1 /*- 2 * Copyright (c) 2004-2010 University of Zagreb 3 * Copyright (c) 2007-2008 FreeBSD Foundation 4 * 5 * This software was developed by the University of Zagreb and the 6 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 7 * FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 /* 34 * This node permits simple traffic shaping by emulating bandwidth 35 * and delay, as well as random packet losses. 36 * The node has two hooks, upper and lower. Traffic flowing from upper to 37 * lower hook is referenced as downstream, and vice versa. Parameters for 38 * both directions can be set separately, except for delay. 39 */ 40 41 42 #include <sys/param.h> 43 #include <sys/errno.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/time.h> 49 50 #include <vm/uma.h> 51 52 #include <net/vnet.h> 53 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/ip.h> 57 58 #include <netgraph/ng_message.h> 59 #include <netgraph/netgraph.h> 60 #include <netgraph/ng_parse.h> 61 #include <netgraph/ng_pipe.h> 62 63 static MALLOC_DEFINE(M_NG_PIPE, "ng_pipe", "ng_pipe"); 64 65 /* Packet header struct */ 66 struct ngp_hdr { 67 TAILQ_ENTRY(ngp_hdr) ngp_link; /* next pkt in queue */ 68 struct timeval when; /* this packet's due time */ 69 struct mbuf *m; /* ptr to the packet data */ 70 }; 71 TAILQ_HEAD(p_head, ngp_hdr); 72 73 /* FIFO queue struct */ 74 struct ngp_fifo { 75 TAILQ_ENTRY(ngp_fifo) fifo_le; /* list of active queues only */ 76 struct p_head packet_head; /* FIFO queue head */ 77 u_int32_t hash; /* flow signature */ 78 struct timeval vtime; /* virtual time, for WFQ */ 79 u_int32_t rr_deficit; /* for DRR */ 80 u_int32_t packets; /* # of packets in this queue */ 81 }; 82 83 /* Per hook info */ 84 struct hookinfo { 85 hook_p hook; 86 int noqueue; /* bypass any processing */ 87 TAILQ_HEAD(, ngp_fifo) fifo_head; /* FIFO queues */ 88 TAILQ_HEAD(, ngp_hdr) qout_head; /* delay queue head */ 89 struct timeval qin_utime; 90 struct ng_pipe_hookcfg cfg; 91 struct ng_pipe_hookrun run; 92 struct ng_pipe_hookstat stats; 93 uint64_t *ber_p; /* loss_p(BER,psize) map */ 94 }; 95 96 /* Per node info */ 97 struct node_priv { 98 u_int64_t delay; 99 u_int32_t overhead; 100 u_int32_t header_offset; 101 struct hookinfo lower; 102 struct hookinfo upper; 103 struct callout timer; 104 int timer_scheduled; 105 }; 106 typedef struct node_priv *priv_p; 107 108 /* Macro for calculating the virtual time for packet dequeueing in WFQ */ 109 #define FIFO_VTIME_SORT(plen) \ 110 if (hinfo->cfg.wfq && hinfo->cfg.bandwidth) { \ 111 ngp_f->vtime.tv_usec = now->tv_usec + ((uint64_t) (plen) \ 112 + priv->overhead ) * hinfo->run.fifo_queues * \ 113 8000000 / hinfo->cfg.bandwidth; \ 114 ngp_f->vtime.tv_sec = now->tv_sec + \ 115 ngp_f->vtime.tv_usec / 1000000; \ 116 ngp_f->vtime.tv_usec = ngp_f->vtime.tv_usec % 1000000; \ 117 TAILQ_FOREACH(ngp_f1, &hinfo->fifo_head, fifo_le) \ 118 if (ngp_f1->vtime.tv_sec > ngp_f->vtime.tv_sec || \ 119 (ngp_f1->vtime.tv_sec == ngp_f->vtime.tv_sec && \ 120 ngp_f1->vtime.tv_usec > ngp_f->vtime.tv_usec)) \ 121 break; \ 122 if (ngp_f1 == NULL) \ 123 TAILQ_INSERT_TAIL(&hinfo->fifo_head, ngp_f, fifo_le); \ 124 else \ 125 TAILQ_INSERT_BEFORE(ngp_f1, ngp_f, fifo_le); \ 126 } else \ 127 TAILQ_INSERT_TAIL(&hinfo->fifo_head, ngp_f, fifo_le); \ 128 129 130 static void parse_cfg(struct ng_pipe_hookcfg *, struct ng_pipe_hookcfg *, 131 struct hookinfo *, priv_p); 132 static void pipe_dequeue(struct hookinfo *, struct timeval *); 133 static void ngp_callout(node_p, hook_p, void *, int); 134 static int