1 /*- 2 * Copyright (c) 1996-2000 Whistle Communications, Inc. 3 * All rights reserved. 4 * 5 * Subject to the following obligations and disclaimer of warranty, use and 6 * redistribution of this software, in source or object code forms, with or 7 * without modifications are expressly permitted by Whistle Communications; 8 * provided, however, that: 9 * 1. Any and all reproductions of the source or object code must include the 10 * copyright notice above and the following disclaimer of warranties; and 11 * 2. No rights are granted, in any manner or form, to use Whistle 12 * Communications, Inc. trademarks, including the mark "WHISTLE 13 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 14 * such appears in the above copyright notice or in the software. 15 * 16 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 17 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 18 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 19 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 21 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 22 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 23 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 24 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 25 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 26 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 27 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 32 * OF SUCH DAMAGE. 33 * 34 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice unmodified, this list of conditions, and the following 42 * disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 60 * 61 * $FreeBSD$ 62 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 63 */ 64 65 /* 66 * PPP node type data-flow. 67 * 68 * hook xmit layer recv hook 69 * ------------------------------------ 70 * inet -> -> inet 71 * ipv6 -> -> ipv6 72 * ipx -> proto -> ipx 73 * atalk -> -> atalk 74 * bypass -> -> bypass 75 * -hcomp_xmit()----------proto_recv()- 76 * vjc_ip <- <- vjc_ip 77 * vjc_comp -> header compression -> vjc_comp 78 * vjc_uncomp -> -> vjc_uncomp 79 * vjc_vjip -> 80 * -comp_xmit()-----------hcomp_recv()- 81 * compress <- compression <- decompress 82 * compress -> -> decompress 83 * -crypt_xmit()-----------comp_recv()- 84 * encrypt <- encryption <- decrypt 85 * encrypt -> -> decrypt 86 * -ml_xmit()-------------crypt_recv()- 87 * multilink 88 * -link_xmit()--------------ml_recv()- 89 * linkX <- link <- linkX 90 * 91 */ 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/time.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/errno.h> 101 #include <sys/ctype.h> 102 103 #include <netgraph/ng_message.h> 104 #include <netgraph/netgraph.h> 105 #include <netgraph/ng_parse.h> 106 #include <netgraph/ng_ppp.h> 107 #include <netgraph/ng_vjc.h> 108 109 #ifdef NG_SEPARATE_MALLOC 110 MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 111 #else 112 #define M_NETGRAPH_PPP M_NETGRAPH 113 #endif 114 115 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 116 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 117 118 /* Some PPP protocol numbers we're interested in */ 119 #define PROT_ATALK 0x0029 120 #define PROT_COMPD 0x00fd 121 #define PROT_CRYPTD 0x0053 122 #define PROT_IP 0x0021 123 #define PROT_IPV6 0x0057 124 #define PROT_IPX 0x002b 125 #define PROT_LCP 0xc021 126 #define PROT_MP 0x003d 127 #define PROT_VJCOMP 0x002d 128 #define PROT_VJUNCOMP 0x002f 129 130 /* Multilink PPP definitions */ 131 #define MP_MIN_MRRU 1500 /* per RFC 1990 */ 132 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 133 #define MP_MIN_LINK_MRU 32 134 135 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 136 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 137 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 138 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 139 140 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 141 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 142 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 143 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 144 145 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 146 147 /* Sign extension of MP sequence numbers */ 148 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 149 ((s) | ~MP_SHORT_SEQ_MASK) \ 150 : ((s) & MP_SHORT_SEQ_MASK)) 151 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 152 ((s) | ~MP_LONG_SEQ_MASK) \ 153 : ((s) & MP_LONG_SEQ_MASK)) 154 155 /* Comparision of MP sequence numbers. Note: all sequence numbers 156 except priv->xseq are stored with the sign bit extended. */ 157 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 158 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 159 160 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 161 ((priv)->conf.recvShortSeq ? \ 162 MP_SHORT_SEQ_DIFF((x), (y)) : \ 163 MP_LONG_SEQ_DIFF((x), (y))) 164 165 /* Increment receive sequence number */ 166 #define MP_NEXT_RECV_SEQ(priv,seq) \ 167 ((priv)->conf.recvShortSeq ? \ 168 MP_SHORT_EXTEND((seq) + 1) : \ 169 MP_LONG_EXTEND((seq) + 1)) 170 171 /* Don't fragment transmitted packets to parts smaller than this */ 172 #define MP_MIN_FRAG_LEN 32 173 174 /* Maximum fragment reasssembly queue length */ 175 #define MP_MAX_QUEUE_LEN 128 176 177 /* Fragment queue scanner period */ 178 #define MP_FRAGTIMER_INTERVAL (hz/2) 179 180 /* Average link overhead. XXX: Should be given by user-level */ 181 #define MP_AVERAGE_LINK_OVERHEAD 16 182 183 /* Keep this equal to ng_ppp_hook_names lower! */ 184 #define HOOK_INDEX_MAX 13 185 186 /* We store incoming fragments this way */ 187 struct ng_ppp_frag { 188 int seq; /* fragment seq# */ 189 uint8_t first; /* First in packet? */ 190 uint8_t last; /* Last in packet? */ 191 struct timeval timestamp; /* time of reception */ 192 struct mbuf *data; /* Fragment data */ 193 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 194 }; 195 196 /* Per-link private information */ 197 struct ng_ppp_link { 198 struct ng_ppp_link_conf conf; /* link configuration */ 199 struct ng_ppp_link_stat64 stats; /* link stats */ 200 hook_p hook; /* connection to link data */ 201 int32_t seq; /* highest rec'd seq# - MSEQ */ 202 uint32_t latency; /* calculated link latency */ 203 struct timeval lastWrite; /* time of last write for MP */ 204 int bytesInQueue; /* bytes in the output queue for MP */ 205 }; 206 207 /* Total per-node private information */ 208 struct ng_ppp_private { 209 struct ng_ppp_bund_conf conf; /* bundle config */ 210 struct ng_ppp_link_stat64 bundleStats; /* bundle stats */ 211 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 212 int32_t xseq; /* next out MP seq # */ 213 int32_t mseq; /* min links[i].seq */ 214 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indicies */ 215 uint16_t numActiveLinks; /* how many links up */ 216 uint16_t lastLink; /* for round robin */ 217 uint8_t vjCompHooked; /* VJ comp hooked up? */ 218 uint8_t allLinksEqual; /* all xmit the same? */ 219 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 220 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 221 frags; 222 int qlen; /* fraq queue length */ 223 struct callout fragTimer; /* fraq queue check */ 224 struct mtx rmtx; /* recv mutex */ 225 struct mtx xmtx; /* xmit mutex */ 226 }; 227 typedef struct ng_ppp_private *priv_p; 228 229 /* Netgraph node methods */ 230 static ng_constructor_t ng_ppp_constructor; 231 static ng_rcvmsg_t ng_ppp_rcvmsg; 232 static ng_shutdown_t ng_ppp_shutdown; 233 static ng_newhook_t ng_ppp_newhook; 234 static ng_rcvdata_t ng_ppp_rcvdata; 235 static ng_disconnect_t ng_ppp_disconnect; 236 237 static ng_rcvdata_t ng_ppp_rcvdata_inet; 238 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 239 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 240 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 241 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 242 243 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 244 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 245 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 246 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 247 248 static ng_rcvdata_t ng_ppp_rcvdata_compress; 249 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 250 251 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 252 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 253 254 /* We use integer indicies to refer to the non-link hooks. */ 255 static const struct { 256 char *const name; 257 ng_rcvdata_t *fn; 258 } ng_ppp_hook_names[] = { 259 #define HOOK_INDEX_ATALK 0 260 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 261 #define HOOK_INDEX_BYPASS 1 262 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 263 #define HOOK_INDEX_COMPRESS 2 264 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 265 #define HOOK_INDEX_ENCRYPT 3 266 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 267 #define HOOK_INDEX_DECOMPRESS 4 268 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 269 #define HOOK_INDEX_DECRYPT 5 270 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 271 #define HOOK_INDEX_INET 6 272 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 273 #define HOOK_INDEX_IPX 7 274 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 275 #define HOOK_INDEX_VJC_COMP 8 276 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 277 #define HOOK_INDEX_VJC_IP 9 278 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 279 #define HOOK_INDEX_VJC_UNCOMP 10 280 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 281 #define HOOK_INDEX_VJC_VJIP 11 282 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 