_t vjCompHooked; /* VJ comp hooked up? */ 218 uint8_t allLinksEqual; /* all xmit the same? */ 219 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 220 struct ng_ppp_frag fragsmem[MP_MAX_QUEUE_LEN]; /* fragments storage */ 221 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 222 frags; 223 TAILQ_HEAD(ng_ppp_fragfreelist, ng_ppp_frag) /* free fragment queue */ 224 fragsfree; 225 struct callout fragTimer; /* fraq queue check */ 226 struct mtx rmtx; /* recv mutex */ 227 struct mtx xmtx; /* xmit mutex */ 228 }; 229 typedef struct ng_ppp_private *priv_p; 230 231 /* Netgraph node methods */ 232 static ng_constructor_t ng_ppp_constructor; 233 static ng_rcvmsg_t ng_ppp_rcvmsg; 234 static ng_shutdown_t ng_ppp_shutdown; 235 static ng_newhook_t ng_ppp_newhook; 236 static ng_rcvdata_t ng_ppp_rcvdata; 237 static ng_disconnect_t ng_ppp_disconnect; 238 239 static ng_rcvdata_t ng_ppp_rcvdata_inet; 240 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 241 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 242 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 243 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 244 245 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 246 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 247 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 248 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 249 250 static ng_rcvdata_t ng_ppp_rcvdata_compress; 251 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 252 253 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 254 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 255 256 /* We use integer indicies to refer to the non-link hooks. */ 257 static const struct { 258 char *const name; 259 ng_rcvdata_t *fn; 260 } ng_ppp_hook_names[] = { 261 #define HOOK_INDEX_ATALK 0 262 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 263 #define HOOK_INDEX_BYPASS 1 264 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 265 #define HOOK_INDEX_COMPRESS 2 266 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 267 #define HOOK_INDEX_ENCRYPT 3 268 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 269 #define HOOK_INDEX_DECOMPRESS 4 270 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 271 #define HOOK_INDEX_DECRYPT 5 272 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 273 #define HOOK_INDEX_INET 6 274 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 275 #define HOOK_INDEX_IPX 7 276 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 277 #define HOOK_INDEX_VJC_COMP 8 278 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 279 #define HOOK_INDEX_VJC_IP 9 280 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 281 #define HOOK_INDEX_VJC_UNCOMP 10 282 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 283 #define HOOK_INDEX_VJC_VJIP 11 284 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 285 #define HOOK_INDEX_IPV6 12 286 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 287 { NULL, NULL } 288 }; 289 290 /* Helper functions */ 291 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 292 uint16_t linkNum); 293 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 294 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 295 uint16_t linkNum); 296 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 297 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 298 uint16_t linkNum); 299 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 300 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 301 uint16_t linkNum); 302 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 303 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 304 uint16_t linkNum); 305 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 306 uint16_t linkNum, int plen); 307 308 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 309 uint16_t linkNum); 310 311 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 312 static int ng_ppp_frag_drop(node_p node); 313 static int ng_ppp_check_packet(node_p node); 314 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 315 static int ng_ppp_frag_process(node_p node, item_p oitem); 316 static int ng_ppp_frag_trim(node_p node); 317 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 318 int arg2); 319 static void ng_ppp_frag_checkstale(node_p node); 320 static void ng_ppp_frag_reset(node_p node); 321 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 322 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 323 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 324 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 325 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 326 static int ng_ppp_config_valid(node_p node, 327 const struct ng_ppp_node_conf *newConf); 328 static void ng_ppp_update(node_p node, int newConf); 329 static void ng_ppp_start_frag_timer(node_p node); 330 static void ng_ppp_stop_frag_timer(node_p node); 331 332 /* Parse type for struct ng_ppp_mp_state_type */ 333 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 334 &ng_parse_hint32_type, 335 NG_PPP_MAX_LINKS 336 }; 337 static const struct ng_parse_type ng_ppp_rseq_array_type = { 338 &ng_parse_fixedarray_type, 339 &ng_ppp_rseq_array_info, 340 }; 341 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 342 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 343 static const struct ng_parse_type ng_ppp_mp_state_type = { 344 &ng_parse_struct_type, 345 &ng_ppp_mp_state_type_fields 346 }; 347 348 /* Parse type for struct ng_ppp_link_conf */ 349 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 350 = NG_PPP_LINK_TYPE_INFO; 351 static const struct ng_parse_type ng_ppp_link_type = { 352 &ng_parse_struct_type, 353 &ng_ppp_link_type_fields 354 }; 355 356 /* Parse type for struct ng_ppp_bund_conf */ 357 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 358 = NG_PPP_BUND_TYPE_INFO; 359 static const struct ng_parse_type ng_ppp_bund_type = { 360 &ng_parse_struct_type, 361 &ng_ppp_bund_type_fields 362 }; 363 364 /* Parse type for struct ng_ppp_node_conf */ 365 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 366 &ng_ppp_link_type, 367 NG_PPP_MAX_LINKS 368 }; 369 static const struct ng_parse_type ng_ppp_link_array_type = { 370 &ng_parse_fixedarray_type, 371 &ng_ppp_array_info, 372 }; 373 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 374 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 375 static const struct ng_parse_type ng_ppp_conf_type = { 376 &ng_parse_struct_type, 377 &ng_ppp_conf_type_fields 378 }; 379 380 /* Parse type for struct ng_ppp_link_stat */ 381 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 382 = NG_PPP_STATS_TYPE_INFO; 383 static const struct ng_parse_type ng_ppp_stats_type = { 384 &ng_parse_struct_type, 385 &ng_ppp_stats_type_fields 386 }; 387 388 /* Parse type for struct ng_ppp_link_stat64 */ 389 static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[] 390 = NG_PPP_STATS64_TYPE_INFO; 391 static const struct ng_parse_type ng_ppp_stats64_type = { 392 &ng_parse_struct_type, 393 &ng_ppp_stats64_type_fields 394 }; 395 396 /* List of commands and how to convert arguments to/from ASCII */ 397 static const struct ng_cmdlist ng_ppp_cmds[] = { 398 { 399 NGM_PPP_COOKIE, 400 NGM_PPP_SET_CONFIG, 401 "setconfig", 402 &ng_ppp_conf_type, 403 NULL 404 }, 405 { 406 NGM_PPP_COOKIE, 407 NGM_PPP_GET_CONFIG, 408 "getconfig", 409 NULL, 410 &ng_ppp_conf_type 411 }, 412 { 413 NGM_PPP_COOKIE, 414 NGM_PPP_GET_MP_STATE, 415 "getmpstate", 416 NULL, 417 &ng_ppp_mp_state_type 418 }, 419 { 420 NGM_PPP_COOKIE, 421 NGM_PPP_GET_LINK_STATS, 422 "getstats", 423 &ng_parse_int16_type, 424 &ng_ppp_stats_type 425 }, 426 { 427 NGM_PPP_COOKIE, 428 NGM_PPP_CLR_LINK_STATS, 429 "clrstats", 430 &ng_parse_int16_type, 431 NULL 432 }, 433 { 434 NGM_PPP_COOKIE, 435 NGM_PPP_GETCLR_LINK_STATS, 436 "getclrstats", 437 &ng_parse_int16_type, 438 &ng_ppp_stats_type 439 }, 440 { 441 NGM_PPP_COOKIE, 442 NGM_PPP_GET_LINK_STATS64, 443 "getstats64", 444 &ng_parse_int16_type, 445 &ng_ppp_stats64_type 446 }, 447 { 448 NGM_PPP_COOKIE, 449 NGM_PPP_GETCLR_LINK_STATS64, 450 "getclrstats64", 451 &ng_parse_int16_type, 452 &ng_ppp_stats64_type 453 }, 454 { 0 } 455 }; 456 457 /* Node type descriptor */ 458 static struct ng_type ng_ppp_typestruct = { 459 .version = NG_ABI_VERSION, 460 .name = NG_PPP_NODE_TYPE, 461 .constructor = ng_ppp_constructor, 462 .rcvmsg = ng_ppp_rcvmsg, 463 .shutdown = ng_ppp_shutdown, 464 .newhook = ng_ppp_newhook, 465 .rcvdata = ng_ppp_rcvdata, 466 .disconnect = ng_ppp_disconnect, 467 .cmdlist = ng_ppp_cmds, 468 }; 469 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 470 471 /* Address and control field header */ 472 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 473 474 /* Maximum time we'll let a complete incoming packet sit in the queue */ 475 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 