1 /*- 2 * Copyright (c) 1996-2000 Whistle Communications, Inc. 3 * All rights reserved. 4 * 5 * Subject to the following obligations and disclaimer of warranty, use and 6 * redistribution of this software, in source or object code forms, with or 7 * without modifications are expressly permitted by Whistle Communications; 8 * provided, however, that: 9 * 1. Any and all reproductions of the source or object code must include the 10 * copyright notice above and the following disclaimer of warranties; and 11 * 2. No rights are granted, in any manner or form, to use Whistle 12 * Communications, Inc. trademarks, including the mark "WHISTLE 13 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 14 * such appears in the above copyright notice or in the software. 15 * 16 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 17 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 18 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 19 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 21 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 22 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 23 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 24 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 25 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 26 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 27 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 32 * OF SUCH DAMAGE. 33 * 34 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice unmodified, this list of conditions, and the following 42 * disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 60 * 61 * $FreeBSD$ 62 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 63 */ 64 65 /* 66 * PPP node type data-flow. 67 * 68 * hook xmit layer recv hook 69 * ------------------------------------ 70 * inet -> -> inet 71 * ipv6 -> -> ipv6 72 * ipx -> proto -> ipx 73 * atalk -> -> atalk 74 * bypass -> -> bypass 75 * -hcomp_xmit()----------proto_recv()- 76 * vjc_ip <- <- vjc_ip 77 * vjc_comp -> header compression -> vjc_comp 78 * vjc_uncomp -> -> vjc_uncomp 79 * vjc_vjip -> 80 * -comp_xmit()-----------hcomp_recv()- 81 * compress <- compression <- decompress 82 * compress -> -> decompress 83 * -crypt_xmit()-----------comp_recv()- 84 * encrypt <- encryption <- decrypt 85 * encrypt -> -> decrypt 86 * -ml_xmit()-------------crypt_recv()- 87 * multilink 88 * -link_xmit()--------------ml_recv()- 89 * linkX <- link <- linkX 90 * 91 */ 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/time.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/endian.h> 101 #include <sys/errno.h> 102 #include <sys/ctype.h> 103 104 #include <netgraph/ng_message.h> 105 #include <netgraph/netgraph.h> 106 #include <netgraph/ng_parse.h> 107 #include <netgraph/ng_ppp.h> 108 #include <netgraph/ng_vjc.h> 109 110 #ifdef NG_SEPARATE_MALLOC 111 static MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 112 #else 113 #define M_NETGRAPH_PPP M_NETGRAPH 114 #endif 115 116 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 117 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 118 119 /* Some PPP protocol numbers we're interested in */ 120 #define PROT_ATALK 0x0029 121 #define PROT_COMPD 0x00fd 122 #define PROT_CRYPTD 0x0053 123 #define PROT_IP 0x0021 124 #define PROT_IPV6 0x0057 125 #define PROT_IPX 0x002b 126 #define PROT_LCP 0xc021 127 #define PROT_MP 0x003d 128 #define PROT_VJCOMP 0x002d 129 #define PROT_VJUNCOMP 0x002f 130 131 /* Multilink PPP definitions */ 132 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 133 #define MP_MIN_LINK_MRU 32 134 135 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 136 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 137 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 138 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 139 140 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 141 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 142 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 143 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 144 145 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 146 147 /* Sign extension of MP sequence numbers */ 148 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 149 ((s) | ~MP_SHORT_SEQ_MASK) \ 150 : ((s) & MP_SHORT_SEQ_MASK)) 151 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 152 ((s) | ~MP_LONG_SEQ_MASK) \ 153 : ((s) & MP_LONG_SEQ_MASK)) 154 155 /* Comparision of MP sequence numbers. Note: all sequence numbers 156 except priv->xseq are stored with the sign bit extended. */ 157 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 158 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 159 160 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 161 ((priv)->conf.recvShortSeq ? \ 162 MP_SHORT_SEQ_DIFF((x), (y)) : \ 163 MP_LONG_SEQ_DIFF((x), (y))) 164 165 /* Increment receive sequence number */ 166 #define MP_NEXT_RECV_SEQ(priv,seq) \ 167 ((priv)->conf.recvShortSeq ? \ 168 MP_SHORT_EXTEND((seq) + 1) : \ 169 MP_LONG_EXTEND((seq) + 1)) 170 171 /* Don't fragment transmitted packets to parts smaller than this */ 172 #define MP_MIN_FRAG_LEN 32 173 174 /* Maximum fragment reasssembly queue length */ 175 #define MP_MAX_QUEUE_LEN 128 176 177 /* Fragment queue scanner period */ 178 #define MP_FRAGTIMER_INTERVAL (hz/2) 179 180 /* Average link overhead. XXX: Should be given by user-level */ 181 #define MP_AVERAGE_LINK_OVERHEAD 16 182 183 /* Keep this equal to ng_ppp_hook_names lower! */ 184 #define HOOK_INDEX_MAX 13 185 186 /* We store incoming fragments this way */ 187 struct ng_ppp_frag { 188 int seq; /* fragment seq# */ 189 uint8_t first; /* First in packet? */ 190 uint8_t last; /* Last in packet? */ 191 struct timeval timestamp; /* time of reception */ 192 struct mbuf *data; /* Fragment data */ 193 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 194 }; 195 196 /* Per-link private information */ 197 struct ng_ppp_link { 198 struct ng_ppp_link_conf conf; /* link configuration */ 199 struct ng_ppp_link_stat64 stats; /* link stats */ 200 hook_p hook; /* connection to link data */ 201 int32_t seq; /* highest rec'd seq# - MSEQ */ 202 uint32_t latency; /* calculated link latency */ 203 struct timeval lastWrite; /* time of last write for MP */ 204 int bytesInQueue; /* bytes in the output queue for MP */ 205 }; 206 207 /* Total per-node private information */ 208 struct ng_ppp_private { 209 struct ng_ppp_bund_conf conf; /* bundle config */ 210 struct ng_ppp_link_stat64 bundleStats; /* bundle stats */ 211 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 212 int32_t xseq; /* next out MP seq # */ 213 int32_t mseq; /* min links[i].seq */ 214 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indicies */ 215 uint16_t numActiveLinks; /* how many links up */ 216 uint16_t lastLink; /* for round robin */ 217 uint8_t vjCompHooked; /* VJ comp hooked up? */ 218 uint8_t allLinksEqual; /* all xmit the same? */ 219 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 220 struct ng_ppp_frag fragsmem[MP_MAX_QUEUE_LEN]; /* fragments storage */ 221 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 222 frags; 223 TAILQ_HEAD(ng_ppp_fragfreelist, ng_ppp_frag) /* free fragment queue */ 224 fragsfree; 225 struct callout fragTimer; /* fraq queue check */ 226 struct mtx rmtx; /* recv mutex */ 227 struct mtx xmtx; /* xmit mutex */ 228 }; 229 typedef struct ng_ppp_private *priv_p; 230 231 /* Netgraph node methods */ 232 static ng_constructor_t ng_ppp_constructor; 233 static ng_rcvmsg_t ng_ppp_rcvmsg; 234 static ng_shutdown_t ng_ppp_shutdown; 235 static ng_newhook_t ng_ppp_newhook; 236 static ng_rcvdata_t ng_ppp_rcvdata; 237 static ng_disconnect_t ng_ppp_disconnect; 238 239 static ng_rcvdata_t ng_ppp_rcvdata_inet; 240 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 241 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 242 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 243 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 244 245 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 246 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 247 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 248 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 249 250 static ng_rcvdata_t ng_ppp_rcvdata_compress; 251 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 252 253 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 254 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 255 256 /* We use integer indicies to refer to the non-link hooks. */ 257 static const struct { 258 char *const name; 259 ng_rcvdata_t *fn; 260 } ng_ppp_hook_names[] = { 261 #define HOOK_INDEX_ATALK 0 262 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 263 #define HOOK_INDEX_BYPASS 1 264 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 265 #define HOOK_INDEX_COMPRESS 2 266 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 267 #define HOOK_INDEX_ENCRYPT 3 268 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 269 #define HOOK_INDEX_DECOMPRESS 4 270 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 271 #define HOOK_INDEX_DECRYPT 5 272 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 273 #define HOOK_INDEX_INET 6 274 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 275 #define HOOK_INDEX_IPX 7 276 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 277 #define HOOK_INDEX_VJC_COMP 8 278 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 279 #define HOOK_INDEX_VJC_IP 9 280 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 281 #define HOOK_INDEX_VJC_UNCOMP 10 282 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 283 #define HOOK_INDEX_VJC_VJIP 11 284 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 285 #define