283 #define HOOK_INDEX_IPV6 12 284 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 285 { NULL, NULL } 286 }; 287 288 /* Helper functions */ 289 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 290 uint16_t linkNum); 291 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 292 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 293 uint16_t linkNum); 294 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 295 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 296 uint16_t linkNum); 297 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 298 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 299 uint16_t linkNum); 300 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 301 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 302 uint16_t linkNum); 303 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 304 uint16_t linkNum, int plen); 305 306 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 307 uint16_t linkNum); 308 309 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 310 static int ng_ppp_frag_drop(node_p node); 311 static int ng_ppp_check_packet(node_p node); 312 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 313 static int ng_ppp_frag_process(node_p node); 314 static int ng_ppp_frag_trim(node_p node); 315 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 316 int arg2); 317 static void ng_ppp_frag_checkstale(node_p node); 318 static void ng_ppp_frag_reset(node_p node); 319 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 320 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 321 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 322 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 323 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 324 static int ng_ppp_config_valid(node_p node, 325 const struct ng_ppp_node_conf *newConf); 326 static void ng_ppp_update(node_p node, int newConf); 327 static void ng_ppp_start_frag_timer(node_p node); 328 static void ng_ppp_stop_frag_timer(node_p node); 329 330 /* Parse type for struct ng_ppp_mp_state_type */ 331 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 332 &ng_parse_hint32_type, 333 NG_PPP_MAX_LINKS 334 }; 335 static const struct ng_parse_type ng_ppp_rseq_array_type = { 336 &ng_parse_fixedarray_type, 337 &ng_ppp_rseq_array_info, 338 }; 339 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 340 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 341 static const struct ng_parse_type ng_ppp_mp_state_type = { 342 &ng_parse_struct_type, 343 &ng_ppp_mp_state_type_fields 344 }; 345 346 /* Parse type for struct ng_ppp_link_conf */ 347 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 348 = NG_PPP_LINK_TYPE_INFO; 349 static const struct ng_parse_type ng_ppp_link_type = { 350 &ng_parse_struct_type, 351 &ng_ppp_link_type_fields 352 }; 353 354 /* Parse type for struct ng_ppp_bund_conf */ 355 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 356 = NG_PPP_BUND_TYPE_INFO; 357 static const struct ng_parse_type ng_ppp_bund_type = { 358 &ng_parse_struct_type, 359 &ng_ppp_bund_type_fields 360 }; 361 362 /* Parse type for struct ng_ppp_node_conf */ 363 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 364 &ng_ppp_link_type, 365 NG_PPP_MAX_LINKS 366 }; 367 static const struct ng_parse_type ng_ppp_link_array_type = { 368 &ng_parse_fixedarray_type, 369 &ng_ppp_array_info, 370 }; 371 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 372 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 373 static const struct ng_parse_type ng_ppp_conf_type = { 374 &ng_parse_struct_type, 375 &ng_ppp_conf_type_fields 376 }; 377 378 /* Parse type for struct ng_ppp_link_stat */ 379 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 380 = NG_PPP_STATS_TYPE_INFO; 381 static const struct ng_parse_type ng_ppp_stats_type = { 382 &ng_parse_struct_type, 383 &ng_ppp_stats_type_fields 384 }; 385 386 /* Parse type for struct ng_ppp_link_stat64 */ 387 static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[] 388 = NG_PPP_STATS64_TYPE_INFO; 389 static const struct ng_parse_type ng_ppp_stats64_type = { 390 &ng_parse_struct_type, 391 &ng_ppp_stats64_type_fields 392 }; 393 394 /* List of commands and how to convert arguments to/from ASCII */ 395 static const struct ng_cmdlist ng_ppp_cmds[] = { 396 { 397 NGM_PPP_COOKIE, 398 NGM_PPP_SET_CONFIG, 399 "setconfig", 400 &ng_ppp_conf_type, 401 NULL 402 }, 403 { 404 NGM_PPP_COOKIE, 405 NGM_PPP_GET_CONFIG, 406 "getconfig", 407 NULL, 408 &ng_ppp_conf_type 409 }, 410 { 411 NGM_PPP_COOKIE, 412 NGM_PPP_GET_MP_STATE, 413 "getmpstate", 414 NULL, 415 &ng_ppp_mp_state_type 416 }, 417 { 418 NGM_PPP_COOKIE, 419 NGM_PPP_GET_LINK_STATS, 420 "getstats", 421 &ng_parse_int16_type, 422 &ng_ppp_stats_type 423 }, 424 { 425 NGM_PPP_COOKIE, 426 NGM_PPP_CLR_LINK_STATS, 427 "clrstats", 428 &ng_parse_int16_type, 429 NULL 430 }, 431 { 432 NGM_PPP_COOKIE, 433 NGM_PPP_GETCLR_LINK_STATS, 434 "getclrstats", 435 &ng_parse_int16_type, 436 &ng_ppp_stats_type 437 }, 438 { 439 NGM_PPP_COOKIE, 440 NGM_PPP_GET_LINK_STATS64, 441 "getstats64", 442 &ng_parse_int16_type, 443 &ng_ppp_stats64_type 444 }, 445 { 446 NGM_PPP_COOKIE, 447 NGM_PPP_GETCLR_LINK_STATS64, 448 "getclrstats64", 449 &ng_parse_int16_type, 450 &ng_ppp_stats64_type 451 }, 452 { 0 } 453 }; 454 455 /* Node type descriptor */ 456 static struct ng_type ng_ppp_typestruct = { 457 .version = NG_ABI_VERSION, 458 .name = NG_PPP_NODE_TYPE, 459 .constructor = ng_ppp_constructor, 460 .rcvmsg = ng_ppp_rcvmsg, 461 .shutdown = ng_ppp_shutdown, 462 .newhook = ng_ppp_newhook, 463 .rcvdata = ng_ppp_rcvdata, 464 .disconnect = ng_ppp_disconnect, 465 .cmdlist = ng_ppp_cmds, 466 }; 467 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 468 469 /* Address and control field header */ 470 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 471 472 /* Maximum time we'll let a complete incoming packet sit in the queue */ 473 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 474 475 #define ERROUT(x) do { error = (x); goto done; } while (0) 476 477 /************************************************************************ 478 NETGRAPH NODE STUFF 479 ************************************************************************/ 480 481 /* 482 * Node type constructor 483 */ 484 static int 485 ng_ppp_constructor(node_p node) 486 { 487 priv_p priv; 488 int i; 489 490 /* Allocate private structure */ 491 MALLOC(priv, priv_p, sizeof(*priv), M_NETGRAPH_PPP, M_NOWAIT | M_ZERO); 492 if (priv == NULL) 493 return (ENOMEM); 494 495 NG_NODE_SET_PRIVATE(node, priv); 496 497 /* Initialize state */ 498 TAILQ_INIT(&priv->frags); 499 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 500 priv->links[i].seq = MP_NOSEQ; 501 ng_callout_init(&priv->fragTimer); 502 503 mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF); 504 mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF); 505 506 /* Done */ 507 return (0); 508 } 509 510 /* 511 * Give our OK for a hook to be added 512 */ 513 static int 514 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 515 { 516 const priv_p priv = NG_NODE_PRIVATE(node); 517 hook_p *hookPtr = NULL; 518 int linkNum = -1; 519 int hookIndex = -1; 520 521 /* Figure out which hook it is */ 522 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 523 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 524 const char *cp; 525 char *eptr; 526 527 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 528 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 529 return (EINVAL); 530 linkNum = (int)strtoul(cp, &eptr, 10); 531 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 532 return (EINVAL); 533 hookPtr = &priv->links[linkNum].hook; 534 hookIndex = ~linkNum; 535 536 /* See if hook is already connected. */ 537 if (*hookPtr != NULL) 538 return (EISCONN); 539 540 /* Disallow more than one link unless multilink is enabled. */ 541 if (priv->links[linkNum].conf.enableLink && 542 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 543 return (ENODEV); 544 545 } else { /* must be a non-link hook */ 546 int i; 547 548 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 549 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 550 hookPtr = &priv->hooks[i]; 551 hookIndex = i; 552 break; 553 } 554 } 555 if (ng_ppp_hook_names[i].name == NULL) 556 return (EINVAL); /* no such hook */ 557 558 /* See if hook is already connected */ 559 if (*hookPtr != NULL) 560 return (EISCONN); 561 562 /* Every non-linkX hook have it's own function. */ 563 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 564 } 565 566 /* OK */ 567 *hookPtr = hook; 568 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 569 ng_ppp_update(node, 0); 570 return (0); 571 } 572 573 /* 574 * Receive a control message 575 */ 576 static int 577 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 578 { 579 const priv_p priv = NG_NODE_PRIVATE(node); 580 struct ng_mesg *resp = NULL; 581 int error = 0; 582 struct ng_mesg *msg; 583 584 NGI_GET_MSG(item, msg); 585 switch (msg->header.typecookie) { 586 case NGM_PPP_COOKIE: 587 switch (msg->header.cmd) { 588 case NGM_PPP_SET_CONFIG: 589 { 590 struct ng_ppp_node_conf *const conf = 591 (struct ng_ppp_node_conf *)msg->data; 592 int i; 593 594 /* Check for invalid or illegal config */ 595 if (msg->header.arglen != sizeof(*conf)) 596 ERROUT(EINVAL); 597 if (!ng_ppp_config_valid(node, conf)) 598 ERROUT(EINVAL); 599 600 /* Copy config */ 601 priv->conf = conf->bund; 602 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 603 priv->links[i].conf = conf->links[i]; 604 ng_ppp_update(node, 