476 477 #define ERROUT(x) do { error = (x); goto done; } while (0) 478 479 /************************************************************************ 480 NETGRAPH NODE STUFF 481 ************************************************************************/ 482 483 /* 484 * Node type constructor 485 */ 486 static int 487 ng_ppp_constructor(node_p node) 488 { 489 priv_p priv; 490 int i; 491 492 /* Allocate private structure */ 493 MALLOC(priv, priv_p, sizeof(*priv), M_NETGRAPH_PPP, M_NOWAIT | M_ZERO); 494 if (priv == NULL) 495 return (ENOMEM); 496 497 NG_NODE_SET_PRIVATE(node, priv); 498 499 /* Initialize state */ 500 TAILQ_INIT(&priv->frags); 501 TAILQ_INIT(&priv->fragsfree); 502 for (i = 0; i < MP_MAX_QUEUE_LEN; i++) 503 TAILQ_INSERT_TAIL(&priv->fragsfree, &priv->fragsmem[i], f_qent); 504 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 505 priv->links[i].seq = MP_NOSEQ; 506 ng_callout_init(&priv->fragTimer); 507 508 mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF); 509 mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF); 510 511 /* Done */ 512 return (0); 513 } 514 515 /* 516 * Give our OK for a hook to be added 517 */ 518 static int 519 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 520 { 521 const priv_p priv = NG_NODE_PRIVATE(node); 522 hook_p *hookPtr = NULL; 523 int linkNum = -1; 524 int hookIndex = -1; 525 526 /* Figure out which hook it is */ 527 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 528 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 529 const char *cp; 530 char *eptr; 531 532 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 533 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 534 return (EINVAL); 535 linkNum = (int)strtoul(cp, &eptr, 10); 536 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 537 return (EINVAL); 538 hookPtr = &priv->links[linkNum].hook; 539 hookIndex = ~linkNum; 540 541 /* See if hook is already connected. */ 542 if (*hookPtr != NULL) 543 return (EISCONN); 544 545 /* Disallow more than one link unless multilink is enabled. */ 546 if (priv->links[linkNum].conf.enableLink && 547 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 548 return (ENODEV); 549 550 } else { /* must be a non-link hook */ 551 int i; 552 553 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 554 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 555 hookPtr = &priv->hooks[i]; 556 hookIndex = i; 557 break; 558 } 559 } 560 if (ng_ppp_hook_names[i].name == NULL) 561 return (EINVAL); /* no such hook */ 562 563 /* See if hook is already connected */ 564 if (*hookPtr != NULL) 565 return (EISCONN); 566 567 /* Every non-linkX hook have it's own function. */ 568 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 569 } 570 571 /* OK */ 572 *hookPtr = hook; 573 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 574 ng_ppp_update(node, 0); 575 return (0); 576 } 577 578 /* 579 * Receive a control message 580 */ 581 static int 582 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 583 { 584 const priv_p priv = NG_NODE_PRIVATE(node); 585 struct ng_mesg *resp = NULL; 586 int error = 0; 587 struct ng_mesg *msg; 588 589 NGI_GET_MSG(item, msg); 590 switch (msg->header.typecookie) { 591 case NGM_PPP_COOKIE: 592 switch (msg->header.cmd) { 593 case NGM_PPP_SET_CONFIG: 594 { 595 struct ng_ppp_node_conf *const conf = 596 (struct ng_ppp_node_conf *)msg->data; 597 int i; 598 599 /* Check for invalid or illegal config */ 600 if (msg->header.arglen != sizeof(*conf)) 601 ERROUT(EINVAL); 602 if (!ng_ppp_config_valid(node, conf)) 603 ERROUT(EINVAL); 604 605 /* Copy config */ 606 priv->conf = conf->bund; 607 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 608 priv->links[i].conf = conf->links[i]; 609 ng_ppp_update(node, 1); 610 break; 611 } 612 case NGM_PPP_GET_CONFIG: 613 { 614 struct ng_ppp_node_conf *conf; 615 int i; 616 617 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 618 if (resp == NULL) 619 ERROUT(ENOMEM); 620 conf = (struct ng_ppp_node_conf *)resp->data; 621 conf->bund = priv->conf; 622 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 623 conf->links[i] = priv->links[i].conf; 624 break; 625 } 626 case NGM_PPP_GET_MP_STATE: 627 { 628 struct ng_ppp_mp_state *info; 629 int i; 630 631 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 632 if (resp == NULL) 633 ERROUT(ENOMEM); 634 info = (struct ng_ppp_mp_state *)resp->data; 635 bzero(info, sizeof(*info)); 636 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 637 if (priv->links[i].seq != MP_NOSEQ) 638 info->rseq[i] = priv->links[i].seq; 639 } 640 info->mseq = priv->mseq; 641 info->xseq = priv->xseq; 642 break; 643 } 644 case NGM_PPP_GET_LINK_STATS: 645 case NGM_PPP_CLR_LINK_STATS: 646 case NGM_PPP_GETCLR_LINK_STATS: 647 case NGM_PPP_GET_LINK_STATS64: 648 case NGM_PPP_GETCLR_LINK_STATS64: 649 { 650 struct ng_ppp_link_stat64 *stats; 651 uint16_t linkNum; 652 653 /* Process request. */ 654 if (msg->header.arglen != sizeof(uint16_t)) 655 ERROUT(EINVAL); 656 linkNum = *((uint16_t *) msg->data); 657 if (linkNum >= NG_PPP_MAX_LINKS 658 && linkNum != NG_PPP_BUNDLE_LINKNUM) 659 ERROUT(EINVAL); 660 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 661 &priv->bundleStats : &priv->links[linkNum].stats; 662 663 /* Make 64bit reply. */ 664 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 || 665 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) { 666 NG_MKRESPONSE(resp, msg, 667 sizeof(struct ng_ppp_link_stat64), M_NOWAIT); 668 if (resp == NULL) 669 ERROUT(ENOMEM); 670 bcopy(stats, resp->data, sizeof(*stats)); 671 } else 672 /* Make 32bit reply. */ 673 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS || 674 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) { 675 struct ng_ppp_link_stat *rs; 676 NG_MKRESPONSE(resp, msg, 677 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 678 if (resp == NULL) 679 ERROUT(ENOMEM); 680 rs = (struct ng_ppp_link_stat *)resp->data; 681 /* Truncate 64->32 bits. */ 682 rs->xmitFrames = stats->xmitFrames; 683 rs->xmitOctets = stats->xmitOctets; 684 rs->recvFrames = stats->recvFrames; 685 rs->recvOctets = stats->recvOctets; 686 rs->badProtos = stats->badProtos; 687 rs->runts = stats->runts; 688 rs->dupFragments = stats->dupFragments; 689 rs->dropFragments = stats->dropFragments; 690 } 691 /* Clear stats. */ 692 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS && 693 msg->header.cmd != NGM_PPP_GET_LINK_STATS64) 694 bzero(stats, sizeof(*stats)); 695 break; 696 } 697 default: 698 error = EINVAL; 699 break; 700 } 701 break; 702 case NGM_VJC_COOKIE: 703 { 704 /* 705 * Forward it to the vjc node. leave the 706 * old return address alone. 707 * If we have no hook, let NG_RESPOND_MSG 708 * clean up any remaining resources. 709 * Because we have no resp, the item will be freed 710 * along with anything it references. Don't 711 * let msg be freed twice. 712 */ 713 NGI_MSG(item) = msg; /* put it back in the item */ 714 msg = NULL; 715 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 716 NG_FWD_ITEM_HOOK(error, item, lasthook); 717 } 718 return (error); 719 } 720 default: 721 error = EINVAL; 722 break; 723 } 724 done: 725 NG_RESPOND_MSG(error, node, item, resp); 726 NG_FREE_MSG(msg); 727 return (error); 728 } 729 730 /* 731 * Destroy node 732 */ 733 static int 734 ng_ppp_shutdown(node_p node) 735 { 736 const priv_p priv = NG_NODE_PRIVATE(node); 737 738 /* Stop fragment queue timer */ 739 ng_ppp_stop_frag_timer(node); 740 741 /* Take down netgraph node */ 742 ng_ppp_frag_reset(node); 743 mtx_destroy(&priv->rmtx); 744 mtx_destroy(&priv->xmtx); 745 bzero(priv, sizeof(*priv)); 746 FREE(priv, M_NETGRAPH_PPP); 747 NG_NODE_SET_PRIVATE(node, NULL); 748 NG_NODE_UNREF(node); /* let the node escape */ 749 return (0); 750 } 751 752 /* 753 * Hook disconnection 754 */ 755 static int 756 ng_ppp_disconnect(hook_p hook) 757 { 758 const node_p node = NG_HOOK_NODE(hook); 759 const priv_p priv = NG_NODE_PRIVATE(node); 760 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 761 762 /* Zero out hook pointer */ 763 if (index < 0) 764 priv->links[~index].hook = NULL; 765 else 766 priv->hooks[index] = NULL; 767 768 /* Update derived info (or go away if no hooks left). */ 769 if (NG_NODE_NUMHOOKS(node) > 0) 770 ng_ppp_update(node, 0); 771 else if (NG_NODE_IS_VALID(node)) 772 ng_rmnode_self(node); 773 774 return (0); 775 } 776 777 /* 778 * Proto layer 779 */ 780 781 /* 782 * Receive data on a hook inet. 783 */ 784 static int 785 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 786 { 787 const node_p node = NG_HOOK_NODE(hook); 788 const priv_p priv = NG_NODE_PRIVATE(node); 789 790 if (!priv->conf.enableIP) { 791 NG_FREE_ITEM(item); 792 return (ENXIO); 793 } 794 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 795 } 796 797 /* 798 * Receive data on a hook ipv6. 