HOOK_INDEX_IPV6 12 286 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 287 { NULL, NULL } 288 }; 289 290 /* Helper functions */ 291 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 292 uint16_t linkNum); 293 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 294 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 295 uint16_t linkNum); 296 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 297 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 298 uint16_t linkNum); 299 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 300 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 301 uint16_t linkNum); 302 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 303 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 304 uint16_t linkNum); 305 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 306 uint16_t linkNum, int plen); 307 308 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 309 uint16_t linkNum); 310 311 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 312 static int ng_ppp_frag_drop(node_p node); 313 static int ng_ppp_check_packet(node_p node); 314 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 315 static int ng_ppp_frag_process(node_p node, item_p oitem); 316 static int ng_ppp_frag_trim(node_p node); 317 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 318 int arg2); 319 static void ng_ppp_frag_checkstale(node_p node); 320 static void ng_ppp_frag_reset(node_p node); 321 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 322 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 323 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 324 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 325 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 326 static int ng_ppp_config_valid(node_p node, 327 const struct ng_ppp_node_conf *newConf); 328 static void ng_ppp_update(node_p node, int newConf); 329 static void ng_ppp_start_frag_timer(node_p node); 330 static void ng_ppp_stop_frag_timer(node_p node); 331 332 /* Parse type for struct ng_ppp_mp_state_type */ 333 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 334 &ng_parse_hint32_type, 335 NG_PPP_MAX_LINKS 336 }; 337 static const struct ng_parse_type ng_ppp_rseq_array_type = { 338 &ng_parse_fixedarray_type, 339 &ng_ppp_rseq_array_info, 340 }; 341 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 342 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 343 static const struct ng_parse_type ng_ppp_mp_state_type = { 344 &ng_parse_struct_type, 345 &ng_ppp_mp_state_type_fields 346 }; 347 348 /* Parse type for struct ng_ppp_link_conf */ 349 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 350 = NG_PPP_LINK_TYPE_INFO; 351 static const struct ng_parse_type ng_ppp_link_type = { 352 &ng_parse_struct_type, 353 &ng_ppp_link_type_fields 354 }; 355 356 /* Parse type for struct ng_ppp_bund_conf */ 357 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 358 = NG_PPP_BUND_TYPE_INFO; 359 static const struct ng_parse_type ng_ppp_bund_type = { 360 &ng_parse_struct_type, 361 &ng_ppp_bund_type_fields 362 }; 363 364 /* Parse type for struct ng_ppp_node_conf */ 365 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 366 &ng_ppp_link_type, 367 NG_PPP_MAX_LINKS 368 }; 369 static const struct ng_parse_type ng_ppp_link_array_type = { 370 &ng_parse_fixedarray_type, 371 &ng_ppp_array_info, 372 }; 373 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 374 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 375 static const struct ng_parse_type ng_ppp_conf_type = { 376 &ng_parse_struct_type, 377 &ng_ppp_conf_type_fields 378 }; 379 380 /* Parse type for struct ng_ppp_link_stat */ 381 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 382 = NG_PPP_STATS_TYPE_INFO; 383 static const struct ng_parse_type ng_ppp_stats_type = { 384 &ng_parse_struct_type, 385 &ng_ppp_stats_type_fields 386 }; 387 388 /* Parse type for struct ng_ppp_link_stat64 */ 389 static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[] 390 = NG_PPP_STATS64_TYPE_INFO; 391 static const struct ng_parse_type ng_ppp_stats64_type = { 392 &ng_parse_struct_type, 393 &ng_ppp_stats64_type_fields 394 }; 395 396 /* List of commands and how to convert arguments to/from ASCII */ 397 static const struct ng_cmdlist ng_ppp_cmds[] = { 398 { 399 NGM_PPP_COOKIE, 400 NGM_PPP_SET_CONFIG, 401 "setconfig", 402 &ng_ppp_conf_type, 403 NULL 404 }, 405 { 406 NGM_PPP_COOKIE, 407 NGM_PPP_GET_CONFIG, 408 "getconfig", 409 NULL, 410 &ng_ppp_conf_type 411 }, 412 { 413 NGM_PPP_COOKIE, 414 NGM_PPP_GET_MP_STATE, 415 "getmpstate", 416 NULL, 417 &ng_ppp_mp_state_type 418 }, 419 { 420 NGM_PPP_COOKIE, 421 NGM_PPP_GET_LINK_STATS, 422 "getstats", 423 &ng_parse_int16_type, 424 &ng_ppp_stats_type 425 }, 426 { 427 NGM_PPP_COOKIE, 428 NGM_PPP_CLR_LINK_STATS, 429 "clrstats", 430 &ng_parse_int16_type, 431 NULL 432 }, 433 { 434 NGM_PPP_COOKIE, 435 NGM_PPP_GETCLR_LINK_STATS, 436 "getclrstats", 437 &ng_parse_int16_type, 438 &ng_ppp_stats_type 439 }, 440 { 441 NGM_PPP_COOKIE, 442 NGM_PPP_GET_LINK_STATS64, 443 "getstats64", 444 &ng_parse_int16_type, 445 &ng_ppp_stats64_type 446 }, 447 { 448 NGM_PPP_COOKIE, 449 NGM_PPP_GETCLR_LINK_STATS64, 450 "getclrstats64", 451 &ng_parse_int16_type, 452 &ng_ppp_stats64_type 453 }, 454 { 0 } 455 }; 456 457 /* Node type descriptor */ 458 static struct ng_type ng_ppp_typestruct = { 459 .version = NG_ABI_VERSION, 460 .name = NG_PPP_NODE_TYPE, 461 .constructor = ng_ppp_constructor, 462 .rcvmsg = ng_ppp_rcvmsg, 463 .shutdown = ng_ppp_shutdown, 464 .newhook = ng_ppp_newhook, 465 .rcvdata = ng_ppp_rcvdata, 466 .disconnect = ng_ppp_disconnect, 467 .cmdlist = ng_ppp_cmds, 468 }; 469 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 470 471 /* Address and control field header */ 472 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 473 474 /* Maximum time we'll let a complete incoming packet sit in the queue */ 475 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 476 477 #define ERROUT(x) do { error = (x); goto done; } while (0) 478 479 /************************************************************************ 480 NETGRAPH NODE STUFF 481 ************************************************************************/ 482 483 /* 484 * Node type constructor 485 */ 486 static int 487 ng_ppp_constructor(node_p node) 488 { 489 priv_p priv; 490 int i; 491 492 /* Allocate private structure */ 493 priv = malloc(sizeof(*priv), M_NETGRAPH_PPP, M_WAITOK | M_ZERO); 494 495 NG_NODE_SET_PRIVATE(node, priv); 496 497 /* Initialize state */ 498 TAILQ_INIT(&priv->frags); 499 TAILQ_INIT(&priv->fragsfree); 500 for (i = 0; i < MP_MAX_QUEUE_LEN; i++) 501 TAILQ_INSERT_TAIL(&priv->fragsfree, &priv->fragsmem[i], f_qent); 502 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 503 priv->links[i].seq = MP_NOSEQ; 504 ng_callout_init(&priv->fragTimer); 505 506 mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF); 507 mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF); 508 509 /* Done */ 510 return (0); 511 } 512 513 /* 514 * Give our OK for a hook to be added 515 */ 516 static int 517 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 518 { 519 const priv_p priv = NG_NODE_PRIVATE(node); 520 hook_p *hookPtr = NULL; 521 int linkNum = -1; 522 int hookIndex = -1; 523 524 /* Figure out which hook it is */ 525 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 526 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 527 const char *cp; 528 char *eptr; 529 530 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 531 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 532 return (EINVAL); 533 linkNum = (int)strtoul(cp, &eptr, 10); 534 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 535 return (EINVAL); 536 hookPtr = &priv->links[linkNum].hook; 537 hookIndex = ~linkNum; 538 539 /* See if hook is already connected. */ 540 if (*hookPtr != NULL) 541 return (EISCONN); 542 543 /* Disallow more than one link unless multilink is enabled. */ 544 if (priv->links[linkNum].conf.enableLink && 545 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 546 return (ENODEV); 547 548 } else { /* must be a non-link hook */ 549 int i; 550 551 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 552 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 553 hookPtr = &priv->hooks[i]; 554 hookIndex = i; 555 break; 556 } 557 } 558 if (ng_ppp_hook_names[i].name == NULL) 559 return (EINVAL); /* no such hook */ 560 561 /* See if hook is already connected */ 562 if (*hookPtr != NULL) 563 return (EISCONN); 564 565 /* Every non-linkX hook have it's own function. */ 566 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 567 } 568 569 /* OK */ 570 *hookPtr = hook; 571 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 572 ng_ppp_update(node, 0); 573 return (0); 574 } 575 576 /* 577 * Receive a control message 578 */ 579 static int 580 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 581 { 582 const priv_p priv = NG_NODE_PRIVATE(node); 583 struct ng_mesg *resp = NULL; 584 int error = 0; 585 struct ng_mesg *msg; 586 587 NGI_GET_MSG(item, msg); 588 switch (msg->header.typecookie) { 589 case NGM_PPP_COOKIE: 590 switch (msg->header.cmd) { 591 case NGM_PPP_SET_CONFIG: 592 { 593 struct ng_ppp_node_conf *const conf = 594 (struct ng_ppp_node_conf *)msg->data; 595 int i; 596 597 /* Check for invalid or illegal config */ 598 if (msg->header.arglen != sizeof(*conf)) 599 ERROUT(EINVAL); 600 if (!ng_ppp_config_valid(node, conf)) 601 ERROUT(EINVAL); 602 603 /* Copy config */ 604 priv->conf = conf->bund; 605 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 606 priv->links[i].conf = conf->links[i]; 607 ng_ppp_update(node, 1); 608 break; 609 } 610 case NGM_PPP_GET_CONFIG: 611 { 612 struct ng_ppp_node_conf *conf; 613 int i; 614 615 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 616 if (resp == NULL) 617 ERROUT(ENOMEM); 618 conf = (struct ng_ppp_node_conf *)resp->data; 619 conf->bund = priv->conf; 620 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 621 conf->links[i] = priv->links[i].conf; 622 break; 623 } 624 case NGM_PPP_GET_MP_STATE: 625 { 626 struct ng_ppp_mp_state *info; 627 int i; 628 629 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 630 if (resp == NULL) 631 ERROUT(ENOMEM); 632 info = (struct ng_ppp_mp_state *)resp->data; 633 bzero(info, sizeof(*info)); 634 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 635 if (priv->links[i].seq != MP_NOSEQ) 636 info->rseq[i] = priv->links[i].seq; 637 } 638 info->mseq = priv->mseq; 639 info->xseq = priv->xseq; 640 break; 641 } 642 case NGM_PPP_GET_LINK_STATS: 643 case NGM_PPP_CLR_LINK_STATS: 644 case NGM_PPP_GETCLR_LINK_STATS: 645 case NGM_PPP_GET_LINK_STATS64: 646 case NGM_PPP_GETCLR_LINK_STATS64: 647 { 648 struct ng_ppp_link_stat64 *stats; 649 uint16_t linkNum; 650 651 /* Process request. */ 652 if (msg->header.arglen != sizeof(uint16_t)) 653 ERROUT(EINVAL); 654 linkNum = *((uint16_t *) msg->data); 655 if (linkNum >= NG_PPP_MAX_LINKS 656 && linkNum != NG_PPP_BUNDLE_LINKNUM) 657 ERROUT(EINVAL); 658 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 659 &priv->bundleStats : &priv->links[linkNum].stats; 660 661 /* Make 64bit reply. */ 662 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 || 663 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) { 664 NG_MKRESPONSE(resp, msg, 665 sizeof(struct ng_ppp_link_stat64), M_NOWAIT); 666 if (resp == NULL) 667 ERROUT(ENOMEM); 668 bcopy(stats, resp->data, sizeof(*stats)); 669 } else 670 /* Make 32bit reply. */ 671 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS || 672 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) { 673 struct ng_ppp_link_stat *rs; 674 NG_MKRESPONSE(resp, msg, 675 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 676 if (resp == NULL) 677 ERROUT(ENOMEM); 678 rs = (struct ng_ppp_link_stat *)resp->data; 679 /* Truncate 64->32 bits. */ 680 rs->xmitFrames = stats->xmitFrames; 681 rs->xmitOctets = stats->xmitOctets; 682 rs->recvFrames = stats->recvFrames; 683 rs->recvOctets = stats->recvOctets; 684 rs->badProtos = stats->badProtos; 685 rs->runts = stats->runts; 686 rs->dupFragments = stats->dupFragments; 687 rs->dropFragments = stats->dropFragments; 688 } 689 /* Clear stats. */ 690 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS && 691 msg->header.cmd != NGM_PPP_GET_LINK_STATS64) 692 bzero(stats, sizeof(*stats)); 693 break; 694 } 695 default: 696 error = EINVAL; 697 break; 698 } 699 break; 700 case NGM_VJC_COOKIE: 701 { 702 /* 703 * Forward it to the vjc node. leave the 704 * old return address alone. 705 * If we have no hook, let NG_RESPOND_MSG 706 * clean up any remaining resources. 707 * Because we have no resp, the item will be freed 708 * along with anything it references. Don't 709 * let msg be freed twice. 710 */ 711 NGI_MSG(item) = msg; /* put it back in the item */ 712 msg = NULL; 713 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 714 NG_FWD_ITEM_HOOK(error, item, lasthook); 715 } 716 return (error); 717 } 718 default: 719 error = EINVAL; 720 break; 721 } 722 done: 723 NG_RESPOND_MSG(error, node, item, resp); 724 NG_FREE_MSG(msg); 725 return (error); 726 } 727 728 /* 729 * Destroy node 730 */ 731 static int 732 ng_ppp_shutdown(node_p node) 733 { 734 const priv_p priv = NG_NODE_PRIVATE(node); 735 736 /* Stop fragment queue timer */ 737 ng_ppp_stop_frag_timer(node); 738 739 /* Take down netgraph node */ 740 ng_ppp_frag_reset(node); 741 mtx_destroy(&priv->rmtx); 742 mtx_destroy(&priv->xmtx); 743 bzero(priv, sizeof(*priv)); 744 free(priv, M_NETGRAPH_PPP); 745 NG_NODE_SET_PRIVATE(node, NULL); 746 NG_NODE_UNREF(node); /* let the node escape */ 747 return (0); 748 } 749 750 /* 751 * Hook disconnection 752 */ 753 static int 754 ng_ppp_disconnect(hook_p hook) 755 { 756 const node_p node = NG_HOOK_NODE(hook); 757 const priv_p priv = NG_NODE_PRIVATE(node); 758 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 759 760 /* Zero out hook pointer */ 761 if (index < 0) 762 priv->links[~index].hook = NULL; 763 else 764 priv->hooks[index] = NULL; 765 766 /* Update derived info (or go away if no hooks left). */ 767 if (NG_NODE_NUMHOOKS(node) > 0) 768 ng_ppp_update(node, 0); 769 else if (NG_NODE_IS_VALID(node)) 770 ng_rmnode_self(node); 771 772 return (0); 773 } 774 775 /* 776 * Proto layer 777 */ 778 779 /* 780 * Receive data on a hook inet. 781 */ 782 static int 783 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 784 { 785 const node_p node = NG_HOOK_NODE(hook); 786 const priv_p priv = NG_NODE_PRIVATE(node); 787 788 if (!priv->conf.enableIP) { 789 NG_FREE_ITEM(item); 790 return (ENXIO); 791 } 792 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 793 } 794 795 /* 796 * Receive data on a hook ipv6. 797 */ 798 static int 799 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 800 { 801 const node_p node = NG_HOOK_NODE(hook); 802 const priv_p priv = NG_NODE_PRIVATE(node); 803 804 if (!priv->conf.enableIPv6) { 805 NG_FREE_ITEM(item); 806 return (ENXIO); 807 } 808 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 809 } 810 811 /* 812 * Receive data on a hook atalk. 813 */ 814 static int 815 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 816 { 817 const node_p node = NG_HOOK_NODE(hook); 818 const priv_p priv = NG_NODE_PRIVATE(node); 819 820 if (!priv->conf.enableAtalk) { 821 NG_FREE_ITEM(item); 822 return (ENXIO); 823 } 824 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 825 } 826 827 /* 828 * Receive data on a hook ipx 829 */ 830 static int 831 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 832 { 833 const node_p node = NG_HOOK_NODE(hook); 834 const priv_p priv = NG_NODE_PRIVATE(node); 835 836 if (!priv->conf.enableIPX) { 837 NG_FREE_ITEM(item); 838 return (ENXIO); 839 } 840 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 841 } 842 843 /* 844 * Receive data on a hook bypass 845 */ 846 static int 847 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 848 { 849 uint16_t linkNum; 850 uint16_t proto; 851 struct mbuf *m; 852 853 NGI_GET_M(item, m); 854 if (m->m_pkthdr.len < 4) { 855 NG_FREE_ITEM(item); 856 return (EINVAL); 857 } 858 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 859 NG_FREE_ITEM(item); 860 return (ENOBUFS); 861 } 862 linkNum = be16dec(mtod(m, uint8_t *)); 863 proto = be16dec(mtod(m, uint8_t *) + 2); 864 m_adj(m, 4); 865 NGI_M(item) = m; 866 867 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 868 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 869 else 870 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 871 linkNum, 0)); 872 } 873 874 static int 875 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 876 { 877 const priv_p priv = NG_NODE_PRIVATE(node); 878 uint16_t hdr[2]; 879 struct mbuf *m; 880 int error; 881 882 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 883 NG_FREE_ITEM(item); 884 return (ENXIO); 885 } 886 887 /* Add 4-byte bypass header. */ 888 hdr[0] = htons(linkNum); 889 hdr[1] = htons(proto); 890 891 NGI_GET_M(item, m); 892 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 893 NG_FREE_ITEM(item); 894 return (ENOBUFS); 895 } 896 NGI_M(item) = m; 897 898 /* Send packet out hook. */ 899 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 900 return (error); 901 } 902 903 static int 904 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 905 { 906 const priv_p priv = NG_NODE_PRIVATE(node); 907 hook_p outHook = NULL; 908 int error; 909 #ifdef ALIGNED_POINTER 910 struct mbuf *m, *n; 911 912 NGI_GET_M(item, m); 913 if (!ALIGNED_POINTER(mtod(m, caddr_t), uint32_t)) { 914 n = m_defrag(m, M_NOWAIT); 915 if (n == NULL) { 916 m_freem(m); 917 NG_FREE_ITEM(item); 918 return (ENOBUFS); 919 } 920 m = n; 921 } 922 NGI_M(item) = m; 923 #endif /* ALIGNED_POINTER */ 924 switch (proto) { 925 case PROT_IP: 926 if (priv->conf.enableIP) 927 outHook = priv->hooks[HOOK_INDEX_INET]; 928 break; 929 case PROT_IPV6: 930 if (priv->conf.enableIPv6) 931 outHook = priv->hooks[HOOK_INDEX_IPV6]; 932 break; 933 case PROT_ATALK: 934 if (priv->conf.enableAtalk) 935 outHook = priv->hooks[HOOK_INDEX_ATALK]; 936 break; 937 case PROT_IPX: 938 if (priv->conf.enableIPX) 939 outHook = priv->hooks[HOOK_INDEX_IPX]; 940 break; 941 } 942 943 if (outHook == NULL) 944 return (ng_ppp_bypass(node, item, proto, linkNum)); 945 946 /* Send packet out hook. */ 947 NG_FWD_ITEM_HOOK(error, item, outHook); 948 return (error); 949 } 950 951 /* 952 * Header compression layer 953 */ 954 955 static int 956 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 957 { 958 const priv_p priv = NG_NODE_PRIVATE(node); 959 960 if (proto == PROT_IP && 961 priv->conf.enableVJCompression && 962 priv->vjCompHooked) { 963 int error; 964 965 /* Send packet out hook. */ 966 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 967 return (error); 968 } 969 970 return (ng_ppp_comp_xmit(node, item, proto)); 971 } 972 973 /* 974 * Receive data on a hook vjc_comp. 975 */ 976 static int 977 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 978 { 979 const node_p node = NG_HOOK_NODE(hook); 980 const priv_p priv = NG_NODE_PRIVATE(node); 981 982 if (!priv->conf.enableVJCompression) { 983 NG_FREE_ITEM(item); 984 return (ENXIO); 985 } 986 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 987 } 988 989 /* 990 * Receive data on a hook vjc_uncomp. 