1); 605 break; 606 } 607 case NGM_PPP_GET_CONFIG: 608 { 609 struct ng_ppp_node_conf *conf; 610 int i; 611 612 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 613 if (resp == NULL) 614 ERROUT(ENOMEM); 615 conf = (struct ng_ppp_node_conf *)resp->data; 616 conf->bund = priv->conf; 617 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 618 conf->links[i] = priv->links[i].conf; 619 break; 620 } 621 case NGM_PPP_GET_MP_STATE: 622 { 623 struct ng_ppp_mp_state *info; 624 int i; 625 626 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 627 if (resp == NULL) 628 ERROUT(ENOMEM); 629 info = (struct ng_ppp_mp_state *)resp->data; 630 bzero(info, sizeof(*info)); 631 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 632 if (priv->links[i].seq != MP_NOSEQ) 633 info->rseq[i] = priv->links[i].seq; 634 } 635 info->mseq = priv->mseq; 636 info->xseq = priv->xseq; 637 break; 638 } 639 case NGM_PPP_GET_LINK_STATS: 640 case NGM_PPP_CLR_LINK_STATS: 641 case NGM_PPP_GETCLR_LINK_STATS: 642 case NGM_PPP_GET_LINK_STATS64: 643 case NGM_PPP_GETCLR_LINK_STATS64: 644 { 645 struct ng_ppp_link_stat64 *stats; 646 uint16_t linkNum; 647 648 /* Process request. */ 649 if (msg->header.arglen != sizeof(uint16_t)) 650 ERROUT(EINVAL); 651 linkNum = *((uint16_t *) msg->data); 652 if (linkNum >= NG_PPP_MAX_LINKS 653 && linkNum != NG_PPP_BUNDLE_LINKNUM) 654 ERROUT(EINVAL); 655 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 656 &priv->bundleStats : &priv->links[linkNum].stats; 657 658 /* Make 64bit reply. */ 659 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 || 660 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) { 661 NG_MKRESPONSE(resp, msg, 662 sizeof(struct ng_ppp_link_stat64), M_NOWAIT); 663 if (resp == NULL) 664 ERROUT(ENOMEM); 665 bcopy(stats, resp->data, sizeof(*stats)); 666 } else 667 /* Make 32bit reply. */ 668 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS || 669 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) { 670 struct ng_ppp_link_stat *rs; 671 NG_MKRESPONSE(resp, msg, 672 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 673 if (resp == NULL) 674 ERROUT(ENOMEM); 675 rs = (struct ng_ppp_link_stat *)resp->data; 676 /* Truncate 64->32 bits. */ 677 rs->xmitFrames = stats->xmitFrames; 678 rs->xmitOctets = stats->xmitOctets; 679 rs->recvFrames = stats->recvFrames; 680 rs->recvOctets = stats->recvOctets; 681 rs->badProtos = stats->badProtos; 682 rs->runts = stats->runts; 683 rs->dupFragments = stats->dupFragments; 684 rs->dropFragments = stats->dropFragments; 685 } 686 /* Clear stats. */ 687 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS && 688 msg->header.cmd != NGM_PPP_GET_LINK_STATS64) 689 bzero(stats, sizeof(*stats)); 690 break; 691 } 692 default: 693 error = EINVAL; 694 break; 695 } 696 break; 697 case NGM_VJC_COOKIE: 698 { 699 /* 700 * Forward it to the vjc node. leave the 701 * old return address alone. 702 * If we have no hook, let NG_RESPOND_MSG 703 * clean up any remaining resources. 704 * Because we have no resp, the item will be freed 705 * along with anything it references. Don't 706 * let msg be freed twice. 707 */ 708 NGI_MSG(item) = msg; /* put it back in the item */ 709 msg = NULL; 710 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 711 NG_FWD_ITEM_HOOK(error, item, lasthook); 712 } 713 return (error); 714 } 715 default: 716 error = EINVAL; 717 break; 718 } 719 done: 720 NG_RESPOND_MSG(error, node, item, resp); 721 NG_FREE_MSG(msg); 722 return (error); 723 } 724 725 /* 726 * Destroy node 727 */ 728 static int 729 ng_ppp_shutdown(node_p node) 730 { 731 const priv_p priv = NG_NODE_PRIVATE(node); 732 733 /* Stop fragment queue timer */ 734 ng_ppp_stop_frag_timer(node); 735 736 /* Take down netgraph node */ 737 ng_ppp_frag_reset(node); 738 mtx_destroy(&priv->rmtx); 739 mtx_destroy(&priv->xmtx); 740 bzero(priv, sizeof(*priv)); 741 FREE(priv, M_NETGRAPH_PPP); 742 NG_NODE_SET_PRIVATE(node, NULL); 743 NG_NODE_UNREF(node); /* let the node escape */ 744 return (0); 745 } 746 747 /* 748 * Hook disconnection 749 */ 750 static int 751 ng_ppp_disconnect(hook_p hook) 752 { 753 const node_p node = NG_HOOK_NODE(hook); 754 const priv_p priv = NG_NODE_PRIVATE(node); 755 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 756 757 /* Zero out hook pointer */ 758 if (index < 0) 759 priv->links[~index].hook = NULL; 760 else 761 priv->hooks[index] = NULL; 762 763 /* Update derived info (or go away if no hooks left). */ 764 if (NG_NODE_NUMHOOKS(node) > 0) 765 ng_ppp_update(node, 0); 766 else if (NG_NODE_IS_VALID(node)) 767 ng_rmnode_self(node); 768 769 return (0); 770 } 771 772 /* 773 * Proto layer 774 */ 775 776 /* 777 * Receive data on a hook inet. 778 */ 779 static int 780 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 781 { 782 const node_p node = NG_HOOK_NODE(hook); 783 const priv_p priv = NG_NODE_PRIVATE(node); 784 785 if (!priv->conf.enableIP) { 786 NG_FREE_ITEM(item); 787 return (ENXIO); 788 } 789 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 790 } 791 792 /* 793 * Receive data on a hook ipv6. 794 */ 795 static int 796 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 797 { 798 const node_p node = NG_HOOK_NODE(hook); 799 const priv_p priv = NG_NODE_PRIVATE(node); 800 801 if (!priv->conf.enableIPv6) { 802 NG_FREE_ITEM(item); 803 return (ENXIO); 804 } 805 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 806 } 807 808 /* 809 * Receive data on a hook atalk. 810 */ 811 static int 812 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 813 { 814 const node_p node = NG_HOOK_NODE(hook); 815 const priv_p priv = NG_NODE_PRIVATE(node); 816 817 if (!priv->conf.enableAtalk) { 818 NG_FREE_ITEM(item); 819 return (ENXIO); 820 } 821 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 822 } 823 824 /* 825 * Receive data on a hook ipx 826 */ 827 static int 828 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 829 { 830 const node_p node = NG_HOOK_NODE(hook); 831 const priv_p priv = NG_NODE_PRIVATE(node); 832 833 if (!priv->conf.enableIPX) { 834 NG_FREE_ITEM(item); 835 return (ENXIO); 836 } 837 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 838 } 839 840 /* 841 * Receive data on a hook bypass 842 */ 843 static int 844 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 845 { 846 uint16_t linkNum; 847 uint16_t proto; 848 struct mbuf *m; 849 850 NGI_GET_M(item, m); 851 if (m->m_pkthdr.len < 4) { 852 NG_FREE_ITEM(item); 853 return (EINVAL); 854 } 855 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 856 NG_FREE_ITEM(item); 857 return (ENOBUFS); 858 } 859 linkNum = ntohs(mtod(m, uint16_t *)[0]); 860 proto = ntohs(mtod(m, uint16_t *)[1]); 861 m_adj(m, 4); 862 NGI_M(item) = m; 863 864 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 865 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 866 else 867 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 868 linkNum, 0)); 869 } 870 871 static int 872 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 873 { 874 const priv_p priv = NG_NODE_PRIVATE(node); 875 uint16_t hdr[2]; 876 struct mbuf *m; 877 int error; 878 879 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 880 NG_FREE_ITEM(item); 881 return (ENXIO); 882 } 883 884 /* Add 4-byte bypass header. */ 885 hdr[0] = htons(linkNum); 886 hdr[1] = htons(proto); 887 888 NGI_GET_M(item, m); 889 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 890 NG_FREE_ITEM(item); 891 return (ENOBUFS); 892 } 893 NGI_M(item) = m; 894 895 /* Send packet out hook. */ 896 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 897 return (error); 898 } 899 900 static int 901 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 902 { 903 const priv_p priv = NG_NODE_PRIVATE(node); 904 hook_p outHook = NULL; 905 int error; 906 907 switch (proto) { 908 case PROT_IP: 909 if (priv->conf.enableIP) 910 outHook = priv->hooks[HOOK_INDEX_INET]; 911 break; 912 case PROT_IPV6: 913 if (priv->conf.enableIPv6) 914 outHook = priv->hooks[HOOK_INDEX_IPV6]; 915 break; 916 case PROT_ATALK: 917 if (priv->conf.enableAtalk) 918 outHook = priv->hooks[HOOK_INDEX_ATALK]; 919 break; 920 case PROT_IPX: 921 if (priv->conf.enableIPX) 922 outHook = priv->hooks[HOOK_INDEX_IPX]; 923 break; 924 } 925 926 if (outHook == NULL) 927 return (ng_ppp_bypass(node, item, proto, linkNum)); 928 929 /* Send packet out hook. */ 930 NG_FWD_ITEM_HOOK(error, item, outHook); 931 return (error); 932 } 933 934 /* 935 * Header compression layer 936 */ 937 938 static int 939 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 940 { 941 const priv_p priv = NG_NODE_PRIVATE(node); 942 943 if (proto == PROT_IP && 944 priv->conf.enableVJCompression && 945 priv->vjCompHooked) { 946 int error; 947 948 /* Send packet out hook. */ 949 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 950 return (error); 951 } 952 953 return (ng_ppp_comp_xmit(node, item, proto)); 954 } 955 956 /* 957 * Receive data on a hook vjc_comp. 958 */ 959 static int 960 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 961 { 962 const node_p node = NG_HOOK_NODE(hook); 963 const priv_p priv = NG_NODE_PRIVATE(node); 964 965 if (!priv->conf.enableVJCompression) { 966 NG_FREE_ITEM(item); 967 return (ENXIO); 968 } 969 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 970 } 971 972 /* 973 * Receive data on a hook vjc_uncomp. 