799 */ 800 static int 801 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 802 { 803 const node_p node = NG_HOOK_NODE(hook); 804 const priv_p priv = NG_NODE_PRIVATE(node); 805 806 if (!priv->conf.enableIPv6) { 807 NG_FREE_ITEM(item); 808 return (ENXIO); 809 } 810 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 811 } 812 813 /* 814 * Receive data on a hook atalk. 815 */ 816 static int 817 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 818 { 819 const node_p node = NG_HOOK_NODE(hook); 820 const priv_p priv = NG_NODE_PRIVATE(node); 821 822 if (!priv->conf.enableAtalk) { 823 NG_FREE_ITEM(item); 824 return (ENXIO); 825 } 826 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 827 } 828 829 /* 830 * Receive data on a hook ipx 831 */ 832 static int 833 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 834 { 835 const node_p node = NG_HOOK_NODE(hook); 836 const priv_p priv = NG_NODE_PRIVATE(node); 837 838 if (!priv->conf.enableIPX) { 839 NG_FREE_ITEM(item); 840 return (ENXIO); 841 } 842 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 843 } 844 845 /* 846 * Receive data on a hook bypass 847 */ 848 static int 849 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 850 { 851 uint16_t linkNum; 852 uint16_t proto; 853 struct mbuf *m; 854 855 NGI_GET_M(item, m); 856 if (m->m_pkthdr.len < 4) { 857 NG_FREE_ITEM(item); 858 return (EINVAL); 859 } 860 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 861 NG_FREE_ITEM(item); 862 return (ENOBUFS); 863 } 864 linkNum = ntohs(mtod(m, uint16_t *)[0]); 865 proto = ntohs(mtod(m, uint16_t *)[1]); 866 m_adj(m, 4); 867 NGI_M(item) = m; 868 869 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 870 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 871 else 872 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 873 linkNum, 0)); 874 } 875 876 static int 877 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 878 { 879 const priv_p priv = NG_NODE_PRIVATE(node); 880 uint16_t hdr[2]; 881 struct mbuf *m; 882 int error; 883 884 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 885 NG_FREE_ITEM(item); 886 return (ENXIO); 887 } 888 889 /* Add 4-byte bypass header. */ 890 hdr[0] = htons(linkNum); 891 hdr[1] = htons(proto); 892 893 NGI_GET_M(item, m); 894 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 895 NG_FREE_ITEM(item); 896 return (ENOBUFS); 897 } 898 NGI_M(item) = m; 899 900 /* Send packet out hook. */ 901 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 902 return (error); 903 } 904 905 static int 906 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 907 { 908 const priv_p priv = NG_NODE_PRIVATE(node); 909 hook_p outHook = NULL; 910 int error; 911 912 switch (proto) { 913 case PROT_IP: 914 if (priv->conf.enableIP) 915 outHook = priv->hooks[HOOK_INDEX_INET]; 916 break; 917 case PROT_IPV6: 918 if (priv->conf.enableIPv6) 919 outHook = priv->hooks[HOOK_INDEX_IPV6]; 920 break; 921 case PROT_ATALK: 922 if (priv->conf.enableAtalk) 923 outHook = priv->hooks[HOOK_INDEX_ATALK]; 924 break; 925 case PROT_IPX: 926 if (priv->conf.enableIPX) 927 outHook = priv->hooks[HOOK_INDEX_IPX]; 928 break; 929 } 930 931 if (outHook == NULL) 932 return (ng_ppp_bypass(node, item, proto, linkNum)); 933 934 /* Send packet out hook. */ 935 NG_FWD_ITEM_HOOK(error, item, outHook); 936 return (error); 937 } 938 939 /* 940 * Header compression layer 941 */ 942 943 static int 944 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 945 { 946 const priv_p priv = NG_NODE_PRIVATE(node); 947 948 if (proto == PROT_IP && 949 priv->conf.enableVJCompression && 950 priv->vjCompHooked) { 951 int error; 952 953 /* Send packet out hook. */ 954 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 955 return (error); 956 } 957 958 return (ng_ppp_comp_xmit(node, item, proto)); 959 } 960 961 /* 962 * Receive data on a hook vjc_comp. 963 */ 964 static int 965 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 966 { 967 const node_p node = NG_HOOK_NODE(hook); 968 const priv_p priv = NG_NODE_PRIVATE(node); 969 970 if (!priv->conf.enableVJCompression) { 971 NG_FREE_ITEM(item); 972 return (ENXIO); 973 } 974 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 975 } 976 977 /* 978 * Receive data on a hook vjc_uncomp. 979 */ 980 static int 981 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 982 { 983 const node_p node = NG_HOOK_NODE(hook); 984 const priv_p priv = NG_NODE_PRIVATE(node); 985 986 if (!priv->conf.enableVJCompression) { 987 NG_FREE_ITEM(item); 988 return (ENXIO); 989 } 990 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 991 } 992 993 /* 994 * Receive data on a hook vjc_vjip. 995 */ 996 static int 997 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 998 { 999 const node_p node = NG_HOOK_NODE(hook); 1000 const priv_p priv = NG_NODE_PRIVATE(node); 1001 1002 if (!priv->conf.enableVJCompression) { 1003 NG_FREE_ITEM(item); 1004 return (ENXIO); 1005 } 1006 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 1007 } 1008 1009 static int 1010 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1011 { 1012 const priv_p priv = NG_NODE_PRIVATE(node); 1013 1014 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 1015 hook_p outHook = NULL; 1016 1017 switch (proto) { 1018 case PROT_VJCOMP: 1019 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 1020 break; 1021 case PROT_VJUNCOMP: 1022 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 1023 break; 1024 } 1025 1026 if (outHook) { 1027 int error; 1028 1029 /* Send packet out hook. */ 1030 NG_FWD_ITEM_HOOK(error, item, outHook); 1031 return (error); 1032 } 1033 } 1034 1035 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 1036 } 1037 1038 /* 1039 * Receive data on a hook vjc_ip. 1040 */ 1041 static int 1042 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 1043 { 1044 const node_p node = NG_HOOK_NODE(hook); 1045 const priv_p priv = NG_NODE_PRIVATE(node); 1046 1047 if (!priv->conf.enableVJDecompression) { 1048 NG_FREE_ITEM(item); 1049 return (ENXIO); 1050 } 1051 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 1052 } 1053 1054 /* 1055 * Compression layer 1056 */ 1057 1058 static int 1059 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1060 { 1061 const priv_p priv = NG_NODE_PRIVATE(node); 1062 1063 if (priv->conf.enableCompression && 1064 proto < 0x4000 && 1065 proto != PROT_COMPD && 1066 proto != PROT_CRYPTD && 1067 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1068 struct mbuf *m; 1069 int error; 1070 1071 NGI_GET_M(item, m); 1072 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1073 NG_FREE_ITEM(item); 1074 return (ENOBUFS); 1075 } 1076 NGI_M(item) = m; 1077 1078 /* Send packet out hook. */ 1079 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1080 return (error); 1081 } 1082 1083 return (ng_ppp_crypt_xmit(node, item, proto)); 1084 } 1085 1086 /* 1087 * Receive data on a hook compress. 1088 */ 1089 static int 1090 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1091 { 1092 const node_p node = NG_HOOK_NODE(hook); 1093 const priv_p priv = NG_NODE_PRIVATE(node); 1094 uint16_t proto; 1095 1096 switch (priv->conf.enableCompression) { 1097 case NG_PPP_COMPRESS_NONE: 1098 NG_FREE_ITEM(item); 1099 return (ENXIO); 1100 case NG_PPP_COMPRESS_FULL: 1101 { 1102 struct mbuf *m; 1103 1104 NGI_GET_M(item, m); 1105 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1106 NG_FREE_ITEM(item); 1107 return (EIO); 1108 } 1109 NGI_M(item) = m; 1110 if (!PROT_VALID(proto)) { 1111 NG_FREE_ITEM(item); 1112 return (EIO); 1113 } 1114 } 1115 break; 1116 default: 1117 proto = PROT_COMPD; 1118 break; 1119 } 1120 return (ng_ppp_crypt_xmit(node, item, proto)); 1121 } 1122 1123 static int 1124 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1125 { 1126 const priv_p priv = NG_NODE_PRIVATE(node); 1127 1128 if (proto < 0x4000 && 1129 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1130 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1131 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1132 int error; 1133 1134 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1135 struct mbuf *m; 1136 NGI_GET_M(item, m); 1137 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1138 NG_FREE_ITEM(item); 1139 return (EIO); 1140 } 1141 NGI_M(item) = m; 1142 } 1143 1144 /* Send packet out hook. */ 1145 NG_FWD_ITEM_HOOK(error, item, 1146 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1147 return (error); 1148 } else if (proto == PROT_COMPD) { 1149 /* Disabled protos MUST be silently discarded, but 1150 * unsupported MUST not. Let user-level decide this. */ 1151 return (ng_ppp_bypass(node, item, proto, linkNum)); 1152 } 1153 1154 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1155 } 1156 1157 /* 1158 * Receive data on a hook decompress. 