991 */ 992 static int 993 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 994 { 995 const node_p node = NG_HOOK_NODE(hook); 996 const priv_p priv = NG_NODE_PRIVATE(node); 997 998 if (!priv->conf.enableVJCompression) { 999 NG_FREE_ITEM(item); 1000 return (ENXIO); 1001 } 1002 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 1003 } 1004 1005 /* 1006 * Receive data on a hook vjc_vjip. 1007 */ 1008 static int 1009 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 1010 { 1011 const node_p node = NG_HOOK_NODE(hook); 1012 const priv_p priv = NG_NODE_PRIVATE(node); 1013 1014 if (!priv->conf.enableVJCompression) { 1015 NG_FREE_ITEM(item); 1016 return (ENXIO); 1017 } 1018 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 1019 } 1020 1021 static int 1022 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1023 { 1024 const priv_p priv = NG_NODE_PRIVATE(node); 1025 1026 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 1027 hook_p outHook = NULL; 1028 1029 switch (proto) { 1030 case PROT_VJCOMP: 1031 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 1032 break; 1033 case PROT_VJUNCOMP: 1034 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 1035 break; 1036 } 1037 1038 if (outHook) { 1039 int error; 1040 1041 /* Send packet out hook. */ 1042 NG_FWD_ITEM_HOOK(error, item, outHook); 1043 return (error); 1044 } 1045 } 1046 1047 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 1048 } 1049 1050 /* 1051 * Receive data on a hook vjc_ip. 1052 */ 1053 static int 1054 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 1055 { 1056 const node_p node = NG_HOOK_NODE(hook); 1057 const priv_p priv = NG_NODE_PRIVATE(node); 1058 1059 if (!priv->conf.enableVJDecompression) { 1060 NG_FREE_ITEM(item); 1061 return (ENXIO); 1062 } 1063 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 1064 } 1065 1066 /* 1067 * Compression layer 1068 */ 1069 1070 static int 1071 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1072 { 1073 const priv_p priv = NG_NODE_PRIVATE(node); 1074 1075 if (priv->conf.enableCompression && 1076 proto < 0x4000 && 1077 proto != PROT_COMPD && 1078 proto != PROT_CRYPTD && 1079 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1080 struct mbuf *m; 1081 int error; 1082 1083 NGI_GET_M(item, m); 1084 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1085 NG_FREE_ITEM(item); 1086 return (ENOBUFS); 1087 } 1088 NGI_M(item) = m; 1089 1090 /* Send packet out hook. */ 1091 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1092 return (error); 1093 } 1094 1095 return (ng_ppp_crypt_xmit(node, item, proto)); 1096 } 1097 1098 /* 1099 * Receive data on a hook compress. 1100 */ 1101 static int 1102 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1103 { 1104 const node_p node = NG_HOOK_NODE(hook); 1105 const priv_p priv = NG_NODE_PRIVATE(node); 1106 uint16_t proto; 1107 1108 switch (priv->conf.enableCompression) { 1109 case NG_PPP_COMPRESS_NONE: 1110 NG_FREE_ITEM(item); 1111 return (ENXIO); 1112 case NG_PPP_COMPRESS_FULL: 1113 { 1114 struct mbuf *m; 1115 1116 NGI_GET_M(item, m); 1117 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1118 NG_FREE_ITEM(item); 1119 return (EIO); 1120 } 1121 NGI_M(item) = m; 1122 if (!PROT_VALID(proto)) { 1123 NG_FREE_ITEM(item); 1124 return (EIO); 1125 } 1126 } 1127 break; 1128 default: 1129 proto = PROT_COMPD; 1130 break; 1131 } 1132 return (ng_ppp_crypt_xmit(node, item, proto)); 1133 } 1134 1135 static int 1136 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1137 { 1138 const priv_p priv = NG_NODE_PRIVATE(node); 1139 1140 if (proto < 0x4000 && 1141 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1142 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1143 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1144 int error; 1145 1146 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1147 struct mbuf *m; 1148 NGI_GET_M(item, m); 1149 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1150 NG_FREE_ITEM(item); 1151 return (EIO); 1152 } 1153 NGI_M(item) = m; 1154 } 1155 1156 /* Send packet out hook. */ 1157 NG_FWD_ITEM_HOOK(error, item, 1158 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1159 return (error); 1160 } else if (proto == PROT_COMPD) { 1161 /* Disabled protos MUST be silently discarded, but 1162 * unsupported MUST not. Let user-level decide this. */ 1163 return (ng_ppp_bypass(node, item, proto, linkNum)); 1164 } 1165 1166 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1167 } 1168 1169 /* 1170 * Receive data on a hook decompress. 1171 */ 1172 static int 1173 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1174 { 1175 const node_p node = NG_HOOK_NODE(hook); 1176 const priv_p priv = NG_NODE_PRIVATE(node); 1177 uint16_t proto; 1178 struct mbuf *m; 1179 1180 if (!priv->conf.enableDecompression) { 1181 NG_FREE_ITEM(item); 1182 return (ENXIO); 1183 } 1184 NGI_GET_M(item, m); 1185 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1186 NG_FREE_ITEM(item); 1187 return (EIO); 1188 } 1189 NGI_M(item) = m; 1190 if (!PROT_VALID(proto)) { 1191 priv->bundleStats.badProtos++; 1192 NG_FREE_ITEM(item); 1193 return (EIO); 1194 } 1195 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1196 } 1197 1198 /* 1199 * Encryption layer 1200 */ 1201 1202 static int 1203 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1204 { 1205 const priv_p priv = NG_NODE_PRIVATE(node); 1206 1207 if (priv->conf.enableEncryption && 1208 proto < 0x4000 && 1209 proto != PROT_CRYPTD && 1210 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1211 struct mbuf *m; 1212 int error; 1213 1214 NGI_GET_M(item, m); 1215 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1216 NG_FREE_ITEM(item); 1217 return (ENOBUFS); 1218 } 1219 NGI_M(item) = m; 1220 1221 /* Send packet out hook. */ 1222 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1223 return (error); 1224 } 1225 1226 return (ng_ppp_mp_xmit(node, item, proto)); 1227 } 1228 1229 /* 1230 * Receive data on a hook encrypt. 1231 */ 1232 static int 1233 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1234 { 1235 const node_p node = NG_HOOK_NODE(hook); 1236 const priv_p priv = NG_NODE_PRIVATE(node); 1237 1238 if (!priv->conf.enableEncryption) { 1239 NG_FREE_ITEM(item); 1240 return (ENXIO); 1241 } 1242 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1243 } 1244 1245 static int 1246 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1247 { 1248 const priv_p priv = NG_NODE_PRIVATE(node); 1249 1250 if (proto == PROT_CRYPTD) { 1251 if (priv->conf.enableDecryption && 1252 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1253 int error; 1254 1255 /* Send packet out hook. */ 1256 NG_FWD_ITEM_HOOK(error, item, 1257 priv->hooks[HOOK_INDEX_DECRYPT]); 1258 return (error); 1259 } else { 1260 /* Disabled protos MUST be silently discarded, but 1261 * unsupported MUST not. Let user-level decide this. */ 1262 return (ng_ppp_bypass(node, item, proto, linkNum)); 1263 } 1264 } 1265 1266 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1267 } 1268 1269 /* 1270 * Receive data on a hook decrypt. 1271 */ 1272 static int 1273 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1274 { 1275 const node_p node = NG_HOOK_NODE(hook); 1276 const priv_p priv = NG_NODE_PRIVATE(node); 1277 uint16_t proto; 1278 struct mbuf *m; 1279 1280 if (!priv->conf.enableDecryption) { 1281 NG_FREE_ITEM(item); 1282 return (ENXIO); 1283 } 1284 NGI_GET_M(item, m); 1285 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1286 NG_FREE_ITEM(item); 1287 return (EIO); 1288 } 1289 NGI_M(item) = m; 1290 if (!PROT_VALID(proto)) { 1291 priv->bundleStats.badProtos++; 1292 NG_FREE_ITEM(item); 1293 return (EIO); 1294 } 1295 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1296 } 1297 1298 /* 1299 * Link layer 1300 */ 1301 1302 static int 1303 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen) 1304 { 1305 const priv_p priv = NG_NODE_PRIVATE(node); 1306 struct ng_ppp_link *link; 1307 int len, error; 1308 struct mbuf *m; 1309 uint16_t mru; 1310 1311 /* Check if link correct. */ 1312 if (linkNum >= NG_PPP_MAX_LINKS) { 1313 ERROUT(ENETDOWN); 1314 } 1315 1316 /* Get link pointer (optimization). */ 1317 link = &priv->links[linkNum]; 1318 1319 /* Check link status (if real). */ 1320 if (link->hook == NULL) { 1321 ERROUT(ENETDOWN); 1322 } 1323 1324 /* Extract mbuf. */ 1325 NGI_GET_M(item, m); 1326 1327 /* Check peer's MRU for this link. */ 1328 mru = link->conf.mru; 1329 if (mru != 0 && m->m_pkthdr.len > mru) { 1330 NG_FREE_M(m); 1331 ERROUT(EMSGSIZE); 1332 } 1333 1334 /* Prepend protocol number, possibly compressed. */ 1335 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1336 NULL) { 1337 ERROUT(ENOBUFS); 1338 } 1339 1340 /* Prepend address and control field (unless compressed). */ 1341 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1342 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) 1343 ERROUT(ENOBUFS); 1344 } 1345 1346 /* Deliver frame. */ 1347 len = m->m_pkthdr.len; 1348 NG_FWD_NEW_DATA(error, item, link->hook, m); 1349 1350 mtx_lock(&priv->xmtx); 1351 1352 /* Update link stats. */ 1353 link->stats.xmitFrames++; 1354 link->stats.xmitOctets += len; 1355 1356 /* Update bundle stats. */ 1357 if (plen > 0) { 1358 priv->bundleStats.xmitFrames++; 1359 priv->bundleStats.xmitOctets += plen; 1360 } 1361 1362 /* Update 'bytes in queue' counter. */ 1363 if (error == 0) { 1364 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1365 if (priv->conf.enableMultilink && !priv->allLinksEqual && 1366 !priv->conf.enableRoundRobin) { 1367 /* If queue was empty, then mark this time. */ 1368 if (link->bytesInQueue == 0) 1369 getmicrouptime(&link->lastWrite); 1370 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1371 /* Limit max queue length to 50 pkts. BW can be defined 1372 incorrectly and link may not signal overload. */ 1373 if (link->bytesInQueue > 50 * 1600) 1374 link->bytesInQueue = 50 * 1600; 1375 } 1376 } 1377 mtx_unlock(&priv->xmtx); 1378 return (error); 1379 1380 done: 1381 NG_FREE_ITEM(item); 1382 return (error); 1383 } 1384 1385 /* 1386 * Receive data on a hook linkX. 