974 */ 975 static int 976 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 977 { 978 const node_p node = NG_HOOK_NODE(hook); 979 const priv_p priv = NG_NODE_PRIVATE(node); 980 981 if (!priv->conf.enableVJCompression) { 982 NG_FREE_ITEM(item); 983 return (ENXIO); 984 } 985 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 986 } 987 988 /* 989 * Receive data on a hook vjc_vjip. 990 */ 991 static int 992 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 993 { 994 const node_p node = NG_HOOK_NODE(hook); 995 const priv_p priv = NG_NODE_PRIVATE(node); 996 997 if (!priv->conf.enableVJCompression) { 998 NG_FREE_ITEM(item); 999 return (ENXIO); 1000 } 1001 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 1002 } 1003 1004 static int 1005 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1006 { 1007 const priv_p priv = NG_NODE_PRIVATE(node); 1008 1009 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 1010 hook_p outHook = NULL; 1011 1012 switch (proto) { 1013 case PROT_VJCOMP: 1014 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 1015 break; 1016 case PROT_VJUNCOMP: 1017 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 1018 break; 1019 } 1020 1021 if (outHook) { 1022 int error; 1023 1024 /* Send packet out hook. */ 1025 NG_FWD_ITEM_HOOK(error, item, outHook); 1026 return (error); 1027 } 1028 } 1029 1030 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 1031 } 1032 1033 /* 1034 * Receive data on a hook vjc_ip. 1035 */ 1036 static int 1037 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 1038 { 1039 const node_p node = NG_HOOK_NODE(hook); 1040 const priv_p priv = NG_NODE_PRIVATE(node); 1041 1042 if (!priv->conf.enableVJDecompression) { 1043 NG_FREE_ITEM(item); 1044 return (ENXIO); 1045 } 1046 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 1047 } 1048 1049 /* 1050 * Compression layer 1051 */ 1052 1053 static int 1054 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1055 { 1056 const priv_p priv = NG_NODE_PRIVATE(node); 1057 1058 if (priv->conf.enableCompression && 1059 proto < 0x4000 && 1060 proto != PROT_COMPD && 1061 proto != PROT_CRYPTD && 1062 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1063 struct mbuf *m; 1064 int error; 1065 1066 NGI_GET_M(item, m); 1067 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1068 NG_FREE_ITEM(item); 1069 return (ENOBUFS); 1070 } 1071 NGI_M(item) = m; 1072 1073 /* Send packet out hook. */ 1074 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1075 return (error); 1076 } 1077 1078 return (ng_ppp_crypt_xmit(node, item, proto)); 1079 } 1080 1081 /* 1082 * Receive data on a hook compress. 1083 */ 1084 static int 1085 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1086 { 1087 const node_p node = NG_HOOK_NODE(hook); 1088 const priv_p priv = NG_NODE_PRIVATE(node); 1089 uint16_t proto; 1090 1091 switch (priv->conf.enableCompression) { 1092 case NG_PPP_COMPRESS_NONE: 1093 NG_FREE_ITEM(item); 1094 return (ENXIO); 1095 case NG_PPP_COMPRESS_FULL: 1096 { 1097 struct mbuf *m; 1098 1099 NGI_GET_M(item, m); 1100 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1101 NG_FREE_ITEM(item); 1102 return (EIO); 1103 } 1104 NGI_M(item) = m; 1105 if (!PROT_VALID(proto)) { 1106 NG_FREE_ITEM(item); 1107 return (EIO); 1108 } 1109 } 1110 break; 1111 default: 1112 proto = PROT_COMPD; 1113 break; 1114 } 1115 return (ng_ppp_crypt_xmit(node, item, proto)); 1116 } 1117 1118 static int 1119 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1120 { 1121 const priv_p priv = NG_NODE_PRIVATE(node); 1122 1123 if (proto < 0x4000 && 1124 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1125 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1126 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1127 int error; 1128 1129 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1130 struct mbuf *m; 1131 NGI_GET_M(item, m); 1132 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1133 NG_FREE_ITEM(item); 1134 return (EIO); 1135 } 1136 NGI_M(item) = m; 1137 } 1138 1139 /* Send packet out hook. */ 1140 NG_FWD_ITEM_HOOK(error, item, 1141 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1142 return (error); 1143 } else if (proto == PROT_COMPD) { 1144 /* Disabled protos MUST be silently discarded, but 1145 * unsupported MUST not. Let user-level decide this. */ 1146 return (ng_ppp_bypass(node, item, proto, linkNum)); 1147 } 1148 1149 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1150 } 1151 1152 /* 1153 * Receive data on a hook decompress. 1154 */ 1155 static int 1156 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1157 { 1158 const node_p node = NG_HOOK_NODE(hook); 1159 const priv_p priv = NG_NODE_PRIVATE(node); 1160 uint16_t proto; 1161 struct mbuf *m; 1162 1163 if (!priv->conf.enableDecompression) { 1164 NG_FREE_ITEM(item); 1165 return (ENXIO); 1166 } 1167 NGI_GET_M(item, m); 1168 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1169 NG_FREE_ITEM(item); 1170 return (EIO); 1171 } 1172 NGI_M(item) = m; 1173 if (!PROT_VALID(proto)) { 1174 priv->bundleStats.badProtos++; 1175 NG_FREE_ITEM(item); 1176 return (EIO); 1177 } 1178 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1179 } 1180 1181 /* 1182 * Encryption layer 1183 */ 1184 1185 static int 1186 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1187 { 1188 const priv_p priv = NG_NODE_PRIVATE(node); 1189 1190 if (priv->conf.enableEncryption && 1191 proto < 0x4000 && 1192 proto != PROT_CRYPTD && 1193 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1194 struct mbuf *m; 1195 int error; 1196 1197 NGI_GET_M(item, m); 1198 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1199 NG_FREE_ITEM(item); 1200 return (ENOBUFS); 1201 } 1202 NGI_M(item) = m; 1203 1204 /* Send packet out hook. */ 1205 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1206 return (error); 1207 } 1208 1209 return (ng_ppp_mp_xmit(node, item, proto)); 1210 } 1211 1212 /* 1213 * Receive data on a hook encrypt. 1214 */ 1215 static int 1216 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1217 { 1218 const node_p node = NG_HOOK_NODE(hook); 1219 const priv_p priv = NG_NODE_PRIVATE(node); 1220 1221 if (!priv->conf.enableEncryption) { 1222 NG_FREE_ITEM(item); 1223 return (ENXIO); 1224 } 1225 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1226 } 1227 1228 static int 1229 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1230 { 1231 const priv_p priv = NG_NODE_PRIVATE(node); 1232 1233 if (proto == PROT_CRYPTD) { 1234 if (priv->conf.enableDecryption && 1235 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1236 int error; 1237 1238 /* Send packet out hook. */ 1239 NG_FWD_ITEM_HOOK(error, item, 1240 priv->hooks[HOOK_INDEX_DECRYPT]); 1241 return (error); 1242 } else { 1243 /* Disabled protos MUST be silently discarded, but 1244 * unsupported MUST not. Let user-level decide this. */ 1245 return (ng_ppp_bypass(node, item, proto, linkNum)); 1246 } 1247 } 1248 1249 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1250 } 1251 1252 /* 1253 * Receive data on a hook decrypt. 1254 */ 1255 static int 1256 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1257 { 1258 const node_p node = NG_HOOK_NODE(hook); 1259 const priv_p priv = NG_NODE_PRIVATE(node); 1260 uint16_t proto; 1261 struct mbuf *m; 1262 1263 if (!priv->conf.enableDecryption) { 1264 NG_FREE_ITEM(item); 1265 return (ENXIO); 1266 } 1267 NGI_GET_M(item, m); 1268 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1269 NG_FREE_ITEM(item); 1270 return (EIO); 1271 } 1272 NGI_M(item) = m; 1273 if (!PROT_VALID(proto)) { 1274 priv->bundleStats.badProtos++; 1275 NG_FREE_ITEM(item); 1276 return (EIO); 1277 } 1278 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1279 } 1280 1281 /* 1282 * Link layer 1283 */ 1284 1285 static int 1286 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen) 1287 { 1288 const priv_p priv = NG_NODE_PRIVATE(node); 1289 struct ng_ppp_link *link; 1290 int len, error; 1291 struct mbuf *m; 1292 uint16_t mru; 1293 1294 /* Check if link correct. */ 1295 if (linkNum >= NG_PPP_MAX_LINKS) { 1296 ERROUT(ENETDOWN); 1297 } 1298 1299 /* Get link pointer (optimization). */ 1300 link = &priv->links[linkNum]; 1301 1302 /* Check link status (if real). */ 1303 if (link->hook == NULL) { 1304 ERROUT(ENETDOWN); 1305 } 1306 1307 /* Extract mbuf. */ 1308 NGI_GET_M(item, m); 1309 1310 /* Check peer's MRU for this link. */ 1311 mru = link->conf.mru; 1312 if (mru != 0 && m->m_pkthdr.len > mru) { 1313 NG_FREE_M(m); 1314 ERROUT(EMSGSIZE); 1315 } 1316 1317 /* Prepend protocol number, possibly compressed. */ 1318 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1319 NULL) { 1320 ERROUT(ENOBUFS); 1321 } 1322 1323 /* Prepend address and control field (unless compressed). */ 1324 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1325 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) 1326 ERROUT(ENOBUFS); 1327 } 1328 1329 /* Deliver frame. */ 1330 len = m->m_pkthdr.len; 1331 NG_FWD_NEW_DATA(error, item, link->hook, m); 1332 1333 mtx_lock(&priv->xmtx); 1334 1335 /* Update link stats. */ 1336 link->stats.xmitFrames++; 1337 link->stats.xmitOctets += len; 1338 1339 /* Update bundle stats. */ 1340 if (plen > 0) { 1341 priv->bundleStats.xmitFrames++; 1342 priv->bundleStats.xmitOctets += plen; 1343 } 1344 1345 /* Update 'bytes in queue' counter. */ 1346 if (error == 0) { 1347 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1348 if (priv->conf.enableMultilink && !priv->allLinksEqual && 1349 !priv->conf.enableRoundRobin) { 1350 /* If queue was empty, then mark this time. */ 1351 if (link->bytesInQueue == 0) 1352 getmicrouptime(&link->lastWrite); 1353 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1354 /* Limit max queue length to 50 pkts. BW can be defined 1355 incorrectly and link may not signal overload. */ 1356 if (link->bytesInQueue > 50 * 1600) 1357 link->bytesInQueue = 50 * 1600; 1358 } 1359 } 1360 mtx_unlock(&priv->xmtx); 1361 return (error); 1362 1363 done: 1364 NG_FREE_ITEM(item); 1365 return (error); 1366 } 1367 1368 /* 1369 * Receive data on a hook linkX. 