1159 */ 1160 static int 1161 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1162 { 1163 const node_p node = NG_HOOK_NODE(hook); 1164 const priv_p priv = NG_NODE_PRIVATE(node); 1165 uint16_t proto; 1166 struct mbuf *m; 1167 1168 if (!priv->conf.enableDecompression) { 1169 NG_FREE_ITEM(item); 1170 return (ENXIO); 1171 } 1172 NGI_GET_M(item, m); 1173 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1174 NG_FREE_ITEM(item); 1175 return (EIO); 1176 } 1177 NGI_M(item) = m; 1178 if (!PROT_VALID(proto)) { 1179 priv->bundleStats.badProtos++; 1180 NG_FREE_ITEM(item); 1181 return (EIO); 1182 } 1183 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1184 } 1185 1186 /* 1187 * Encryption layer 1188 */ 1189 1190 static int 1191 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1192 { 1193 const priv_p priv = NG_NODE_PRIVATE(node); 1194 1195 if (priv->conf.enableEncryption && 1196 proto < 0x4000 && 1197 proto != PROT_CRYPTD && 1198 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1199 struct mbuf *m; 1200 int error; 1201 1202 NGI_GET_M(item, m); 1203 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1204 NG_FREE_ITEM(item); 1205 return (ENOBUFS); 1206 } 1207 NGI_M(item) = m; 1208 1209 /* Send packet out hook. */ 1210 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1211 return (error); 1212 } 1213 1214 return (ng_ppp_mp_xmit(node, item, proto)); 1215 } 1216 1217 /* 1218 * Receive data on a hook encrypt. 1219 */ 1220 static int 1221 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1222 { 1223 const node_p node = NG_HOOK_NODE(hook); 1224 const priv_p priv = NG_NODE_PRIVATE(node); 1225 1226 if (!priv->conf.enableEncryption) { 1227 NG_FREE_ITEM(item); 1228 return (ENXIO); 1229 } 1230 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1231 } 1232 1233 static int 1234 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1235 { 1236 const priv_p priv = NG_NODE_PRIVATE(node); 1237 1238 if (proto == PROT_CRYPTD) { 1239 if (priv->conf.enableDecryption && 1240 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1241 int error; 1242 1243 /* Send packet out hook. */ 1244 NG_FWD_ITEM_HOOK(error, item, 1245 priv->hooks[HOOK_INDEX_DECRYPT]); 1246 return (error); 1247 } else { 1248 /* Disabled protos MUST be silently discarded, but 1249 * unsupported MUST not. Let user-level decide this. */ 1250 return (ng_ppp_bypass(node, item, proto, linkNum)); 1251 } 1252 } 1253 1254 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1255 } 1256 1257 /* 1258 * Receive data on a hook decrypt. 1259 */ 1260 static int 1261 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1262 { 1263 const node_p node = NG_HOOK_NODE(hook); 1264 const priv_p priv = NG_NODE_PRIVATE(node); 1265 uint16_t proto; 1266 struct mbuf *m; 1267 1268 if (!priv->conf.enableDecryption) { 1269 NG_FREE_ITEM(item); 1270 return (ENXIO); 1271 } 1272 NGI_GET_M(item, m); 1273 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1274 NG_FREE_ITEM(item); 1275 return (EIO); 1276 } 1277 NGI_M(item) = m; 1278 if (!PROT_VALID(proto)) { 1279 priv->bundleStats.badProtos++; 1280 NG_FREE_ITEM(item); 1281 return (EIO); 1282 } 1283 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1284 } 1285 1286 /* 1287 * Link layer 1288 */ 1289 1290 static int 1291 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen) 1292 { 1293 const priv_p priv = NG_NODE_PRIVATE(node); 1294 struct ng_ppp_link *link; 1295 int len, error; 1296 struct mbuf *m; 1297 uint16_t mru; 1298 1299 /* Check if link correct. */ 1300 if (linkNum >= NG_PPP_MAX_LINKS) { 1301 ERROUT(ENETDOWN); 1302 } 1303 1304 /* Get link pointer (optimization). */ 1305 link = &priv->links[linkNum]; 1306 1307 /* Check link status (if real). */ 1308 if (link->hook == NULL) { 1309 ERROUT(ENETDOWN); 1310 } 1311 1312 /* Extract mbuf. */ 1313 NGI_GET_M(item, m); 1314 1315 /* Check peer's MRU for this link. */ 1316 mru = link->conf.mru; 1317 if (mru != 0 && m->m_pkthdr.len > mru) { 1318 NG_FREE_M(m); 1319 ERROUT(EMSGSIZE); 1320 } 1321 1322 /* Prepend protocol number, possibly compressed. */ 1323 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1324 NULL) { 1325 ERROUT(ENOBUFS); 1326 } 1327 1328 /* Prepend address and control field (unless compressed). */ 1329 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1330 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) 1331 ERROUT(ENOBUFS); 1332 } 1333 1334 /* Deliver frame. */ 1335 len = m->m_pkthdr.len; 1336 NG_FWD_NEW_DATA(error, item, link->hook, m); 1337 1338 mtx_lock(&priv->xmtx); 1339 1340 /* Update link stats. */ 1341 link->stats.xmitFrames++; 1342 link->stats.xmitOctets += len; 1343 1344 /* Update bundle stats. */ 1345 if (plen > 0) { 1346 priv->bundleStats.xmitFrames++; 1347 priv->bundleStats.xmitOctets += plen; 1348 } 1349 1350 /* Update 'bytes in queue' counter. */ 1351 if (error == 0) { 1352 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1353 if (priv->conf.enableMultilink && !priv->allLinksEqual && 1354 !priv->conf.enableRoundRobin) { 1355 /* If queue was empty, then mark this time. */ 1356 if (link->bytesInQueue == 0) 1357 getmicrouptime(&link->lastWrite); 1358 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1359 /* Limit max queue length to 50 pkts. BW can be defined 1360 incorrectly and link may not signal overload. */ 1361 if (link->bytesInQueue > 50 * 1600) 1362 link->bytesInQueue = 50 * 1600; 1363 } 1364 } 1365 mtx_unlock(&priv->xmtx); 1366 return (error); 1367 1368 done: 1369 NG_FREE_ITEM(item); 1370 return (error); 1371 } 1372 1373 /* 1374 * Receive data on a hook linkX. 1375 */ 1376 static int 1377 ng_ppp_rcvdata(hook_p hook, item_p item) 1378 { 1379 const node_p node = NG_HOOK_NODE(hook); 1380 const priv_p priv = NG_NODE_PRIVATE(node); 1381 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1382 const uint16_t linkNum = (uint16_t)~index; 1383 struct ng_ppp_link * const link = &priv->links[linkNum]; 1384 uint16_t proto; 1385 struct mbuf *m; 1386 int error = 0; 1387 1388 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1389 ("%s: bogus index 0x%x", __func__, index)); 1390 1391 NGI_GET_M(item, m); 1392 1393 mtx_lock(&priv->rmtx); 1394 1395 /* Stats */ 1396 link->stats.recvFrames++; 1397 link->stats.recvOctets += m->m_pkthdr.len; 1398 1399 /* Strip address and control fields, if present. */ 1400 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1401 ERROUT(ENOBUFS); 1402 if (mtod(m, uint8_t *)[0] == 0xff && 1403 mtod(m, uint8_t *)[1] == 0x03) 1404 m_adj(m, 2); 1405 1406 /* Get protocol number */ 1407 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1408 ERROUT(ENOBUFS); 1409 NGI_M(item) = m; /* Put changed m back into item. */ 1410 1411 if (!PROT_VALID(proto)) { 1412 link->stats.badProtos++; 1413 ERROUT(EIO); 1414 } 1415 1416 /* LCP packets must go directly to bypass. */ 1417 if (proto >= 0xB000) { 1418 mtx_unlock(&priv->rmtx); 1419 return (ng_ppp_bypass(node, item, proto, linkNum)); 1420 } 1421 1422 /* Other packets are denied on a disabled link. */ 1423 if (!link->conf.enableLink) 1424 ERROUT(ENXIO); 1425 1426 /* Proceed to multilink layer. Mutex will be unlocked inside. */ 1427 error = ng_ppp_mp_recv(node, item, proto, linkNum); 1428 mtx_assert(&priv->rmtx, MA_NOTOWNED); 1429 return (error); 1430 1431 done: 1432 mtx_unlock(&priv->rmtx); 1433 NG_FREE_ITEM(item); 1434 return (error); 1435 } 1436 1437 /* 1438 * Multilink layer 1439 */ 1440 1441 /* 1442 * Handle an incoming multi-link fragment 1443 * 1444 * The fragment reassembly algorithm is somewhat complex. This is mainly 1445 * because we are required not to reorder the reconstructed packets, yet 1446 * fragments are only guaranteed to arrive in order on a per-link basis. 1447 * In other words, when we have a complete packet ready, but the previous 1448 * packet is still incomplete, we have to decide between delivering the 1449 * complete packet and throwing away the incomplete one, or waiting to 1450 * see if the remainder of the incomplete one arrives, at which time we 1451 * can deliver both packets, in order. 1452 * 1453 * This problem is exacerbated by "sequence number slew", which is when 1454 * the sequence numbers coming in from different links are far apart from 1455 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1456 * has been seen to generate sequence number slew of up to 10 on an ISDN 1457 * 2B-channel MP link. There is nothing invalid about sequence number slew 1458 * but it makes the reasssembly process have to work harder. 1459 * 1460 * However, the peer is required to transmit fragments in order on each 1461 * link. That means if we define MSEQ as the minimum over all links of 1462 * the highest sequence number received on that link, then we can always 1463 * give up any hope of receiving a fragment with sequence number < MSEQ in 1464 * the future (all of this using 'wraparound' sequence number space). 