1387 */ 1388 static int 1389 ng_ppp_rcvdata(hook_p hook, item_p item) 1390 { 1391 const node_p node = NG_HOOK_NODE(hook); 1392 const priv_p priv = NG_NODE_PRIVATE(node); 1393 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1394 const uint16_t linkNum = (uint16_t)~index; 1395 struct ng_ppp_link * const link = &priv->links[linkNum]; 1396 uint16_t proto; 1397 struct mbuf *m; 1398 int error = 0; 1399 1400 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1401 ("%s: bogus index 0x%x", __func__, index)); 1402 1403 NGI_GET_M(item, m); 1404 1405 mtx_lock(&priv->rmtx); 1406 1407 /* Stats */ 1408 link->stats.recvFrames++; 1409 link->stats.recvOctets += m->m_pkthdr.len; 1410 1411 /* Strip address and control fields, if present. */ 1412 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1413 ERROUT(ENOBUFS); 1414 if (mtod(m, uint8_t *)[0] == 0xff && 1415 mtod(m, uint8_t *)[1] == 0x03) 1416 m_adj(m, 2); 1417 1418 /* Get protocol number */ 1419 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1420 ERROUT(ENOBUFS); 1421 NGI_M(item) = m; /* Put changed m back into item. */ 1422 1423 if (!PROT_VALID(proto)) { 1424 link->stats.badProtos++; 1425 ERROUT(EIO); 1426 } 1427 1428 /* LCP packets must go directly to bypass. */ 1429 if (proto >= 0xB000) { 1430 mtx_unlock(&priv->rmtx); 1431 return (ng_ppp_bypass(node, item, proto, linkNum)); 1432 } 1433 1434 /* Other packets are denied on a disabled link. */ 1435 if (!link->conf.enableLink) 1436 ERROUT(ENXIO); 1437 1438 /* Proceed to multilink layer. Mutex will be unlocked inside. */ 1439 error = ng_ppp_mp_recv(node, item, proto, linkNum); 1440 mtx_assert(&priv->rmtx, MA_NOTOWNED); 1441 return (error); 1442 1443 done: 1444 mtx_unlock(&priv->rmtx); 1445 NG_FREE_ITEM(item); 1446 return (error); 1447 } 1448 1449 /* 1450 * Multilink layer 1451 */ 1452 1453 /* 1454 * Handle an incoming multi-link fragment 1455 * 1456 * The fragment reassembly algorithm is somewhat complex. This is mainly 1457 * because we are required not to reorder the reconstructed packets, yet 1458 * fragments are only guaranteed to arrive in order on a per-link basis. 1459 * In other words, when we have a complete packet ready, but the previous 1460 * packet is still incomplete, we have to decide between delivering the 1461 * complete packet and throwing away the incomplete one, or waiting to 1462 * see if the remainder of the incomplete one arrives, at which time we 1463 * can deliver both packets, in order. 1464 * 1465 * This problem is exacerbated by "sequence number slew", which is when 1466 * the sequence numbers coming in from different links are far apart from 1467 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1468 * has been seen to generate sequence number slew of up to 10 on an ISDN 1469 * 2B-channel MP link. There is nothing invalid about sequence number slew 1470 * but it makes the reasssembly process have to work harder. 1471 * 1472 * However, the peer is required to transmit fragments in order on each 1473 * link. That means if we define MSEQ as the minimum over all links of 1474 * the highest sequence number received on that link, then we can always 1475 * give up any hope of receiving a fragment with sequence number < MSEQ in 1476 * the future (all of this using 'wraparound' sequence number space). 1477 * Therefore we can always immediately throw away incomplete packets 1478 * missing fragments with sequence numbers < MSEQ. 1479 * 1480 * Here is an overview of our algorithm: 1481 * 1482 * o Received fragments are inserted into a queue, for which we 1483 * maintain these invariants between calls to this function: 1484 * 1485 * - Fragments are ordered in the queue by sequence number 1486 * - If a complete packet is at the head of the queue, then 1487 * the first fragment in the packet has seq# > MSEQ + 1 1488 * (otherwise, we could deliver it immediately) 1489 * - If any fragments have seq# < MSEQ, then they are necessarily 1490 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1491 * we can throw them away because they'll never be completed) 1492 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1493 * 1494 * o We have a periodic timer that checks the queue for the first 1495 * complete packet that has been sitting in the queue "too long". 1496 * When one is detected, all previous (incomplete) fragments are 1497 * discarded, their missing fragments are declared lost and MSEQ 1498 * is increased. 1499 * 1500 * o If we recieve a fragment with seq# < MSEQ, we throw it away 1501 * because we've already delcared it lost. 1502 * 1503 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1504 */ 1505 static int 1506 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1507 { 1508 const priv_p priv = NG_NODE_PRIVATE(node); 1509 struct ng_ppp_link *const link = &priv->links[linkNum]; 1510 struct ng_ppp_frag *frag; 1511 struct ng_ppp_frag *qent; 1512 int i, diff, inserted; 1513 struct mbuf *m; 1514 int error = 0; 1515 1516 if ((!priv->conf.enableMultilink) || proto != PROT_MP) { 1517 /* Stats */ 1518 priv->bundleStats.recvFrames++; 1519 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1520 1521 mtx_unlock(&priv->rmtx); 1522 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1523 } 1524 1525 NGI_GET_M(item, m); 1526 1527 /* Get a new frag struct from the free queue */ 1528 if ((frag = TAILQ_FIRST(&priv->fragsfree)) == NULL) { 1529 printf("No free fragments headers in ng_ppp!\n"); 1530 NG_FREE_M(m); 1531 goto process; 1532 } 1533 1534 /* Extract fragment information from MP header */ 1535 if (priv->conf.recvShortSeq) { 1536 uint16_t shdr; 1537 1538 if (m->m_pkthdr.len < 2) { 1539 link->stats.runts++; 1540 NG_FREE_M(m); 1541 ERROUT(EINVAL); 1542 } 1543 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1544 ERROUT(ENOBUFS); 1545 1546 shdr = be16dec(mtod(m, void *)); 1547 frag->seq = MP_SHORT_EXTEND(shdr); 1548 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1549 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1550 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1551 m_adj(m, 2); 1552 } else { 1553 uint32_t lhdr; 1554 1555 if (m->m_pkthdr.len < 4) { 1556 link->stats.runts++; 1557 NG_FREE_M(m); 1558 ERROUT(EINVAL); 1559 } 1560 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1561 ERROUT(ENOBUFS); 1562 1563 lhdr = be32dec(mtod(m, void *)); 1564 frag->seq = MP_LONG_EXTEND(lhdr); 1565 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1566 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1567 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1568 m_adj(m, 4); 1569 } 1570 frag->data = m; 1571 getmicrouptime(&frag->timestamp); 1572 1573 /* If sequence number is < MSEQ, we've already declared this 1574 fragment as lost, so we have no choice now but to drop it */ 1575 if (diff < 0) { 1576 link->stats.dropFragments++; 1577 NG_FREE_M(m); 1578 ERROUT(0); 1579 } 1580 1581 /* Update highest received sequence number on this link and MSEQ */ 1582 priv->mseq = link->seq = frag->seq; 1583 for (i = 0; i < priv->numActiveLinks; i++) { 1584 struct ng_ppp_link *const alink = 1585 &priv->links[priv->activeLinks[i]]; 1586 1587 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1588 priv->mseq = alink->seq; 1589 } 1590 1591 /* Remove frag struct from free queue. */ 1592 TAILQ_REMOVE(&priv->fragsfree, frag, f_qent); 1593 1594 /* Add fragment to queue, which is sorted by sequence number */ 1595 inserted = 0; 1596 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1597 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1598 if (diff > 0) { 1599 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1600 inserted = 1; 1601 break; 1602 } else if (diff == 0) { /* should never happen! */ 1603 link->stats.dupFragments++; 1604 NG_FREE_M(frag->data); 1605 TAILQ_INSERT_HEAD(&priv->fragsfree, frag, f_qent); 1606 ERROUT(EINVAL); 1607 } 1608 } 1609 if (!inserted) 1610 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1611 1612 process: 1613 /* Process the queue */ 1614 /* NOTE: rmtx will be unlocked for sending time! */ 1615 error = ng_ppp_frag_process(node, item); 1616 mtx_unlock(&priv->rmtx); 1617 return (error); 1618 1619 done: 1620 mtx_unlock(&priv->rmtx); 1621 NG_FREE_ITEM(item); 1622 return (error); 1623 } 1624 1625 /************************************************************************ 1626 HELPER STUFF 1627 ************************************************************************/ 1628 1629 /* 1630 * If new mseq > current then set it and update all active links 1631 */ 1632 static void 1633 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1634 { 1635 const priv_p priv = NG_NODE_PRIVATE(node); 1636 int i; 1637 1638 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1639 priv->mseq = new_mseq; 1640 for (i = 0; i < priv->numActiveLinks; i++) { 1641 struct ng_ppp_link *const alink = 1642 &priv->links[priv->activeLinks[i]]; 1643 1644 if (MP_RECV_SEQ_DIFF(priv, 1645 alink->seq, new_mseq) < 0) 1646 alink->seq = new_mseq; 1647 } 1648 } 1649 } 1650 1651 /* 1652 * Examine our list of fragments, and determine if there is a 1653 * complete and deliverable packet at the head of the list. 1654 * Return 1 if so, zero otherwise. 