1370 */ 1371 static int 1372 ng_ppp_rcvdata(hook_p hook, item_p item) 1373 { 1374 const node_p node = NG_HOOK_NODE(hook); 1375 const priv_p priv = NG_NODE_PRIVATE(node); 1376 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1377 const uint16_t linkNum = (uint16_t)~index; 1378 struct ng_ppp_link * const link = &priv->links[linkNum]; 1379 uint16_t proto; 1380 struct mbuf *m; 1381 int error = 0; 1382 1383 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1384 ("%s: bogus index 0x%x", __func__, index)); 1385 1386 NGI_GET_M(item, m); 1387 1388 mtx_lock(&priv->rmtx); 1389 1390 /* Stats */ 1391 link->stats.recvFrames++; 1392 link->stats.recvOctets += m->m_pkthdr.len; 1393 1394 /* Strip address and control fields, if present. */ 1395 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1396 ERROUT(ENOBUFS); 1397 if (bcmp(mtod(m, uint8_t *), &ng_ppp_acf, 2) == 0) 1398 m_adj(m, 2); 1399 1400 /* Get protocol number */ 1401 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1402 ERROUT(ENOBUFS); 1403 NGI_M(item) = m; /* Put changed m back into item. */ 1404 1405 if (!PROT_VALID(proto)) { 1406 link->stats.badProtos++; 1407 ERROUT(EIO); 1408 } 1409 1410 /* LCP packets must go directly to bypass. */ 1411 if (proto >= 0xB000) { 1412 mtx_unlock(&priv->rmtx); 1413 return (ng_ppp_bypass(node, item, proto, linkNum)); 1414 } 1415 1416 /* Other packets are denied on a disabled link. */ 1417 if (!link->conf.enableLink) 1418 ERROUT(ENXIO); 1419 1420 /* Proceed to multilink layer. Mutex will be unlocked inside. */ 1421 error = ng_ppp_mp_recv(node, item, proto, linkNum); 1422 mtx_assert(&priv->rmtx, MA_NOTOWNED); 1423 return (error); 1424 1425 done: 1426 mtx_unlock(&priv->rmtx); 1427 NG_FREE_ITEM(item); 1428 return (error); 1429 } 1430 1431 /* 1432 * Multilink layer 1433 */ 1434 1435 /* 1436 * Handle an incoming multi-link fragment 1437 * 1438 * The fragment reassembly algorithm is somewhat complex. This is mainly 1439 * because we are required not to reorder the reconstructed packets, yet 1440 * fragments are only guaranteed to arrive in order on a per-link basis. 1441 * In other words, when we have a complete packet ready, but the previous 1442 * packet is still incomplete, we have to decide between delivering the 1443 * complete packet and throwing away the incomplete one, or waiting to 1444 * see if the remainder of the incomplete one arrives, at which time we 1445 * can deliver both packets, in order. 1446 * 1447 * This problem is exacerbated by "sequence number slew", which is when 1448 * the sequence numbers coming in from different links are far apart from 1449 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1450 * has been seen to generate sequence number slew of up to 10 on an ISDN 1451 * 2B-channel MP link. There is nothing invalid about sequence number slew 1452 * but it makes the reasssembly process have to work harder. 1453 * 1454 * However, the peer is required to transmit fragments in order on each 1455 * link. That means if we define MSEQ as the minimum over all links of 1456 * the highest sequence number received on that link, then we can always 1457 * give up any hope of receiving a fragment with sequence number < MSEQ in 1458 * the future (all of this using 'wraparound' sequence number space). 1459 * Therefore we can always immediately throw away incomplete packets 1460 * missing fragments with sequence numbers < MSEQ. 1461 * 1462 * Here is an overview of our algorithm: 1463 * 1464 * o Received fragments are inserted into a queue, for which we 1465 * maintain these invariants between calls to this function: 1466 * 1467 * - Fragments are ordered in the queue by sequence number 1468 * - If a complete packet is at the head of the queue, then 1469 * the first fragment in the packet has seq# > MSEQ + 1 1470 * (otherwise, we could deliver it immediately) 1471 * - If any fragments have seq# < MSEQ, then they are necessarily 1472 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1473 * we can throw them away because they'll never be completed) 1474 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1475 * 1476 * o We have a periodic timer that checks the queue for the first 1477 * complete packet that has been sitting in the queue "too long". 1478 * When one is detected, all previous (incomplete) fragments are 1479 * discarded, their missing fragments are declared lost and MSEQ 1480 * is increased. 1481 * 1482 * o If we recieve a fragment with seq# < MSEQ, we throw it away 1483 * because we've already delcared it lost. 1484 * 1485 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1486 */ 1487 static int 1488 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1489 { 1490 const priv_p priv = NG_NODE_PRIVATE(node); 1491 struct ng_ppp_link *const link = &priv->links[linkNum]; 1492 struct ng_ppp_frag frag0, *frag = &frag0; 1493 struct ng_ppp_frag *qent; 1494 int i, diff, inserted; 1495 struct mbuf *m; 1496 int error = 0; 1497 1498 if ((!priv->conf.enableMultilink) || proto != PROT_MP) { 1499 /* Stats */ 1500 priv->bundleStats.recvFrames++; 1501 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1502 1503 mtx_unlock(&priv->rmtx); 1504 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1505 } 1506 1507 NGI_GET_M(item, m); 1508 NG_FREE_ITEM(item); 1509 1510 /* Extract fragment information from MP header */ 1511 if (priv->conf.recvShortSeq) { 1512 uint16_t shdr; 1513 1514 if (m->m_pkthdr.len < 2) { 1515 link->stats.runts++; 1516 NG_FREE_M(m); 1517 ERROUT(EINVAL); 1518 } 1519 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1520 ERROUT(ENOBUFS); 1521 1522 shdr = ntohs(*mtod(m, uint16_t *)); 1523 frag->seq = MP_SHORT_EXTEND(shdr); 1524 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1525 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1526 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1527 m_adj(m, 2); 1528 } else { 1529 uint32_t lhdr; 1530 1531 if (m->m_pkthdr.len < 4) { 1532 link->stats.runts++; 1533 NG_FREE_M(m); 1534 ERROUT(EINVAL); 1535 } 1536 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1537 ERROUT(ENOBUFS); 1538 1539 lhdr = ntohl(*mtod(m, uint32_t *)); 1540 frag->seq = MP_LONG_EXTEND(lhdr); 1541 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1542 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1543 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1544 m_adj(m, 4); 1545 } 1546 frag->data = m; 1547 getmicrouptime(&frag->timestamp); 1548 1549 /* If sequence number is < MSEQ, we've already declared this 1550 fragment as lost, so we have no choice now but to drop it */ 1551 if (diff < 0) { 1552 link->stats.dropFragments++; 1553 NG_FREE_M(m); 1554 ERROUT(0); 1555 } 1556 1557 /* Update highest received sequence number on this link and MSEQ */ 1558 priv->mseq = link->seq = frag->seq; 1559 for (i = 0; i < priv->numActiveLinks; i++) { 1560 struct ng_ppp_link *const alink = 1561 &priv->links[priv->activeLinks[i]]; 1562 1563 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1564 priv->mseq = alink->seq; 1565 } 1566 1567 /* Allocate a new frag struct for the queue */ 1568 MALLOC(frag, struct ng_ppp_frag *, sizeof(*frag), M_NETGRAPH_PPP, M_NOWAIT); 1569 if (frag == NULL) { 1570 NG_FREE_M(m); 1571 goto process; 1572 } 1573 *frag = frag0; 1574 1575 /* Add fragment to queue, which is sorted by sequence number */ 1576 inserted = 0; 1577 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1578 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1579 if (diff > 0) { 1580 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1581 inserted = 1; 1582 break; 1583 } else if (diff == 0) { /* should never happen! */ 1584 link->stats.dupFragments++; 1585 NG_FREE_M(frag->data); 1586 FREE(frag, M_NETGRAPH_PPP); 1587 ERROUT(EINVAL); 1588 } 1589 } 1590 if (!inserted) 1591 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1592 priv->qlen++; 1593 1594 process: 1595 /* Process the queue */ 1596 /* NOTE: rmtx will be unlocked for sending time! */ 1597 error = ng_ppp_frag_process(node); 1598 1599 done: 1600 mtx_unlock(&priv->rmtx); 1601 return (error); 1602 } 1603 1604 /************************************************************************ 1605 HELPER STUFF 1606 ************************************************************************/ 1607 1608 /* 1609 * If new mseq > current then set it and update all active links 1610 */ 1611 static void 1612 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1613 { 1614 const priv_p priv = NG_NODE_PRIVATE(node); 1615 int i; 1616 1617 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1618 priv->mseq = new_mseq; 1619 for (i = 0; i < priv->numActiveLinks; i++) { 1620 struct ng_ppp_link *const alink = 1621 &priv->links[priv->activeLinks[i]]; 1622 1623 if (MP_RECV_SEQ_DIFF(priv, 1624 alink->seq, new_mseq) < 0) 1625 alink->seq = new_mseq; 1626 } 1627 } 1628 } 1629 1630 /* 1631 * Examine our list of fragments, and determine if there is a 1632 * complete and deliverable packet at the head of the list. 1633 * Return 1 if so, zero otherwise. 