ngp_modevent(module_t, int, void *); 135 136 /* zone for storing ngp_hdr-s */ 137 static uma_zone_t ngp_zone; 138 139 /* Netgraph methods */ 140 static ng_constructor_t ngp_constructor; 141 static ng_rcvmsg_t ngp_rcvmsg; 142 static ng_shutdown_t ngp_shutdown; 143 static ng_newhook_t ngp_newhook; 144 static ng_rcvdata_t ngp_rcvdata; 145 static ng_disconnect_t ngp_disconnect; 146 147 /* Parse type for struct ng_pipe_hookstat */ 148 static const struct ng_parse_struct_field 149 ng_pipe_hookstat_type_fields[] = NG_PIPE_HOOKSTAT_INFO; 150 static const struct ng_parse_type ng_pipe_hookstat_type = { 151 &ng_parse_struct_type, 152 &ng_pipe_hookstat_type_fields 153 }; 154 155 /* Parse type for struct ng_pipe_stats */ 156 static const struct ng_parse_struct_field ng_pipe_stats_type_fields[] = 157 NG_PIPE_STATS_INFO(&ng_pipe_hookstat_type); 158 static const struct ng_parse_type ng_pipe_stats_type = { 159 &ng_parse_struct_type, 160 &ng_pipe_stats_type_fields 161 }; 162 163 /* Parse type for struct ng_pipe_hookrun */ 164 static const struct ng_parse_struct_field 165 ng_pipe_hookrun_type_fields[] = NG_PIPE_HOOKRUN_INFO; 166 static const struct ng_parse_type ng_pipe_hookrun_type = { 167 &ng_parse_struct_type, 168 &ng_pipe_hookrun_type_fields 169 }; 170 171 /* Parse type for struct ng_pipe_run */ 172 static const struct ng_parse_struct_field 173 ng_pipe_run_type_fields[] = NG_PIPE_RUN_INFO(&ng_pipe_hookrun_type); 174 static const struct ng_parse_type ng_pipe_run_type = { 175 &ng_parse_struct_type, 176 &ng_pipe_run_type_fields 177 }; 178 179 /* Parse type for struct ng_pipe_hookcfg */ 180 static const struct ng_parse_struct_field 181 ng_pipe_hookcfg_type_fields[] = NG_PIPE_HOOKCFG_INFO; 182 static const struct ng_parse_type ng_pipe_hookcfg_type = { 183 &ng_parse_struct_type, 184 &ng_pipe_hookcfg_type_fields 185 }; 186 187 /* Parse type for struct ng_pipe_cfg */ 188 static const struct ng_parse_struct_field 189 ng_pipe_cfg_type_fields[] = NG_PIPE_CFG_INFO(&ng_pipe_hookcfg_type); 190 static const struct ng_parse_type ng_pipe_cfg_type = { 191 &ng_parse_struct_type, 192 &ng_pipe_cfg_type_fields 193 }; 194 195 /* List of commands and how to convert arguments to/from ASCII */ 196 static const struct ng_cmdlist ngp_cmds[] = { 197 { 198 .cookie = NGM_PIPE_COOKIE, 199 .cmd = NGM_PIPE_GET_STATS, 200 .name = "getstats", 201 .respType = &ng_pipe_stats_type 202 }, 203 { 204 .cookie = NGM_PIPE_COOKIE, 205 .cmd = NGM_PIPE_CLR_STATS, 206 .name = "clrstats" 207 }, 208 { 209 .cookie = NGM_PIPE_COOKIE, 210 .cmd = NGM_PIPE_GETCLR_STATS, 211 .name = "getclrstats", 212 .respType = &ng_pipe_stats_type 213 }, 214 { 215 .cookie = NGM_PIPE_COOKIE, 216 .cmd = NGM_PIPE_GET_RUN, 217 .name = "getrun", 218 .respType = &ng_pipe_run_type 219 }, 220 { 221 .cookie = NGM_PIPE_COOKIE, 222 .cmd = NGM_PIPE_GET_CFG, 223 .name = "getcfg", 224 .respType = &ng_pipe_cfg_type 225 }, 226 { 227 .cookie = NGM_PIPE_COOKIE, 228 .cmd = NGM_PIPE_SET_CFG, 229 .name = "setcfg", 230 .mesgType = &ng_pipe_cfg_type, 231 }, 232 { 0 } 233 }; 234 235 /* Netgraph type descriptor */ 236 static struct ng_type ng_pipe_typestruct = { 237 .version = NG_ABI_VERSION, 238 .name = NG_PIPE_NODE_TYPE, 239 .mod_event = ngp_modevent, 240 .constructor = ngp_constructor, 241 .shutdown = ngp_shutdown, 242 .rcvmsg = ngp_rcvmsg, 243 .newhook = ngp_newhook, 244 .rcvdata = ngp_rcvdata, 245 .disconnect = ngp_disconnect, 246 .cmdlist = ngp_cmds 247 }; 248 NETGRAPH_INIT(pipe, &ng_pipe_typestruct); 249 250 /* Node constructor */ 251 static int 252 ngp_constructor(node_p node) 253 { 254 