1465 * Therefore we can always immediately throw away incomplete packets 1466 * missing fragments with sequence numbers < MSEQ. 1467 * 1468 * Here is an overview of our algorithm: 1469 * 1470 * o Received fragments are inserted into a queue, for which we 1471 * maintain these invariants between calls to this function: 1472 * 1473 * - Fragments are ordered in the queue by sequence number 1474 * - If a complete packet is at the head of the queue, then 1475 * the first fragment in the packet has seq# > MSEQ + 1 1476 * (otherwise, we could deliver it immediately) 1477 * - If any fragments have seq# < MSEQ, then they are necessarily 1478 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1479 * we can throw them away because they'll never be completed) 1480 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1481 * 1482 * o We have a periodic timer that checks the queue for the first 1483 * complete packet that has been sitting in the queue "too long". 1484 * When one is detected, all previous (incomplete) fragments are 1485 * discarded, their missing fragments are declared lost and MSEQ 1486 * is increased. 1487 * 1488 * o If we recieve a fragment with seq# < MSEQ, we throw it away 1489 * because we've already delcared it lost. 1490 * 1491 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1492 */ 1493 static int 1494 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1495 { 1496 const priv_p priv = NG_NODE_PRIVATE(node); 1497 struct ng_ppp_link *const link = &priv->links[linkNum]; 1498 struct ng_ppp_frag *frag; 1499 struct ng_ppp_frag *qent; 1500 int i, diff, inserted; 1501 struct mbuf *m; 1502 int error = 0; 1503 1504 if ((!priv->conf.enableMultilink) || proto != PROT_MP) { 1505 /* Stats */ 1506 priv->bundleStats.recvFrames++; 1507 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1508 1509 mtx_unlock(&priv->rmtx); 1510 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1511 } 1512 1513 NGI_GET_M(item, m); 1514 1515 /* Get a new frag struct from the free queue */ 1516 if ((frag = TAILQ_FIRST(&priv->fragsfree)) == NULL) { 1517 printf("No free fragments headers in ng_ppp!\n"); 1518 NG_FREE_M(m); 1519 goto process; 1520 } 1521 1522 /* Extract fragment information from MP header */ 1523 if (priv->conf.recvShortSeq) { 1524 uint16_t shdr; 1525 1526 if (m->m_pkthdr.len < 2) { 1527 link->stats.runts++; 1528 NG_FREE_M(m); 1529 ERROUT(EINVAL); 1530 } 1531 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1532 ERROUT(ENOBUFS); 1533 1534 shdr = ntohs(*mtod(m, uint16_t *)); 1535 frag->seq = MP_SHORT_EXTEND(shdr); 1536 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1537 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1538 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1539 m_adj(m, 2); 1540 } else { 1541 uint32_t lhdr; 1542 1543 if (m->m_pkthdr.len < 4) { 1544 link->stats.runts++; 1545 NG_FREE_M(m); 1546 ERROUT(EINVAL); 1547 } 1548 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1549 ERROUT(ENOBUFS); 1550 1551 lhdr = ntohl(*mtod(m, uint32_t *)); 1552 frag->seq = MP_LONG_EXTEND(lhdr); 1553 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1554 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1555 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1556 m_adj(m, 4); 1557 } 1558 frag->data = m; 1559 getmicrouptime(&frag->timestamp); 1560 1561 /* If sequence number is < MSEQ, we've already declared this 1562 fragment as lost, so we have no choice now but to drop it */ 1563 if (diff < 0) { 1564 link->stats.dropFragments++; 1565 NG_FREE_M(m); 1566 ERROUT(0); 1567 } 1568 1569 /* Update highest received sequence number on this link and MSEQ */ 1570 priv->mseq = link->seq = frag->seq; 1571 for (i = 0; i < priv->numActiveLinks; i++) { 1572 struct ng_ppp_link *const alink = 1573 &priv->links[priv->activeLinks[i]]; 1574 1575 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1576 priv->mseq = alink->seq; 1577 } 1578 1579 /* Remove frag struct from free queue. */ 1580 TAILQ_REMOVE(&priv->fragsfree, frag, f_qent); 1581 1582 /* Add fragment to queue, which is sorted by sequence number */ 1583 inserted = 0; 1584 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1585 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1586 if (diff > 0) { 1587 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1588 inserted = 1; 1589 break; 1590 } else if (diff == 0) { /* should never happen! */ 1591 link->stats.dupFragments++; 1592 NG_FREE_M(frag->data); 1593 TAILQ_INSERT_HEAD(&priv->fragsfree, frag, f_qent); 1594 ERROUT(EINVAL); 1595 } 1596 } 1597 if (!inserted) 1598 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1599 1600 process: 1601 /* Process the queue */ 1602 /* NOTE: rmtx will be unlocked for sending time! */ 1603 error = ng_ppp_frag_process(node, item); 1604 mtx_unlock(&priv->rmtx); 1605 return (error); 1606 1607 done: 1608 mtx_unlock(&priv->rmtx); 1609 NG_FREE_ITEM(item); 1610 return (error); 1611 } 1612 1613 /************************************************************************ 1614 HELPER STUFF 1615 ************************************************************************/ 1616 1617 /* 1618 * If new mseq > current then set it and update all active links 1619 */ 1620 static void 1621 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1622 { 1623 const priv_p priv = NG_NODE_PRIVATE(node); 1624 int i; 1625 1626 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1627 priv->mseq = new_mseq; 1628 for (i = 0; i < priv->numActiveLinks; i++) { 1629 struct ng_ppp_link *const alink = 1630 &priv->links[priv->activeLinks[i]]; 1631 1632 if (MP_RECV_SEQ_DIFF(priv, 1633 alink->seq, new_mseq) < 0) 1634 alink->seq = new_mseq; 1635 } 1636 } 1637 } 1638 1639 /* 1640 * Examine our list of fragments, and determine if there is a 1641 * complete and deliverable packet at the head of the list. 1642 * Return 1 if so, zero otherwise. 1643 */ 1644 static int 1645 ng_ppp_check_packet(node_p node) 1646 { 1647 const priv_p priv = NG_NODE_PRIVATE(node); 1648 struct ng_ppp_frag *qent, *qnext; 1649 1650 /* Check for empty queue */ 1651 if (TAILQ_EMPTY(&priv->frags)) 1652 return (0); 1653 1654 /* Check first fragment is the start of a deliverable packet */ 1655 qent = TAILQ_FIRST(&priv->frags); 1656 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1657 return (0); 1658 1659 /* Check that all the fragments are there */ 1660 while (!qent->last) { 1661 qnext = TAILQ_NEXT(qent, f_qent); 1662 if (qnext == NULL) /* end of queue */ 1663 return (0); 1664 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1665 return (0); 1666 qent = qnext; 1667 } 1668 1669 /* Got one */ 1670 return (1); 1671 } 1672 1673 /* 1674 * Pull a completed packet off the head of the incoming fragment queue. 1675 * This assumes there is a completed packet there to pull off. 1676 */ 1677 static void 1678 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1679 { 1680 const priv_p priv = NG_NODE_PRIVATE(node); 1681 struct ng_ppp_frag *qent, *qnext; 1682 struct mbuf *m = NULL, *tail; 1683 1684 qent = TAILQ_FIRST(&priv->frags); 1685 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1686 ("%s: no packet", __func__)); 1687 for (tail = NULL; qent != NULL; qent = qnext) { 1688 qnext = TAILQ_NEXT(qent, f_qent); 1689 KASSERT(!TAILQ_EMPTY(&priv->frags), 1690 ("%s: empty q", __func__)); 1691 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1692 if (tail == NULL) 1693 tail = m = qent->data; 1694 else { 1695 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1696 tail->m_next = qent->data; 1697 } 1698 while (tail->m_next != NULL) 1699 tail = tail->m_next; 1700 if (qent->last) { 1701 qnext = NULL; 1702 /* Bump MSEQ if necessary */ 1703 ng_ppp_bump_mseq(node, qent->seq); 1704 } 1705 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1706 } 1707 *mp = m; 1708 } 1709 1710 /* 1711 * Trim fragments from the queue whose packets can never be completed. 1712 * This assumes a complete packet is NOT at the beginning of the queue. 1713 * Returns 1 if fragments were removed, zero otherwise. 1714 */ 1715 static int 1716 ng_ppp_frag_trim(node_p node) 1717 { 1718 const priv_p priv = NG_NODE_PRIVATE(node); 1719 struct ng_ppp_frag *qent, *qnext = NULL; 1720 int removed = 0; 1721 1722 /* Scan for "dead" fragments and remove them */ 1723 while (1) { 1724 int dead = 0; 1725 1726 /* If queue is empty, we're done */ 1727 if (TAILQ_EMPTY(&priv->frags)) 1728 break; 1729 1730 /* Determine whether first fragment can ever be completed */ 1731 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1732 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1733 break; 1734 qnext = TAILQ_NEXT(qent, f_qent); 1735 KASSERT(qnext != NULL, 1736 ("%s: last frag < MSEQ?", __func__)); 1737 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1738 || qent->last || qnext->first) { 1739 dead = 1; 1740 break; 1741 } 1742 } 1743 if (!dead) 1744 break; 1745 1746 /* Remove fragment and all others in the same packet */ 1747 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1748 KASSERT(!TAILQ_EMPTY(&priv->frags), 1749 ("%s: empty q", __func__)); 1750 priv->bundleStats.dropFragments++; 1751 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1752 NG_FREE_M(qent->data); 1753 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1754 removed = 1; 1755 } 1756 } 1757 return (removed); 1758 } 1759 1760 /* 1761 * Drop fragments on queue overflow. 