1634 */ 1635 static int 1636 ng_ppp_check_packet(node_p node) 1637 { 1638 const priv_p priv = NG_NODE_PRIVATE(node); 1639 struct ng_ppp_frag *qent, *qnext; 1640 1641 /* Check for empty queue */ 1642 if (TAILQ_EMPTY(&priv->frags)) 1643 return (0); 1644 1645 /* Check first fragment is the start of a deliverable packet */ 1646 qent = TAILQ_FIRST(&priv->frags); 1647 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1648 return (0); 1649 1650 /* Check that all the fragments are there */ 1651 while (!qent->last) { 1652 qnext = TAILQ_NEXT(qent, f_qent); 1653 if (qnext == NULL) /* end of queue */ 1654 return (0); 1655 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1656 return (0); 1657 qent = qnext; 1658 } 1659 1660 /* Got one */ 1661 return (1); 1662 } 1663 1664 /* 1665 * Pull a completed packet off the head of the incoming fragment queue. 1666 * This assumes there is a completed packet there to pull off. 1667 */ 1668 static void 1669 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1670 { 1671 const priv_p priv = NG_NODE_PRIVATE(node); 1672 struct ng_ppp_frag *qent, *qnext; 1673 struct mbuf *m = NULL, *tail; 1674 1675 qent = TAILQ_FIRST(&priv->frags); 1676 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1677 ("%s: no packet", __func__)); 1678 for (tail = NULL; qent != NULL; qent = qnext) { 1679 qnext = TAILQ_NEXT(qent, f_qent); 1680 KASSERT(!TAILQ_EMPTY(&priv->frags), 1681 ("%s: empty q", __func__)); 1682 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1683 if (tail == NULL) 1684 tail = m = qent->data; 1685 else { 1686 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1687 tail->m_next = qent->data; 1688 } 1689 while (tail->m_next != NULL) 1690 tail = tail->m_next; 1691 if (qent->last) { 1692 qnext = NULL; 1693 /* Bump MSEQ if necessary */ 1694 ng_ppp_bump_mseq(node, qent->seq); 1695 } 1696 FREE(qent, M_NETGRAPH_PPP); 1697 priv->qlen--; 1698 } 1699 *mp = m; 1700 } 1701 1702 /* 1703 * Trim fragments from the queue whose packets can never be completed. 1704 * This assumes a complete packet is NOT at the beginning of the queue. 1705 * Returns 1 if fragments were removed, zero otherwise. 1706 */ 1707 static int 1708 ng_ppp_frag_trim(node_p node) 1709 { 1710 const priv_p priv = NG_NODE_PRIVATE(node); 1711 struct ng_ppp_frag *qent, *qnext = NULL; 1712 int removed = 0; 1713 1714 /* Scan for "dead" fragments and remove them */ 1715 while (1) { 1716 int dead = 0; 1717 1718 /* If queue is empty, we're done */ 1719 if (TAILQ_EMPTY(&priv->frags)) 1720 break; 1721 1722 /* Determine whether first fragment can ever be completed */ 1723 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1724 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1725 break; 1726 qnext = TAILQ_NEXT(qent, f_qent); 1727 KASSERT(qnext != NULL, 1728 ("%s: last frag < MSEQ?", __func__)); 1729 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1730 || qent->last || qnext->first) { 1731 dead = 1; 1732 break; 1733 } 1734 } 1735 if (!dead) 1736 break; 1737 1738 /* Remove fragment and all others in the same packet */ 1739 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1740 KASSERT(!TAILQ_EMPTY(&priv->frags), 1741 ("%s: empty q", __func__)); 1742 priv->bundleStats.dropFragments++; 1743 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1744 NG_FREE_M(qent->data); 1745 FREE(qent, M_NETGRAPH_PPP); 1746 priv->qlen--; 1747 removed = 1; 1748 } 1749 } 1750 return (removed); 1751 } 1752 1753 /* 1754 * Drop fragments on queue overflow. 1755 * Returns 1 if fragments were removed, zero otherwise. 1756 */ 1757 static int 1758 ng_ppp_frag_drop(node_p node) 1759 { 1760 const priv_p priv = NG_NODE_PRIVATE(node); 1761 1762 /* Check queue length */ 1763 if (priv->qlen > MP_MAX_QUEUE_LEN) { 1764 struct ng_ppp_frag *qent; 1765 1766 /* Get oldest fragment */ 1767 KASSERT(!TAILQ_EMPTY(&priv->frags), 1768 ("%s: empty q", __func__)); 1769 qent = TAILQ_FIRST(&priv->frags); 1770 1771 /* Bump MSEQ if necessary */ 1772 ng_ppp_bump_mseq(node, qent->seq); 1773 1774 /* Drop it */ 1775 priv->bundleStats.dropFragments++; 1776 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1777 NG_FREE_M(qent->data); 1778 FREE(qent, M_NETGRAPH_PPP); 1779 priv->qlen--; 1780 1781 return (1); 1782 } 1783 return (0); 1784 } 1785 1786 /* 1787 * Run the queue, restoring the queue invariants 1788 */ 1789 static int 1790 ng_ppp_frag_process(node_p node) 1791 { 1792 const priv_p priv = NG_NODE_PRIVATE(node); 1793 struct mbuf *m; 1794 item_p item; 1795 uint16_t proto; 1796 1797 do { 1798 /* Deliver any deliverable packets */ 1799 while (ng_ppp_check_packet(node)) { 1800 ng_ppp_get_packet(node, &m); 1801 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1802 continue; 1803 if (!PROT_VALID(proto)) { 1804 priv->bundleStats.badProtos++; 1805 NG_FREE_M(m); 1806 continue; 1807 } 1808 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1809 /* Stats */ 1810 priv->bundleStats.recvFrames++; 1811 priv->bundleStats.recvOctets += 1812 NGI_M(item)->m_pkthdr.len; 1813 1814 /* Drop mutex for the sending time. 1815 * Priv may change, but we are ready! 1816 */ 1817 mtx_unlock(&priv->rmtx); 1818 ng_ppp_crypt_recv(node, item, proto, 1819 NG_PPP_BUNDLE_LINKNUM); 1820 mtx_lock(&priv->rmtx); 1821 } 1822 } 1823 /* Delete dead fragments and try again */ 1824 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1825 1826 /* Done */ 1827 return (0); 1828 } 1829 1830 /* 1831 * Check for 'stale' completed packets that need to be delivered 1832 * 1833 * If a link goes down or has a temporary failure, MSEQ can get 1834 * "stuck", because no new incoming fragments appear on that link. 1835 * This can cause completed packets to never get delivered if 1836 * their sequence numbers are all > MSEQ + 1. 1837 * 1838 * This routine checks how long all of the completed packets have 1839 * been sitting in the queue, and if too long, removes fragments 1840 * from the queue and increments MSEQ to allow them to be delivered. 1841 */ 1842 static void 1843 ng_ppp_frag_checkstale(node_p node) 1844 { 1845 const priv_p priv = NG_NODE_PRIVATE(node); 1846 struct ng_ppp_frag *qent, *beg, *end; 1847 struct timeval now, age; 1848 struct mbuf *m; 1849 int seq; 1850 item_p item; 1851 int endseq; 1852 uint16_t proto; 1853 1854 now.tv_sec = 0; /* uninitialized state */ 1855 while (1) { 1856 1857 /* If queue is empty, we're done */ 1858 if (TAILQ_EMPTY(&priv->frags)) 1859 break; 1860 1861 /* Find the first complete packet in the queue */ 1862 beg = end = NULL; 1863 seq = TAILQ_FIRST(&priv->frags)->seq; 1864 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1865 if (qent->first) 1866 beg = qent; 1867 else if (qent->seq != seq) 1868 beg = NULL; 1869 if (beg != NULL && qent->last) { 1870 end = qent; 1871 break; 1872 } 1873 seq = MP_NEXT_RECV_SEQ(priv, seq); 1874 } 1875 1876 /* If none found, exit */ 1877 if (end == NULL) 1878 break; 1879 1880 /* Get current time (we assume we've been up for >= 1 second) */ 1881 if (now.tv_sec == 0) 1882 getmicrouptime(&now); 1883 1884 /* Check if packet has been queued too long */ 1885 age = now; 1886 timevalsub(&age, &beg->timestamp); 1887 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1888 break; 1889 1890 /* Throw away junk fragments in front of the completed packet */ 1891 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1892 KASSERT(!TAILQ_EMPTY(&priv->frags), 1893 ("%s: empty q", __func__)); 1894 priv->bundleStats.dropFragments++; 1895 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1896 NG_FREE_M(qent->data); 1897 FREE(qent, M_NETGRAPH_PPP); 1898 priv->qlen--; 1899 } 1900 1901 /* Extract completed packet */ 1902 endseq = end->seq; 1903 ng_ppp_get_packet(node, &m); 1904 1905 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1906 continue; 1907 if (!PROT_VALID(proto)) { 1908 priv->bundleStats.badProtos++; 1909 NG_FREE_M(m); 1910 continue; 1911 } 1912 1913 /* Deliver packet */ 1914 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1915 /* Stats */ 1916 priv->bundleStats.recvFrames++; 1917 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1918 1919 ng_ppp_crypt_recv(node, item, proto, 1920 NG_PPP_BUNDLE_LINKNUM); 1921 } 1922 } 1923 } 1924 1925 /* 1926 * Periodically call ng_ppp_frag_checkstale() 1927 */ 1928 static void 1929 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1930 { 1931 /* XXX: is this needed? */ 1932 if (NG_NODE_NOT_VALID(node)) 1933 return; 1934 1935 /* Scan the fragment queue */ 1936 ng_ppp_frag_checkstale(node); 1937 1938 /* Start timer again */ 1939 ng_ppp_start_frag_timer(node); 1940 } 1941 1942 /* 1943 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1944 * the frame across the individual PPP links and do so. 1945 */ 1946 static int 1947 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1948 { 1949 const priv_p priv = NG_NODE_PRIVATE(node); 1950 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1951 int distrib[NG_PPP_MAX_LINKS]; 1952 int firstFragment; 1953 int activeLinkNum; 1954 struct mbuf *m; 1955 int len; 1956 int frags; 1957 int32_t seq; 1958 1959 /* At least one link must be active */ 1960 if (priv->numActiveLinks == 0) { 1961 NG_FREE_ITEM(item); 1962 return (ENETDOWN); 1963 } 1964 1965 /* Save length for later stats. */ 1966 len = NGI_M(item)->m_pkthdr.len; 1967 1968 if (!priv->conf.enableMultilink) { 1969 return (ng_ppp_link_xmit(node, item, proto, 1970 priv->activeLinks[0], len)); 1971 } 1972 1973 /* Extract mbuf. */ 1974 NGI_GET_M(item, m); 1975 NG_FREE_ITEM(item); 1976 1977 /* Prepend protocol number, possibly compressed. */ 1978 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) 1979 return (ENOBUFS); 1980 1981 /* Clear distribution plan */ 1982 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 1983 1984 mtx_lock(&priv->xmtx); 1985 1986 /* Round-robin strategy */ 1987 if (priv->conf.enableRoundRobin) { 1988 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 1989 distrib[activeLinkNum] = m->m_pkthdr.len; 