priv_p priv; 255 256 priv = malloc(sizeof(*priv), M_NG_PIPE, M_ZERO | M_NOWAIT); 257 if (priv == NULL) 258 return (ENOMEM); 259 NG_NODE_SET_PRIVATE(node, priv); 260 261 /* Mark node as single-threaded */ 262 NG_NODE_FORCE_WRITER(node); 263 264 ng_callout_init(&priv->timer); 265 266 return (0); 267 } 268 269 /* Add a hook */ 270 static int 271 ngp_newhook(node_p node, hook_p hook, const char *name) 272 { 273 const priv_p priv = NG_NODE_PRIVATE(node); 274 struct hookinfo *hinfo; 275 276 if (strcmp(name, NG_PIPE_HOOK_UPPER) == 0) { 277 bzero(&priv->upper, sizeof(priv->upper)); 278 priv->upper.hook = hook; 279 NG_HOOK_SET_PRIVATE(hook, &priv->upper); 280 } else if (strcmp(name, NG_PIPE_HOOK_LOWER) == 0) { 281 bzero(&priv->lower, sizeof(priv->lower)); 282 priv->lower.hook = hook; 283 NG_HOOK_SET_PRIVATE(hook, &priv->lower); 284 } else 285 return (EINVAL); 286 287 /* Load non-zero initial cfg values */ 288 hinfo = NG_HOOK_PRIVATE(hook); 289 hinfo->cfg.qin_size_limit = 50; 290 hinfo->cfg.fifo = 1; 291 hinfo->cfg.droptail = 1; 292 TAILQ_INIT(&hinfo->fifo_head); 293 TAILQ_INIT(&hinfo->qout_head); 294 return (0); 295 } 296 297 /* Receive a control message */ 298 static int 299 ngp_rcvmsg(node_p node, item_p item, hook_p lasthook) 300 { 301 const priv_p priv = NG_NODE_PRIVATE(node); 302 struct ng_mesg *resp = NULL; 303 struct ng_mesg *msg; 304 struct ng_pipe_stats *stats; 305 struct ng_pipe_run *run; 306 struct ng_pipe_cfg *cfg; 307 int error = 0; 308 309 NGI_GET_MSG(item, msg); 310 switch (msg->header.typecookie) { 311 case NGM_PIPE_COOKIE: 312 switch (msg->header.cmd) { 313 case NGM_PIPE_GET_STATS: 314 case NGM_PIPE_CLR_STATS: 315 case NGM_PIPE_GETCLR_STATS: 316 if (msg->header.cmd != NGM_PIPE_CLR_STATS) { 317 NG_MKRESPONSE(resp, msg, 318 sizeof(*stats), M_NOWAIT); 319 if (resp == NULL) { 320 error = ENOMEM; 321 break; 322 } 323 stats = (struct ng_pipe_stats *) resp->data; 324 bcopy(&priv->upper.stats, &stats->downstream, 325 sizeof(stats->downstream)); 326 bcopy(&priv->lower.stats, &stats->upstream, 327 sizeof(stats->upstream)); 328 } 329 if (msg->header.cmd != NGM_PIPE_GET_STATS) { 330 bzero(&priv->upper.stats, 331 sizeof(priv->upper.stats)); 332 bzero(&priv->lower.stats, 333 sizeof(priv->lower.stats)); 334 } 335 break; 336 case NGM_PIPE_GET_RUN: 337 NG_MKRESPONSE(resp, msg, sizeof(*run), M_NOWAIT); 338 if (resp == NULL) { 339 error = ENOMEM; 340 break; 341 } 342 run = (struct ng_pipe_run *) resp->data; 343 bcopy(&priv->upper.run, &run->downstream, 344 sizeof(run->downstream)); 345 bcopy(&priv->lower.run, &run->upstream, 346 sizeof(run->upstream)); 347 break; 348 case NGM_PIPE_GET_CFG: 349 NG_MKRESPONSE(resp, msg, sizeof(*cfg), M_NOWAIT); 350 if (resp == NULL) { 351 error = ENOMEM; 352 break; 353 } 354 cfg = (struct ng_pipe_cfg *) resp->data; 355 bcopy(&priv->upper.cfg, &cfg->downstream, 356 sizeof(cfg->downstream)); 357 bcopy(&priv->lower.cfg, &cfg->upstream, 358 sizeof(cfg->upstream)); 359 cfg->delay = priv->delay; 360 cfg->overhead = priv->overhead; 361 cfg->header_offset = priv->header_offset; 362 if (cfg->upstream.bandwidth == 363 cfg->downstream.bandwidth) { 364 cfg->bandwidth = cfg->upstream.bandwidth; 365 cfg->upstream.bandwidth = 0; 366 cfg->downstream.bandwidth = 0; 367 } else 368 cfg->bandwidth = 0; 369 break; 370 case NGM_PIPE_SET_CFG: 371 cfg = (struct ng_pipe_cfg *) msg->data; 372 if (msg->header.arglen != sizeof(*cfg)) { 373 error = EINVAL; 374 break; 375 } 376 377 if (cfg->delay == -1) 378 priv->delay = 0; 379 else if (cfg->delay > 0 && cfg->delay < 10000000) 380 