1655 */ 1656 static int 1657 ng_ppp_check_packet(node_p node) 1658 { 1659 const priv_p priv = NG_NODE_PRIVATE(node); 1660 struct ng_ppp_frag *qent, *qnext; 1661 1662 /* Check for empty queue */ 1663 if (TAILQ_EMPTY(&priv->frags)) 1664 return (0); 1665 1666 /* Check first fragment is the start of a deliverable packet */ 1667 qent = TAILQ_FIRST(&priv->frags); 1668 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1669 return (0); 1670 1671 /* Check that all the fragments are there */ 1672 while (!qent->last) { 1673 qnext = TAILQ_NEXT(qent, f_qent); 1674 if (qnext == NULL) /* end of queue */ 1675 return (0); 1676 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1677 return (0); 1678 qent = qnext; 1679 } 1680 1681 /* Got one */ 1682 return (1); 1683 } 1684 1685 /* 1686 * Pull a completed packet off the head of the incoming fragment queue. 1687 * This assumes there is a completed packet there to pull off. 1688 */ 1689 static void 1690 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1691 { 1692 const priv_p priv = NG_NODE_PRIVATE(node); 1693 struct ng_ppp_frag *qent, *qnext; 1694 struct mbuf *m = NULL, *tail; 1695 1696 qent = TAILQ_FIRST(&priv->frags); 1697 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1698 ("%s: no packet", __func__)); 1699 for (tail = NULL; qent != NULL; qent = qnext) { 1700 qnext = TAILQ_NEXT(qent, f_qent); 1701 KASSERT(!TAILQ_EMPTY(&priv->frags), 1702 ("%s: empty q", __func__)); 1703 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1704 if (tail == NULL) 1705 tail = m = qent->data; 1706 else { 1707 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1708 tail->m_next = qent->data; 1709 } 1710 while (tail->m_next != NULL) 1711 tail = tail->m_next; 1712 if (qent->last) { 1713 qnext = NULL; 1714 /* Bump MSEQ if necessary */ 1715 ng_ppp_bump_mseq(node, qent->seq); 1716 } 1717 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1718 } 1719 *mp = m; 1720 } 1721 1722 /* 1723 * Trim fragments from the queue whose packets can never be completed. 1724 * This assumes a complete packet is NOT at the beginning of the queue. 1725 * Returns 1 if fragments were removed, zero otherwise. 1726 */ 1727 static int 1728 ng_ppp_frag_trim(node_p node) 1729 { 1730 const priv_p priv = NG_NODE_PRIVATE(node); 1731 struct ng_ppp_frag *qent, *qnext = NULL; 1732 int removed = 0; 1733 1734 /* Scan for "dead" fragments and remove them */ 1735 while (1) { 1736 int dead = 0; 1737 1738 /* If queue is empty, we're done */ 1739 if (TAILQ_EMPTY(&priv->frags)) 1740 break; 1741 1742 /* Determine whether first fragment can ever be completed */ 1743 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1744 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1745 break; 1746 qnext = TAILQ_NEXT(qent, f_qent); 1747 KASSERT(qnext != NULL, 1748 ("%s: last frag < MSEQ?", __func__)); 1749 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1750 || qent->last || qnext->first) { 1751 dead = 1; 1752 break; 1753 } 1754 } 1755 if (!dead) 1756 break; 1757 1758 /* Remove fragment and all others in the same packet */ 1759 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1760 KASSERT(!TAILQ_EMPTY(&priv->frags), 1761 ("%s: empty q", __func__)); 1762 priv->bundleStats.dropFragments++; 1763 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1764 NG_FREE_M(qent->data); 1765 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1766 removed = 1; 1767 } 1768 } 1769 return (removed); 1770 } 1771 1772 /* 1773 * Drop fragments on queue overflow. 1774 * Returns 1 if fragments were removed, zero otherwise. 1775 */ 1776 static int 1777 ng_ppp_frag_drop(node_p node) 1778 { 1779 const priv_p priv = NG_NODE_PRIVATE(node); 1780 1781 /* Check queue length */ 1782 if (TAILQ_EMPTY(&priv->fragsfree)) { 1783 struct ng_ppp_frag *qent; 1784 1785 /* Get oldest fragment */ 1786 KASSERT(!TAILQ_EMPTY(&priv->frags), 1787 ("%s: empty q", __func__)); 1788 qent = TAILQ_FIRST(&priv->frags); 1789 1790 /* Bump MSEQ if necessary */ 1791 ng_ppp_bump_mseq(node, qent->seq); 1792 1793 /* Drop it */ 1794 priv->bundleStats.dropFragments++; 1795 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1796 NG_FREE_M(qent->data); 1797 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1798 1799 return (1); 1800 } 1801 return (0); 1802 } 1803 1804 /* 1805 * Run the queue, restoring the queue invariants 1806 */ 1807 static int 1808 ng_ppp_frag_process(node_p node, item_p oitem) 1809 { 1810 const priv_p priv = NG_NODE_PRIVATE(node); 1811 struct mbuf *m; 1812 item_p item; 1813 uint16_t proto; 1814 1815 do { 1816 /* Deliver any deliverable packets */ 1817 while (ng_ppp_check_packet(node)) { 1818 ng_ppp_get_packet(node, &m); 1819 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1820 continue; 1821 if (!PROT_VALID(proto)) { 1822 priv->bundleStats.badProtos++; 1823 NG_FREE_M(m); 1824 continue; 1825 } 1826 if (oitem) { /* If original item present - reuse it. */ 1827 item = oitem; 1828 oitem = NULL; 1829 NGI_M(item) = m; 1830 } else { 1831 item = ng_package_data(m, NG_NOFLAGS); 1832 } 1833 if (item != NULL) { 1834 /* Stats */ 1835 priv->bundleStats.recvFrames++; 1836 priv->bundleStats.recvOctets += 1837 NGI_M(item)->m_pkthdr.len; 1838 1839 /* Drop mutex for the sending time. 1840 * Priv may change, but we are ready! 1841 */ 1842 mtx_unlock(&priv->rmtx); 1843 ng_ppp_crypt_recv(node, item, proto, 1844 NG_PPP_BUNDLE_LINKNUM); 1845 mtx_lock(&priv->rmtx); 1846 } 1847 } 1848 /* Delete dead fragments and try again */ 1849 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1850 1851 /* If we haven't reused original item - free it. */ 1852 if (oitem) NG_FREE_ITEM(oitem); 1853 1854 /* Done */ 1855 return (0); 1856 } 1857 1858 /* 1859 * Check for 'stale' completed packets that need to be delivered 1860 * 1861 * If a link goes down or has a temporary failure, MSEQ can get 1862 * "stuck", because no new incoming fragments appear on that link. 1863 * This can cause completed packets to never get delivered if 1864 * their sequence numbers are all > MSEQ + 1. 1865 * 1866 * This routine checks how long all of the completed packets have 1867 * been sitting in the queue, and if too long, removes fragments 1868 * from the queue and increments MSEQ to allow them to be delivered. 1869 */ 1870 static void 1871 ng_ppp_frag_checkstale(node_p node) 1872 { 1873 const priv_p priv = NG_NODE_PRIVATE(node); 1874 struct ng_ppp_frag *qent, *beg, *end; 1875 struct timeval now, age; 1876 struct mbuf *m; 1877 int seq; 1878 item_p item; 1879 int endseq; 1880 uint16_t proto; 1881 1882 now.tv_sec = 0; /* uninitialized state */ 1883 while (1) { 1884 1885 /* If queue is empty, we're done */ 1886 if (TAILQ_EMPTY(&priv->frags)) 1887 break; 1888 1889 /* Find the first complete packet in the queue */ 1890 beg = end = NULL; 1891 seq = TAILQ_FIRST(&priv->frags)->seq; 1892 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1893 if (qent->first) 1894 beg = qent; 1895 else if (qent->seq != seq) 1896 beg = NULL; 1897 if (beg != NULL && qent->last) { 1898 end = qent; 1899 break; 1900 } 1901 seq = MP_NEXT_RECV_SEQ(priv, seq); 1902 } 1903 1904 /* If none found, exit */ 1905 if (end == NULL) 1906 break; 1907 1908 /* Get current time (we assume we've been up for >= 1 second) */ 1909 if (now.tv_sec == 0) 1910 getmicrouptime(&now); 1911 1912 /* Check if packet has been queued too long */ 1913 age = now; 1914 timevalsub(&age, &beg->timestamp); 1915 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1916 break; 1917 1918 /* Throw away junk fragments in front of the completed packet */ 1919 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1920 KASSERT(!TAILQ_EMPTY(&priv->frags), 1921 ("%s: empty q", __func__)); 1922 priv->bundleStats.dropFragments++; 1923 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1924 NG_FREE_M(qent->data); 1925 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1926 } 1927 1928 /* Extract completed packet */ 1929 endseq = end->seq; 1930 ng_ppp_get_packet(node, &m); 1931 1932 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1933 continue; 1934 if (!PROT_VALID(proto)) { 1935 priv->bundleStats.badProtos++; 1936 NG_FREE_M(m); 1937 continue; 1938 } 1939 1940 /* Deliver packet */ 1941 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1942 /* Stats */ 1943 priv->bundleStats.recvFrames++; 1944 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1945 1946 ng_ppp_crypt_recv(node, item, proto, 1947 NG_PPP_BUNDLE_LINKNUM); 1948 } 1949 } 1950 } 1951 1952 /* 1953 * Periodically call ng_ppp_frag_checkstale() 1954 */ 1955 static void 1956 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1957 { 1958 /* XXX: is this needed? */ 1959 if (NG_NODE_NOT_VALID(node)) 1960 return; 1961 1962 /* Scan the fragment queue */ 1963 ng_ppp_frag_checkstale(node); 1964 1965 /* Start timer again */ 1966 ng_ppp_start_frag_timer(node); 1967 } 1968 1969 /* 1970 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1971 * the frame across the individual PPP links and do so. 1972 */ 1973 static int 1974 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1975 { 1976 const priv_p priv = NG_NODE_PRIVATE(node); 1977 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1978 int distrib[NG_PPP_MAX_LINKS]; 1979 int firstFragment; 1980 int activeLinkNum; 1981 struct mbuf *m; 1982 int plen; 1983 int frags; 1984 int32_t seq; 1985 1986 /* At least one link must be active */ 1987 if (priv->numActiveLinks == 0) { 1988 NG_FREE_ITEM(item); 1989 return (ENETDOWN); 1990 } 1991 1992 /* Save length for later stats. */ 1993 plen = NGI_M(item)->m_pkthdr.len; 1994 1995 if (!priv->conf.enableMultilink) { 1996 return (ng_ppp_link_xmit(node, item, proto, 1997 priv->activeLinks[0], plen)); 1998 } 1999 2000 /* Check peer's MRRU for this bundle. */ 2001 if (plen > priv->conf.mrru) { 2002 NG_FREE_ITEM(item); 2003 return (EMSGSIZE); 2004 } 2005 2006 /* Extract mbuf. */ 2007 NGI_GET_M(item, m); 2008 2009 /* Prepend protocol number, possibly compressed. */ 2010 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) { 2011 NG_FREE_ITEM(item); 2012 return (ENOBUFS); 2013 } 2014 2015 /* Clear distribution plan */ 2016 