1990 goto deliver; 1991 } 1992 1993 /* Strategy when all links are equivalent (optimize the common case) */ 1994 if (priv->allLinksEqual) { 1995 int numFrags, fraction, remain; 1996 int i; 1997 1998 /* Calculate optimal fragment count */ 1999 numFrags = priv->numActiveLinks; 2000 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 2001 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 2002 if (numFrags == 0) 2003 numFrags = 1; 2004 2005 fraction = m->m_pkthdr.len / numFrags; 2006 remain = m->m_pkthdr.len - (fraction * numFrags); 2007 2008 /* Assign distribution */ 2009 for (i = 0; i < numFrags; i++) { 2010 distrib[priv->lastLink++ % priv->numActiveLinks] 2011 = fraction + (((remain--) > 0)?1:0); 2012 } 2013 goto deliver; 2014 } 2015 2016 /* Strategy when all links are not equivalent */ 2017 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 2018 2019 deliver: 2020 /* Estimate fragments count */ 2021 frags = 0; 2022 for (activeLinkNum = priv->numActiveLinks - 1; 2023 activeLinkNum >= 0; activeLinkNum--) { 2024 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2025 struct ng_ppp_link *const link = &priv->links[linkNum]; 2026 2027 frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) / 2028 (link->conf.mru - hdr_len); 2029 } 2030 2031 /* Get out initial sequence number */ 2032 seq = priv->xseq; 2033 2034 /* Update next sequence number */ 2035 if (priv->conf.xmitShortSeq) { 2036 priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK; 2037 } else { 2038 priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK; 2039 } 2040 2041 mtx_unlock(&priv->xmtx); 2042 2043 /* Send alloted portions of frame out on the link(s) */ 2044 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 2045 activeLinkNum >= 0; activeLinkNum--) { 2046 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2047 struct ng_ppp_link *const link = &priv->links[linkNum]; 2048 2049 /* Deliver fragment(s) out the next link */ 2050 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 2051 int len, lastFragment, error; 2052 struct mbuf *m2; 2053 2054 /* Calculate fragment length; don't exceed link MTU */ 2055 len = distrib[activeLinkNum]; 2056 if (len > link->conf.mru - hdr_len) 2057 len = link->conf.mru - hdr_len; 2058 distrib[activeLinkNum] -= len; 2059 lastFragment = (len == m->m_pkthdr.len); 2060 2061 /* Split off next fragment as "m2" */ 2062 m2 = m; 2063 if (!lastFragment) { 2064 struct mbuf *n = m_split(m, len, M_DONTWAIT); 2065 2066 if (n == NULL) { 2067 NG_FREE_M(m); 2068 return (ENOMEM); 2069 } 2070 m_tag_copy_chain(n, m, M_DONTWAIT); 2071 m = n; 2072 } 2073 2074 /* Prepend MP header */ 2075 if (priv->conf.xmitShortSeq) { 2076 uint16_t shdr; 2077 2078 shdr = seq; 2079 seq = (seq + 1) & MP_SHORT_SEQ_MASK; 2080 if (firstFragment) 2081 shdr |= MP_SHORT_FIRST_FLAG; 2082 if (lastFragment) 2083 shdr |= MP_SHORT_LAST_FLAG; 2084 shdr = htons(shdr); 2085 m2 = ng_ppp_prepend(m2, &shdr, 2); 2086 } else { 2087 uint32_t lhdr; 2088 2089 lhdr = seq; 2090 seq = (seq + 1) & MP_LONG_SEQ_MASK; 2091 if (firstFragment) 2092 lhdr |= MP_LONG_FIRST_FLAG; 2093 if (lastFragment) 2094 lhdr |= MP_LONG_LAST_FLAG; 2095 lhdr = htonl(lhdr); 2096 m2 = ng_ppp_prepend(m2, &lhdr, 4); 2097 } 2098 if (m2 == NULL) { 2099 if (!lastFragment) 2100 m_freem(m); 2101 return (ENOBUFS); 2102 } 2103 2104 /* Send fragment */ 2105 if ((item = ng_package_data(m2, NG_NOFLAGS)) != NULL) { 2106 error = ng_ppp_link_xmit(node, item, PROT_MP, 2107 linkNum, (firstFragment?len:0)); 2108 if (error != 0) { 2109 if (!lastFragment) 2110 NG_FREE_M(m); 2111 return (error); 2112 } 2113 } 2114 } 2115 } 2116 2117 /* Done */ 2118 return (0); 2119 } 2120 2121 /* 2122 * Computing the optimal fragmentation 2123 * ----------------------------------- 2124 * 2125 * This routine tries to compute the optimal fragmentation pattern based 2126 * on each link's latency, bandwidth, and calculated additional latency. 2127 * The latter quantity is the additional latency caused by previously 2128 * written data that has not been transmitted yet. 2129 * 2130 * This algorithm is only useful when not all of the links have the 2131 * same latency and bandwidth values. 2132 * 2133 * The essential idea is to make the last bit of each fragment of the 2134 * frame arrive at the opposite end at the exact same time. This greedy 2135 * algorithm is optimal, in that no other scheduling could result in any 2136 * packet arriving any sooner unless packets are delivered out of order. 2137 * 2138 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2139 * latency l_i (in miliseconds). Consider the function function f_i(t) 2140 * which is equal to the number of bytes that will have arrived at 2141 * the peer after t miliseconds if we start writing continuously at 2142 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2143 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2144 * Note that the y-intersect is always <= zero because latency can't be 2145 * negative. Note also that really the function is f_i(t) except when 2146 * f_i(t) is negative, in which case the function is zero. To take 2147 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2148 * So the actual number of bytes that will have arrived at the peer after 2149 * t miliseconds is f_i(t) * Q_i(t). 2150 * 2151 * At any given time, each link has some additional latency a_i >= 0 2152 * due to previously written fragment(s) which are still in the queue. 2153 * This value is easily computed from the time since last transmission, 2154 * the previous latency value, the number of bytes written, and the 2155 * link's bandwidth. 2156 * 2157 * Assume that l_i includes any a_i already, and that the links are 2158 * sorted by latency, so that l_i <= l_{i+1}. 2159 * 2160 * Let N be the total number of bytes in the current frame we are sending. 2161 * 2162 * Suppose we were to start writing bytes at time t = 0 on all links 2163 * simultaneously, which is the most we can possibly do. Then let 2164 * F(t) be equal to the total number of bytes received by the peer 2165 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2166 * 2167 * Our goal is simply this: fragment the frame across the links such 2168 * that the peer is able to reconstruct the completed frame as soon as 2169 * possible, i.e., at the least possible value of t. Call this value t_0. 2170 * 2171 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2172 * of t_0, and then deduce how many bytes to write to each link. 2173 * 2174 * Rewriting F(t_0): 2175 * 2176 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2177 * 2178 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2179 * lie in one of these ranges. To find it, we just need to find the i such 2180 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2181 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2182 * 2183 * Once t_0 is known, then the number of bytes to send on link i is 2184 * just f_i(t_0) * Q_i(t_0). 2185 * 2186 * In other words, we start allocating bytes to the links one at a time. 2187 * We keep adding links until the frame is completely sent. Some links 2188 * may not get any bytes because their latency is too high. 2189 * 2190 * Is all this work really worth the trouble? Depends on the situation. 2191 * The bigger the ratio of computer speed to link speed, and the more 2192 * important total bundle latency is (e.g., for interactive response time), 2193 * the more it's worth it. There is however the cost of calling this 2194 * function for every frame. The running time is O(n^2) where n is the 2195 * number of links that receive a non-zero number of bytes. 2196 * 2197 * Since latency is measured in miliseconds, the "resolution" of this 2198 * algorithm is one milisecond. 2199 * 2200 * To avoid this algorithm altogether, configure all links to have the 2201 * same latency and bandwidth. 2202 */ 2203 static void 2204 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2205 { 2206 const priv_p priv = NG_NODE_PRIVATE(node); 2207 int latency[NG_PPP_MAX_LINKS]; 2208 int sortByLatency[NG_PPP_MAX_LINKS]; 2209 int activeLinkNum; 2210 int t0, total, topSum, botSum; 2211 struct timeval now; 2212 int i, numFragments; 2213 2214 /* If only one link, this gets real easy */ 2215 if (priv->numActiveLinks == 1) { 2216 distrib[0] = len; 2217 return; 2218 } 2219 2220 /* Get current time */ 2221 getmicrouptime(&now); 2222 2223 /* Compute latencies for each link at this point in time */ 2224 for (activeLinkNum = 0; 2225 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2226 struct ng_ppp_link *alink; 2227 struct timeval diff; 2228 int xmitBytes; 2229 2230 /* Start with base latency value */ 2231 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2232 latency[activeLinkNum] = alink->latency; 2233 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2234 2235 /* Any additional latency? */ 2236 if (alink->bytesInQueue == 0) 2237 continue; 2238 2239 /* Compute time delta since last write */ 2240 diff = now; 2241 timevalsub(&diff, &alink->lastWrite); 2242 2243 /* alink->bytesInQueue will be changed, mark change time. */ 2244 alink->lastWrite = now; 2245 2246 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2247 alink->bytesInQueue = 0; 2248 continue; 2249 } 2250 2251 /* How many bytes could have transmitted since last write? */ 2252 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2253 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2254 alink->bytesInQueue -= xmitBytes; 2255 if (alink->bytesInQueue < 0) 2256 alink->bytesInQueue = 0; 2257 else 2258 latency[activeLinkNum] += 