priv->delay = cfg->delay; 381 382 if (cfg->bandwidth == -1) { 383 priv->upper.cfg.bandwidth = 0; 384 priv->lower.cfg.bandwidth = 0; 385 priv->overhead = 0; 386 } else if (cfg->bandwidth >= 100 && 387 cfg->bandwidth <= 1000000000) { 388 priv->upper.cfg.bandwidth = cfg->bandwidth; 389 priv->lower.cfg.bandwidth = cfg->bandwidth; 390 if (cfg->bandwidth >= 10000000) 391 priv->overhead = 8+4+12; /* Ethernet */ 392 else 393 priv->overhead = 10; /* HDLC */ 394 } 395 396 if (cfg->overhead == -1) 397 priv->overhead = 0; 398 else if (cfg->overhead > 0 && 399 cfg->overhead < MAX_OHSIZE) 400 priv->overhead = cfg->overhead; 401 402 if (cfg->header_offset == -1) 403 priv->header_offset = 0; 404 else if (cfg->header_offset > 0 && 405 cfg->header_offset < 64) 406 priv->header_offset = cfg->header_offset; 407 408 parse_cfg(&priv->upper.cfg, &cfg->downstream, 409 &priv->upper, priv); 410 parse_cfg(&priv->lower.cfg, &cfg->upstream, 411 &priv->lower, priv); 412 break; 413 default: 414 error = EINVAL; 415 break; 416 } 417 break; 418 default: 419 error = EINVAL; 420 break; 421 } 422 NG_RESPOND_MSG(error, node, item, resp); 423 NG_FREE_MSG(msg); 424 425 return (error); 426 } 427 428 static void 429 parse_cfg(struct ng_pipe_hookcfg *current, struct ng_pipe_hookcfg *new, 430 struct hookinfo *hinfo, priv_p priv) 431 { 432 433 if (new->ber == -1) { 434 current->ber = 0; 435 if (hinfo->ber_p) { 436 free(hinfo->ber_p, M_NG_PIPE); 437 hinfo->ber_p = NULL; 438 } 439 } else if (new->ber >= 1 && new->ber <= 1000000000000) { 440 static const uint64_t one = 0x1000000000000; /* = 2^48 */ 441 uint64_t p0, p; 442 uint32_t fsize, i; 443 444 if (hinfo->ber_p == NULL) 445 hinfo->ber_p = 446 malloc((MAX_FSIZE + MAX_OHSIZE) * sizeof(uint64_t), 447 M_NG_PIPE, M_NOWAIT); 448 current->ber = new->ber; 449 450 /* 451 * For given BER and each frame size N (in bytes) calculate 452 * the probability P_OK that the frame is clean: 453 * 454 * P_OK(BER,N) = (1 - 1/BER)^(N*8) 455 * 456 * We use a 64-bit fixed-point format with decimal point 457 * positioned between bits 47 and 48. 458 */ 459 p0 = one - one / new->ber; 460 p = one; 461 for (fsize = 0; fsize < MAX_FSIZE + MAX_OHSIZE; fsize++) { 462 hinfo->ber_p[fsize] = p; 463 for (i = 0; i < 8; i++) 464 p = (p * (p0 & 0xffff) >> 48) + 465 (p * ((p0 >> 16) & 0xffff) >> 32) + 466 (p * (p0 >> 32) >> 16); 467 } 468 } 469 470 if (new->qin_size_limit == -1) 471 current->qin_size_limit = 0; 472 else if (new->qin_size_limit >= 5) 473 current->qin_size_limit = new->qin_size_limit; 474 475 if (new->qout_size_limit == -1) 476 current->qout_size_limit = 0; 477 else if (new->qout_size_limit >= 5) 478 current->qout_size_limit = new->qout_size_limit; 479 480 if (new->duplicate == -1) 481 current->duplicate = 0; 482 else if (new->duplicate > 0 && new->duplicate <= 50) 483 current->duplicate = new->duplicate; 484 485 if (new->fifo) { 486 current->fifo = 1; 487 current->wfq = 0; 488 current->drr = 0; 489 } 490 491 if (new->wfq) { 492 current->fifo = 0; 493 current->wfq = 1; 494 current->drr = 0; 495 } 496 497 if (new->drr) { 498 current->fifo = 0; 499 current->wfq = 0; 500 /* DRR quantum */ 501 if (new->drr >= 32) 502 current->drr = new->drr; 503 else 504 current->drr = 2048; /* default quantum */ 505 } 506 507 if (new->droptail) { 508 current->droptail = 1; 509 current->drophead = 0; 510 } 511 512 if (new->drophead) { 513 current->droptail = 0; 514 current->drophead = 1; 515 } 516 517 if (new->bandwidth == -1) { 518 current->bandwidth = 0; 519 current->fifo = 1; 520 current->wfq = 0; 521 current->drr = 0; 522 } else if (new->bandwidth >= 100 && new->bandwidth <= 1000000000) 523 current->bandwidth = new->bandwidth; 524 525 if (current->bandwidth | priv->delay | 526 current->duplicate | current->ber) 527 hinfo->noqueue = 0; 528 else 529 hinfo->noqueue = 1; 530 } 531 532 /* 533 * Compute a hash signature for a packet. This function suffers from the 534 * NIH sindrome, so probably it would be wise to look around what other 535 * folks have found out to be a good and efficient IP hash function... 