1762 * Returns 1 if fragments were removed, zero otherwise. 1763 */ 1764 static int 1765 ng_ppp_frag_drop(node_p node) 1766 { 1767 const priv_p priv = NG_NODE_PRIVATE(node); 1768 1769 /* Check queue length */ 1770 if (TAILQ_EMPTY(&priv->fragsfree)) { 1771 struct ng_ppp_frag *qent; 1772 1773 /* Get oldest fragment */ 1774 KASSERT(!TAILQ_EMPTY(&priv->frags), 1775 ("%s: empty q", __func__)); 1776 qent = TAILQ_FIRST(&priv->frags); 1777 1778 /* Bump MSEQ if necessary */ 1779 ng_ppp_bump_mseq(node, qent->seq); 1780 1781 /* Drop it */ 1782 priv->bundleStats.dropFragments++; 1783 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1784 NG_FREE_M(qent->data); 1785 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1786 1787 return (1); 1788 } 1789 return (0); 1790 } 1791 1792 /* 1793 * Run the queue, restoring the queue invariants 1794 */ 1795 static int 1796 ng_ppp_frag_process(node_p node, item_p oitem) 1797 { 1798 const priv_p priv = NG_NODE_PRIVATE(node); 1799 struct mbuf *m; 1800 item_p item; 1801 uint16_t proto; 1802 1803 do { 1804 /* Deliver any deliverable packets */ 1805 while (ng_ppp_check_packet(node)) { 1806 ng_ppp_get_packet(node, &m); 1807 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1808 continue; 1809 if (!PROT_VALID(proto)) { 1810 priv->bundleStats.badProtos++; 1811 NG_FREE_M(m); 1812 continue; 1813 } 1814 if (oitem) { /* If original item present - reuse it. */ 1815 item = oitem; 1816 oitem = NULL; 1817 NGI_M(item) = m; 1818 } else { 1819 item = ng_package_data(m, NG_NOFLAGS); 1820 } 1821 if (item != NULL) { 1822 /* Stats */ 1823 priv->bundleStats.recvFrames++; 1824 priv->bundleStats.recvOctets += 1825 NGI_M(item)->m_pkthdr.len; 1826 1827 /* Drop mutex for the sending time. 1828 * Priv may change, but we are ready! 1829 */ 1830 mtx_unlock(&priv->rmtx); 1831 ng_ppp_crypt_recv(node, item, proto, 1832 NG_PPP_BUNDLE_LINKNUM); 1833 mtx_lock(&priv->rmtx); 1834 } 1835 } 1836 /* Delete dead fragments and try again */ 1837 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1838 1839 /* If we haven't reused original item - free it. */ 1840 if (oitem) NG_FREE_ITEM(oitem); 1841 1842 /* Done */ 1843 return (0); 1844 } 1845 1846 /* 1847 * Check for 'stale' completed packets that need to be delivered 1848 * 1849 * If a link goes down or has a temporary failure, MSEQ can get 1850 * "stuck", because no new incoming fragments appear on that link. 1851 * This can cause completed packets to never get delivered if 1852 * their sequence numbers are all > MSEQ + 1. 1853 * 1854 * This routine checks how long all of the completed packets have 1855 * been sitting in the queue, and if too long, removes fragments 1856 * from the queue and increments MSEQ to allow them to be delivered. 1857 */ 1858 static void 1859 ng_ppp_frag_checkstale(node_p node) 1860 { 1861 const priv_p priv = NG_NODE_PRIVATE(node); 1862 struct ng_ppp_frag *qent, *beg, *end; 1863 struct timeval now, age; 1864 struct mbuf *m; 1865 int seq; 1866 item_p item; 1867 int endseq; 1868 uint16_t proto; 1869 1870 now.tv_sec = 0; /* uninitialized state */ 1871 while (1) { 1872 1873 /* If queue is empty, we're done */ 1874 if (TAILQ_EMPTY(&priv->frags)) 1875 break; 1876 1877 /* Find the first complete packet in the queue */ 1878 beg = end = NULL; 1879 seq = TAILQ_FIRST(&priv->frags)->seq; 1880 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1881 if (qent->first) 1882 beg = qent; 1883 else if (qent->seq != seq) 1884 beg = NULL; 1885 if (beg != NULL && qent->last) { 1886 end = qent; 1887 break; 1888 } 1889 seq = MP_NEXT_RECV_SEQ(priv, seq); 1890 } 1891 1892 /* If none found, exit */ 1893 if (end == NULL) 1894 break; 1895 1896 /* Get current time (we assume we've been up for >= 1 second) */ 1897 if (now.tv_sec == 0) 1898 getmicrouptime(&now); 1899 1900 /* Check if packet has been queued too long */ 1901 age = now; 1902 timevalsub(&age, &beg->timestamp); 1903 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1904 break; 1905 1906 /* Throw away junk fragments in front of the completed packet */ 1907 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1908 KASSERT(!TAILQ_EMPTY(&priv->frags), 1909 ("%s: empty q", __func__)); 1910 priv->bundleStats.dropFragments++; 1911 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1912 NG_FREE_M(qent->data); 1913 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1914 } 1915 1916 /* Extract completed packet */ 1917 endseq = end->seq; 1918 ng_ppp_get_packet(node, &m); 1919 1920 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1921 continue; 1922 if (!PROT_VALID(proto)) { 1923 priv->bundleStats.badProtos++; 1924 NG_FREE_M(m); 1925 continue; 1926 } 1927 1928 /* Deliver packet */ 1929 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1930 /* Stats */ 1931 priv->bundleStats.recvFrames++; 1932 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1933 1934 ng_ppp_crypt_recv(node, item, proto, 1935 NG_PPP_BUNDLE_LINKNUM); 1936 } 1937 } 1938 } 1939 1940 /* 1941 * Periodically call ng_ppp_frag_checkstale() 1942 */ 1943 static void 1944 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1945 { 1946 /* XXX: is this needed? */ 1947 if (NG_NODE_NOT_VALID(node)) 1948 return; 1949 1950 /* Scan the fragment queue */ 1951 ng_ppp_frag_checkstale(node); 1952 1953 /* Start timer again */ 1954 ng_ppp_start_frag_timer(node); 1955 } 1956 1957 /* 1958 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1959 * the frame across the individual PPP links and do so. 1960 */ 1961 static int 1962 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1963 { 1964 const priv_p priv = NG_NODE_PRIVATE(node); 1965 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1966 int distrib[NG_PPP_MAX_LINKS]; 1967 int firstFragment; 1968 int activeLinkNum; 1969 struct mbuf *m; 1970 int plen; 1971 int frags; 1972 int32_t seq; 1973 1974 /* At least one link must be active */ 1975 if (priv->numActiveLinks == 0) { 1976 NG_FREE_ITEM(item); 1977 return (ENETDOWN); 1978 } 1979 1980 /* Save length for later stats. */ 1981 plen = NGI_M(item)->m_pkthdr.len; 1982 1983 if (!priv->conf.enableMultilink) { 1984 return (ng_ppp_link_xmit(node, item, proto, 1985 priv->activeLinks[0], plen)); 1986 } 1987 1988 /* Extract mbuf. */ 1989 NGI_GET_M(item, m); 1990 1991 /* Prepend protocol number, possibly compressed. */ 1992 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) { 1993 NG_FREE_ITEM(item); 1994 return (ENOBUFS); 1995 } 1996 1997 /* Clear distribution plan */ 1998 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 1999 2000 mtx_lock(&priv->xmtx); 2001 2002 /* Round-robin strategy */ 2003 if (priv->conf.enableRoundRobin) { 2004 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 2005 distrib[activeLinkNum] = m->m_pkthdr.len; 2006 goto deliver; 2007 } 2008 2009 /* Strategy when all links are equivalent (optimize the common case) */ 2010 if (priv->allLinksEqual) { 2011 int numFrags, fraction, remain; 2012 int i; 2013 2014 /* Calculate optimal fragment count */ 2015 numFrags = priv->numActiveLinks; 2016 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 2017 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 2018 if (numFrags == 0) 2019 numFrags = 1; 2020 2021 fraction = m->m_pkthdr.len / numFrags; 2022 remain = m->m_pkthdr.len - (fraction * numFrags); 2023 2024 /* Assign distribution */ 2025 for (i = 0; i < numFrags; i++) { 2026 distrib[priv->lastLink++ % priv->numActiveLinks] 2027 = fraction + (((remain--) > 0)?1:0); 2028 } 2029 goto deliver; 2030 } 2031 2032 /* Strategy when all links are not equivalent */ 2033 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 2034 2035 deliver: 2036 /* Estimate fragments count */ 2037 frags = 0; 2038 for (activeLinkNum = priv->numActiveLinks - 1; 2039 activeLinkNum >= 0; activeLinkNum--) { 2040 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2041 struct ng_ppp_link *const link = &priv->links[linkNum]; 2042 2043 frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) / 2044 (link->conf.mru - hdr_len); 2045 } 2046 2047 /* Get out initial sequence number */ 2048 seq = priv->xseq; 2049 2050 /* Update next sequence number */ 2051 if (priv->conf.xmitShortSeq) { 2052 priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK; 2053 } else { 2054 priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK; 2055 } 2056 2057 mtx_unlock(&priv->xmtx); 2058 2059 /* Send alloted portions of frame out on the link(s) */ 