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 2017 2018 mtx_lock(&priv->xmtx); 2019 2020 /* Round-robin strategy */ 2021 if (priv->conf.enableRoundRobin) { 2022 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 2023 distrib[activeLinkNum] = m->m_pkthdr.len; 2024 goto deliver; 2025 } 2026 2027 /* Strategy when all links are equivalent (optimize the common case) */ 2028 if (priv->allLinksEqual) { 2029 int numFrags, fraction, remain; 2030 int i; 2031 2032 /* Calculate optimal fragment count */ 2033 numFrags = priv->numActiveLinks; 2034 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 2035 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 2036 if (numFrags == 0) 2037 numFrags = 1; 2038 2039 fraction = m->m_pkthdr.len / numFrags; 2040 remain = m->m_pkthdr.len - (fraction * numFrags); 2041 2042 /* Assign distribution */ 2043 for (i = 0; i < numFrags; i++) { 2044 distrib[priv->lastLink++ % priv->numActiveLinks] 2045 = fraction + (((remain--) > 0)?1:0); 2046 } 2047 goto deliver; 2048 } 2049 2050 /* Strategy when all links are not equivalent */ 2051 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 2052 2053 deliver: 2054 /* Estimate fragments count */ 2055 frags = 0; 2056 for (activeLinkNum = priv->numActiveLinks - 1; 2057 activeLinkNum >= 0; activeLinkNum--) { 2058 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2059 struct ng_ppp_link *const link = &priv->links[linkNum]; 2060 2061 frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) / 2062 (link->conf.mru - hdr_len); 2063 } 2064 2065 /* Get out initial sequence number */ 2066 seq = priv->xseq; 2067 2068 /* Update next sequence number */ 2069 if (priv->conf.xmitShortSeq) { 2070 priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK; 2071 } else { 2072 priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK; 2073 } 2074 2075 mtx_unlock(&priv->xmtx); 2076 2077 /* Send alloted portions of frame out on the link(s) */ 2078 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 2079 activeLinkNum >= 0; activeLinkNum--) { 2080 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2081 struct ng_ppp_link *const link = &priv->links[linkNum]; 2082 2083 /* Deliver fragment(s) out the next link */ 2084 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 2085 int len, lastFragment, error; 2086 struct mbuf *m2; 2087 2088 /* Calculate fragment length; don't exceed link MTU */ 2089 len = distrib[activeLinkNum]; 2090 if (len > link->conf.mru - hdr_len) 2091 len = link->conf.mru - hdr_len; 2092 distrib[activeLinkNum] -= len; 2093 lastFragment = (len == m->m_pkthdr.len); 2094 2095 /* Split off next fragment as "m2" */ 2096 m2 = m; 2097 if (!lastFragment) { 2098 struct mbuf *n = m_split(m, len, M_DONTWAIT); 2099 2100 if (n == NULL) { 2101 NG_FREE_M(m); 2102 if (firstFragment) 2103 NG_FREE_ITEM(item); 2104 return (ENOMEM); 2105 } 2106 m_tag_copy_chain(n, m, M_DONTWAIT); 2107 m = n; 2108 } 2109 2110 /* Prepend MP header */ 2111 if (priv->conf.xmitShortSeq) { 2112 uint16_t shdr; 2113 2114 shdr = seq; 2115 seq = (seq + 1) & MP_SHORT_SEQ_MASK; 2116 if (firstFragment) 2117 shdr |= MP_SHORT_FIRST_FLAG; 2118 if (lastFragment) 2119 shdr |= MP_SHORT_LAST_FLAG; 2120 shdr = htons(shdr); 2121 m2 = ng_ppp_prepend(m2, &shdr, 2); 2122 } else { 2123 uint32_t lhdr; 2124 2125 lhdr = seq; 2126 seq = (seq + 1) & MP_LONG_SEQ_MASK; 2127 if (firstFragment) 2128 lhdr |= MP_LONG_FIRST_FLAG; 2129 if (lastFragment) 2130 lhdr |= MP_LONG_LAST_FLAG; 2131 lhdr = htonl(lhdr); 2132 m2 = ng_ppp_prepend(m2, &lhdr, 4); 2133 } 2134 if (m2 == NULL) { 2135 if (!lastFragment) 2136 m_freem(m); 2137 if (firstFragment) 2138 NG_FREE_ITEM(item); 2139 return (ENOBUFS); 2140 } 2141 2142 /* Send fragment */ 2143 if (firstFragment) { 2144 NGI_M(item) = m2; /* Reuse original item. */ 2145 } else { 2146 item = ng_package_data(m2, NG_NOFLAGS); 2147 } 2148 if (item != NULL) { 2149 error = ng_ppp_link_xmit(node, item, PROT_MP, 2150 linkNum, (firstFragment?plen:0)); 2151 if (error != 0) { 2152 if (!lastFragment) 2153 NG_FREE_M(m); 2154 return (error); 2155 } 2156 } 2157 } 2158 } 2159 2160 /* Done */ 2161 return (0); 2162 } 2163 2164 /* 2165 * Computing the optimal fragmentation 2166 * ----------------------------------- 2167 * 2168 * This routine tries to compute the optimal fragmentation pattern based 2169 * on each link's latency, bandwidth, and calculated additional latency. 2170 * The latter quantity is the additional latency caused by previously 2171 * written data that has not been transmitted yet. 2172 * 2173 * This algorithm is only useful when not all of the links have the 2174 * same latency and bandwidth values. 2175 * 2176 * The essential idea is to make the last bit of each fragment of the 2177 * frame arrive at the opposite end at the exact same time. This greedy 2178 * algorithm is optimal, in that no other scheduling could result in any 2179 * packet arriving any sooner unless packets are delivered out of order. 2180 * 2181 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2182 * latency l_i (in miliseconds). Consider the function function f_i(t) 2183 * which is equal to the number of bytes that will have arrived at 2184 * the peer after t miliseconds if we start writing continuously at 2185 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2186 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2187 * Note that the y-intersect is always <= zero because latency can't be 2188 * negative. Note also that really the function is f_i(t) except when 2189 * f_i(t) is negative, in which case the function is zero. To take 2190 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2191 * So the actual number of bytes that will have arrived at the peer after 2192 * t miliseconds is f_i(t) * Q_i(t). 2193 * 2194 * At any given time, each link has some additional latency a_i >= 0 2195 * due to previously written fragment(s) which are still in the queue. 2196 * This value is easily computed from the time since last transmission, 2197 * the previous latency value, the number of bytes written, and the 2198 * link's bandwidth. 2199 * 2200 * Assume that l_i includes any a_i already, and that the links are 2201 * sorted by latency, so that l_i <= l_{i+1}. 2202 * 2203 * Let N be the total number of bytes in the current frame we are sending. 2204 * 2205 * Suppose we were to start writing bytes at time t = 0 on all links 2206 * simultaneously, which is the most we can possibly do. Then let 2207 * F(t) be equal to the total number of bytes received by the peer 2208 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2209 * 2210 * Our goal is simply this: fragment the frame across the links such 2211 * that the peer is able to reconstruct the completed frame as soon as 2212 * possible, i.e., at the least possible value of t. Call this value t_0. 2213 * 2214 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2215 * of t_0, and then deduce how many bytes to write to each link. 2216 * 2217 * Rewriting F(t_0): 2218 * 2219 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2220 * 2221 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2222 * lie in one of these ranges. To find it, we just need to find the i such 2223 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2224 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2225 * 2226 * Once t_0 is known, then the number of bytes to send on link i is 2227 * just f_i(t_0) * Q_i(t_0). 2228 * 2229 * In other words, we start allocating bytes to the links one at a time. 2230 * We keep adding links until the frame is completely sent. Some links 2231 * may not get any bytes because their latency is too high. 2232 * 2233 * Is all this work really worth the trouble? Depends on the situation. 2234 * The bigger the ratio of computer speed to link speed, and the more 2235 * important total bundle latency is (e.g., for interactive response time), 2236 * the more it's worth it. There is however the cost of calling this 2237 * function for every frame. The running time is O(n^2) where n is the 2238 * number of links that receive a non-zero number of bytes. 2239 * 2240 * Since latency is measured in miliseconds, the "resolution" of this 2241 * algorithm is one milisecond. 2242 * 2243 * To avoid this algorithm altogether, configure all links to have the 2244 * same latency and bandwidth. 