536 */ 537 static int 538 ip_hash(struct mbuf *m, int offset) 539 { 540 u_int64_t i; 541 struct ip *ip = (struct ip *)(mtod(m, u_char *) + offset); 542 543 if (m->m_len < sizeof(struct ip) + offset || 544 ip->ip_v != 4 || ip->ip_hl << 2 != sizeof(struct ip)) 545 return 0; 546 547 i = ((u_int64_t) ip->ip_src.s_addr ^ 548 ((u_int64_t) ip->ip_src.s_addr << 13) ^ 549 ((u_int64_t) ip->ip_dst.s_addr << 7) ^ 550 ((u_int64_t) ip->ip_dst.s_addr << 19)); 551 return (i ^ (i >> 32)); 552 } 553 554 /* 555 * Receive data on a hook - both in upstream and downstream direction. 556 * We put the frame on the inbound queue, and try to initiate dequeuing 557 * sequence immediately. If inbound queue is full, discard one frame 558 * depending on dropping policy (from the head or from the tail of the 559 * queue). 560 */ 561 static int 562 ngp_rcvdata(hook_p hook, item_p item) 563 { 564 struct hookinfo *const hinfo = NG_HOOK_PRIVATE(hook); 565 const priv_p priv = NG_NODE_PRIVATE(NG_HOOK_NODE(hook)); 566 struct timeval uuptime; 567 struct timeval *now = &uuptime; 568 struct ngp_fifo *ngp_f = NULL, *ngp_f1; 569 struct ngp_hdr *ngp_h = NULL; 570 struct mbuf *m; 571 int hash, plen; 572 int error = 0; 573 574 /* 575 * Shortcut from inbound to outbound hook when neither of 576 * bandwidth, delay, BER or duplication probability is 577 * configured, nor we have queued frames to drain. 578 */ 579 if (hinfo->run.qin_frames == 0 && hinfo->run.qout_frames == 0 && 580 hinfo->noqueue) { 581 struct hookinfo *dest; 582 if (hinfo == &priv->lower) 583 dest = &priv->upper; 584 else 585 dest = &priv->lower; 586 587 /* Send the frame. */ 588 plen = NGI_M(item)->m_pkthdr.len; 589 NG_FWD_ITEM_HOOK(error, item, dest->hook); 590 591 /* Update stats. */ 592 if (error) { 593 hinfo->stats.out_disc_frames++; 594 hinfo->stats.out_disc_octets += plen; 595 } else { 596 hinfo->stats.fwd_frames++; 597 hinfo->stats.fwd_octets += plen; 598 } 599 600 return (error); 601 } 602 603 microuptime(now); 604 605 /* 606 * If this was an empty queue, update service deadline time. 607 */ 608 if (hinfo->run.qin_frames == 0) { 609 struct timeval *when = &hinfo->qin_utime; 610 if (when->tv_sec < now->tv_sec || (when->tv_sec == now->tv_sec 611 && when->tv_usec < now->tv_usec)) { 612 when->tv_sec = now->tv_sec; 613 when->tv_usec = now->tv_usec; 614 } 615 } 616 617 /* Populate the packet header */ 618 ngp_h = uma_zalloc(ngp_zone, M_NOWAIT); 619 KASSERT((ngp_h != NULL), ("ngp_h zalloc failed (1)")); 620 NGI_GET_M(item, m); 621 KASSERT(m != NULL, ("NGI_GET_M failed")); 622 ngp_h->m = m; 623 NG_FREE_ITEM(item); 624 625 if (hinfo->cfg.fifo) 626 hash = 0; /* all packets go into a single FIFO queue */ 627 else 628 hash = ip_hash(m, priv->header_offset); 629 630 /* Find the appropriate FIFO queue for the packet and enqueue it*/ 631 TAILQ_FOREACH(ngp_f, &hinfo->fifo_head, fifo_le) 632 if (hash == ngp_f->hash) 633 break; 634 if (ngp_f == NULL) { 635 ngp_f = uma_zalloc(ngp_zone, M_NOWAIT); 636 KASSERT(ngp_h != NULL, ("ngp_h zalloc failed (2)")); 637 TAILQ_INIT(&ngp_f->packet_head); 