2060 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 2061 activeLinkNum >= 0; activeLinkNum--) { 2062 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2063 struct ng_ppp_link *const link = &priv->links[linkNum]; 2064 2065 /* Deliver fragment(s) out the next link */ 2066 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 2067 int len, lastFragment, error; 2068 struct mbuf *m2; 2069 2070 /* Calculate fragment length; don't exceed link MTU */ 2071 len = distrib[activeLinkNum]; 2072 if (len > link->conf.mru - hdr_len) 2073 len = link->conf.mru - hdr_len; 2074 distrib[activeLinkNum] -= len; 2075 lastFragment = (len == m->m_pkthdr.len); 2076 2077 /* Split off next fragment as "m2" */ 2078 m2 = m; 2079 if (!lastFragment) { 2080 struct mbuf *n = m_split(m, len, M_DONTWAIT); 2081 2082 if (n == NULL) { 2083 NG_FREE_M(m); 2084 if (firstFragment) 2085 NG_FREE_ITEM(item); 2086 return (ENOMEM); 2087 } 2088 m_tag_copy_chain(n, m, M_DONTWAIT); 2089 m = n; 2090 } 2091 2092 /* Prepend MP header */ 2093 if (priv->conf.xmitShortSeq) { 2094 uint16_t shdr; 2095 2096 shdr = seq; 2097 seq = (seq + 1) & MP_SHORT_SEQ_MASK; 2098 if (firstFragment) 2099 shdr |= MP_SHORT_FIRST_FLAG; 2100 if (lastFragment) 2101 shdr |= MP_SHORT_LAST_FLAG; 2102 shdr = htons(shdr); 2103 m2 = ng_ppp_prepend(m2, &shdr, 2); 2104 } else { 2105 uint32_t lhdr; 2106 2107 lhdr = seq; 2108 seq = (seq + 1) & MP_LONG_SEQ_MASK; 2109 if (firstFragment) 2110 lhdr |= MP_LONG_FIRST_FLAG; 2111 if (lastFragment) 2112 lhdr |= MP_LONG_LAST_FLAG; 2113 lhdr = htonl(lhdr); 2114 m2 = ng_ppp_prepend(m2, &lhdr, 4); 2115 } 2116 if (m2 == NULL) { 2117 if (!lastFragment) 2118 m_freem(m); 2119 if (firstFragment) 2120 NG_FREE_ITEM(item); 2121 return (ENOBUFS); 2122 } 2123 2124 /* Send fragment */ 2125 if (firstFragment) { 2126 NGI_M(item) = m2; /* Reuse original item. */ 2127 } else { 2128 item = ng_package_data(m2, NG_NOFLAGS); 2129 } 2130 if (item != NULL) { 2131 error = ng_ppp_link_xmit(node, item, PROT_MP, 2132 linkNum, (firstFragment?plen:0)); 2133 if (error != 0) { 2134 if (!lastFragment) 2135 NG_FREE_M(m); 2136 return (error); 2137 } 2138 } 2139 } 2140 } 2141 2142 /* Done */ 2143 return (0); 2144 } 2145 2146 /* 2147 * Computing the optimal fragmentation 2148 * ----------------------------------- 2149 * 2150 * This routine tries to compute the optimal fragmentation pattern based 2151 * on each link's latency, bandwidth, and calculated additional latency. 2152 * The latter quantity is the additional latency caused by previously 2153 * written data that has not been transmitted yet. 2154 * 2155 * This algorithm is only useful when not all of the links have the 2156 * same latency and bandwidth values. 2157 * 2158 * The essential idea is to make the last bit of each fragment of the 2159 * frame arrive at the opposite end at the exact same time. This greedy 2160 * algorithm is optimal, in that no other scheduling could result in any 2161 * packet arriving any sooner unless packets are delivered out of order. 2162 * 2163 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2164 * latency l_i (in miliseconds). Consider the function function f_i(t) 2165 * which is equal to the number of bytes that will have arrived at 2166 * the peer after t miliseconds if we start writing continuously at 2167 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2168 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2169 * Note that the y-intersect is always <= zero because latency can't be 2170 * negative. Note also that really the function is f_i(t) except when 2171 * f_i(t) is negative, in which case the function is zero. To take 2172 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2173 * So the actual number of bytes that will have arrived at the peer after 2174 * t miliseconds is f_i(t) * Q_i(t). 2175 * 2176 * At any given time, each link has some additional latency a_i >= 0 2177 * due to previously written fragment(s) which are still in the queue. 2178 * This value is easily computed from the time since last transmission, 2179 * the previous latency value, the number of bytes written, and the 2180 * link's bandwidth. 2181 * 2182 * Assume that l_i includes any a_i already, and that the links are 2183 * sorted by latency, so that l_i <= l_{i+1}. 2184 * 2185 * Let N be the total number of bytes in the current frame we are sending. 2186 * 2187 * Suppose we were to start writing bytes at time t = 0 on all links 2188 * simultaneously, which is the most we can possibly do. Then let 2189 * F(t) be equal to the total number of bytes received by the peer 2190 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2191 * 2192 * Our goal is simply this: fragment the frame across the links such 2193 * that the peer is able to reconstruct the completed frame as soon as 2194 * possible, i.e., at the least possible value of t. Call this value t_0. 2195 * 2196 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2197 * of t_0, and then deduce how many bytes to write to each link. 2198 * 2199 * Rewriting F(t_0): 2200 * 2201 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2202 * 2203 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2204 * lie in one of these ranges. To find it, we just need to find the i such 2205 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2206 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2207 * 2208 * Once t_0 is known, then the number of bytes to send on link i is 2209 * just f_i(t_0) * Q_i(t_0). 2210 * 2211 * In other words, we start allocating bytes to the links one at a time. 2212 * We keep adding links until the frame is completely sent. Some links 2213 * may not get any bytes because their latency is too high. 2214 * 2215 * Is all this work really worth the trouble? Depends on the situation. 2216 * The bigger the ratio of computer speed to link speed, and the more 2217 * important total bundle latency is (e.g., for interactive response time), 2218 * the more it's worth it. There is however the cost of calling this 2219 * function for every frame. The running time is O(n^2) where n is the 2220 * number of links that receive a non-zero number of bytes. 2221 * 2222 * Since latency is measured in miliseconds, the "resolution" of this 2223 * algorithm is one milisecond. 2224 * 2225 * To avoid this algorithm altogether, configure all links to have the 2226 * same latency and bandwidth. 2227 */ 2228 static void 2229 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2230 { 2231 const priv_p priv = NG_NODE_PRIVATE(node); 2232 int latency[NG_PPP_MAX_LINKS]; 2233 int sortByLatency[NG_PPP_MAX_LINKS]; 2234 int activeLinkNum; 2235 int t0, total, topSum, botSum; 2236 struct timeval now; 2237 int i, numFragments; 2238 2239 /* If only one link, this gets real easy */ 2240 if (priv->numActiveLinks == 1) { 2241 distrib[0] = len; 2242 return; 2243 } 2244 2245 /* Get current time */ 2246 getmicrouptime(&now); 2247 2248 /* Compute latencies for each link at this point in time */ 2249 for (activeLinkNum = 0; 2250 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2251 struct ng_ppp_link *alink; 2252 struct timeval diff; 2253 int xmitBytes; 2254 2255 /* Start with base latency value */ 2256 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2257 latency[activeLinkNum] = alink->latency; 2258 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2259 2260 /* Any additional latency? */ 2261 if (alink->bytesInQueue == 0) 2262 continue; 2263 2264 /* Compute time delta since last write */ 2265 diff = now; 2266 timevalsub(&diff, &alink->lastWrite); 2267 2268 /* alink->bytesInQueue will be changed, mark change time. */ 2269 alink->lastWrite = now; 2270 2271 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2272 alink->bytesInQueue = 0; 2273 continue; 2274 } 2275 2276 /* How many bytes could have transmitted since last write? */ 2277 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2278 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2279 alink->bytesInQueue -= xmitBytes; 2280 if (alink->bytesInQueue < 0) 2281 alink->bytesInQueue = 0; 2282 else 2283 latency[activeLinkNum] += 2284 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2285 } 2286 2287 /* Sort active links by latency */ 2288 qsort_r(sortByLatency, 2289 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2290 2291 /* Find the interval we need (add links in sortByLatency[] order) */ 2292 for (numFragments = 1; 2293 numFragments < priv->numActiveLinks; numFragments++) { 2294 for (total = i = 0; i < numFragments; i++) { 2295 int flowTime; 2296 2297 flowTime = latency[sortByLatency[numFragments]] 2298 - latency[sortByLatency[i]]; 2299 total += ((flowTime * priv->links[ 2300 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2301 + 99) / 100; 2302 } 2303 if (total >= len) 2304 break; 2305 } 2306 2307 /* Solve for t_0 in that