2245 */ 2246 static void 2247 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2248 { 2249 const priv_p priv = NG_NODE_PRIVATE(node); 2250 int latency[NG_PPP_MAX_LINKS]; 2251 int sortByLatency[NG_PPP_MAX_LINKS]; 2252 int activeLinkNum; 2253 int t0, total, topSum, botSum; 2254 struct timeval now; 2255 int i, numFragments; 2256 2257 /* If only one link, this gets real easy */ 2258 if (priv->numActiveLinks == 1) { 2259 distrib[0] = len; 2260 return; 2261 } 2262 2263 /* Get current time */ 2264 getmicrouptime(&now); 2265 2266 /* Compute latencies for each link at this point in time */ 2267 for (activeLinkNum = 0; 2268 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2269 struct ng_ppp_link *alink; 2270 struct timeval diff; 2271 int xmitBytes; 2272 2273 /* Start with base latency value */ 2274 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2275 latency[activeLinkNum] = alink->latency; 2276 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2277 2278 /* Any additional latency? */ 2279 if (alink->bytesInQueue == 0) 2280 continue; 2281 2282 /* Compute time delta since last write */ 2283 diff = now; 2284 timevalsub(&diff, &alink->lastWrite); 2285 2286 /* alink->bytesInQueue will be changed, mark change time. */ 2287 alink->lastWrite = now; 2288 2289 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2290 alink->bytesInQueue = 0; 2291 continue; 2292 } 2293 2294 /* How many bytes could have transmitted since last write? */ 2295 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2296 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2297 alink->bytesInQueue -= xmitBytes; 2298 if (alink->bytesInQueue < 0) 2299 alink->bytesInQueue = 0; 2300 else 2301 latency[activeLinkNum] += 2302 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2303 } 2304 2305 /* Sort active links by latency */ 2306 qsort_r(sortByLatency, 2307 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2308 2309 /* Find the interval we need (add links in sortByLatency[] order) */ 2310 for (numFragments = 1; 2311 numFragments < priv->numActiveLinks; numFragments++) { 2312 for (total = i = 0; i < numFragments; i++) { 2313 int flowTime; 2314 2315 flowTime = latency[sortByLatency[numFragments]] 2316 - latency[sortByLatency[i]]; 2317 total += ((flowTime * priv->links[ 2318 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2319 + 99) / 100; 2320 } 2321 if (total >= len) 2322 break; 2323 } 2324 2325 /* Solve for t_0 in that interval */ 2326 for (topSum = botSum = i = 0; i < numFragments; i++) { 2327 int bw = priv->links[ 2328 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2329 2330 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2331 botSum += bw; /* / 100 */ 2332 } 2333 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2334 2335 /* Compute f_i(t_0) all i */ 2336 for (total = i = 0; i < numFragments; i++) { 2337 int bw = priv->links[ 2338 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2339 2340 distrib[sortByLatency[i]] = 2341 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2342 total += distrib[sortByLatency[i]]; 2343 } 2344 2345 /* Deal with any rounding error */ 2346 if (total < len) { 2347 struct ng_ppp_link *fastLink = 2348 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2349 int fast = 0; 2350 2351 /* Find the fastest link */ 2352 for (i = 1; i < numFragments; i++) { 2353 struct ng_ppp_link *const link = 2354 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2355 2356 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2357 fast = i; 2358 fastLink = link; 2359 } 2360 } 2361 distrib[sortByLatency[fast]] += len - total; 2362 } else while (total > len) { 2363 struct ng_ppp_link *slowLink = 2364 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2365 int delta, slow = 0; 2366 2367 /* Find the slowest link that still has bytes to remove */ 2368 for (i = 1; i < numFragments; i++) { 2369 struct ng_ppp_link *const link = 2370 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2371 2372 if (distrib[sortByLatency[slow]] == 0 2373 || (distrib[sortByLatency[i]] > 0 2374 && link->conf.bandwidth < 2375 slowLink->conf.bandwidth)) { 2376 slow = i; 2377 slowLink = link; 2378 } 2379 } 2380 delta = total - len; 2381 if (delta > distrib[sortByLatency[slow]]) 2382 delta = distrib[sortByLatency[slow]]; 2383 distrib[sortByLatency[slow]] -= delta; 2384 total -= delta; 2385 } 2386 } 2387 2388 /* 2389 * Compare two integers 2390 */ 2391 static int 2392 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2393 { 2394 const int index1 = *((const int *) v1); 2395 const int index2 = *((const int *) v2); 2396 2397 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2398 } 2399 2400 /* 2401 * Prepend a possibly compressed PPP protocol number in front of a frame 2402 */ 2403 static struct mbuf * 2404 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2405 { 2406 if (compOK && PROT_COMPRESSABLE(proto)) { 2407 uint8_t pbyte = (uint8_t)proto; 2408 2409 return ng_ppp_prepend(m, &pbyte, 1); 2410 } else { 2411 uint16_t pword = htons((uint16_t)proto); 2412 2413 return ng_ppp_prepend(m, &pword, 2); 2414 } 2415 } 2416 2417 /* 2418 * Cut a possibly compressed PPP protocol number from the front of a frame. 2419 */ 2420 static struct mbuf * 2421 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2422 { 2423 2424 *proto = 0; 2425 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2426 return (NULL); 2427 2428 *proto = *mtod(m, uint8_t *); 2429 m_adj(m, 1); 2430 2431 if (!PROT_VALID(*proto)) { 2432 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2433 return (NULL); 2434 2435 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2436 m_adj(m, 1); 2437 } 2438 2439 return (m); 2440 } 2441 2442 /* 2443 * Prepend some bytes to an mbuf. 2444 */ 2445 static struct mbuf * 2446 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2447 { 2448 M_PREPEND(m, len, M_DONTWAIT); 2449 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2450 return (NULL); 2451 bcopy(buf, mtod(m, uint8_t *), len); 2452 return (m); 2453 } 2454 2455 /* 2456 * Update private information that is derived from other private information 2457 */ 2458 static void 2459 ng_ppp_update(node_p node, int newConf) 2460 { 2461 const priv_p priv = NG_NODE_PRIVATE(node); 2462 int i; 2463 2464 /* Update active status for VJ Compression */ 2465 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2466 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2467 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2468 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2469 2470 /* Increase latency for each link an amount equal to one MP header */ 2471 if (newConf) { 2472 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2473 int hdrBytes; 2474 2475 if (priv->links[i].conf.bandwidth == 0) 2476 continue; 2477 2478 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2479 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2480 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2481 + (priv->conf.xmitShortSeq ? 2 : 4); 2482 priv->links[i].latency = 2483 priv->links[i].conf.latency + 2484 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2485 } 2486 } 2487 2488 /* Update list of active links */ 2489 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2490 priv->numActiveLinks = 0; 2491 priv->allLinksEqual = 1; 2492 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2493 struct ng_ppp_link *const link = &priv->links[i]; 2494 2495 /* Is link active? */ 2496 if (link->conf.enableLink && link->hook != NULL) { 2497 struct ng_ppp_link *link0; 2498 2499 /* Add link to list of active links */ 2500 priv->activeLinks[priv->numActiveLinks++] = i; 2501 link0 = &priv->links[priv->activeLinks[0]]; 2502 2503 /* Determine if all links are still equal */ 2504 if (link->latency != link0->latency 2505 || link->conf.bandwidth != link0->conf.bandwidth) 2506 priv->allLinksEqual = 0; 2507 2508 /* Initialize rec'd sequence number */ 2509 if (link->seq == MP_NOSEQ) { 2510 link->seq = (link == link0) ? 2511 MP_INITIAL_SEQ : link0->seq; 2512 } 2513 } else 2514 link->seq = MP_NOSEQ; 2515 } 2516 2517 /* Update MP state as multi-link is active or not */ 2518 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2519 ng_ppp_start_frag_timer(node); 2520 else { 2521 ng_ppp_stop_frag_timer(node); 2522 ng_ppp_frag_reset(node); 2523 priv->xseq = MP_INITIAL_SEQ; 2524 priv->mseq = MP_INITIAL_SEQ; 2525 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2526 struct ng_ppp_link *const link = &priv->links[i]; 2527 2528 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2529 link->bytesInQueue = 0; 2530 link->seq = MP_NOSEQ; 2531 } 2532 } 2533 } 2534 2535 /* 2536 * Determine if a new configuration would represent a valid change 2537 * from the current configuration and link activity status. 2538 */ 2539 static int 2540 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2541 { 2542 const priv_p priv = NG_NODE_PRIVATE(node); 2543 int i, newNumLinksActive; 2544 2545 /* Check per-link config and count how many links would be active */ 2546 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2547 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2548 newNumLinksActive++; 2549 if (!newConf->links[i].enableLink) 2550 continue; 2551 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2552 return (0); 2553 if (newConf->links[i].bandwidth == 0) 2554 return (0); 2555 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2556 return (0); 2557 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2558 return (0); 2559 } 2560 2561 /* Disallow changes to multi-link configuration while MP is active */ 2562 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2563 if (!priv->conf.enableMultilink 2564 != !newConf->bund.enableMultilink 2565 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2566 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2567 return (0); 2568 } 2569 2570 /* At most one link can be active unless multi-link is enabled */ 2571 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2572 return (0); 2573 2574 /* Configuration change would be valid */ 2575 return (1); 2576 } 2577 2578 /* 2579 * Free all entries in the fragment queue 2580 */ 2581 static void 2582 ng_ppp_frag_reset(node_p node) 2583 { 2584 const priv_p priv = NG_NODE_PRIVATE(node); 2585 struct ng_ppp_frag *qent, *qnext; 2586 2587 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2588 qnext = TAILQ_NEXT(qent, f_qent); 2589 NG_FREE_M(qent->data); 2590 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 2591 } 2592 TAILQ_INIT(&priv->frags); 2593 } 2594 2595 /* 2596 * Start fragment queue timer 2597 */ 2598 static void 2599 ng_ppp_start_frag_timer(node_p node) 2600 { 2601 const priv_p priv = NG_NODE_PRIVATE(node); 2602 2603 if (!(callout_pending(&priv->fragTimer))) 2604 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2605 ng_ppp_frag_timeout, NULL, 0); 2606 } 2607 2608 /* 2609 * Stop fragment queue timer 2610 */ 2611 static void 2612 ng_ppp_stop_frag_timer(node_p node) 2613 { 2614 const priv_p priv = NG_NODE_PRIVATE(node); 2615 2616 if (callout_pending(&priv->fragTimer)) 2617 ng_uncallout(&priv->fragTimer, node); 2618 } 2619