638 ngp_f->hash = hash; 639 ngp_f->packets = 1; 640 ngp_f->rr_deficit = hinfo->cfg.drr; /* DRR quantum */ 641 hinfo->run.fifo_queues++; 642 TAILQ_INSERT_TAIL(&ngp_f->packet_head, ngp_h, ngp_link); 643 FIFO_VTIME_SORT(m->m_pkthdr.len); 644 } else { 645 TAILQ_INSERT_TAIL(&ngp_f->packet_head, ngp_h, ngp_link); 646 ngp_f->packets++; 647 } 648 hinfo->run.qin_frames++; 649 hinfo->run.qin_octets += m->m_pkthdr.len; 650 651 /* Discard a frame if inbound queue limit has been reached */ 652 if (hinfo->run.qin_frames > hinfo->cfg.qin_size_limit) { 653 struct mbuf *m1; 654 int longest = 0; 655 656 /* Find the longest queue */ 657 TAILQ_FOREACH(ngp_f1, &hinfo->fifo_head, fifo_le) 658 if (ngp_f1->packets > longest) { 659 longest = ngp_f1->packets; 660 ngp_f = ngp_f1; 661 } 662 663 /* Drop a frame from the queue head/tail, depending on cfg */ 664 if (hinfo->cfg.drophead) 665 ngp_h = TAILQ_FIRST(&ngp_f->packet_head); 666 else 667 ngp_h = TAILQ_LAST(&ngp_f->packet_head, p_head); 668 TAILQ_REMOVE(&ngp_f->packet_head, ngp_h, ngp_link); 669 m1 = ngp_h->m; 670 uma_zfree(ngp_zone, ngp_h); 671 hinfo->run.qin_octets -= m1->m_pkthdr.len; 672 hinfo->stats.in_disc_octets += m1->m_pkthdr.len; 673 m_freem(m1); 674 if (--(ngp_f->packets) == 0) { 675 TAILQ_REMOVE(&hinfo->fifo_head, ngp_f, fifo_le); 676 uma_zfree(ngp_zone, ngp_f); 677 hinfo->run.fifo_queues--; 678 } 679 hinfo->run.qin_frames--; 680 hinfo->stats.in_disc_frames++; 681 } else if (hinfo->run.qin_frames > hinfo->cfg.qin_size_limit) { 682 struct mbuf *m1; 683 int longest = 0; 684 685 /* Find the longest queue */ 686 TAILQ_FOREACH(ngp_f1, &hinfo->fifo_head, fifo_le) 687 if (ngp_f1->packets > longest) { 688 longest = ngp_f1->packets; 689 ngp_f = ngp_f1; 690 } 691 692 /* Drop a frame from the queue head/tail, depending on cfg */ 693 if (hinfo->cfg.drophead) 694 ngp_h = TAILQ_FIRST(&ngp_f->packet_head); 695 else 696 ngp_h = TAILQ_LAST(&ngp_f->packet_head, p_head); 697 TAILQ_REMOVE(&ngp_f->packet_head, ngp_h, ngp_link); 698 m1 = ngp_h->m; 699 uma_zfree(ngp_zone, ngp_h); 700 hinfo->run.qin_octets -= m1->m_pkthdr.len; 701 hinfo->stats.in_disc_octets += m1->m_pkthdr.len; 702 m_freem(m1); 703 if (--(ngp_f->packets) == 0) { 704 TAILQ_REMOVE(&hinfo->fifo_head, ngp_f, fifo_le); 705 uma_zfree(ngp_zone, ngp_f); 706 hinfo->run.fifo_queues--; 707 } 708 hinfo->run.qin_frames--; 709 hinfo->stats.in_disc_frames++; 710 } 711 712 /* 713 * Try to start the dequeuing process immediately. 714 */ 715 pipe_dequeue(hinfo, now); 716 717 return (0); 718 } 719 720 721 /* 722 * Dequeueing sequence - we basically do the following: 723 * 1) Try to extract the frame from the inbound (bandwidth) queue; 724 * 2) In accordance to BER specified, discard the frame randomly; 725 * 3) If the frame survives BER, prepend it with delay info and move it 726 * to outbound (delay) queue; 727 * 4) Loop to 2) until bandwidth quota for this timeslice is reached, or 728 * inbound queue is flushed completely; 729 * 5) Dequeue frames from the outbound queue and send them downstream until 730 * outbound queue is flushed completely, or the next frame in the queue 731 * is not due to be dequeued yet 732 */ 733 static void 734 pipe_dequeue(struct hookinfo *hinfo, struct timeval *now) { 735 static uint64_t rand, oldrand; 736 const node_p node = NG_HOOK_NODE(hinfo->hook); 737 const priv_p priv = NG_NODE_PRIVATE(node); 738 struct hookinfo *dest; 739 struct ngp_fifo *ngp_f, *ngp_f1; 740 struct ngp_hdr *ngp_h; 741 struct timeval *when; 742 struct mbuf *m; 743 int plen, error = 0; 744 745 /* Which one is the destination hook? */ 746 if (hinfo == &priv->lower) 747 dest = &priv->upper; 748 else 749 dest = &priv->lower; 750 751 /* Bandwidth queue processing */ 752 while ((ngp_f = TAILQ_FIRST(&hinfo->fifo_head))) { 753 when = &hinfo->qin_utime; 754 if (when->tv_sec > now->tv_sec || (when->tv_sec == now->tv_sec 755 && when->tv_usec > now->tv_usec)) 756 break; 757 758 ngp_h = TAILQ_FIRST(&ngp_f->packet_head); 759 m = ngp_h->m; 760 761 /* Deficit Round Robin (DRR) processing */ 762 if (hinfo->cfg.drr) { 763 if (ngp_f->rr_deficit >= m->m_pkthdr.len) { 764 ngp_f->rr_deficit -= m->m_pkthdr.len; 765 } else { 766 ngp_f->rr_deficit += hinfo->cfg.drr; 767 TAILQ_REMOVE(&hinfo->fifo_head, ngp_f, fifo_le); 768 TAILQ_INSERT_TAIL(&hinfo->fifo_head, 769 ngp_f, fifo_le); 770 continue; 771 } 772 } 773 774 /* 775 * Either create a duplicate and pass it on, or dequeue 776 * the original packet... 777 */ 778 if (hinfo->cfg.duplicate && 779 random() % 100 <= hinfo->cfg.duplicate) { 780 ngp_h = uma_zalloc(ngp_zone, M_NOWAIT); 781 KASSERT(ngp_h != NULL, ("ngp_h zalloc failed (3)")); 782 m = m_dup(m, M_NOWAIT); 783 KASSERT(m != NULL, ("m_dup failed")); 784 ngp_h->m = m; 785 } else { 786 TAILQ_REMOVE(&ngp_f->packet_head, ngp_h, ngp_link); 787 hinfo->run.qin_frames--; 788 hinfo->run.qin_octets -= m->m_pkthdr.len; 789 ngp_f->packets--; 790 } 791 792 /* Calculate the serialization delay */ 793 if (hinfo->cfg.bandwidth) { 794 hinfo->qin_utime.tv_usec += 795 ((uint64_t) m->m_pkthdr.len + priv->overhead ) * 796 8000000 / hinfo->cfg.bandwidth; 797 hinfo->qin_utime.tv_sec += 798 hinfo->qin_utime.tv_usec / 1000000; 799 hinfo->qin_utime.tv_usec = 800 hinfo->qin_utime.tv_usec % 1000000; 801 } 802 when = &ngp_h->when; 803 when->tv_sec = hinfo->qin_utime.tv_sec; 804 when->tv_usec = hinfo->qin_utime.tv_usec; 805 806 /* Sort / rearrange inbound queues */ 807 if (ngp_f->packets) { 808 if (hinfo->cfg.wfq) { 809 TAILQ_REMOVE(&hinfo->fifo_head, ngp_f, fifo_le); 810 FIFO_VTIME_SORT(TAILQ_FIRST( 811 &ngp_f->packet_head)->m->m_pkthdr.len) 812 } 813 } else { 814 TAILQ_REMOVE(&hinfo->fifo_head, ngp_f, fifo_le); 815 uma_zfree(ngp_zone, ngp_f); 816 hinfo->run.fifo_queues--; 817 } 818 819 /* Randomly discard the frame, according to BER setting */ 820 if (hinfo->cfg.ber) { 821 oldrand = rand; 822 rand = random(); 823 if (((oldrand ^ rand) << 17) >= 824 hinfo->ber_p[priv->overhead + m->m_pkthdr.len]) { 825 hinfo->stats.out_disc_frames++; 826 hinfo->stats.out_disc_octets += m->m_pkthdr.len; 827 uma_zfree(ngp_zone, ngp_h); 828 m_freem(m); 829 continue; 830 } 831 } 832 833 /* Discard frame if outbound queue size limit exceeded */ 834 if (hinfo->cfg.qout_size_limit && 835 hinfo->run.qout_frames>=hinfo->cfg.qout_size_limit) { 836 hinfo->stats.out_disc_frames++; 837 hinfo->stats.out_disc_octets += m->m_pkthdr.len; 838 uma_zfree(ngp_zone, ngp_h); 839 m_freem(m); 840 continue; 841 } 842 843 /* Calculate the propagation delay */ 844 when->tv_usec += priv->delay; 845 when->tv_sec += when->tv_usec / 1000000; 846 when->tv_usec = when->tv_usec % 1000000; 847 848 /* Put the frame into the delay queue */ 849 TAILQ_INSERT_TAIL(&hinfo->qout_head, ngp_h, ngp_link); 850 hinfo->run.qout_frames++; 851 hinfo->run.qout_octets += m->m_pkthdr.len; 852 } 853 854 /* Delay queue processing */ 855 while ((ngp_h = TAILQ_FIRST(&hinfo->qout_head))) { 856 when = &ngp_h->when; 857 m = ngp_h->m; 858 if (when->tv_sec > now->tv_sec || 859 (when->tv_sec == now->tv_sec && 860 when->tv_usec > now->tv_usec)) 861 break; 862 863 /* Update outbound queue stats */ 864 plen = m->m_pkthdr.len; 865 hinfo->run.qout_frames--; 866 hinfo->run.qout_octets -= plen; 867 868 /* Dequeue the packet from qout */ 869 TAILQ_REMOVE(&hinfo->qout_head, ngp_h, ngp_link); 870 uma_zfree(ngp_zone, ngp_h); 871 872 NG_SEND_DATA(error, dest->hook, m, meta); 873 if (error) { 874 hinfo->stats.out_disc_frames++; 875 hinfo->stats.out_disc_octets += plen; 876 } else { 877 hinfo->stats.fwd_frames++; 878 hinfo->stats.fwd_octets += plen; 879 } 880 } 881 882 if ((hinfo->run.qin_frames != 0 || hinfo->run.qout_frames != 0) && 883 !priv->timer_scheduled) { 884 ng_callout(&priv->timer, node, NULL, 1, ngp_callout, NULL, 0); 885 priv->timer_scheduled = 1; 886 } 887 } 888 889 /* 890 * This routine is called on every clock tick. We poll connected hooks 891 * for queued frames by calling pipe_dequeue(). 892 */ 893 static void 894 ngp_callout(node_p node, hook_p hook, void *arg1, int arg2) 895 { 896 const priv_p priv = NG_NODE_PRIVATE(node); 897 struct timeval now; 898 899 priv->timer_scheduled = 0; 900 microuptime(&now); 901 if (priv->upper.hook != NULL) 902 pipe_dequeue(&priv->upper, &now); 903 if (priv->lower.hook != NULL) 904 pipe_dequeue(&priv->lower, &now); 905 } 906 907 /* 908 * Shutdown processing 909 * 910 * This is tricky. If we have both a lower and upper hook, then we 911 * probably want to extricate ourselves and leave the two peers 912 * still linked to each other. Otherwise we should just shut down as 913 * a normal node would. 914 */ 915 static int 916 ngp_shutdown(node_p node) 917 { 918 const priv_p priv = NG_NODE_PRIVATE(node); 919 920 if (priv->timer_scheduled) 921 ng_uncallout(&priv->timer, node); 922 if (priv->lower.hook && priv->upper.hook) 923 ng_bypass(priv->lower.hook, priv->upper.hook); 924 else { 925 if (priv->upper.hook != NULL) 926 ng_rmhook_self(priv->upper.hook); 927 if (priv->lower.hook != NULL) 928 ng_rmhook_self(priv->lower.hook); 929 } 930 NG_NODE_UNREF(node); 931 free(priv, M_NG_PIPE); 932 return (0); 933 } 934 935 936 /* 937 * Hook disconnection 938 */ 939 static int 940 ngp_disconnect(hook_p hook) 941 { 942 struct hookinfo *const hinfo = NG_HOOK_PRIVATE(hook); 943 struct ngp_fifo *ngp_f; 944 struct ngp_hdr *ngp_h; 945 946 KASSERT(hinfo != NULL, ("%s: null info", __FUNCTION__)); 947 hinfo->hook = NULL; 948 949 /* Flush all fifo queues associated with the hook */ 950 while ((ngp_f = TAILQ_FIRST(&hinfo->fifo_head))) { 951 while ((ngp_h = TAILQ_FIRST(&ngp_f->packet_head))) { 952 TAILQ_REMOVE(&ngp_f->packet_head, ngp_h, ngp_link); 953 m_freem(ngp_h->m); 954 uma_zfree(ngp_zone, ngp_h); 955 } 956 TAILQ_REMOVE(&hinfo->fifo_head, ngp_f, fifo_le); 957 uma_zfree(ngp_zone, ngp_f); 958 } 959 960 /* Flush the delay queue */ 961 while ((ngp_h = TAILQ_FIRST(&hinfo->qout_head))) { 962 TAILQ_REMOVE(&hinfo->qout_head, ngp_h, ngp_link); 963 m_freem(ngp_h->m); 964 uma_zfree(ngp_zone, ngp_h); 965 } 966 967 /* Release the packet loss probability table (BER) */ 968 if (hinfo->ber_p) 969 free(hinfo->ber_p, M_NG_PIPE); 970 971 return (0); 972 } 973 974 static int 975 ngp_modevent(module_t mod, int type, void *unused) 976 { 977 int error = 0; 978 979 switch (type) { 980 case MOD_LOAD: 981 ngp_zone = uma_zcreate("ng_pipe", max(sizeof(struct ngp_hdr), 982 sizeof (struct ngp_fifo)), NULL, NULL, NULL, NULL, 983 UMA_ALIGN_PTR, 0); 984 if (ngp_zone == NULL) 985 panic("ng_pipe: couldn't allocate descriptor zone"); 986 break; 987 case MOD_UNLOAD: 988 uma_zdestroy(ngp_zone); 989 break; 990 default: 991 error = EOPNOTSUPP; 992 break; 993 } 994 995 return (error); 996 } 997