interval */ 2308 for (topSum = botSum = i = 0; i < numFragments; i++) { 2309 int bw = priv->links[ 2310 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2311 2312 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2313 botSum += bw; /* / 100 */ 2314 } 2315 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2316 2317 /* Compute f_i(t_0) all i */ 2318 for (total = i = 0; i < numFragments; i++) { 2319 int bw = priv->links[ 2320 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2321 2322 distrib[sortByLatency[i]] = 2323 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2324 total += distrib[sortByLatency[i]]; 2325 } 2326 2327 /* Deal with any rounding error */ 2328 if (total < len) { 2329 struct ng_ppp_link *fastLink = 2330 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2331 int fast = 0; 2332 2333 /* Find the fastest link */ 2334 for (i = 1; i < numFragments; i++) { 2335 struct ng_ppp_link *const link = 2336 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2337 2338 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2339 fast = i; 2340 fastLink = link; 2341 } 2342 } 2343 distrib[sortByLatency[fast]] += len - total; 2344 } else while (total > len) { 2345 struct ng_ppp_link *slowLink = 2346 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2347 int delta, slow = 0; 2348 2349 /* Find the slowest link that still has bytes to remove */ 2350 for (i = 1; i < numFragments; i++) { 2351 struct ng_ppp_link *const link = 2352 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2353 2354 if (distrib[sortByLatency[slow]] == 0 2355 || (distrib[sortByLatency[i]] > 0 2356 && link->conf.bandwidth < 2357 slowLink->conf.bandwidth)) { 2358 slow = i; 2359 slowLink = link; 2360 } 2361 } 2362 delta = total - len; 2363 if (delta > distrib[sortByLatency[slow]]) 2364 delta = distrib[sortByLatency[slow]]; 2365 distrib[sortByLatency[slow]] -= delta; 2366 total -= delta; 2367 } 2368 } 2369 2370 /* 2371 * Compare two integers 2372 */ 2373 static int 2374 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2375 { 2376 const int index1 = *((const int *) v1); 2377 const int index2 = *((const int *) v2); 2378 2379 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2380 } 2381 2382 /* 2383 * Prepend a possibly compressed PPP protocol number in front of a frame 2384 */ 2385 static struct mbuf * 2386 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2387 { 2388 if (compOK && PROT_COMPRESSABLE(proto)) { 2389 uint8_t pbyte = (uint8_t)proto; 2390 2391 return ng_ppp_prepend(m, &pbyte, 1); 2392 } else { 2393 uint16_t pword = htons((uint16_t)proto); 2394 2395 return ng_ppp_prepend(m, &pword, 2); 2396 } 2397 } 2398 2399 /* 2400 * Cut a possibly compressed PPP protocol number from the front of a frame. 2401 */ 2402 static struct mbuf * 2403 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2404 { 2405 2406 *proto = 0; 2407 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2408 return (NULL); 2409 2410 *proto = *mtod(m, uint8_t *); 2411 m_adj(m, 1); 2412 2413 if (!PROT_VALID(*proto)) { 2414 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2415 return (NULL); 2416 2417 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2418 m_adj(m, 1); 2419 } 2420 2421 return (m); 2422 } 2423 2424 /* 2425 * Prepend some bytes to an mbuf. 2426 */ 2427 static struct mbuf * 2428 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2429 { 2430 M_PREPEND(m, len, M_DONTWAIT); 2431 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2432 return (NULL); 2433 bcopy(buf, mtod(m, uint8_t *), len); 2434 return (m); 2435 } 2436 2437 /* 2438 * Update private information that is derived from other private information 2439 */ 2440 static void 2441 ng_ppp_update(node_p node, int newConf) 2442 { 2443 const priv_p priv = NG_NODE_PRIVATE(node); 2444 int i; 2445 2446 /* Update active status for VJ Compression */ 2447 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2448 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2449 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2450 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2451 2452 /* Increase latency for each link an amount equal to one MP header */ 2453 if (newConf) { 2454 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2455 int hdrBytes; 2456 2457 if (priv->links[i].conf.bandwidth == 0) 2458 continue; 2459 2460 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2461 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2462 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2463 + (priv->conf.xmitShortSeq ? 2 : 4); 2464 priv->links[i].latency = 2465 priv->links[i].conf.latency + 2466 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2467 } 2468 } 2469 2470 /* Update list of active links */ 2471 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2472 priv->numActiveLinks = 0; 2473 priv->allLinksEqual = 1; 2474 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2475 struct ng_ppp_link *const link = &priv->links[i]; 2476 2477 /* Is link active? */ 2478 if (link->conf.enableLink && link->hook != NULL) { 2479 struct ng_ppp_link *link0; 2480 2481 /* Add link to list of active links */ 2482 priv->activeLinks[priv->numActiveLinks++] = i; 2483 link0 = &priv->links[priv->activeLinks[0]]; 2484 2485 /* Determine if all links are still equal */ 2486 if (link->latency != link0->latency 2487 || link->conf.bandwidth != link0->conf.bandwidth) 2488 priv->allLinksEqual = 0; 2489 2490 /* Initialize rec'd sequence number */ 2491 if (link->seq == MP_NOSEQ) { 2492 link->seq = (link == link0) ? 2493 MP_INITIAL_SEQ : link0->seq; 2494 } 2495 } else 2496 link->seq = MP_NOSEQ; 2497 } 2498 2499 /* Update MP state as multi-link is active or not */ 2500 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2501 ng_ppp_start_frag_timer(node); 2502 else { 2503 ng_ppp_stop_frag_timer(node); 2504 ng_ppp_frag_reset(node); 2505 priv->xseq = MP_INITIAL_SEQ; 2506 priv->mseq = MP_INITIAL_SEQ; 2507 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2508 struct ng_ppp_link *const link = &priv->links[i]; 2509 2510 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2511 link->bytesInQueue = 0; 2512 link->seq = MP_NOSEQ; 2513 } 2514 } 2515 } 2516 2517 /* 2518 * Determine if a new configuration would represent a valid change 2519 * from the current configuration and link activity status. 2520 */ 2521 static int 2522 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2523 { 2524 const priv_p priv = NG_NODE_PRIVATE(node); 2525 int i, newNumLinksActive; 2526 2527 /* Check per-link config and count how many links would be active */ 2528 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2529 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2530 newNumLinksActive++; 2531 if (!newConf->links[i].enableLink) 2532 continue; 2533 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2534 return (0); 2535 if (newConf->links[i].bandwidth == 0) 2536 return (0); 2537 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2538 return (0); 2539 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2540 return (0); 2541 } 2542 2543 /* Check bundle parameters */ 2544 if (newConf->bund.enableMultilink && newConf->bund.mrru < MP_MIN_MRRU) 2545 return (0); 2546 2547 /* Disallow changes to multi-link configuration while MP is active */ 2548 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2549 if (!priv->conf.enableMultilink 2550 != !newConf->bund.enableMultilink 2551 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2552 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2553 return (0); 2554 } 2555 2556 /* At most one link can be active unless multi-link is enabled */ 2557 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2558 return (0); 2559 2560 /* Configuration change would be valid */ 2561 return (1); 2562 } 2563 2564 /* 2565 * Free all entries in the fragment queue 2566 */ 2567 static void 2568 ng_ppp_frag_reset(node_p node) 2569 { 2570 const priv_p priv = NG_NODE_PRIVATE(node); 2571 struct ng_ppp_frag *qent, *qnext; 2572 2573 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2574 qnext = TAILQ_NEXT(qent, f_qent); 2575 NG_FREE_M(qent->data); 2576 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 2577 } 2578 TAILQ_INIT(&priv->frags); 2579 } 2580 2581 /* 2582 * Start fragment queue timer 2583 */ 2584 static void 2585 ng_ppp_start_frag_timer(node_p node) 2586 { 2587 const priv_p priv = NG_NODE_PRIVATE(node); 2588 2589 if (!(callout_pending(&priv->fragTimer))) 2590 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2591 ng_ppp_frag_timeout, NULL, 0); 2592 } 2593 2594 /* 2595 * Stop fragment queue timer 2596 */ 2597 static void 2598 ng_ppp_stop_frag_timer(node_p node) 2599 { 2600 const priv_p priv = NG_NODE_PRIVATE(node); 2601 2602 if (callout_pending(&priv->fragTimer)) 2603 ng_uncallout(&priv->fragTimer, node); 2604 } 2605