2259 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2260 } 2261 2262 /* Sort active links by latency */ 2263 qsort_r(sortByLatency, 2264 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2265 2266 /* Find the interval we need (add links in sortByLatency[] order) */ 2267 for (numFragments = 1; 2268 numFragments < priv->numActiveLinks; numFragments++) { 2269 for (total = i = 0; i < numFragments; i++) { 2270 int flowTime; 2271 2272 flowTime = latency[sortByLatency[numFragments]] 2273 - latency[sortByLatency[i]]; 2274 total += ((flowTime * priv->links[ 2275 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2276 + 99) / 100; 2277 } 2278 if (total >= len) 2279 break; 2280 } 2281 2282 /* Solve for t_0 in that interval */ 2283 for (topSum = botSum = i = 0; i < numFragments; i++) { 2284 int bw = priv->links[ 2285 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2286 2287 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2288 botSum += bw; /* / 100 */ 2289 } 2290 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2291 2292 /* Compute f_i(t_0) all i */ 2293 for (total = i = 0; i < numFragments; i++) { 2294 int bw = priv->links[ 2295 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2296 2297 distrib[sortByLatency[i]] = 2298 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2299 total += distrib[sortByLatency[i]]; 2300 } 2301 2302 /* Deal with any rounding error */ 2303 if (total < len) { 2304 struct ng_ppp_link *fastLink = 2305 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2306 int fast = 0; 2307 2308 /* Find the fastest link */ 2309 for (i = 1; i < numFragments; i++) { 2310 struct ng_ppp_link *const link = 2311 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2312 2313 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2314 fast = i; 2315 fastLink = link; 2316 } 2317 } 2318 distrib[sortByLatency[fast]] += len - total; 2319 } else while (total > len) { 2320 struct ng_ppp_link *slowLink = 2321 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2322 int delta, slow = 0; 2323 2324 /* Find the slowest link that still has bytes to remove */ 2325 for (i = 1; i < numFragments; i++) { 2326 struct ng_ppp_link *const link = 2327 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2328 2329 if (distrib[sortByLatency[slow]] == 0 2330 || (distrib[sortByLatency[i]] > 0 2331 && link->conf.bandwidth < 2332 slowLink->conf.bandwidth)) { 2333 slow = i; 2334 slowLink = link; 2335 } 2336 } 2337 delta = total - len; 2338 if (delta > distrib[sortByLatency[slow]]) 2339 delta = distrib[sortByLatency[slow]]; 2340 distrib[sortByLatency[slow]] -= delta; 2341 total -= delta; 2342 } 2343 } 2344 2345 /* 2346 * Compare two integers 2347 */ 2348 static int 2349 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2350 { 2351 const int index1 = *((const int *) v1); 2352 const int index2 = *((const int *) v2); 2353 2354 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2355 } 2356 2357 /* 2358 * Prepend a possibly compressed PPP protocol number in front of a frame 2359 */ 2360 static struct mbuf * 2361 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2362 { 2363 if (compOK && PROT_COMPRESSABLE(proto)) { 2364 uint8_t pbyte = (uint8_t)proto; 2365 2366 return ng_ppp_prepend(m, &pbyte, 1); 2367 } else { 2368 uint16_t pword = htons((uint16_t)proto); 2369 2370 return ng_ppp_prepend(m, &pword, 2); 2371 } 2372 } 2373 2374 /* 2375 * Cut a possibly compressed PPP protocol number from the front of a frame. 2376 */ 2377 static struct mbuf * 2378 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2379 { 2380 2381 *proto = 0; 2382 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2383 return (NULL); 2384 2385 *proto = *mtod(m, uint8_t *); 2386 m_adj(m, 1); 2387 2388 if (!PROT_VALID(*proto)) { 2389 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2390 return (NULL); 2391 2392 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2393 m_adj(m, 1); 2394 } 2395 2396 return (m); 2397 } 2398 2399 /* 2400 * Prepend some bytes to an mbuf. 2401 */ 2402 static struct mbuf * 2403 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2404 { 2405 M_PREPEND(m, len, M_DONTWAIT); 2406 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2407 return (NULL); 2408 bcopy(buf, mtod(m, uint8_t *), len); 2409 return (m); 2410 } 2411 2412 /* 2413 * Update private information that is derived from other private information 2414 */ 2415 static void 2416 ng_ppp_update(node_p node, int newConf) 2417 { 2418 const priv_p priv = NG_NODE_PRIVATE(node); 2419 int i; 2420 2421 /* Update active status for VJ Compression */ 2422 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2423 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2424 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2425 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2426 2427 /* Increase latency for each link an amount equal to one MP header */ 2428 if (newConf) { 2429 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2430 int hdrBytes; 2431 2432 if (priv->links[i].conf.bandwidth == 0) 2433 continue; 2434 2435 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2436 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2437 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2438 + (priv->conf.xmitShortSeq ? 2 : 4); 2439 priv->links[i].latency = 2440 priv->links[i].conf.latency + 2441 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2442 } 2443 } 2444 2445 /* Update list of active links */ 2446 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2447 priv->numActiveLinks = 0; 2448 priv->allLinksEqual = 1; 2449 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2450 struct ng_ppp_link *const link = &priv->links[i]; 2451 2452 /* Is link active? */ 2453 if (link->conf.enableLink && link->hook != NULL) { 2454 struct ng_ppp_link *link0; 2455 2456 /* Add link to list of active links */ 2457 priv->activeLinks[priv->numActiveLinks++] = i; 2458 link0 = &priv->links[priv->activeLinks[0]]; 2459 2460 /* Determine if all links are still equal */ 2461 if (link->latency != link0->latency 2462 || link->conf.bandwidth != link0->conf.bandwidth) 2463 priv->allLinksEqual = 0; 2464 2465 /* Initialize rec'd sequence number */ 2466 if (link->seq == MP_NOSEQ) { 2467 link->seq = (link == link0) ? 2468 MP_INITIAL_SEQ : link0->seq; 2469 } 2470 } else 2471 link->seq = MP_NOSEQ; 2472 } 2473 2474 /* Update MP state as multi-link is active or not */ 2475 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2476 ng_ppp_start_frag_timer(node); 2477 else { 2478 ng_ppp_stop_frag_timer(node); 2479 ng_ppp_frag_reset(node); 2480 priv->xseq = MP_INITIAL_SEQ; 2481 priv->mseq = MP_INITIAL_SEQ; 2482 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2483 struct ng_ppp_link *const link = &priv->links[i]; 2484 2485 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2486 link->bytesInQueue = 0; 2487 link->seq = MP_NOSEQ; 2488 } 2489 } 2490 } 2491 2492 /* 2493 * Determine if a new configuration would represent a valid change 2494 * from the current configuration and link activity status. 2495 */ 2496 static int 2497 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2498 { 2499 const priv_p priv = NG_NODE_PRIVATE(node); 2500 int i, newNumLinksActive; 2501 2502 /* Check per-link config and count how many links would be active */ 2503 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2504 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2505 newNumLinksActive++; 2506 if (!newConf->links[i].enableLink) 2507 continue; 2508 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2509 return (0); 2510 if (newConf->links[i].bandwidth == 0) 2511 return (0); 2512 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2513 return (0); 2514 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2515 return (0); 2516 } 2517 2518 /* Check bundle parameters */ 2519 if (newConf->bund.enableMultilink && newConf->bund.mrru < MP_MIN_MRRU) 2520 return (0); 2521 2522 /* Disallow changes to multi-link configuration while MP is active */ 2523 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2524 if (!priv->conf.enableMultilink 2525 != !newConf->bund.enableMultilink 2526 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2527 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2528 return (0); 2529 } 2530 2531 /* At most one link can be active unless multi-link is enabled */ 2532 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2533 return (0); 2534 2535 /* Configuration change would be valid */ 2536 return (1); 2537 } 2538 2539 /* 2540 * Free all entries in the fragment queue 2541 */ 2542 static void 2543 ng_ppp_frag_reset(node_p node) 2544 { 2545 const priv_p priv = NG_NODE_PRIVATE(node); 2546 struct ng_ppp_frag *qent, *qnext; 2547 2548 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2549 qnext = TAILQ_NEXT(qent, f_qent); 2550 NG_FREE_M(qent->data); 2551 FREE(qent, M_NETGRAPH_PPP); 2552 } 2553 TAILQ_INIT(&priv->frags); 2554 priv->qlen = 0; 2555 } 2556 2557 /* 2558 * Start fragment queue timer 2559 */ 2560 static void 2561 ng_ppp_start_frag_timer(node_p node) 2562 { 2563 const priv_p priv = NG_NODE_PRIVATE(node); 2564 2565 if (!(callout_pending(&priv->fragTimer))) 2566 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2567 ng_ppp_frag_timeout, NULL, 0); 2568 } 2569 2570 /* 2571 * Stop fragment queue timer 2572 */ 2573 static void 2574 ng_ppp_stop_frag_timer(node_p node) 2575 { 2576 const priv_p priv = NG_NODE_PRIVATE(node); 2577 2578 if (callout_pending(&priv->fragTimer)) 2579 ng_uncallout(&priv->fragTimer, node); 2580 } 2581